A Heat Conduction Problem on Some Semi-infinite Regions

Jong-Yi Chen and Yunshyong Chow*

Abstract. An infinite homogeneous d-dimensional medium initially is at zero temperature. A heat impulse is applied at the origin, raising the temperature there to a value greater than a constant value $u_0 > 0$. The temperature at the origin then decays, and when it reaches u_0 , another equal-sized heat impulse is applied at time t_1 . Subsequent equal-sized heat impulses are applied at the origin at times t_n , $n \ge 2$, when the temperature there has decayed to u_0 . The waiting-time sequence $\{t_n - t_{n-1}\}$ can be defined recursively by a difference equation and its asymptotic behavior was first proposed as a conjecture by Myshkis in 1997.

In this paper we study the same heating-time problem set on semi-infinite regions $[-L, L] \times \mathbb{R}$ and $\{(x, y) : x^2 + y^2 \leq L\} \times \mathbb{R}$ with insulated boundary condition and all actions taking place at some point p which needs not be the origin.

1. Introduction

Myshkis [6] studied the following heat conduction problem: let $u(\boldsymbol{x}, t)$ be the temperature at position $\boldsymbol{x} = (x_1, x_2, \ldots, x_d)$ and time t of a homogeneous medium filling up the whole \mathbb{R}^d . Suppose $u \equiv 0$ at t = 0 and a heat impulse of size b is applied at $\boldsymbol{x} = \boldsymbol{0}$. A heat impulse of the same size is applied again at $\boldsymbol{x} = \boldsymbol{0}$ at time t_1 when $u(\boldsymbol{0}, t_1) = u_0$, i.e., when the temperature at $\boldsymbol{x} = \boldsymbol{0}$ decreases to a given value $u_0 > 0$. This process is repeated indefinitely.

Denote by $t_0 = 0, t_1, t_2, ...$ the sequence of consecutive times that a heat impulse of size b is applied at x = 0. By solving the heat equation

(1.1)
$$\begin{cases} \frac{\partial u}{\partial t} = a \cdot \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2}, \\ u(\boldsymbol{x}, t_{n-1}^+) = u(\boldsymbol{x}, t_{n-1}) + b \cdot \delta_{\boldsymbol{0}}(\boldsymbol{x}), \end{cases}$$

where a is the heat conduction coefficient of the medium and $\delta_0(\mathbf{x})$ the Dirac function at $\mathbf{x} = \mathbf{0}$, it is easy to show by superposition principle that for $n \ge 0$ and $t_{n-1} < t \le t_n$, $u(\mathbf{x}, t)$ is given by

*Corresponding author.

Received April 14, 2015, accepted July 8, 2015.

Communicated by Cheng-Hsiung Hsu.

²⁰¹⁰ Mathematics Subject Classification. Primary: 39A10; Secondary: 35K05, 93B52, 35B05.

Key words and phrases. Heat equation, Difference equation, Asymptotic behavior, Boundary value problem.

(1.2)
$$u(x,t) = b \sum_{j=0}^{n-1} f(x,t-t_j).$$

Here $f(\boldsymbol{x},t) = \left(\frac{1}{4\pi at}\right)^{d/2} \exp\left(-\frac{\sum_{i=1}^{d} x_i^2}{4at}\right)$ is the fundamental solution to the heat equation (1.1) above. The heating condition

(1.3)
$$u(\mathbf{0}, t_n) = u_0 \quad \text{for } n \ge 1$$

then implies

(1.4)
$$u_0 = u(\mathbf{0}, t_n) = b \sum_{j=0}^{n-1} f(\mathbf{0}, t_n - t_j) = b \sum_{j=0}^{n-1} \left(\frac{1}{4\pi a(t_n - t_j)} \right)^{d/2}$$

For $j \ge 1$, define $\tau_j = 4\pi a(t_j - t_{j-1})(u_0/b)^{2/d}$ as the normalized waiting time between two consecutive heating times t_{j-1} and t_j . By a simple computation (1.4) can be rewritten as

The sequence $\{\tau_n\}$ is thus recursively defined. Myshkis [6] conjectured that $\{\tau_n\}$ is increasing and $\tau_n/n \approx \text{constant}$ for d = 1. The following is known.

Theorem 1.1. [1,5] Let $d \in \mathbb{N}$. The waiting-time sequence $\{\tau_n\}$ given in (1.5) is increasing and satisfies

- (i) $\lim_{n \to \infty} \tau_n / n = \pi^2 / 2$ for d = 1,
- (ii) $\lim_{n \to \infty} \tau_n / \log n = 1$ for d = 2,
- (iii) $\lim_n \tau_n = \{\zeta(d/2)\}^{2/d} \text{ for } d \ge 3.$

Here $\zeta(s) \equiv \sum_{k=1}^{\infty} k^{-s}$ is the Riemann-Zeta function.

Since $4\pi a (u_0/b)^{2/d} t_n = \sum_{s=1}^n \tau_s$, we get easily the following result.

Theorem 1.2. The heating-time sequence $\{t_n : n \ge 0\}$ recursively defined by the heat equation (1.1) and the heating condition (1.3) satisfies:

(i)
$$\lim_{n} \frac{t_n}{n^2} = \frac{\pi}{16a} \left(\frac{b}{u_0}\right)^2 \text{ for } d = 1,$$

(ii)
$$\lim_{n} \frac{t_n}{n \log n} = \frac{1}{4\pi a} \left(\frac{b}{u_0}\right) \text{ for } d = 2,$$

388

(iii)
$$\lim_{n} \frac{t_n}{n} = \frac{1}{4\pi a} \left(\frac{b\zeta(\frac{d}{2})}{u_0}\right)^{\frac{2}{d}} \text{ for } d \ge 3.$$

In particular, the conduction coefficient a can be determined without ever leaving the origin $\mathbf{x} = 0$ if one knows the impulse size b, the threshold temperature u_0 and the heating times $t_0 = 0, t_1, t_2, t_3, \ldots$

In this paper we will study the same heating problem, but set on a semi-infinite region with insulated boundary condition and all actions taking place at point p which needs not be the origin. Two particular regions considered here are a slab in \mathbb{R}^2 and an infinite cylinder in \mathbb{R}^3 respectively. Let

(1.6)
$$\boldsymbol{D}_1 = [-L, L] \times \mathbb{R} \text{ and } \boldsymbol{D}_2 = \{(x, y) : x^2 + y^2 \le L^2\} \times \mathbb{R}.$$

By symmetry we may set $\mathbf{p} = (\mu, 0)$ for \mathbf{D}_1 and $\mathbf{p} = (\mu, 0, 0)$ for \mathbf{D}_2 respectively. As above, let $t_0 = 0, t_1, t_2, \ldots$ the sequence of consecutive times that a heat impulse of size bis applied at \mathbf{p} . For $t_{n-1} < t < t_n$, the temperature function u satisfies the following heat equation

(1.7)
$$\begin{cases} \frac{\partial u}{\partial t}(\boldsymbol{x},t) = a \cdot \Delta u(\boldsymbol{x},t) & \text{for } (\boldsymbol{x},t) \in \boldsymbol{D}_j \times \mathbb{R}^+, \\ \frac{\partial u}{\partial n}(\boldsymbol{x},t) \Big|_{\partial \boldsymbol{D}_j} = 0 \quad \text{and} \quad u(\boldsymbol{x},t_{n-1}^+) = u(\boldsymbol{x},t_{n-1}) + b \cdot \delta_{\boldsymbol{p}}(\boldsymbol{x}). \end{cases}$$

Then t_n is determined by the heating condition

(1.8)
$$u(\boldsymbol{p}, t_n) = u_0 \quad \text{for } n \ge 1.$$

Equation (1.2) still holds except the fundamental solution f changes. In both cases, we require

(1.9)
$$f(\cdot, t)$$
 is bounded for any $t > 0$ and $\lim_{t \to \infty} \|f(\cdot, t)\|_{\infty} = 0.$

We start with D_1 . The method of separation of variables and the superposition principle imply

(1.10)
$$f(x,y,t) = \int_{-\infty}^{\infty} d\beta \sum_{m=0}^{\infty} c_m(\beta) e^{i\beta y} e^{-a\left(\frac{m^2\pi^2}{4L^2} + \beta^2\right)t} \cdot \cos\frac{m\pi(x+L)}{2L}.$$

Using the impulse condition $f(\boldsymbol{x}, 0^+) = \delta_{\mu}(x)\delta_0(y)$, we can verify easily that

(1.11)
$$c_m(\beta) = \frac{2 - \delta_{m,0}}{4\pi L} \cos \frac{m\pi(\mu + L)}{2L}$$
, which is independent of β .

Here, $\delta_{m,0}$ is the well-known Kronecker symbol. Putting it back to (1.10) and integrating out β , we get [7]

$$f(x,y,t) = \frac{e^{-\frac{y^2}{4at}}}{4L\sqrt{\pi at}} \sum_{m=0}^{\infty} (2-\delta_{m,0}) \cos\frac{m\pi(\mu+L)}{2L} \cos\frac{m\pi(x+L)}{2L} e^{-\frac{am^2\pi^2t}{4L^2}}.$$

Here and in the derivation of (1.11) we have used the following formulas

(1.12)
$$\int_{-\infty}^{\infty} e^{i\beta y - a\beta^2 t} d\beta = \frac{\sqrt{\pi}e^{-\frac{y^2}{4at}}}{\sqrt{at}} \quad \text{and} \quad \int_{-\infty}^{\infty} e^{i(\beta - \beta')y} dy = 2\pi\delta_0(\beta - \beta')$$

from the inverse Fourier transform. Let $v(t) = f(\mu, 0, t)$. Then

(1.13)
$$v(t) = \frac{1}{4L\sqrt{\pi at}} \sum_{m=0}^{\infty} (2 - \delta_{m,0}) \cos^2 \frac{m\pi(\mu + L)}{2L} \cdot e^{-\frac{am^2\pi^2 t}{4L^2}}$$

The heating condition (1.8) then implies that for $n \ge 1$,

(1.14)
$$u_0 = u(\mu, 0, t_n) = b \sum_{j=0}^{n-1} f(\mu, 0, t_n - t_j) = b \sum_{j=0}^{n-1} v(t_n - t_j).$$

Remember $t_0 = 0$. This is the defining recursive relation for the heating times $\{t_n, n \ge 0\}$ of (1.7) set in D_1 .

As to $\mathbf{D}_2 = \{(x, y) : x^2 + y^2 \leq L\} \times \mathbb{R} \subseteq \mathbb{R}^3$, its fundamental solution f to (1.7) can be derived similarly. Using the cylindrical coordinate (r, θ, z) and symmetry, we expect fon \mathbf{D}_2 to be independent of θ . Hence,

(1.15)
$$\frac{\partial f}{\partial t} = a \left(\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial z^2} \right) \quad \text{for } 0 \le r < L \text{ with } \left. \frac{\partial f}{\partial r} \right|_{r=L} = 0.$$

By the method of separation of variables, we seek for particular solutions to (1.15) in the form R(r)Z(z)T(t). Substituting into (1.15), we get

(1.16)
$$\begin{cases} R''(r) + \frac{1}{r}R'(r) + \alpha^2 R(r) = 0 \quad \text{and} \quad R'(L) = 0, \\ Z''(z) + \beta^2 Z(z) = 0 \quad \text{and} \quad T'(t) = -a(\alpha^2 + \beta^2)T(t), \end{cases}$$

where α, β are real constants. Hence, $Z(z) = e^{i\beta z}$, $T(t) = e^{-a(\alpha^2 + \beta^2)t}$ and $R(r) = J_0(\alpha r)$. Here J_n means the Bessel function of order n. Note that the Weber function $Y_0(\alpha r)$ does not appear as R(r) is required to be continuous at r = 0. The insulated boundary condition in (1.16) implies that α satisfies $J'_0(\alpha L) = 0$. Note that $J'_0(z) = -J_1(z)$, $J_1(0) = 0$ and $J_1(-z) = -J_1(z)$. It is well-known [8] that all the zeros of $J_1(z)$ are real and simple. Let

$$S = \{\lambda_0 = 0 < \lambda_1 < \lambda_2 < \cdots\}$$

be all the nonnegative zeros of $J_1(z)$. Then $R(r) = J_0(\lambda r/L)$ with $\lambda \in S$. By the superposition principle,

(1.17)
$$f(r,\theta,z,t) = \int_{-\infty}^{\infty} d\beta \sum_{k=0}^{\infty} c_k(\beta) e^{i\beta z} e^{-a\left(\frac{\lambda_k^2}{L^2} + \beta^2\right)t} J_0\left(\frac{\lambda_k r}{L}\right),$$

where the constant $c_k(\beta)$ is to be determined by the impulse condition

(1.18)
$$\delta_{\mu}(x)\delta_{0}(y)\delta_{0}(z) = f(r,\theta,z,0^{+}) = \int_{-\infty}^{\infty} d\beta \sum_{k=0}^{\infty} c_{k}(\beta)e^{i\beta z}J_{0}\left(\frac{\lambda_{k}r}{L}\right).$$

Multiplying both sides of (1.18) by $\exp(-i\beta' z)$ and then integrating over z,

(1.19)
$$\delta_{\mu}(x)\delta_{0}(y) = 2\pi \sum_{k=0}^{\infty} c_{k}(\beta')J_{0}\left(\frac{\lambda_{k}r}{L}\right),$$

where the second formula in (1.12) was used. Now we multiply both sides of (1.19) by $J_0(\lambda_{\ell}r/L)$ and then integrate over $\{(x, y) : x^2 + y^2 \leq L\}$. First changing to polar coordinate (r, θ) for the right-hand side integral and then using the following orthogonal relation for Dini's expansion [8, p. 580]

$$\int_0^L r J_0\left(\frac{\lambda_k r}{L}\right) J_0\left(\frac{\lambda_\ell r}{L}\right) \, dr = \frac{L^2}{2} J_0^2(\lambda_k) \cdot \delta_{k,\ell}$$

we obtain $J_0(\lambda_\ell \mu/L) = 2\pi^2 L^2 c_\ell(\beta') J_0^2(\lambda_\ell)$. Hence,

$$c_k(\beta') = \frac{J_0(\frac{\lambda_k \mu}{L})}{2\pi^2 L^2 J_0^2(\lambda_k)}, \quad \text{which is independent of } \beta'.$$

Putting it back to (1.17) and repeating the same procedure as in D_1 case,

$$f(r,\theta,z,t) = \frac{1}{\pi L^2 \sqrt{4\pi a t}} e^{-\frac{z^2}{4at}} \sum_{k=0}^{\infty} \frac{J_0(\frac{\lambda_k \mu}{L}) J_0(\frac{\lambda_k r}{L})}{J_0^2(\lambda_k)} e^{-\frac{a\lambda_k^2 t}{L^2}}.$$

This is the fundamental solution to (1.15). Let $w(t) = f(\mathbf{p}, t)$. Then

(1.20)
$$w(t) = \frac{1}{\pi L^2 \sqrt{4\pi a t}} \sum_{k=0}^{\infty} \frac{J_0^2(\frac{\lambda_k \mu}{L})}{J_0^2(\lambda_k)} e^{-\frac{a\lambda_k^2 t}{L^2}}.$$

Note that $J_0(\lambda_k) \neq 0$. The heating condition (1.8) then implies that

(1.21)
$$u_0 = u(\mathbf{p}, t_n) = b \sum_{j=0}^{n-1} f(\mathbf{p}, t_n - t_j) = b \sum_{j=0}^{n-1} w(t_n - t_j) \quad \text{for } n \ge 1,$$

which is the defining recursive relation for the heating times $\{t_n, n \ge 0\}$ of (1.7) set on D_2 .

In comparison with (1.4), the heating times problem for semi-infinite regions D_1 and D_2 is more complicated than that for an infinite rod. It seems an awful task to verify the monotonicity of the waiting-time sequence $\{t_{n+1} - t_n; n \ge 0\}$ defined in (1.14) and (1.21). Fortunately, this can be done by using a result in [2], which can be applied to many similar problems in auto-regulated systems. Moreover, we will show that $\lim(t_{n+1} - t_n) = \infty$. Since $\lambda_0 = 0$ and $J_0(0) = 1$, the first term 1 of the infinite series in both (1.13) and (1.20) is the leading term as $t \to \infty$. By using $\lim_n (t_n - t_j) = \infty$, for $0 \le j < n$, to ignore all non-leading terms, both difference equations (1.14) and (1.21) look like (1.4) with d = 1. The following result, similar to Theorem 1.2(i), will be proved in Section 2.

Theorem 1.3. For the heating times $\{t_n : n \ge 0\}$ recursively defined by the heat equation (1.7) and the heating condition (1.8), the waiting-time sequence $\{t_{n+1} - t_n : n \ge 0\}$ is increasing. Moreover,

(1.22)
$$\lim_{n} \frac{t_n}{n^2} = \frac{\pi}{16a} \left(\frac{b}{u_0 \gamma_j}\right)^2$$

where, depending on j = 1 or 2, $\gamma_j = 2L$ or πL^2 and is the cross-section area of the semi-infinite region D_j given in (1.6).

When viewed from a faraway place, each D_j looks like an infinite rod. It is therefore expected that the order estimate of $\{t_n\}$ in (1.22) is consistent with that in Theorem 1.2(i), even if the temperature measurement is taken at a point different from the explosion point. See [4]. Certainly, constants b, u_0 and a should appear on the right-hand side of (1.22). The factor γ_j is of interest as it is the cross-section area of \mathbf{D}_j . We believe (1.22) holds for general regions like $\mathbf{G} \times \mathbb{R}$, where \mathbf{G} is a smooth bounded domain in \mathbb{R}^{d-1} .

In contrast with the remark after Theorem 1.2, (1.22) is less satisfactory from the physical viewpoint as it fails to determine the conduction coefficient a which is now mixed up with the cross-section area γ_j of the semi-infinite region D_j . Moreover, it is independent of the parameter μ in the action site p. We wonder whether there is some way to determine the conduction coefficient a, the parameter μ and the geometric quantity γ_j from the heat-time sequence $\{t_n\}$.

Finally we remark that Theorem 1.3 is proved by modifying the method used in [5]. We first show that the waiting-time sequence $\{t_{n+1} - t_n; n \ge 0\}$ is increasing. By using some inequality shown in Lemma 2.2 below, we obtain that $\lim(t_{n+1} - t_n)/n$ exists by verifying $\liminf(t_{n+1} - t_n)/n = \limsup(t_{n+1} - t_n)/n$. It is then easy to find the limiting constant from the defining recursive formulas (1.14) and (1.21) respectively.

2. Proof of Theorem 1.3

For $j \ge 1$, define $\tau_j = t_j - t_{j-1}$ as the waiting time between two consecutive heatings. We first show $\{\tau_n : n \ge 1\}$ is increasing via the following result.

Lemma 2.1. [2] Let sequence $\{\tau_n\}$ be recursively defined by

(2.1)
$$\sum_{j=1}^{n} g\left(\sum_{s=j}^{n} \tau_{s}\right) = 1 \quad \text{for } n \ge 1,$$

where g is a continuous, strictly decreasing function on $(0, \infty)$ with $g(0^+) \ge 1$ and $g(\infty) = 0$. If $\log g \in C^1$ and is convex, then the sequence $\{\tau_n\}$ is increasing. Moreover, $\lim \tau_n = \beta < \infty$ iff $\sum_{n=1}^{\infty} g(n) < \infty$. In that case, the constant β is uniquely determined by the equation $\sum_{n=1}^{\infty} g(n\beta) = 1$.

Since $t_n - t_j = \sum_{s=j+1}^n \tau_s$, both the difference equations (1.14) for D_1 and (1.21) for D_2 can be rewritten in the form of (2.1) with

(2.2)
$$g(t) = \sum_{k=0}^{\infty} g_k(t), \text{ where } g_k(t) = c_k t^{-1/2} e^{-d_k t}$$

and all the constants c_k and d_k are positive except $d_0 = 0$. In particular,

(2.3)
$$c_0 = \begin{cases} \frac{b}{2Lu_0\sqrt{4\pi a}} & \text{for } \boldsymbol{D}_1, \\ \frac{b}{\pi L^2 u_0\sqrt{4\pi a}} & \text{for } \boldsymbol{D}_2. \end{cases}$$

Note that $g(\infty) = 0$ by (1.9). For each $k \ge 0$, g_k is strictly decreasing on $(0, \infty)$ as $g'_k < 0$. Hence, g is strictly decreasing as well. It remains to show that $\log g$ is convex on $(0, \infty)$. First, each $\log g_k$ is convex as

(2.4)
$$\frac{g_k''g_k - {g_k'}^2}{g_k^2} = (\log g_k)'' = \frac{1}{2}t^{-2} > 0$$

Since $g_k''(t) = g_k(t) \left[d_k^2 + d_k \frac{1}{t} + \frac{3}{4t^2} \right] > 0$, it follows from (2.4) and Cauchy-Schwarz inequality that $(g_k + g_j)''(g_k + g_j) - (g_k + g_j)'^2$ is no less than

$$g_k''g_j + g_j''g_k - 2g_k'g_j' \ge 2\sqrt{g_k''g_jg_j''g_k} - 2g_k'g_j' \ge 2(|g_k'g_j'| - g_k'g_j') \ge 0.$$

Hence, $\log(g_k + g_j)$ is convex on $(0, \infty)$ and then so does $\log(\sum_{k=0}^m g_k)$. Because $\sum_{k=0}^m g_k \uparrow g$, $\log g$ is convex as desired. Moreover, $\sum_{n=0}^{\infty} g(n) \ge \sum_{n=0}^{\infty} g_0(n) = \sum_{n=0}^{\infty} c_0 n^{-1/2} = \infty$. We have from Lemma 2.1 that

(2.5) $\{\tau_n\}$ is an increasing sequence and $\lim_{n \to \infty} \tau_n = \infty$.

In order to show (1.22), we need to find an estimate for τ_n better than (2.5). In fact, we claim that under (2.1) and (2.2),

(2.6)
$$\lim_{n \to \infty} \frac{\tau_n}{n} = \frac{\pi^2 c_0^2}{2}$$

where c_0 is given in (2.3). Then (1.22) follows easily by using $t_n = \sum_{s=1}^n \tau_s$.

We are going to mimic the proof in Theorem 1.1(i), where the following inequality plays a crucial role:

(2.7)
$$\sum_{j=1}^{n} \left(\sum_{s=j}^{n} s\right)^{-1/2} \le \sum_{j=1}^{n+1} \left(\sum_{s=j}^{n+1} s\right)^{-1/2} \quad \text{for } n \ge 1.$$

The required counterpart for the present case is stated as follows. Its proof is left to the end of this section.

Lemma 2.2. Let g be as given in (2.1) and (2.2).

(i) For
$$n \ge 1$$
, $\sum_{j=1}^{n+1} \left(\sum_{s=j}^{n+1} s \right)^{-1/2} - \sum_{j=1}^{n} \left(\sum_{s=j}^{n} s \right)^{-1/2} \ge 1/(12n^2).$

(ii) For any c > 0, there exists an integer n_0 such that $\left\{\sum_{j=1}^n g(c\sum_{s=j}^n s)\right\}$ is an increasing sequence in n for $n \ge n_0$.

Assume temporarily that Lemma 2.2 holds. Let $\widetilde{T}_{j}^{k} = \sum_{s=j}^{k} \tau_{s}, T_{j}^{k} = \sum_{s=j}^{k} s$ and for any c > 0,

(2.8)
$$S_c = \left\{ k \in \mathbb{N} : k \ge n_0 \text{ and } \widetilde{T}_j^k \ge c T_j^k \text{ for } 1 \le j \le k \right\},$$

where n_0 is given in Lemma 2.2(ii). We now verify (2.6) in the following three steps by modifying the proof of Theorem 1.1(i) in [5]:

- (a) If $n \in S_c$ then $m \in S_c$ for all $m \ge n$.
- (b) $\liminf \tau_n/n \ge \sup \{c > 0 : S_c \neq \emptyset\} \ge \limsup \tau_n/n$. Hence, $\lim_n \tau_n/n$ exists in $(0, \infty]$.
- (c) $\lim \tau_n / n = \pi^2 c_0^2 / 2$.

Step (a). It suffices to show $n+1 \in S_c$ as we will have successively $n+2 \in S_c, n+3 \in S_c, \ldots$, and so on. Since $n \in S_c$ by assumption, (2.8) shows that

(2.9)
$$\widetilde{T}_j^n \ge c T_j^n$$
 holds for $1 \le j \le n$

it suffices to show that $\widetilde{T}_{n+1}^{n+1} = \tau_{n+1} \ge c(n+1) = c T_{n+1}^{n+1}$. Adding it to (2.9), we will get $\widetilde{T}_j^{n+1} \ge c T_j^{n+1}$ for $1 \le j \le n$ as well and then $n+1 \in S_c$. Suppose the contrary. So

as g is strictly decreasing on $(0, \infty)$. By (2.1), $g(\tau_{n+1}) = 1 - \sum_{j=1}^{n} g(\widetilde{T}_{j}^{n+1}) = \sum_{j=1}^{n} g(\widetilde{T}_{j}^{n}) - g(\widetilde{T}_{j}^{n+1})$. Using (2.10),

(2.11)
$$g(\tau_{n+1}) = \sum_{1}^{n} \int_{\widetilde{T}_{j}^{n}}^{\widetilde{T}_{j}^{n+1}} \left| g'(t) \right| \, dt \leq \sum_{1}^{n} \int_{\widetilde{T}_{j}^{n}}^{c(n+1)+\widetilde{T}_{j}^{n}} \left| g'(t) \right| \, dt.$$

Because g is convex and g' < 0 on $(0, \infty)$, |g'| is decreasing. For any $0 < x \le y$ and v > 0, we have

(2.12)
$$\int_{x}^{x+v} |g'(t)| dt - \int_{y}^{y+v} |g'(t)| dt = \left(\int_{x}^{y} - \int_{x+v}^{y+v}\right) |g'(t)| dt \ge 0$$

Letting $x = cT_j^n$, $y = \tilde{T}_j^n$ and v = c(n+1) in (2.12) and then combining (2.10), (2.11) and (2.12) together,

$$g(c(n+1)) < \sum_{1}^{n} \int_{cT_{j}^{n}}^{cT_{j}^{n+1}} \left| g'(t) \right| \, dt = \sum_{1}^{n} g(cT_{j}^{n}) - g(cT_{j}^{n+1}).$$

Rearranging the terms, we have $\sum_{j=1}^{n} g(cT_{j}^{n}) > \sum_{j=1}^{n+1} g(cT_{j}^{n+1})$. This contradicts to Lemma 2.2(ii). The proof of Step (a) is thus completed. In particular, $\tau_{m} = \widetilde{T}_{m}^{m} \ge cT_{m}^{m} = cm$ for all $m \ge n$. Hence,

(2.13)
$$\liminf_{n} \tau_n / n \ge \sup \left\{ c : S_c \neq \emptyset \right\} \stackrel{\text{def}}{=} \alpha.$$

Note that (2.5) implies that $S_c \neq \emptyset$ for some c > 0. Hence, $\alpha > 0$.

Step (b). Once Step (a) is done, Step (b) is routine. It suffices to show

(2.14)
$$\alpha \ge \beta \stackrel{\text{def}}{=} \limsup_{n} \tau_n / n.$$

Suppose the contrary that $\beta > \alpha$. In the following we only consider $\beta < \infty$. The case $\beta = \infty$ can be dealt with similarly. By continuity, first choose $\theta > 1$ and then $\epsilon > 0$ such that

(2.15)
$$\beta - \alpha \theta > 0 \text{ and } ((\beta - \epsilon) - (\alpha + \epsilon)\theta)(\theta - 1) \ge \epsilon.$$

In particular, $\beta - \epsilon \ge (\alpha + \epsilon)\theta$. From (2.13) and Step (a), there exists $n_1 \ge n_0$ such that

(2.16)
$$\widetilde{T}_j^m \ge (\alpha - \epsilon)T_j^m$$
 for all $m \ge n_1$ and $1 \le j \le m$.

By definition of β and (2.5), there is an $n > n_1$ such that

(2.17)
$$\tau_m \ge \tau_n \ge (\beta - \epsilon)n \quad \text{holds for } m \ge n.$$

We claim that

(2.18)
$$\widetilde{T}_{j}^{[\theta n]} \ge (\alpha + \epsilon) \sum_{s=j}^{[\theta n]} s \quad \text{for all } 1 \le j \le [\theta n]$$

which implies $S_{\alpha+\epsilon} \neq \phi$ as $[\theta n] \ge n \ge n_0$. It is a contradiction to (2.13) and thus (2.14) is verified. Since $\beta - \epsilon \ge (\alpha + \epsilon)\theta$, (2.18) for $n \le j$ holds trivially by (2.17). Moreover,

(2.19)
$$\widetilde{T}_{n}^{[\theta n]} - (\alpha + \epsilon) \sum_{s=n}^{[\theta n]} s \ge ((\beta - \epsilon)n - (\alpha + \epsilon)\theta n)([\theta n] - n + 1) \\\ge n((\beta - \epsilon) - (\alpha + \epsilon)\theta)(\theta - 1)n \ge \epsilon n^{2}$$

by (2.15). We have from (2.16) that for $1 \le j < n$,

$$(\alpha + \epsilon) \sum_{s=j}^{n-1} s - \widetilde{T}_j^{n-1} \le 2\epsilon \sum_{s=j}^{n-1} s \le 2\epsilon \sum_{s=1}^{n-1} s \le \epsilon n^2.$$

Adding up with (2.19), (2.18) for $1 \le j < n$ follows immediately. This completes the proof of (2.18) and thus Step (b) as well. In particular, $\lim_n \tau_n/n$ exists.

Step (c). Let $\lim_n \tau_n / n = \alpha \in (0, \infty]$. Then $\tau_n \approx \alpha n$ for *n* no less than some number $M \ge n_0$. Hence,

(2.20)
$$\sum_{s=j}^{n} \tau_s \approx \alpha \sum_{s=j}^{n} s = \alpha (n+j)(n-j+1)/2 \approx \alpha (n^2 - j^2)/2 \quad \text{for } j \ge M.$$

By (1.14) and (1.21), we have $d_k \ge d_1 > 0 = d_0$ for all $k \ge 1$. Obviously, $\lim_{t\to\infty} t^4 e^{-d_k t/2} = 0$. By (2.2) and (1.9) we have that for t large,

(2.21)
$$t^4 \sum_{k=1}^{\infty} g_k(t) \le \sum_{k=1}^{\infty} g_k(t/2) \le g(t/2) \xrightarrow{t \to \infty} 0.$$

It follows from (2.1), (2.2), (2.5) and (2.21) that

(2.22)
$$1 \approx \sum_{j=1}^{n} g_0 \left(\sum_{s=j}^{n} \tau_s \right) = c_0 \sum_{j=1}^{n} \left(\sum_{s=j}^{n} \tau_s \right)^{-1/2},$$

which is almost the same as (1.5). We proceed as in [5]. Since

$$\max_{1 \le j < M} (\widetilde{T}_j^n)^{-1/2} \le \tau_n^{-1/2} \xrightarrow{n} 0$$

by (2.5), we get from (2.20) and (2.22) that

$$1 \approx c_0 \sqrt{\frac{2}{\alpha}} \sum_{j=L}^n \frac{1}{n\sqrt{1 - (j/n)^2}} \xrightarrow{n} c_0 \sqrt{\frac{2}{\alpha}} \int_0^1 \frac{1}{\sqrt{1 - x^2}} \, dx = \frac{c_0 \pi}{\sqrt{2\alpha}}.$$

It follows that not only $\alpha < \infty$ but also $\alpha = (c_0 \pi)^2/2$ as claimed in (2.6).

Proof of Lemma 2.2. Part (i). Let $D_n = \sum_{j=1}^n \left(\sum_{s=j}^n s \right)^{-1/2}$. Define

$$A_0 = 0$$
 and $A_j = \sum_{s=1}^j s$ for $j \ge 1$.

By the Binomial Theorem,

$$\left(\sum_{s=j}^{n} s\right)^{-1/2} = (A_n - A_{j-1})^{-1/2} = \sum_{k=0}^{\infty} (-1)^k \binom{-\frac{1}{2}}{k} A_{j-1}^k A_n^{k+1/2}.$$

Hence,

$$D_n = \sum_{j=1}^n (A_n - A_{j-1})^{-1/2} = \sum_{k=0}^\infty (-1)^k \binom{-\frac{1}{2}}{k} \left[\sum_{j=1}^n A_{j-1}^k / A_n^{k+1/2} \right].$$

For each $k \ge 0$, the sum inside the bracket above is increasing in n by Lemma 1.2(vii) in [3]. Since $(-1)^k {\binom{-1}{2}} > 0$ for $k \ge 0$, we get (2.7). By keeping only the term k = 0,

$$D_{n+1} - D_n \ge \frac{n+1}{A_{n+1}^{1/2}} - \frac{n}{A_n^{1/2}}$$

$$= \frac{n+1}{\sqrt{(n+1)(n+2)/2}} - \frac{n}{\sqrt{n(n+1)/2}}$$

$$\ge \sqrt{\frac{n+1}{n+2}} - \sqrt{\frac{n}{n+1}} = \frac{\frac{1}{(n+2)(n+1)}}{\sqrt{\frac{n+1}{n+2}} + \sqrt{\frac{n}{n+1}}} \ge \frac{1}{12n^2}$$

Part (ii). Let $H_n = \sum_{j=1}^n g(c \sum_{s=j}^n s)$. Since $d_0 = 0$ and all g_k in (2.2) are positive, a simple rearrangement after singling out the function g_0 shows $H_{n+1} \ge H_n$ holds if

(2.24)
$$c_0(D_{n+1} - D_n) \ge \sum_{j=1}^n \sum_{k=1}^\infty g_k\left(c\sum_{s=j}^n s\right).$$

By (2.21), the right-hand side above is bounded by $\sum_{j=1}^{n} (c \sum_{s=j}^{n} s)^{-4} \leq n(cn)^{-4} = c^{-4}n^{-3}$ when *n* is large. In view of (2.23), (2.24) holds for *n* large. The conclusion follows.

Acknowledgments

The second author wishes to thank Professor C. H. Su, Brown University, for some useful discussions. This paper was partially supported by a grant from Ministry of Science and Technology, ROC.

References

- C.-H. Chang, Y. Chow and Z. Wang, On the asymptotic behavior of heating times, Anal. Appl. (Singap.) 1 (2003), no. 4, 429–432. http://dx.doi.org/10.1142/s021953050300020x
- [2] J.-Y. Chen, On a difference equation motivated by a heat conduction problem, Taiwanese J. Math. 12 (2008), no. 8, 2001–2007.
- J.-Y. Chen and Y. Chow, An inequality with application to a difference equation, Bull. Austral. Math. Soc. 69 (2004), no. 3, 519–528. http://dx.doi.org/10.1017/s0004972700036285
- [4] _____, A heat conduction problem with the temperature measured away from the heating point, J. Difference Equ. Appl. 13 (2007), no. 5, 431-441. http://dx.doi.org/10.1080/10236190601173390

- [5] Y.-M. Chen, Y. Chow and J. Hsieh, On a heat conduction problem by Myshkis, J. Differ. Equatios Appl. 6 (2000), no. 3, 309-318. http://dx.doi.org/10.1080/10236190008808230
- [6] A. D. Myshkis, On a recurrently defined sequence, J. Differ. Equations Appl. 3 (1997), no. 1, 89–91.
- [7] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, Boca Raton, FL, 2002. http://dx.doi.org/10.1201/9781420035322
- [8] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, England, 1944.

Jong-Yi Chen

Department of Applied Mathematics, National Dong-Hwa University, Hwalien 973, Taiwan

E-mail address: jongyi@mail.ndhu.edu.tw

Yunshyong Chow

Institute of Mathematics, Academia Sinica, Taipei 106, Taiwan *E-mail address*: chow@math.sinica.edu.tw