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Arbitrary Decay of Energy for a Viscoelastic Problem with
Balakrishnan-Taylor Damping
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Abstract. In this paper we consider a viscoelastic problem with Balakrishnan-Taylor

damping
t
Upt — (a +b||Vu|?® + o(Vu, Vut)> Au + / g(t — s)Au(s)ds =0
0

with Dirichlet boundary condition. We establish a decay result of the energy of so-
lutions for the problem without imposing the usual relation between the relaxation
function g and its derivative. This result generalizes earlier ones to an arbitrary rate

of decay, which is not necessarily of exponential or polynomial decay.

1. Introduction

In this paper we consider the following viscoelastic problem with Balakrishnan-Taylor

damping

¢
(1.1)  ugy — <a +b||Vul* + o(Vu, Vut)> Au —|—/ g(t —s)Au(s)ds =0 in Q x R,
0

(1.2) u=0 ondQ xR",
(1.3) u(z,0) = up(z), w(z,0)=ui(z) forxe Q,

where Q C R" is a bounded domain with sufficiently smooth boundary 95, a,b, o are
positive constants, g is a relaxation function which will be specified later. From the
physical point of view, problem — is related to the panel flutter equation and
spillover problem with memory.

In the absence of the Balakrishnan-Taylor damping (o = 0), problem — has
been extensively studied and several results concerning existence, nonexistence and asymp-
totic behavior have been established (see e.g. [6,9,/10] for the case g = 0 and [3}/7] for the
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case b = 0). When o = g = 0, problem — reduces to the well-known Kirchhoff
equation which has been introduced by Kirchhoff [5] in order to describe the nonlinear
vibrations of an elastic string, and when b = ¢ = 0, problem — forms a linear
viscoelastic equation used to investigate the motion of viscoelastic materials.

Balakrishnan-Taylor damping was proposed by Balakrishnan and Taylor 1] and Bass
and Zes [2]|. Since then, some authors have discussed results on existence and asymptotic
behavior of a class of equations with Balakrishnan-Taylor damping (see [8,/13,/15] and
references therein). Tatar and Zarai [13|15] investigated exponential and polynomial
decay results under the classical condition ¢'(t) < —(g(t) and ¢'(t) < —C(g(t))H%, P> 2,
for some ¢ > 0, respectively. Later, Mu and Ma [§] extended these results by proving
a general decay rate of energy under the condition ¢'(t) < —((¢)g(t), where ((t) is a
nonincreasing and positive function.

On the other hand, Fabrizio and Polidoro [4] obtained an exponential decay rate of
solutions to a linear viscoelastic wave equation under the condition ¢’(¢) < 0 and e“g(t) €

L1(0,00) for some a > 0. Tatar [12] weakened this assumption as
(1.4) J(H) <0 and C(t)g(t) € L1(0,00),

where ((t) is a nonnegative function, and established an arbitrary decay rate for a linear
viscoelastic wave equation by introducing an appropriate new functional in the modified
energy.

Inspired by these results, we improve earlier ones concerning exponential decay for

problem ([1.1))-(1.3)) by imposing the condition ([1.4)) on the relaxation function g. The
remainder of the paper is organized as follows. In Section 2, we give some preliminaries

related to problem (|1.1)-(1.3)). In Section 3, we prove an arbitrary decay result.

2. Preliminaries

We use the standard Lebesgue space L?(Q2) and Sobolev space Hi (). For a Hilbert
space X, we denote (-,-)x and |||y the inner product and norm of X, respectively. For
simplicity, we denote (-,-)z2(q) and ||| 2(q) by (,-) and ||-[|, respectively. Let A be the

smallest positive constant such that
(2.1) AMul® < |Vul*  for u e HL(Q).
As in [12], we impose the following conditions on the relaxation function g:

(G1) g: [0,00) — (0,00) is a continuous, nonincreasing and almost everywhere differen-

tiable function satisfying

(2.2) /000 g(s)ds:=1<a.
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(G2) There exists a nondecreasing function ((t) > 0 such that

(2.3) :=1(t) is a decreasing function and / 9(s)C(s)ds < o0.
0

By standard Galerkin method, we get the existence result (see e.g. [3|14]):

Theorem 2.1. Assume that (G1) holds. Then, for every (ug,u1) € (H*(Q) N HI(Q)) x
HE(Q) there exists a unique solution u to problem (L.1)-(1.3) such that

u € L®(0,T; HH(Q) N HF(Q), w € L=(0,T; Hy(Q)), uy € L(0,T;L*()).

3. Arbitrary decay of energy

In this section we prove an arbitrary decay rate of the energy of solutions to problem

. . We define the energy of problem (]1.1] . 1.3) by

1

(31) Blt= % ol + 5 (= [ oo ds) IVl + 3 1Vu(o)l* + 5 (g0vu)0),

where (¢g00Vu)(t fo (t — s) [|[Vu(t) — Vu(s)|* ds.

Lemma 3.1. The energy E(t) satisfies

(3.2) B < ( HV()H) +2(dOVu)D) fort >0,

Proof. Multiplying (L.1) by u:(t), which makes sense because u; € L>(0,T; Hi(12)), we

have
- 4 (3w + o >tu + 1 Ivul)
== (GITOR) + [ ot = 9(Tuts) ) ds
A direct calculation ensures
/0 ot — $)(Vu(s), Vu(t)) ds
- 2 o + 1 < / gls) ds ||Vu<t>u2) ~ I u)? + L (g0vu) ).

Applying this to the right-hand side of (3.3), we complete the proof. O
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To demonstrate the stability of problem (1.1)-(|1.3)), we introduce the following nota-

tions as in [11,12]. For every measurable set A C R*, we define the probability measure

g by

N 1
(3.0 3 = [ ats)ds.
A
The flatness set of g is defined by
(3.5) Fy={seR":g(s)>0and g'(s) =0} .

Now let us define the perturbed functional by
L(t) = ME(t) + m1®(t) + ¥ (t) + 13=(t),
where M and ~; (i = 1,2, 3) are positive constants to be specified later,

(1) = (un(t),u(t) + T |Vu®)]*,

and

(3.6) =)= [ Gelt =) IVu(s) s,
here

(3.7) Gelt) =<0 [ ao)(s) ds.

Remark 3.2. The function = given in (3.6) was first introduced by Tatar [12] to get an

arbitrary decay rate for a linear viscoelastic equation.

Lemma 3.3. Assume that (G1) holds. Then, for M > 0 large there exist positive con-

stants a1 and ag such that

Proof. Young’s inequality, Holder’s inequality and ([2.1]) imply

D)) = | uet), u(t) + T IVue)||

< 2 @) + 5 IVu(e) + 2 [ u)]*
< I+ g (1= [ o) ds ) Ivu? + § Ivato’
< C1E(t)
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and

2

#0) < 5 @ + 5 ([ 9t =9 o) - uo)] as)

< 5 IOl + 55 (g0va(®

< CQE(t)v
where C7 = max {1, ﬁ, %} and Cy = max{l, %} Thus we obtain
|L(t) = ME(t) — y3E(t)| < (mC1 +7202) E(1).

Choosing M > 0 large and putting g = min {M — v1C1 — 12Cs,v3}, ag = min{M +~,C;
+ 7204, 3}, we complete the proof. O

Lemma 3.4. Assume that (G1) holds. Then ® satisfies

L gOvu) ()

¥(0) < @] - (o~ 3 ) IV b ITu]* - 5

(3.8) o 2
w3 [ att= 9 1vu)? as

Proof. From (1.1)-(1.2), we have

(1) = Jue(OI* + (u(t), uee(t)) + o [ Vu(t)[|* (Vu(t), Vi (t)
(3.9) t
= [lue(O)” — a [ Vu®)]* = bl|Vu(®)|* + /0 g(t = s)(Vu(s), Vu(t)) ds.

Substituting the following relation (see [12, Lemma 2])

| ot = )(Vuts), Vu(e) ds = =5 @OVO) + 5 [ ot -9 [Vu(o)] ds
0 0

2
(3.10) L
45 [ ott= ) [Tu)* ds
0
into the last term of (3.9)) and using (2.2), we complete the proof. O

Lemma 3.5. Assume that (G1) holds. Then, for any positive constant 6; (i = 1,2,3) and
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all measurable sets A and B with A = R" \ B it holds that

(3. 11)
( / o(s) ds —52) e (8) 2 + 8b | Vu(t)]
0

+{ (o= [ o105 (5+ ) uco?
+1 ( Otg >+1+ 511}/Am[0’t]g(t—s) |Vu(t) — Vau(s)|]? ds
U0 8098) [ oft =) V() = Tt s
#5 (o= [owas) [ 9 ITU s TV
2 )+ () e

Proof. From and ., we have

() = - ( / o(s) ds) lue(t)]1? — / ¢t — 5)(ult) — u(s), u(t)) ds
+ <a +b||Vu®)|)? + o(Vu(t), Vut(t))) /0 g(t — s)(Vu(t) — Vu(s), Vu(t)) ds

- /0 . (Vu(t) — Vu(s), /0 gl — 8)Vu(s) ds) ds.

Since

—/0 g(t—s) (Vu(t) - Vu(s),/o g(t — s)Vu(s) ds> ds
= / g(t — s)/ g(t — 7)(Vu(r) — Vu(t), Vu(t) — Vu(s)) dr ds
0 0
- / g(t — s)/ g(t — 7)(Vu(t), Vu(t) — Vu(s)) dr ds
0 0

|

/ t g(t — 8)(Vu(t) — Vu(s)) ds
- </Otg(s) ds> /Otg(t— $)(Vau(t), Vu(t) — Vu(s)) ds,

2
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it follows that
W)= ([ o6)ds) bt = [ o1t =)(at0) - )t ds
+ (a — /Otg(s) ds) /Otg(t —8)(Vu(t), Vu(t) — Vu(s)) ds

+0b HVu(t)Hg/ g(t — s)(Vu(t), Vu(t) — Vu(s)) ds
(3.12) 0 .

+ o(Vu(t), Vus(t) /0 ot — $)(Vult), Vu(t) — Va(s)) ds
2

+ /0 g(t —s)(Vu(t) — Vu(s)) ds

— (/Otg(s) ds> lue(8)1% + I + <a— /Otg(s) ds> LtL+ I+ I

Now we will estimate the terms on right hand side of (3.12)). For all measurable sets A
and B such that A =Rt \ B and any &; > 0, we have from (G1) that

|I2| =

/ g(t — s)(Vu(t), Vu(t) — Vu(s)) ds
ANI0,¢]

- —s)(Vu u(s)) ds
+ (/Bm[o,t} g(s) ds) IVu(t)]] /Bm[o,t]g(t )(Vu(t), Vu(s)) d

l
<6 || Vu(t)|® + 461 J anjo g

3 1
43 /‘ g@MsHVMWF+/ gt — 5) | Vu(s)|? ds
2 \JBn[o.4 2 /B0,

< (50+ 350 ) Vw0l + g [ 0= 1ut0) - Vu(o) s

g(t = 5) [ Vu(t) = Vu(s)|* ds

1
5 [ gt Vals) | ds
B0,

and
2

|I5| = /Am[o,t] g(t — s)(Vu(t) — Vu(s)) ds + /Bm[o,t] g(t — s)(Vu(t) — Vu(s))ds

2
+

_ / g(t — 5)(Vu(t) — Vu(s)) ds
AN[0,t]

/ ot — $)(Vu(t) — Vu(s)) ds
BA[0,4]

+2 </Am[0,t} g(t — s)(Vu(t) — Vu(s)) ds, /Bﬂ[o,t} g(t — 8)(Vu(t) — Vu(s)) ds)

1 2
< (1 + 51) (/Am[ovﬂg(t—s) ds> /Am[Oi]g(t— $) [IVult) — Vu(s)|? ds
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2
+ (1+61) (/Bm[o,t] g(t—s) ds) /Bm[o,t] g(t —s) ||Vu(t) — Vu(s)||” ds

1 2
< (1 + 51) l/Am[o,t} g(t — s) [|[Vu(t) — Vu(s)||” ds

+ (14 6,)I5(B) /B 0y 9= V) = Vo) s

For any do > 0, we get

11 < 62 I — 22/ O9u) o).

For any d3 > 0, it follows that

3] < B[ Vu()? (63 VUl + 55, GOV

= 030 [Vu())[* + = HW()H (gOVu)(t)

le( )

(gOVu)(t),

in the last inequality it is used (3.1)) and the fact E(t) < E(0). It holds that

2
1l < 0® |9 5 IV)1?) + 56OV

(@)

(3.13) _ 20%E(0) (d v (t)\|2>2+l( OVu)(t)
S @™ 16

a

Substituting these estimates into (3.12)), we get the desired result.

Lemma 3.6. Assume that (G1) and (G2) hold. Then, for any positive constant 6; (i =

1,2,3) and all measurable sets A and B with A =R™ \ B it holds that

(3 14)
y< - {72 ( 5)ds - @) —71} lae)I2 = (1 — 7205) [ Fu(t)

+[72{< ©as) (5 28N o (0= 1) + 2060 Ivutol?
(o= [ ); 51} [ 800 1900 = s

T ol(1 + 81)(B) /B oy YT = Tuo) ds

+ 2 (o= [otwas) [ o S I
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+ {]‘24 - ngg) } (¢'OVa)(t) + <7126[ + ;;;(bffol)) 721) (gO0Vu)(t)

[y

+ (2= m) [ ot = ) IFuGI ds —rn0=(0)
(Mo 0 (4

Proof. From (2.3), we get

t
='(t) = G(0) [[Vu(t))? +/ Gi(t — ) [[Vu(s)||* ds

(3.15) =G0 vl - [ (S act-o +ate-9)) IVuP ds

< Ge(0) [Vu(®)|* = n(t)=(t) —/ g(t — ) | Vu(s)||* ds.
0

Combining (3.2)), (3.8), (3.11)) and (3.15]), we get the desired result. O
Let fo s)ds := g* for t* > 0, then our main theorem reads as:

Theorem 3.7. Assume that (G1), (G2), §(Fy) < 1= and E(0) < l(%;l) hold. Then there

2a—13l)g*—3al
(32a—131)g*—3a then

exist positive constants t*, Cy, and w such that if G¢(0) < 395

(3.16) E(t) < Col(t)™  fort >t*.
Proof. For n € N, as in |11}/12], we introduce the sets
A, ={seR" :ing'(s)+g(s) <0} and B, =R"\A,.

It is easy to show that

GAnZW\{ngNg},

n=1

where Fy is given in (3.5]) and N is the null set where ¢’ is not defined. Since B, 41 C By,
for all n and (2, Br = F4 UN,, we get

(3.17) lim g(B,) = g(Fy).

n—o0

Since ¢ is positive, we have fo s)ds > fo s)ds := g* for all t > t*. Thus, taking
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A=A, and B = B, in (3.14), we see that

L'(t) < = {r2(9" = &2) = m} lue(0)I* = (31 = 1283)b | Vu(t) |

n {72((1 — ) (51 + 3157(28")> S <a — ;) +73Gg(0)} IVu(t)|?

a—g* 1Y 1 /M 29(0)
+{’Y2l< 441 +1+51 n<2 459\
X gt —s)||Vu(t) — Vu(s 2 ds
- /. g =) 190~ Vo)

# [t onae. + 55+ 70 b - 2 eavae

R+ F =} [ o= ITuI ds = (=0

- (Mo 2P0 (4 ppe)

for t > t*. By choosing 1 = (¢* —€)72 for small 0 < € < g* and d3 = 9*2_6, 3.18)) becomes

(3.19)
L(0) < —ole = ) [0 = AL =D ey
+ ata=a) (34 222) ot (1= ) 67 - e (a5 ) +26c00)

x | Vu(t)]*

a—g* 1 1 (M ~29(0)
1 - — -
" {w( 401 T 51> n ( 2 455\

+ [wz {(1 4 60)3(Ba) + = + _bE(O } _¥ _26)'72] (g00Vu)(t)

(
N {72(“2—6) _ 73} [ att = 5) I9u)|? ds = 5am(®)=(0)

Mo 2v,0%E(0) d 5\
(%7 - 2250 (5 1wue

3l(a—g")
69" (2a=1)"

for t > t*, where kK = Owing to I = [ g(s)ds and E(0) < l(%;l), there exists

t1 > 0 large such that

l 8bE(0
— < g" and (><g*<l for t* > tq,
2 a—1
and then there exists a constant €; > 0 small such that
l 8bE(0
(3.20) —<g"—e€ and ()<g*—e<l for t* > ¢; and 0 < € < €.

2 a—1



Arbitrary Decay for a Problem with Balakrishnan-Taylor Damping 139

Since g(F,) < 1, from (B.17) there exists ny € N large such that g(B,) < & for n > ny.
Thus we get that for n > n1, t* > t1, and 0 < € < €1,

~ 1 bE(0) g-e 1l _g—¢
(3.21) l(g(Bn)erJr(g*_e)(a_l))_ 5“1 3 <©

It is also noted that

l 3l l
_ _ k — k _ — > .
a 2> <(a—g )32 Kg (a 2) 0 forn>mn

So, we can choose a positive constant es with €5 < €1 such that

31g(Bn)
2

l
(3.22) (a—g") — k(9" —€) (a—2> <0 forn>ng,0<e<e.

Thus, from (3.21) and (3.22)), we can take J; > 0 small enough such that, for n > nq,
t>t and0<e§eg,

_ 1 bE(0) g —e
(3.23) z{(1+51)g(8n)+16+ (g*_e)(a_l)}— 5 <0
and
(3.24) (a—g%) <51 + 3@(2871)) —k(g" —€) (a - ;) < 0.

On the other hand, we can choose a constant 5 with to > t1 so that % < g* < for
t* > t9, and hence we find 1 — k > 0 for t* > to.
Once ny, to and €9 are fixed, we take n = ny, t* = to, € = e5. Next we choose 2 and

3 satisfying

2a — 131)g* — 3al
%<fy3<72{(3a 3l)g 3a},
2 64G¢(0)
which is valid under the condition G¢(0) < W. Then we get
(3.25) 72(“2_6) — 43 <0
and

13Ge(0) = 72(1 = K)(g" — ) (a_ é)

v2 {(32a — 131)g* — 3al} 3l(a —g*) . l
(3.26) - 64 o (1 - 169*(2a — l)) "~ (a - 2>

1 g —e€
- 2 — 131)g* — -
v2 {(32a — 131)g* — 3al} (64 324" )

<0,

we used the fact that g*g:e > 1 in the last inequality.
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Finally, we take d > 0 small enough and M > 0 large enough so that

(3.27) €— 0y >0,
Mo 2y20%E(0)

3.28 - 0
( ) 2 a—1 -
and

a—g* 1 1 (M ~9(0)

2 L 1+ )= (=- .

(3:29) 72(451 * +51> n<2 1o ) <0

Adapting (3.23)-(3.29) to (3.19), using the fact that n(t) is decreasing and Lemma [3.4] we

arrive at

L'(t) < —C3B(t) — yan(t)2(t) < —Cs— = E(t) — yan(t)=(1)
(3.30) n(t*)
< =Cimt)(E@)+EZ({) < —wn(t)L(t) fort>t*,
D _C3 — Cs ; ;
where C's > 0, C4 = min {n(t*)’%”} and w = o This and Lemma give that

on(E(t) + E(1)) < L(t) < L(t*)e™ Ji= 1) ds

(33 = e e G e
= L{")(C(E)(C() ™ fort >t
Making use of the fact Z(¢) > 0, we get the desired result. O
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