A Heat Conduction Problem on Some Semi-infinite Regions

Jong-Yi Chen and Yunshyong Chow*

Abstract. An infinite homogeneous d-dimensional medium initially is at zero temperature. A heat impulse is applied at the origin, raising the temperature there to a value greater than a constant value $u_{0}>0$. The temperature at the origin then decays, and when it reaches u_{0}, another equal-sized heat impulse is applied at time t_{1}. Subsequent equal-sized heat impulses are applied at the origin at times $t_{n}, n \geq 2$, when the temperature there has decayed to u_{0}. The waiting-time sequence $\left\{t_{n}-t_{n-1}\right\}$ can be defined recursively by a difference equation and its asymptotic behavior was first proposed as a conjecture by Myshkis in 1997.

In this paper we study the same heating-time problem set on semi-infinite regions $[-L, L] \times \mathbb{R}$ and $\left\{(x, y): x^{2}+y^{2} \leq L\right\} \times \mathbb{R}$ with insulated boundary condition and all actions taking place at some point \boldsymbol{p} which needs not be the origin.

1. Introduction

Myshkis [6] studied the following heat conduction problem: let $u(\boldsymbol{x}, t)$ be the temperature at position $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and time t of a homogeneous medium filling up the whole \mathbb{R}^{d}. Suppose $u \equiv 0$ at $t=0$ and a heat impulse of size b is applied at $\boldsymbol{x}=\mathbf{0}$. A heat impulse of the same size is applied again at $\boldsymbol{x}=\mathbf{0}$ at time t_{1} when $u\left(\mathbf{0}, t_{1}\right)=u_{0}$, i.e., when the temperature at $\boldsymbol{x}=\mathbf{0}$ decreases to a given value $u_{0}>0$. This process is repeated indefinitely.

Denote by $t_{0}=0, t_{1}, t_{2}, \ldots$ the sequence of consecutive times that a heat impulse of size b is applied at $\boldsymbol{x}=\mathbf{0}$. By solving the heat equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=a \cdot \sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}} \tag{1.1}\\
u\left(\boldsymbol{x}, t_{n-1}^{+}\right)=u\left(\boldsymbol{x}, t_{n-1}\right)+b \cdot \delta_{\mathbf{0}}(\boldsymbol{x})
\end{array}\right.
$$

where a is the heat conduction coefficient of the medium and $\delta_{\mathbf{0}}(\boldsymbol{x})$ the Dirac function at $\boldsymbol{x}=\mathbf{0}$, it is easy to show by superposition principle that for $n \geq 0$ and $t_{n-1}<t \leq t_{n}$, $u(\boldsymbol{x}, t)$ is given by

Received April 14, 2015, accepted July 8, 2015.
Communicated by Cheng-Hsiung Hsu.
2010 Mathematics Subject Classification. Primary: 39A10; Secondary: 35K05, 93B52, 35B05.
Key words and phrases. Heat equation, Difference equation, Asymptotic behavior, Boundary value problem.
*Corresponding author.

$$
\begin{equation*}
u(\boldsymbol{x}, t)=b \sum_{j=0}^{n-1} f\left(\boldsymbol{x}, t-t_{j}\right) \tag{1.2}
\end{equation*}
$$

Here $f(\boldsymbol{x}, t)=\left(\frac{1}{4 \pi a t}\right)^{d / 2} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{4 a t}\right)$ is the fundamental solution to the heat equation (1.1) above. The heating condition

$$
\begin{equation*}
u\left(\mathbf{0}, t_{n}\right)=u_{0} \quad \text { for } n \geq 1 \tag{1.3}
\end{equation*}
$$

then implies

$$
\begin{equation*}
u_{0}=u\left(\mathbf{0}, t_{n}\right)=b \sum_{j=0}^{n-1} f\left(\mathbf{0}, t_{n}-t_{j}\right)=b \sum_{j=0}^{n-1}\left(\frac{1}{4 \pi a\left(t_{n}-t_{j}\right)}\right)^{d / 2} \tag{1.4}
\end{equation*}
$$

For $j \geq 1$, define $\tau_{j}=4 \pi a\left(t_{j}-t_{j-1}\right)\left(u_{0} / b\right)^{2 / d}$ as the normalized waiting time between two consecutive heating times t_{j-1} and t_{j}. By a simple computation (1.4) can be rewritten as

$$
\begin{equation*}
\tau_{1}=1 \quad \text { and } \quad \sum_{j=1}^{n}\left(\sum_{s=j}^{n} \tau_{s}\right)^{-d / 2}=1 \quad \text { for } n \geq 2 \tag{1.5}
\end{equation*}
$$

The sequence $\left\{\tau_{n}\right\}$ is thus recursively defined. Myshkis 6 conjectured that $\left\{\tau_{n}\right\}$ is increasing and $\tau_{n} / n \approx$ constant for $d=1$. The following is known.

Theorem 1.1. [1,5] Let $d \in \mathbb{N}$. The waiting-time sequence $\left\{\tau_{n}\right\}$ given in (1.5) is increasing and satisfies
(i) $\lim _{n} \tau_{n} / n=\pi^{2} / 2$ for $d=1$,
(ii) $\lim _{n} \tau_{n} / \log n=1$ for $d=2$,
(iii) $\lim _{n} \tau_{n}=\{\zeta(d / 2)\}^{2 / d}$ for $d \geq 3$.

Here $\zeta(s) \equiv \sum_{k=1}^{\infty} k^{-s}$ is the Riemann-Zeta function.
Since $4 \pi a\left(u_{0} / b\right)^{2 / d} t_{n}=\sum_{s=1}^{n} \tau_{s}$, we get easily the following result.
Theorem 1.2. The heating-time sequence $\left\{t_{n}: n \geq 0\right\}$ recursively defined by the heat equation (1.1) and the heating condition (1.3) satisfies:
(i) $\lim _{n} \frac{t_{n}}{n^{2}}=\frac{\pi}{16 a}\left(\frac{b}{u_{0}}\right)^{2}$ for $d=1$,
(ii) $\lim _{n} \frac{t_{n}}{n \log n}=\frac{1}{4 \pi a}\left(\frac{b}{u_{0}}\right)$ for $d=2$,
(iii) $\lim _{n} \frac{t_{n}}{n}=\frac{1}{4 \pi a}\left(\frac{b \zeta\left(\frac{d}{2}\right)}{u_{0}}\right)^{\frac{2}{d}}$ for $d \geq 3$.

In particular, the conduction coefficient a can be determined without ever leaving the origin $\boldsymbol{x}=0$ if one knows the impulse size b, the threshold temperature u_{0} and the heating times $t_{0}=0, t_{1}, t_{2}, t_{3}, \ldots$.

In this paper we will study the same heating problem, but set on a semi-infinite region with insulated boundary condition and all actions taking place at point \boldsymbol{p} which needs not be the origin. Two particular regions considered here are a slab in \mathbb{R}^{2} and an infinite cylinder in \mathbb{R}^{3} respectively. Let

$$
\begin{equation*}
\boldsymbol{D}_{1}=[-L, L] \times \mathbb{R} \quad \text { and } \quad \boldsymbol{D}_{2}=\left\{(x, y): x^{2}+y^{2} \leq L^{2}\right\} \times \mathbb{R} \tag{1.6}
\end{equation*}
$$

By symmetry we may set $\boldsymbol{p}=(\mu, 0)$ for \boldsymbol{D}_{1} and $\boldsymbol{p}=(\mu, 0,0)$ for \boldsymbol{D}_{2} respectively. As above, let $t_{0}=0, t_{1}, t_{2}, \ldots$ the sequence of consecutive times that a heat impulse of size b is applied at \boldsymbol{p}. For $t_{n-1}<t<t_{n}$, the temperature function u satisfies the following heat equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(\boldsymbol{x}, t)=a \cdot \Delta u(\boldsymbol{x}, t) \quad \text { for }(\boldsymbol{x}, t) \in \boldsymbol{D}_{j} \times \mathbb{R}^{+} \tag{1.7}\\
\left.\frac{\partial u}{\partial n}(\boldsymbol{x}, t)\right|_{\partial \boldsymbol{D}_{j}}=0 \quad \text { and } \quad u\left(\boldsymbol{x}, t_{n-1}^{+}\right)=u\left(\boldsymbol{x}, t_{n-1}\right)+b \cdot \delta_{\boldsymbol{p}}(\boldsymbol{x}) .
\end{array}\right.
$$

Then t_{n} is determined by the heating condition

$$
\begin{equation*}
u\left(\boldsymbol{p}, t_{n}\right)=u_{0} \quad \text { for } n \geq 1 \tag{1.8}
\end{equation*}
$$

Equation (1.2) still holds except the fundamental solution f changes. In both cases, we require

$$
\begin{equation*}
f(\cdot, t) \text { is bounded for any } t>0 \text { and } \lim _{t \rightarrow \infty}\|f(\cdot, t)\|_{\infty}=0 \tag{1.9}
\end{equation*}
$$

We start with \boldsymbol{D}_{1}. The method of separation of variables and the superposition principle imply

$$
\begin{equation*}
f(x, y, t)=\int_{-\infty}^{\infty} d \beta \sum_{m=0}^{\infty} c_{m}(\beta) e^{\imath \beta y} e^{-a\left(\frac{m^{2} \pi^{2}}{4 L^{2}}+\beta^{2}\right) t} \cdot \cos \frac{m \pi(x+L)}{2 L} \tag{1.10}
\end{equation*}
$$

Using the impulse condition $f\left(\boldsymbol{x}, 0^{+}\right)=\delta_{\mu}(x) \delta_{0}(y)$, we can verify easily that

$$
\begin{equation*}
c_{m}(\beta)=\frac{2-\delta_{m, 0}}{4 \pi L} \cos \frac{m \pi(\mu+L)}{2 L}, \text { which is independent of } \beta \tag{1.11}
\end{equation*}
$$

Here, $\delta_{m, 0}$ is the well-known Kronecker symbol. Putting it back to 1.10 and integrating out β, we get 7$]$

$$
f(x, y, t)=\frac{e^{-\frac{y^{2}}{4 a t}}}{4 L \sqrt{\pi a t}} \sum_{m=0}^{\infty}\left(2-\delta_{m, 0}\right) \cos \frac{m \pi(\mu+L)}{2 L} \cos \frac{m \pi(x+L)}{2 L} e^{-\frac{a m^{2} \pi^{2} t}{4 L^{2}}}
$$

Here and in the derivation of 1.11 we have used the following formulas

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{\imath \beta y-a \beta^{2} t} d \beta=\frac{\sqrt{\pi} e^{-\frac{y^{2}}{4 a t}}}{\sqrt{a t}} \text { and } \int_{-\infty}^{\infty} e^{\imath\left(\beta-\beta^{\prime}\right) y} d y=2 \pi \delta_{0}\left(\beta-\beta^{\prime}\right) \tag{1.12}
\end{equation*}
$$

from the inverse Fourier transform. Let $v(t)=f(\mu, 0, t)$. Then

$$
\begin{equation*}
v(t)=\frac{1}{4 L \sqrt{\pi a t}} \sum_{m=0}^{\infty}\left(2-\delta_{m, 0}\right) \cos ^{2} \frac{m \pi(\mu+L)}{2 L} \cdot e^{-\frac{a m^{2} \pi^{2} t}{4 L^{2}}} . \tag{1.13}
\end{equation*}
$$

The heating condition (1.8) then implies that for $n \geq 1$,

$$
\begin{equation*}
u_{0}=u\left(\mu, 0, t_{n}\right)=b \sum_{j=0}^{n-1} f\left(\mu, 0, t_{n}-t_{j}\right)=b \sum_{j=0}^{n-1} v\left(t_{n}-t_{j}\right) \tag{1.14}
\end{equation*}
$$

Remember $t_{0}=0$. This is the defining recursive relation for the heating times $\left\{t_{n}, n \geq 0\right\}$ of (1.7) set in \boldsymbol{D}_{1}.

As to $\boldsymbol{D}_{2}=\left\{(x, y): x^{2}+y^{2} \leq L\right\} \times \mathbb{R} \subseteq \mathbb{R}^{3}$, its fundamental solution f to (1.7) can be derived similarly. Using the cylindrical coordinate (r, θ, z) and symmetry, we expect f on \boldsymbol{D}_{2} to be independent of θ. Hence,

$$
\begin{equation*}
\frac{\partial f}{\partial t}=a\left(\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{\partial^{2} f}{\partial z^{2}}\right) \quad \text { for } 0 \leq r<L \text { with }\left.\frac{\partial f}{\partial r}\right|_{r=L}=0 \tag{1.15}
\end{equation*}
$$

By the method of separation of variables, we seek for particular solutions to 1.15 in the form $R(r) Z(z) T(t)$. Substituting into 1.15 , we get

$$
\left\{\begin{array}{l}
R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)+\alpha^{2} R(r)=0 \quad \text { and } \quad R^{\prime}(L)=0 \tag{1.16}\\
Z^{\prime \prime}(z)+\beta^{2} Z(z)=0 \quad \text { and } \quad T^{\prime}(t)=-a\left(\alpha^{2}+\beta^{2}\right) T(t)
\end{array}\right.
$$

where α, β are real constants. Hence, $Z(z)=e^{\imath \beta z}, T(t)=e^{-a\left(\alpha^{2}+\beta^{2}\right) t}$ and $R(r)=J_{0}(\alpha r)$. Here J_{n} means the Bessel function of order n. Note that the Weber function $Y_{0}(\alpha r)$ does not appear as $R(r)$ is required to be continuous at $r=0$. The insulated boundary condition in (1.16) implies that α satisfies $J_{0}^{\prime}(\alpha L)=0$. Note that $J_{0}^{\prime}(z)=-J_{1}(z), J_{1}(0)=0$ and $J_{1}(-z)=-J_{1}(z)$. It is well-known [8] that all the zeros of $J_{1}(z)$ are real and simple. Let

$$
S=\left\{\lambda_{0}=0<\lambda_{1}<\lambda_{2}<\cdots\right\}
$$

be all the nonnegative zeros of $J_{1}(z)$. Then $R(r)=J_{0}(\lambda r / L)$ with $\lambda \in S$. By the superposition principle,

$$
\begin{equation*}
f(r, \theta, z, t)=\int_{-\infty}^{\infty} d \beta \sum_{k=0}^{\infty} c_{k}(\beta) e^{\imath \beta z} e^{-a\left(\frac{\lambda_{k}^{2}}{L^{2}}+\beta^{2}\right) t} J_{0}\left(\frac{\lambda_{k} r}{L}\right), \tag{1.17}
\end{equation*}
$$

where the constant $c_{k}(\beta)$ is to be determined by the impulse condition

$$
\begin{equation*}
\delta_{\mu}(x) \delta_{0}(y) \delta_{0}(z)=f\left(r, \theta, z, 0^{+}\right)=\int_{-\infty}^{\infty} d \beta \sum_{k=0}^{\infty} c_{k}(\beta) e^{\imath \beta z} J_{0}\left(\frac{\lambda_{k} r}{L}\right) \tag{1.18}
\end{equation*}
$$

Multiplying both sides of 1.18 by $\exp \left(-\imath \beta^{\prime} z\right)$ and then integrating over z,

$$
\begin{equation*}
\delta_{\mu}(x) \delta_{0}(y)=2 \pi \sum_{k=0}^{\infty} c_{k}\left(\beta^{\prime}\right) J_{0}\left(\frac{\lambda_{k} r}{L}\right), \tag{1.19}
\end{equation*}
$$

where the second formula in (1.12) was used. Now we multiply both sides of (1.19) by $J_{0}\left(\lambda_{\ell} r / L\right)$ and then integrate over $\left\{(x, y): x^{2}+y^{2} \leq L\right\}$. First changing to polar coordinate (r, θ) for the right-hand side integral and then using the following orthogonal relation for Dini's expansion [8, p. 580]

$$
\int_{0}^{L} r J_{0}\left(\frac{\lambda_{k} r}{L}\right) J_{0}\left(\frac{\lambda_{\ell} r}{L}\right) d r=\frac{L^{2}}{2} J_{0}^{2}\left(\lambda_{k}\right) \cdot \delta_{k, \ell}
$$

we obtain $J_{0}\left(\lambda_{\ell} \mu / L\right)=2 \pi^{2} L^{2} c_{\ell}\left(\beta^{\prime}\right) J_{0}^{2}\left(\lambda_{\ell}\right)$. Hence,

$$
c_{k}\left(\beta^{\prime}\right)=\frac{J_{0}\left(\frac{\lambda_{k} \mu}{L}\right)}{2 \pi^{2} L^{2} J_{0}^{2}\left(\lambda_{k}\right)}, \quad \text { which is independent of } \beta^{\prime}
$$

Putting it back to (1.17) and repeating the same procedure as in \boldsymbol{D}_{1} case,

$$
f(r, \theta, z, t)=\frac{1}{\pi L^{2} \sqrt{4 \pi a t}} e^{-\frac{z^{2}}{4 a t}} \sum_{k=0}^{\infty} \frac{J_{0}\left(\frac{\lambda_{k} \mu}{L}\right) J_{0}\left(\frac{\lambda_{k} r}{L}\right)}{J_{0}^{2}\left(\lambda_{k}\right)} e^{-\frac{a \lambda_{k}^{2} t}{L^{2}}} .
$$

This is the fundamental solution to (1.15). Let $w(t)=f(\boldsymbol{p}, t)$. Then

$$
\begin{equation*}
w(t)=\frac{1}{\pi L^{2} \sqrt{4 \pi a t}} \sum_{k=0}^{\infty} \frac{J_{0}^{2}\left(\frac{\lambda_{k} \mu}{L}\right)}{J_{0}^{2}\left(\lambda_{k}\right)} e^{-\frac{a \lambda_{k}^{2} t}{L^{2}}} . \tag{1.20}
\end{equation*}
$$

Note that $J_{0}\left(\lambda_{k}\right) \neq 0$. The heating condition (1.8) then implies that

$$
\begin{equation*}
u_{0}=u\left(\boldsymbol{p}, t_{n}\right)=b \sum_{j=0}^{n-1} f\left(\boldsymbol{p}, t_{n}-t_{j}\right)=b \sum_{j=0}^{n-1} w\left(t_{n}-t_{j}\right) \quad \text { for } n \geq 1 \tag{1.21}
\end{equation*}
$$

which is the defining recursive relation for the heating times $\left\{t_{n}, n \geq 0\right\}$ of (1.7) set on D_{2}.

In comparison with (1.4), the heating times problem for semi-infinite regions \boldsymbol{D}_{1} and \boldsymbol{D}_{2} is more complicated than that for an infinite rod. It seems an awful task to verify the monotonicity of the waiting-time sequence $\left\{t_{n+1}-t_{n} ; n \geq 0\right\}$ defined in (1.14) and (1.21). Fortunately, this can be done by using a result in [2], which can be applied to many similar problems in auto-regulated systems. Moreover, we will show that $\lim \left(t_{n+1}-t_{n}\right)=\infty$. Since $\lambda_{0}=0$ and $J_{0}(0)=1$, the first term 1 of the infinite series in both 1.13 and 1.20 is the leading term as $t \rightarrow \infty$. By using $\lim _{n}\left(t_{n}-t_{j}\right)=\infty$, for $0 \leq j<n$, to ignore all non-leading terms, both difference equations (1.14) and (1.21) look like (1.4) with $d=1$. The following result, similar to Theorem 1.2(i), will be proved in Section 2 .

Theorem 1.3. For the heating times $\left\{t_{n}: n \geq 0\right\}$ recursively defined by the heat equation (1.7) and the heating condition (1.8), the waiting-time sequence $\left\{t_{n+1}-t_{n}: n \geq 0\right\}$ is increasing. Moreover,

$$
\begin{equation*}
\lim _{n} \frac{t_{n}}{n^{2}}=\frac{\pi}{16 a}\left(\frac{b}{u_{0} \gamma_{j}}\right)^{2} \tag{1.22}
\end{equation*}
$$

where, depending on $j=1$ or $2, \gamma_{j}=2 L$ or πL^{2} and is the cross-section area of the semi-infinite region \boldsymbol{D}_{j} given in (1.6).

When viewed from a faraway place, each \boldsymbol{D}_{j} looks like an infinite rod. It is therefore expected that the order estimate of $\left\{t_{n}\right\}$ in 1.22) is consistent with that in Theorem $1.2(\mathrm{i})$, even if the temperature measurement is taken at a point different from the explosion point. See [4]. Certainly, constants b, u_{0} and a should appear on the right-hand side of 1.22 . The factor γ_{j} is of interest as it is the cross-section area of $\mathbf{D}_{\mathbf{j}}$. We believe 1.22 holds for general regions like $\boldsymbol{G} \times \mathbb{R}$, where \boldsymbol{G} is a smooth bounded domain in \mathbb{R}^{d-1}.

In contrast with the remark after Theorem 1.2, (1.22) is less satisfactory from the physical viewpoint as it fails to determine the conduction coefficient a which is now mixed up with the cross-section area γ_{j} of the semi-infinite region \boldsymbol{D}_{j}. Moreover, it is independent of the parameter μ in the action site \boldsymbol{p}. We wonder whether there is some way to determine the conduction coefficient a, the parameter μ and the geometric quantity γ_{j} from the heattime sequence $\left\{t_{n}\right\}$.

Finally we remark that Theorem 1.3 is proved by modifying the method used in [5]. We first show that the waiting-time sequence $\left\{t_{n+1}-t_{n} ; n \geq 0\right\}$ is increasing. By using some inequality shown in Lemma 2.2 below, we obtain that $\lim \left(t_{n+1}-t_{n}\right) / n$ exists by verifying $\liminf \left(t_{n+1}-t_{n}\right) / n=\limsup \left(t_{n+1}-t_{n}\right) / n$. It is then easy to find the limiting constant from the defining recursive formulas (1.14) and (1.21) respectively.

2. Proof of Theorem 1.3

For $j \geq 1$, define $\tau_{j}=t_{j}-t_{j-1}$ as the waiting time between two consecutive heatings. We first show $\left\{\tau_{n}: n \geq 1\right\}$ is increasing via the following result.

Lemma 2.1. [2] Let sequence $\left\{\tau_{n}\right\}$ be recursively defined by

$$
\begin{equation*}
\sum_{j=1}^{n} g\left(\sum_{s=j}^{n} \tau_{s}\right)=1 \quad \text { for } n \geq 1 \tag{2.1}
\end{equation*}
$$

where g is a continuous, strictly decreasing function on $(0, \infty)$ with $g\left(0^{+}\right) \geq 1$ and $g(\infty)=$ 0. If $\log g \in \mathcal{C}^{1}$ and is convex, then the sequence $\left\{\tau_{n}\right\}$ is increasing. Moreover, $\lim \tau_{n}=$ $\beta<\infty$ iff $\sum_{n=1}^{\infty} g(n)<\infty$. In that case, the constant β is uniquely determined by the equation $\sum_{n=1}^{\infty} g(n \beta)=1$.

Since $t_{n}-t_{j}=\sum_{s=j+1}^{n} \tau_{s}$, both the difference equations (1.14) for \boldsymbol{D}_{1} and 1.21) for \boldsymbol{D}_{2} can be rewritten in the form of 2.1 with

$$
\begin{equation*}
g(t)=\sum_{k=0}^{\infty} g_{k}(t), \quad \text { where } g_{k}(t)=c_{k} t^{-1 / 2} e^{-d_{k} t} \tag{2.2}
\end{equation*}
$$

and all the constants c_{k} and d_{k} are positive except $d_{0}=0$. In particular,

$$
c_{0}= \begin{cases}\frac{b}{2 L u_{0} \sqrt{4 \pi a}} & \text { for } \boldsymbol{D}_{1} \tag{2.3}\\ \frac{b}{\pi L^{2} u_{0} \sqrt{4 \pi a}} & \text { for } \boldsymbol{D}_{2}\end{cases}
$$

Note that $g(\infty)=0$ by (1.9). For each $k \geq 0, g_{k}$ is strictly decreasing on $(0, \infty)$ as $g_{k}^{\prime}<0$. Hence, g is strictly decreasing as well. It remains to show that $\log g$ is convex on $(0, \infty)$. First, each $\log g_{k}$ is convex as

$$
\begin{equation*}
\frac{g_{k}^{\prime \prime} g_{k}-g_{k}^{\prime 2}}{g_{k}^{2}}=\left(\log g_{k}\right)^{\prime \prime}=\frac{1}{2} t^{-2}>0 \tag{2.4}
\end{equation*}
$$

Since $g_{k}^{\prime \prime}(t)=g_{k}(t)\left[d_{k}^{2}+d_{k} \frac{1}{t}+\frac{3}{4 t^{2}}\right]>0$, it follows from 2.4 and Cauchy-Schwarz inequality that $\left(g_{k}+g_{j}\right)^{\prime \prime}\left(g_{k}+g_{j}\right)-\left(g_{k}+g_{j}\right)^{\prime 2}$ is no less than

$$
g_{k}^{\prime \prime} g_{j}+g_{j}^{\prime \prime} g_{k}-2 g_{k}^{\prime} g_{j}^{\prime} \geq 2 \sqrt{g_{k}^{\prime \prime} g_{j} g_{j}^{\prime \prime} g_{k}}-2 g_{k}^{\prime} g_{j}^{\prime} \geq 2\left(\left|g_{k}^{\prime} g_{j}^{\prime}\right|-g_{k}^{\prime} g_{j}^{\prime}\right) \geq 0
$$

Hence, $\log \left(g_{k}+g_{j}\right)$ is convex on $(0, \infty)$ and then so does $\log \left(\sum_{k=0}^{m} g_{k}\right)$. Because $\sum_{k=0}^{m} g_{k} \uparrow$ $g, \log g$ is convex as desired. Moreover, $\sum_{n=0}^{\infty} g(n) \geq \sum_{n=0}^{\infty} g_{0}(n)=\sum_{n=0}^{\infty} c_{0} n^{-1 / 2}=\infty$. We have from Lemma 2.1 that

$$
\begin{equation*}
\left\{\tau_{n}\right\} \text { is an increasing sequence and } \lim _{n \rightarrow \infty} \tau_{n}=\infty \tag{2.5}
\end{equation*}
$$

In order to show (1.22), we need to find an estimate for τ_{n} better than (2.5). In fact, we claim that under (2.1) and (2.2),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\tau_{n}}{n}=\frac{\pi^{2} c_{0}^{2}}{2} \tag{2.6}
\end{equation*}
$$

where c_{0} is given in (2.3). Then (1.22) follows easily by using $t_{n}=\sum_{s=1}^{n} \tau_{s}$.
We are going to mimic the proof in Theorem 1.1 (i), where the following inequality plays a crucial role:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\sum_{s=j}^{n} s\right)^{-1 / 2} \leq \sum_{j=1}^{n+1}\left(\sum_{s=j}^{n+1} s\right)^{-1 / 2} \quad \text { for } n \geq 1 \tag{2.7}
\end{equation*}
$$

The required counterpart for the present case is stated as follows. Its proof is left to the end of this section.

Lemma 2.2. Let g be as given in (2.1) and (2.2).
(i) For $n \geq 1, \sum_{j=1}^{n+1}\left(\sum_{s=j}^{n+1} s\right)^{-1 / 2}-\sum_{j=1}^{n}\left(\sum_{s=j}^{n} s\right)^{-1 / 2} \geq 1 /\left(12 n^{2}\right)$.
(ii) For any $c>0$, there exists an integer n_{0} such that $\left\{\sum_{j=1}^{n} g\left(c \sum_{s=j}^{n} s\right)\right\}$ is an increasing sequence in n for $n \geq n_{0}$.

Assume temporarily that Lemma 2.2 holds. Let $\widetilde{T}_{j}^{k}=\sum_{s=j}^{k} \tau_{s}, T_{j}^{k}=\sum_{s=j}^{k} s$ and for any $c>0$,

$$
\begin{equation*}
S_{c}=\left\{k \in \mathbb{N}: k \geq n_{0} \text { and } \widetilde{T}_{j}^{k} \geq c T_{j}^{k} \text { for } 1 \leq j \leq k\right\} \tag{2.8}
\end{equation*}
$$

where n_{0} is given in Lemma 2.2 (ii). We now verify 2.6 in the following three steps by modifying the proof of Theorem 1.1(i) in [5]:
(a) If $n \in S_{c}$ then $m \in S_{c}$ for all $m \geq n$.
(b) $\liminf \tau_{n} / n \geq \sup \left\{c>0: S_{c} \neq \emptyset\right\} \geq \lim \sup \tau_{n} / n$. Hence, $\lim _{n} \tau_{n} / n$ exists in $(0, \infty]$.
(c) $\lim \tau_{n} / n=\pi^{2} c_{0}^{2} / 2$.

Step (a). It suffices to show $n+1 \in S_{c}$ as we will have successively $n+2 \in S_{c}, n+3 \in$ S_{c}, \ldots, and so on. Since $n \in S_{c}$ by assumption, (2.8) shows that

$$
\begin{equation*}
\widetilde{T}_{j}^{n} \geq c T_{j}^{n} \quad \text { holds for } 1 \leq j \leq n \tag{2.9}
\end{equation*}
$$

it suffices to show that $\widetilde{T}_{n+1}^{n+1}=\tau_{n+1} \geq c(n+1)=c T_{n+1}^{n+1}$. Adding it to (2.9), we will get $\widetilde{T}_{j}^{n+1} \geq c T_{j}^{n+1}$ for $1 \leq j \leq n$ as well and then $n+1 \in S_{c}$. Suppose the contrary. So

$$
\begin{equation*}
\tau_{n+1}<c(n+1) \quad \text { and then } g(c(n+1))<g\left(\tau_{n+1}\right) \tag{2.10}
\end{equation*}
$$

as g is strictly decreasing on $(0, \infty)$. By 2.1), $g\left(\tau_{n+1}\right)=1-\sum_{1}^{n} g\left(\widetilde{T}_{j}^{n+1}\right)=\sum_{1}^{n} g\left(\widetilde{T}_{j}^{n}\right)-$ $g\left(\widetilde{T}_{j}^{n+1}\right)$. Using (2.10),

$$
\begin{equation*}
g\left(\tau_{n+1}\right)=\sum_{1}^{n} \int_{\widetilde{T}_{j}^{n}}^{\widetilde{T}_{j}^{n+1}}\left|g^{\prime}(t)\right| d t \leq \sum_{1}^{n} \int_{\widetilde{T}_{j}^{n}}^{c(n+1)+\widetilde{T}_{j}^{n}}\left|g^{\prime}(t)\right| d t \tag{2.11}
\end{equation*}
$$

Because g is convex and $g^{\prime}<0$ on $(0, \infty),\left|g^{\prime}\right|$ is decreasing. For any $0<x \leq y$ and $v>0$, we have

$$
\begin{equation*}
\int_{x}^{x+v}\left|g^{\prime}(t)\right| d t-\int_{y}^{y+v}\left|g^{\prime}(t)\right| d t=\left(\int_{x}^{y}-\int_{x+v}^{y+v}\right)\left|g^{\prime}(t)\right| d t \geq 0 \tag{2.12}
\end{equation*}
$$

Letting $x=c T_{j}^{n}, y=\widetilde{T}_{j}^{n}$ and $v=c(n+1)$ in 2.12) and then combining (2.10), (2.11) and 2.12 together,

$$
g(c(n+1))<\sum_{1}^{n} \int_{c T_{j}^{n}}^{c T_{j}^{n+1}}\left|g^{\prime}(t)\right| d t=\sum_{1}^{n} g\left(c T_{j}^{n}\right)-g\left(c T_{j}^{n+1}\right) .
$$

Rearranging the terms, we have $\sum_{1}^{n} g\left(c T_{j}^{n}\right)>\sum_{1}^{n+1} g\left(c T_{j}^{n+1}\right)$. This contradicts to Lemma 2.2 (ii). The proof of Step (a) is thus completed. In particular, $\tau_{m}=\widetilde{T}_{m}^{m} \geq c T_{m}^{m}=c m$ for all $m \geq n$. Hence,

$$
\begin{equation*}
\liminf _{n} \tau_{n} / n \geq \sup \left\{c: S_{c} \neq \emptyset\right\} \stackrel{\text { def }}{=} \alpha . \tag{2.13}
\end{equation*}
$$

Note that (2.5) implies that $S_{c} \neq \emptyset$ for some $c>0$. Hence, $\alpha>0$.
Step (b). Once Step (a) is done, Step (b) is routine. It suffices to show

$$
\begin{equation*}
\alpha \geq \beta \stackrel{\text { def }}{=} \limsup _{n} \tau_{n} / n \tag{2.14}
\end{equation*}
$$

Suppose the contrary that $\beta>\alpha$. In the following we only consider $\beta<\infty$. The case $\beta=\infty$ can be dealt with similarly. By continuity, first choose $\theta>1$ and then $\epsilon>0$ such that

$$
\begin{equation*}
\beta-\alpha \theta>0 \quad \text { and } \quad((\beta-\epsilon)-(\alpha+\epsilon) \theta)(\theta-1) \geq \epsilon . \tag{2.15}
\end{equation*}
$$

In particular, $\beta-\epsilon \geq(\alpha+\epsilon) \theta$. From (2.13) and Step (a), there exists $n_{1} \geq n_{0}$ such that

$$
\begin{equation*}
\widetilde{T}_{j}^{m} \geq(\alpha-\epsilon) T_{j}^{m} \quad \text { for all } m \geq n_{1} \text { and } 1 \leq j \leq m \tag{2.16}
\end{equation*}
$$

By definition of β and (2.5), there is an $n>n_{1}$ such that

$$
\begin{equation*}
\tau_{m} \geq \tau_{n} \geq(\beta-\epsilon) n \quad \text { holds for } m \geq n \tag{2.17}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\widetilde{T}_{j}^{[\theta n]} \geq(\alpha+\epsilon) \sum_{s=j}^{[\theta n]} s \quad \text { for all } 1 \leq j \leq[\theta n] \tag{2.18}
\end{equation*}
$$

which implies $S_{\alpha+\epsilon} \neq \phi$ as $[\theta n] \geq n \geq n_{0}$. It is a contradiction to (2.13) and thus (2.14) is verified. Since $\beta-\epsilon \geq(\alpha+\epsilon) \theta, 2.18$ for $n \leq j$ holds trivially by (2.17). Moreover,

$$
\begin{align*}
\widetilde{T}_{n}^{[\theta n]}-(\alpha+\epsilon) \sum_{s=n}^{[\theta n]} s & \geq((\beta-\epsilon) n-(\alpha+\epsilon) \theta n)([\theta n]-n+1) \tag{2.19}\\
& \geq n((\beta-\epsilon)-(\alpha+\epsilon) \theta)(\theta-1) n \geq \epsilon n^{2}
\end{align*}
$$

by (2.15). We have from (2.16) that for $1 \leq j<n$,

$$
(\alpha+\epsilon) \sum_{s=j}^{n-1} s-\widetilde{T}_{j}^{n-1} \leq 2 \epsilon \sum_{s=j}^{n-1} s \leq 2 \epsilon \sum_{s=1}^{n-1} s \leq \epsilon n^{2}
$$

Adding up with 2.19), (2.18) for $1 \leq j<n$ follows immediately. This completes the proof of (2.18) and thus Step (b) as well. In particular, $\lim _{n} \tau_{n} / n$ exists.

Step (c). Let $\lim _{n} \tau_{n} / n=\alpha \in(0, \infty]$. Then $\tau_{n} \approx \alpha n$ for n no less than some number $M \geq n_{0}$. Hence,

$$
\begin{equation*}
\sum_{s=j}^{n} \tau_{s} \approx \alpha \sum_{s=j}^{n} s=\alpha(n+j)(n-j+1) / 2 \approx \alpha\left(n^{2}-j^{2}\right) / 2 \quad \text { for } j \geq M \tag{2.20}
\end{equation*}
$$

By (1.14) and (1.21), we have $d_{k} \geq d_{1}>0=d_{0}$ for all $k \geq 1$. Obviously, $\lim _{t \rightarrow \infty} t^{4} e^{-d_{k} t / 2}=$ 0 . By (2.2) and (1.9) we have that for t large,

$$
\begin{equation*}
t^{4} \sum_{k=1}^{\infty} g_{k}(t) \leq \sum_{k=1}^{\infty} g_{k}(t / 2) \leq g(t / 2) \xrightarrow{t \rightarrow \infty} 0 . \tag{2.21}
\end{equation*}
$$

It follows from (2.1), (2.2), (2.5) and (2.21) that

$$
\begin{equation*}
1 \approx \sum_{j=1}^{n} g_{0}\left(\sum_{s=j}^{n} \tau_{s}\right)=c_{0} \sum_{j=1}^{n}\left(\sum_{s=j}^{n} \tau_{s}\right)^{-1 / 2} \tag{2.22}
\end{equation*}
$$

which is almost the same as (1.5). We proceed as in [5]. Since

$$
\max _{1 \leq j<M}\left(\widetilde{T}_{j}^{n}\right)^{-1 / 2} \leq \tau_{n}^{-1 / 2} \xrightarrow{n} 0
$$

by (2.5), we get from 2.20 and 2.22 that

$$
1 \approx c_{0} \sqrt{\frac{2}{\alpha}} \sum_{j=L}^{n} \frac{1}{n \sqrt{1-(j / n)^{2}}} \xrightarrow{n} c_{0} \sqrt{\frac{2}{\alpha}} \int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\frac{c_{0} \pi}{\sqrt{2 \alpha}}
$$

It follows that not only $\alpha<\infty$ but also $\alpha=\left(c_{0} \pi\right)^{2} / 2$ as claimed in (2.6).
Proof of Lemma 2.2. Part (i). Let $D_{n}=\sum_{j=1}^{n}\left(\sum_{s=j}^{n} s\right)^{-1 / 2}$. Define

$$
A_{0}=0 \quad \text { and } \quad A_{j}=\sum_{s=1}^{j} s \quad \text { for } j \geq 1
$$

By the Binomial Theorem,

$$
\left(\sum_{s=j}^{n} s\right)^{-1 / 2}=\left(A_{n}-A_{j-1}\right)^{-1 / 2}=\sum_{k=0}^{\infty}(-1)^{k}\binom{-\frac{1}{2}}{k} A_{j-1}^{k} / A_{n}^{k+1 / 2}
$$

Hence,

$$
D_{n}=\sum_{j=1}^{n}\left(A_{n}-A_{j-1}\right)^{-1 / 2}=\sum_{k=0}^{\infty}(-1)^{k}\binom{-\frac{1}{2}}{k}\left[\sum_{j=1}^{n} A_{j-1}^{k} / A_{n}^{k+1 / 2}\right] .
$$

For each $k \geq 0$, the sum inside the bracket above is increasing in n by Lemma 1.2 (vii) in [3]. Since $(-1)^{k}\left(\frac{-1}{2}\right)>0$ for $k \geq 0$, we get (2.7). By keeping only the term $k=0$,

$$
\begin{align*}
D_{n+1}-D_{n} & \geq \frac{n+1}{A_{n+1}^{1 / 2}}-\frac{n}{A_{n}^{1 / 2}} \\
& =\frac{n+1}{\sqrt{(n+1)(n+2) / 2}}-\frac{n}{\sqrt{n(n+1) / 2}} \tag{2.23}\\
& \geq \sqrt{\frac{n+1}{n+2}}-\sqrt{\frac{n}{n+1}}=\frac{\frac{1}{(n+2)(n+1)}}{\sqrt{\frac{n+1}{n+2}}+\sqrt{\frac{n}{n+1}}} \geq \frac{1}{12 n^{2}} .
\end{align*}
$$

Part (ii). Let $H_{n}=\sum_{j=1}^{n} g\left(c \sum_{s=j}^{n} s\right)$. Since $d_{0}=0$ and all g_{k} in 2.2) are positive, a simple rearrangement after singling out the function g_{0} shows $H_{n+1} \geq H_{n}$ holds if

$$
\begin{equation*}
c_{0}\left(D_{n+1}-D_{n}\right) \geq \sum_{j=1}^{n} \sum_{k=1}^{\infty} g_{k}\left(c \sum_{s=j}^{n} s\right) \tag{2.24}
\end{equation*}
$$

By (2.21), the right-hand side above is bounded by $\sum_{j=1}^{n}\left(c \sum_{s=j}^{n} s\right)^{-4} \leq n(c n)^{-4}=c^{-4} n^{-3}$ when n is large. In view of (2.23), (2.24) holds for n large. The conclusion follows.

Acknowledgments

The second author wishes to thank Professor C. H. Su, Brown University, for some useful discussions. This paper was partially supported by a grant from Ministry of Science and Technology, ROC.

References

[1] C.-H. Chang, Y. Chow and Z. Wang, On the asymptotic behavior of heating times, Anal. Appl. (Singap.) 1 (2003), no. 4, 429-432.
http://dx.doi.org/10.1142/s021953050300020x
[2] J.-Y. Chen, On a difference equation motivated by a heat conduction problem, Taiwanese J. Math. 12 (2008), no. 8, 2001-2007.
[3] J.-Y. Chen and Y. Chow, An inequality with application to a difference equation, Bull. Austral. Math. Soc. 69 (2004), no. 3, 519-528.
http://dx.doi.org/10.1017/s0004972700036285
[4] \qquad , A heat conduction problem with the temperature measured away from the heating point, J. Difference Equ. Appl. 13 (2007), no. 5, 431-441.
http://dx.doi.org/10.1080/10236190601173390
[5] Y.-M. Chen, Y. Chow and J. Hsieh, On a heat conduction problem by Myshkis, J. Differ. Equatios Appl. 6 (2000), no. 3, 309-318. http://dx.doi.org/10.1080/10236190008808230
[6] A. D. Myshkis, On a recurrently defined sequence, J. Differ. Equations Appl. 3 (1997), no. 1, 89-91.
[7] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman \& Hall/CRC, Boca Raton, FL, 2002. http://dx.doi.org/10.1201/9781420035322
[8] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, England, 1944.

Jong-Yi Chen

Department of Applied Mathematics, National Dong-Hwa University, Hwalien 973, Taiwan
E-mail address: jongyi@mail.ndhu.edu.tw

Yunshyong Chow
Institute of Mathematics, Academia Sinica, Taipei 106, Taiwan
E-mail address: chow@math.sinica.edu.tw

