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Nonlocal Boundary Value Problems for Riemann-Liouville Fractional

Differential Inclusions with Hadamard Fractional Integral Boundary

Conditions

Sotiris K. Ntouyas, Jessada Tariboon* and Chatthai Thaiprayoon

Abstract. In this paper we study a new class of boundary value problems consisting of

a fractional differential inclusion of Riemann-Liouville type and Hadamard fractional

integral conditions. Some new existence results for convex as well as non-convex mul-

tivalued maps are obtained by using standard fixed point theorems. Some illustrative

examples are also presented.

1. Introduction

Fractional differential equations play an important role in many research areas, such as

physics, chemical technology, population dynamics, biotechnology and economics. For

examples and recent development of the topic, see [1–7,21,25–27,29]. It has been observed

that most of the work on the topic involves either Riemann-Liouville or Caputo type

fractional derivative. For background material of Hadamard fractional derivative and

integral, we refer to the papers [10–12,18,20–22].

In this paper, we consider the following boundary value problem

(1.1)


RLD

αx(t) ∈ F (t, x(t)), 0 < t < T, 1 < α ≤ 2,

x(0) = 0,
m∑
i=1

µiHI
βix(ηi) =

n∑
j=1

δjHI
γjx(ξj) + λ,

where 1 < α ≤ 2, RLD
q is the standard Riemann-Liouville fractional derivative of order q,

HI
βi , HI

γj are the Hadamard fractional integrals of order βi > 0, γj > 0, ηi, ξj ∈ (0, T ),

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, F : [0, T ] × R → P(R) is a multivalued map, P(R) is the

family of all subsets of R, and µi, δj ∈ R, i = 1, 2, . . . ,m, j = 1, 2, . . . , n are real constants

such that

Λ :=
m∑
i=1

µi(α− 1)−βiηα−1
i −

n∑
j=1

δj(α− 1)−γjξα−1
j 6= 0.
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The present paper is motivated by a recent paper [28], where the problem (1.1) was

studied for single valued maps. Here, in the present paper, we cover the multi-valued case.

We establish some existence results for the problem (1.1), when the right-hand side has

convex as well as non-convex values. In the case of convex values (upper semicontinuous

case) we use the nonlinear alternative of Leray-Schauder type. When the right hand side

is not necessarily convex valued (lower semicontinuous case) we combine the nonlinear

alternative of Leray-Schauder type for single-valued maps with a selection theorem due to

Bressan and Colombo for lower semicontinuous multivalued maps with nonempty closed

and decomposable values. Finally, in the last result (Lipschitz case) we prove the existence

of solutions for the problem (1.1) with not necessary nonconvex valued right-hand side,

by applying a fixed point theorem for contractive multivalued maps due to Covitz and

Nadler. The methods used are well known, however their exposition in the framework of

problem (1.1) is new.

2. Preliminaries

2.1. Basic material for fractional calculus

In this subsection, we introduce some notations and definitions of fractional calculus and

present preliminary results needed in the subsequent results.

Definition 2.1. The Riemann-Liouville fractional derivative of order q > 0 of a continuous

function f : (0,∞)→ R is defined by

RLD
qf(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

0
(t− s)n−q−1f(s) ds, n− 1 < q < n,

where n = [q] + 1, [q] denotes the integer part of a real number q, provided the right-

hand side is point-wise defined on (0,∞), where Γ is the Gamma function defined by

Γ(q) =
∫∞

0 e−ssq−1 ds.

Definition 2.2. The Riemann-Liouville fractional integral of order q > 0 of a continuous

function f : (0,∞)→ R is defined by

RLI
qf(t) =

1

Γ(q)

∫ t

0
(t− s)q−1f(s) ds,

provided the right-hand side is point-wise defined on (0,∞), where Γ is the gamma func-

tion.

Definition 2.3. The Hadamard fractional integral of order q ∈ R+ of a function f(t), for

all t > 0, is defined as

HI
qf(t) =

1

Γ(q)

∫ t

0

(
log

t

s

)q−1

f(s)
ds

s
,
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provided the integral exists.

Lemma 2.4. [21, page 113] Let q > 0 and n > 0. Then the following formulas hold

(HI
qsn)(t) = n−qtn and (HD

qsn)(t) = nqtn.

Lemma 2.5. Let 1 < α ≤ 2, βi, γj > 0, ηi, ξj ∈ (0, T ), λ, µi, δj ∈ R for i = 1, 2, . . . ,m, j =

1, 2, . . . , n, and h ∈ C([0, T ],R). Then the nonlocal Hadamard fractional integral problem

for nonlinear Riemann-Liouville fractional differential equation

(2.1) RLD
αx(t) = h(t), 0 ≤ t ≤ T,

subject to the boundary conditions

(2.2) x(0) = 0,
m∑
i=1

µiHI
βix(ηi) =

n∑
j=1

δjHI
γjx(ξj) + λ,

has a unique solution given by

(2.3) x(t) =
tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αh(ξj)−
m∑
i=1

µiHI
βi
RLI

αh(ηi) + λ

+ RLI
αh(t),

where

(2.4) Λ :=
m∑
i=1

µi(α− 1)−βiηα−1
i −

n∑
j=1

δj(α− 1)−γjξα−1
j 6= 0.

Proof. Applying the Riemann-Liouville fractional integral of order α to both sides of (2.1),

we have

(2.5) x(t) = k1t
α−1 + k2t

α−2 + RLI
αh(t),

where k1, k2 ∈ R. The first condition of (2.2) implies that k2 = 0. Therefore (2.5) reduces

to

(2.6) x(t) = k1t
α−1 + RLI

αh(t).

For any p > 0, by Lemma 2.4, it follows that

(2.7) HI
px(t) = k1(α− 1)−ptα−1 + HI

p
RLI

αh(t).

The second condition of (2.2) with (2.7) leads to

(2.8) k1 =
1

Λ

 n∑
j=1

δjHI
γj
RLI

αh(ξj)−
m∑
i=1

µiHI
βi
RLI

αh(ηi) + λ

 ,

where Λ is defined by (2.4). Substituting the value of k1 into (2.6), we obtain 2.3 as

required. The proof is completed.
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2.2. Basic material for multivalued maps

Here we outline some basic concepts of multivalued analysis [15,19].

Let C([0, T ],R) denote the Banach space of all continuous functions from [0, T ] into R
with the norm ‖x‖ = sup {|x(t)| , t ∈ [0, T ]}. Also by L1([0, T ],R) we denote the space of

functions x : [0, T ]→ R such that ‖x‖L1 =
∫ T

0 |x(t)| dt.
For a normed space (X, ‖·‖), let

Pcl(X) = {Y ∈ P(X) : Y is closed} ,

Pb(X) = {Y ∈ P(X) : Y is bounded} ,

Pcl,b(X) = {Y ∈ P(X) : Y is closed and bounded} ,

Pcp(X) = {Y ∈ P(X) : Y is compact} ,

and

Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex} .

A multi-valued map G : X → P(X):

(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X.

(ii) is bounded on bounded sets if G(Y ) = ∪x∈YG(x) is bounded in X for all Y ∈ Pb(X)

(i.e., supx∈Y {sup {|y| : y ∈ G(x)}} <∞).

(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is

a nonempty closed subset of X, and if for each open set N of X containing G(x0),

there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N .

(iv) is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ Y 6= ∅} is open for any

open set Y in X.

(v) is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X);

If the multi-valued map G is completely continuous with nonempty compact values,

then G is u.s.c. if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn)

imply y∗ ∈ G(x∗).

(vi) is said to be measurable if for every y ∈ X, the function

t 7−→ d(y,G(t)) = inf {|y − z| : z ∈ G(t)}

is measurable.

(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of the

multivalued operator G will be denoted by FixG.
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3. Existence results

3.1. The Carathéodory case

In this subsection we consider the case when F has convex values and prove an exis-

tence result based on nonlinear alternative of Leray-Schauder type, assuming that F is

Carathéodory.

Definition 3.1. A multivalued map F : [0, T ]× R→ P(R) is said to be Carathéodory if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;

(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ];

Further a Carathéodory function F is called L1-Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1([0, T ],R+) such that

‖F (t, x)‖ = sup {|v| : v ∈ F (t, x)} ≤ ϕρ(t)

for all ‖x‖ ≤ ρ and for a.e. t ∈ [0, T ].

For each y ∈ C([0, T ],R), define the set of selections of F by

SF,y :=
{
v ∈ L1([0, T ],R) : v(t) ∈ F (t, y(t)) on [0, T ]

}
.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and recall

a result for closed graphs and upper-semicontinuity.

Lemma 3.2. [15, Proposition 1.2] If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed

subset of X×Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n→∞,

xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G is completely

continuous and has a closed graph, then it is upper semi-continuous.

The following lemma will be used in the sequel.

Lemma 3.3. [24] Let X be a Banach space. Let F : J × R → Pcp,c(X) be an L1-

Carathéodory multivalued map and let Θ be a linear continuous mapping from L1(J,X)

to C(J,X). Then the operator

Θ ◦ SF : C(J,X)→ Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C(J,X)× C(J,X).

We recall the well-known nonlinear alternative of Leray-Schauder for multivalued maps.
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Lemma 3.4 (Nonlinear alternative for Kakutani maps). [17] Let E be a Banach space, C a

closed convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → Pcp,c(C)

is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Theorem 3.5. Assume that:

(H1) F : [0, T ]× R→ Pcp,c(R) is L1-Carathéodory;

(H2) there exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and a function

p ∈ C([0, T ],R+) such that

‖F (t, x)‖P := sup {|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, T ]× R;

(H3) there exists a constant M > 0 such that

M

ψ(M) ‖p‖Λ1 + Tα−1|λ|
|Λ|

> 1,

where

(3.1) Λ1 =
1

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj

 .

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. Define the operator F : C([0, T ],R)→ P(C([0, T ],R)) by

(3.2)

F(x) =


h ∈ C([0, T ],R) :

h(t) = RLI
αv(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv(ξj)−
m∑
i=1

µiHI
βi
RLI

αv(ηi) + λ




for v ∈ SF,x. It is obvious that the fixed points of F are solutions of the boundary value

problem (1.1).

We will show that F satisfies the assumptions of Leray-Schauder nonlinear alternative

(Lemma 3.4). The proof consists of several steps.

Step 1. F(x) is convex for each x ∈ C([0, T ],R).

This step is obvious since SF,x is convex (F has convex values), and therefore we omit the

proof.
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Step 2. F maps bounded sets (balls) into bounded sets in C([0, T ],R).

For a positive number ρ, let Bρ = {x ∈ C([0, T ],R) : ‖x‖ ≤ ρ} be a bounded ball in

C([0, T ],R). Then, for each h ∈ F(x), x ∈ Bρ, there exists v ∈ SF,x such that

h(t) = RLI
αv(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv(ξj)−
m∑
i=1

µiHI
βi
RLI

αv(ηi) + λ

 .

Then we have

|h(x)| ≤ RLI
α |v(t)|+ tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

α |v(ξj)| −
m∑
i=1

µiHI
βi
RLI

α |v(ηi)|+ |λ|


≤ ‖p‖ψ(‖x‖)

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj


+
Tα−1 |λ|
|Λ|

= Λ1 ‖p‖ψ(‖x‖) +
Tα−1 |λ|
|Λ|

.

Thus

‖h‖ ≤ Λ1 ‖p‖ψ(ρ) +
Tα−1 |λ|
|Λ|

.

Step 3. F maps bounded sets into equicontinuous sets of C([0, T ],R).

Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Bρ. For each h ∈ F(x), we obtain

|h(τ2)− h(τ1)|

≤ 1

Γ(q)

∣∣∣∣∫ τ1

0

[
(τ2 − s)α−1 − (τ1 − s)α−1

]
v(s) ds+

∫ τ2

τ1

(τ2 − s)α−1v(s) ds

∣∣∣∣
+

(τα−1
2 − τα−1

1 )

|λ|

 n∑
j=1

δjHI
γj
RLI

α |v(ξj)| −
m∑
i=1

µiHI
βi
RLI

α |v(ηi)|


≤ ‖p‖ψ(ρ)

Γ(q)

∣∣∣∣∫ τ1

0

[
(τ2 − s)α−1 − (τ1 − s)α−1

]
ds+

∫ τ2

τ1

(τ2 − s)α−1 ds

∣∣∣∣
+

(τ q−1
2 − τα−1

1 ) ‖p‖ψ(ρ)

|λ|

 1

Γ(α+ 1)

m∑
i=1

|µi|α−βiηαi +
1

Γ(α+ 1)

n∑
j=1

|δj |α−γjξαj

 .

Obviously the right-hand side of the above inequality tends to zero independently

of x ∈ Bρ as τ2 − τ1 → 0. As F satisfies the above three assumptions, therefore it

follows by the Ascoli-Arzelá theorem that F : C([0, T ],R)→ P(C([0, T ],R)) is completely

continuous.
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Since F is completely continuous, in order to prove that it is u.s.c. it is enough to

prove that it has a closed graph. Thus, in our next step, we show that

Step 4. F has a closed graph.

Let xn → x∗, hn ∈ F(xn) and hn → h∗. Then we need to show that h∗ ∈ F(x∗).

Associated with hn ∈ F(xn), there exists vn ∈ SF,xn such that for each t ∈ [0, T ],

hn(t) = RLI
αvn(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αvn(ξj)−
m∑
i=1

µiHI
βi
RLI

αvn(ηi) + λ

 .

Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each t ∈ [0, T ],

h∗(t) = RLI
αv∗(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv∗(ξj)−
m∑
i=1

µiHI
βi
RLI

αv∗(ηi) + λ

 .

Let us consider the linear operator Θ: L1([0, T ],R)→ C([0, T ],R) given by

f 7→ Θ(v)(t) = RLI
αv(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv(ξj)−
m∑
i=1

µiHI
βi
RLI

αv(ηi) + λ

 .

Observe that

‖hn(t)− h∗(t)‖ =

∥∥∥∥∥∥RLIα(vn(t)− v∗(t)) +
tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

α(vn(ξj)− v∗(ξj))

−
m∑
i=1

µiHI
βi
RLI

α(vn(ηi)− v∗(ηi))

)∥∥∥∥∥→ 0,

as n→∞. Thus, it follows by Lemma 3.3 that Θ◦SF is a closed graph operator. Further,

we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) = RLI
αv∗(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv∗(ξj)−
m∑
i=1

µiHI
βi
RLI

αv∗(ηi) + λ

 ,

for some v∗ ∈ SF,x∗ .

Step 5. We show there exists an open set U ⊆ C([0, T ],R) with x /∈ θF(x) for any

θ ∈ (0, 1) and all x ∈ ∂U .

Let θ ∈ (0, 1) and x ∈ θF(x). Then there exists v ∈ L1([0, T ],R) with v ∈ SF,x such that,

for t ∈ [0, T ], we have

x(t) = θRLI
αv(t) + θ

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv(ξj)−
m∑
i=1

µiHI
βi
RLI

αv(ηi) + λ

 .
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Using the computations of the second step above we have

‖x‖ ≤ ψ(‖x‖) ‖p‖

 1

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj


+
Tα−1 |λ|
|Λ|

= ψ(‖x‖) ‖p‖Λ1 +
Tα−1 |λ|
|Λ|

,

which implies that
‖x‖

ψ(‖x‖) ‖p‖Λ1 + Tα−1|λ|
|Λ|

≤ 1.

In view of (H3), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C(I,R) : ‖x‖ < M} .

Note that the operator F : U → P(C(I,R)) is a compact multi-valued map, u.s.c. with

convex closed values. From the choice of U , there is no x ∈ ∂U such that x ∈ θF(x)

for some θ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type

(Lemma 3.4), we deduce that F has a fixed point x ∈ U which is a solution of the problem

(1.1). This completes the proof.

3.2. The lower semicontinuous case

In the next result, F is not necessarily convex valued. Our strategy to deal with this

problem is based on the nonlinear alternative of Leray Schauder type together with the

selection theorem of Bressan and Colombo [9] for lower semi-continuous maps with de-

composable values.

Let X be a nonempty closed subset of a Banach space E and G : X → P(E) be a

multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.) if

the set {y ∈ X : G(y) ∩B 6= ∅} is open for any open set B in E. Let A be a subset of

[0, T ]×R. A is L⊗B measurable if A belongs to the σ-algebra generated by all sets of the

form J ×D, where J is Lebesgue measurable in [0, T ] and D is Borel measurable in R. A

subset A of L1([0, T ],R) is decomposable if for all u, v ∈ A and measurable J ⊂ [0, T ] = J ,

the function uχJ + vχJ−J ∈ A, where χJ stands for the characteristic function of J .

Definition 3.6. Let Y be a separable metric space and let N : Y → P(L1([0, T ],R)) be a

multivalued operator. We say N has a property (BC) if N is lower semi-continuous (l.s.c.)

and has nonempty closed and decomposable values.
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Let F : [0, T ]×R→ P(R) be a multivalued map with nonempty compact values. Define

a multivalued operator F : C([0, T ]× R)→ P(L1([0, T ],R)) associated with F as

F(x) =
{
w ∈ L1([0, T ],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]

}
,

which is called the Nemytskii operator associated with F .

Definition 3.7. Let F : [0, T ] × R → P(R) be a multivalued function with nonempty

compact values. We say F is of lower semi-continuous type (l.s.c. type) if its associated

Nemytskii operator F is lower semi-continuous and has nonempty closed and decomposable

values.

Lemma 3.8. [16] Let Y be a separable metric space and let N : Y → P(L1([0, T ],R)) be

a multivalued operator satisfying the property (BC). Then N has a continuous selection,

that is, there exists a continuous function (single-valued) g : Y → L1([0, T ],R) such that

g(x) ∈ N(x) for every x ∈ Y .

Theorem 3.9. Assume that (H2), (H3) and the following condition holds:

(H4) F : [0, T ]× R→ P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,

(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, T ].

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. It follows from (H2) and (H4) that F is of l.s.c. type. Then from Lemma 3.8, there

exists a continuous function f : C2([0, T ],R)→ L1([0, T ],R) such that f(x) ∈ F(x) for all

x ∈ C([0, T ],R).

Consider the problem

(3.3)


RLD

qx(t) = f(x(t)), 0 < t < T, 1 < α ≤ 2,

x(0) = 0,

m∑
i=1

µiHI
βix(ηi) =

n∑
j=1

δjHI
γjx(ξj) + λ.

Observe that if x ∈ C2([0, T ],R) is a solution of (3.3), then x is a solution to the

problem (1.1). In order to transform the problem (3.3) into a fixed point problem, we

define the operator F as

Fx(t) = RLI
αf(x(t)) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αf(x(ξj))−
m∑
i=1

µiHI
βi
RLI

αf(x((ηi)) + λ

 .

It can easily be shown that F is continuous and completely continuous. The remaining

part of the proof is similar to that of Theorem 3.5. So we omit it. This completes the

proof.
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3.3. The Lipschitz case

In this subsection we prove the existence of solutions for the problem (1.1) with a not

necessary nonconvex valued right-hand side, by applying a fixed point theorem for multi-

valued maps due to Covitz and Nadler [14].

Let (X, d) be a metric space induced from the normed space (X; ‖·‖). Consider

Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pcl,b(X), Hd) is a metric

space (see [23]).

Definition 3.10. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 3.11. [14] Let (X, d) be a complete metric space. If N : X → Pcl(X) is a con-

traction, then FixN 6= ∅.

Theorem 3.12. Assume that:

(A1) F : [0, T ]× R→ Pcp(R) is such that F (·, x) : [0, T ]→ Pcp(R) is measurable for each

x ∈ R;

(A2) Hd(F (t, x), F (t, x)) ≤ m(t) |x− x| for almost all t ∈ [0, T ] and x, x ∈ R with m ∈
C([0, T ],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, T ].

Then the boundary value problem (1.1) has at least one solution on [0, T ] if ‖m‖Λ1 < 1,

i.e.,

‖m‖

 1

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj

 < 1.

Proof. Consider the operator F defined by (3.2). Observe that the set SF,x is nonempty

for each x ∈ C([0, T ],R) by the assumption (A1), so F has a measurable selection (see

[13, Theorem III.6]). Now we show that the operator F satisfies the assumptions of

Lemma 3.11. We show that F(x) ∈ Pcl((C[0, T ],R)) for each x ∈ C([0, T ],R). Let
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{un}n≥0 ∈ F(x) be such that un → u (n→∞) in C([0, T ],R). Then u ∈ C([0, T ],R) and

there exists vn ∈ SF,xn such that, for each t ∈ [0, T ],

un(t) = RLI
αvn(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αvn(ξj)−
m∑
i=1

µiHI
βi
RLI

αvn(ηi) + λ

 .

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn

converges to v in L1([0, T ],R). Thus, v ∈ SF,x and for each t ∈ [0, T ], we have

un(t)→ v(t) = RLI
αv(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv(ξj)−
m∑
i=1

µiHI
βi
RLI

αv(ηi) + λ

 .

Hence, u ∈ F(x).

Next we show that there exists δ < 1 such that

Hd(F(x),F(x)) ≤ δ ‖x− x‖ for each x, x ∈ C2([0, T ],R).

Let x, x ∈ C2([0, T ],R) and h1 ∈ F(x). Then there exists v1(t) ∈ F (t, x(t)) such that, for

each t ∈ [0, T ],

h1(t) = RLI
αv1(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv1(ξj)−
m∑
i=1

µiHI
βi
RLI

αv1(ηi) + λ

 .

By (A2), we have

Hd(F (t, x), F (t, x)) ≤ m(t) |x(t)− x(t)| .

So, there exists w ∈ F (t, x(t)) such that

|v1(t)− w(t)| ≤ m(t) |x(t)− x(t)| , t ∈ [0, T ].

Define U : [0, T ]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t) |x(t)− x(t)|} .

Since the multivalued operator U(t)∩F (t, x(t)) is measurable [13, Proposition III.4], there

exists a function v2(t) which is a measurable selection for U . So v2(t) ∈ F (t, x(t)) and for

each t ∈ [0, T ], we have |v1(t)− v2(t)| ≤ m(t) |x(t)− x(t)|.
For each t ∈ [0, T ], let us define

h2(t) = RLI
αv2(t) +

tα−1

Λ

 n∑
j=1

δjHI
γj
RLI

αv2(ξj)−
m∑
i=1

µiHI
βi
RLI

αv2(ηi) + λ

 .
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Thus,

|h1(t)− h2(t)|

≤ RLI
α |v1(t)− v2(t)|

+
tα−1

|Λ|

 n∑
j=1

δjHI
γj
RLI

α |v1(ξj)− v2(ξj)|+
m∑
i=1

µiHI
βi
RLI

α |v1(ηi)− v2(ηi)|


≤ ‖m‖

 1

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj

 ‖x− x‖ .
Hence,

‖h1 − h2‖

≤ ‖m‖

 1

Γ(α+)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj

 ‖x− x‖ .
Analogously, interchanging the roles of x and x, we obtain

Hd(F(x),F(x)) ≤ δ ‖x− x‖

where

δ = ‖m‖

 1

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj

 ‖x− x‖ < 1.

So F is a contraction. Therefore, it follows by Lemma 3.11 that F has a fixed point x

which is a solution of (1.1). This completes the proof.

3.4. Examples

In this section, we will illustrate our main results with the help of some examples. Let us

consider the following nonlocal boundary value problem for Riemann-Liouville fractional

differential inclusions with Hadamrd fractional integral boundary conditions

(3.4)


RLD

5
3x(t) ∈ F (t, x(t)), t ∈ (0, 3

2),

x(0) = 0,

4HI
2
5x(1

3) + 3HI
1
2x(2

3) = 2
3HI

1
2x(1

4) + 3
5HI

1
3x(4

3) + 1
7 .

Here we have α = 5/3, T = 3/2, m = 2, n = 2, µ1 = 4, µ2 = 3, β1 = 2/5, β2 = 1/2,

η1 = 1/3, η2 = 2/3, δ1 = 2/3, δ2 = 3/5, γ1 = 1/2, γ2 = 1/3, ξ1 = 1/4, ξ2 = 4/3, λ = 1/7.

By using the Maple program, we can find

Λ :=

m∑
i=1

µi(α− 1)−βiηα−1
i −

n∑
j=1

δj(α− 1)−γjξα−1
j ≈ 6.221625494 6= 0.
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(a) Let F : [0, 3/2]× R→ P(R) be a multivalued map given by

(3.5) x→ F (t, x) =

[
1 + cos2 x

2 + sin2 x
,

ex

2ex + 3
+

2t3

9
+ 1

]
.

For f ∈ F , we have

|f | ≤ max

(
1 + cos2 x

2 + sin2 x
,

ex

2ex + 3
+

2t3

9
+ 1

)
≤ 9

4
, x ∈ R.

Thus,

‖F (t, x)‖P := sup {|y| : y ∈ F (t, x)} ≤ 9

4
= p(t)ψ(‖x‖), x ∈ R,

with p(t) = 9, ψ(‖x‖) = 1/4. Further, using the condition (H6),

M

ψ(M) ‖p‖Λ1 + Tα−1|λ|
|Λ|

> 1,

we find that M > 3.779988106. Therefore, all the conditions of Theorem 3.5 are satisfied.

So, the problem (3.4) with F (t, x) given by (3.5) has at least one solution on [0, 3/2].

(b) Let F : [0, 3/2]× R→ P(R) be a multivalued map given by

(3.6) x→ F (t, x) =

[
0,

3 sin2 x

(
√

8 + 2t)2
+

3

128

]
.

Then we have

sup {|x| : x ∈ F (t, x)} ≤ 3

(
√

8 + 2t)2
+

3

128
,

and

Hd(F (t, x), F (t, x)) ≤ 3

(
√

8 + 2t)2
|x− x| .

Let m(t) = 3/(
√

8+2t)2. Then Hd(F (t, x), F (t, x)) ≤ m(t) |x− x| with d(0, F (t, 0) ≤ m(t)

and ‖m‖ = 3/8. We can show that

‖m‖

 1

Γ(α+ 1)

Tα +
Tα−1

|Λ|

m∑
i=1

|µi|α−βiηαi +
Tα−1

|Λ|

n∑
j=1

|δj |α−γjξαj


≈ 0.624983363 < 1.

Thus all the conditions of Theorem 3.12 are satisfied. Therefore, by the conclusion of

Theorem 3.12, the problem (3.4) with F (t, x) given by (3.6) has at least one solution on

[0, 3/2].
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[7] D. Băleanu, O. G. Mustafa and R. P. Agarwal, On Lp-solutions for a class of se-

quential fractional differential equations, Appl. Math. Comput. 218 (2011), no. 5,

2074–2081. http://dx.doi.org/10.1016/j.amc.2011.07.024

[8] H. F. Bohnenblust and S. Karlin, On a theorem of Ville, in: Contributions to the

Theory of Games, 155–160, Princeton University Press, Princeton, N. J., 1950.

[9] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable

values, Studia Math. 90 (1988), no. 1, 69–86.

[10] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Fractional calculus in the Mellin setting

and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), no. 1, 1–27.

http://dx.doi.org/10.1016/s0022-247x(02)00001-x

[11] , Compositions of Hadamard-type fractional integration operators and the

semigroup property, J. Math. Anal. Appl. 269 (2002), no. 2, 387–400.

http://dx.doi.org/10.1016/s0022-247x(02)00049-5

http://dx.doi.org/10.1016/j.camwa.2009.05.010
http://dx.doi.org/10.1186/1687-2770-2011-36
http://dx.doi.org/10.1155/2013/149659
http://dx.doi.org/10.1155/2011/107384
http://dx.doi.org/10.1155/2013/320415
http://dx.doi.org/10.1142/8180
http://dx.doi.org/10.1016/j.amc.2011.07.024
http://dx.doi.org/10.1016/s0022-247x(02)00001-x
http://dx.doi.org/10.1016/s0022-247x(02)00049-5


106 Sotiris K. Ntouyas, Jessada Tariboon and Chatthai Thaiprayoon

[12] , Mellin transform analysis and integration by parts for Hadamard-type frac-

tional integrals, J. Math. Anal. Appl. 270 (2002), no. 1, 1–15.

http://dx.doi.org/10.1016/s0022-247x(02)00066-5

[13] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lec-

ture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

http://dx.doi.org/10.1007/bfb0087685

[14] H. Covitz and S. B. Nadler Jr., Multi-valued contraction mappings in generalized

metric spaces, Israel J. Math. 8 (1970), no. 1, 5–11.

http://dx.doi.org/10.1007/bf02771543

[15] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin-New

York, 1992. http://dx.doi.org/10.1515/9783110874228
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