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Existence, Localization and Multiplicity of Positive Solutions to φ-Laplace

Equations and Systems

Diana-Raluca Herlea and Radu Precup*

Abstract. The paper presents new existence, localization and multiplicity results for

positive solutions of ordinary differential equations or systems of the form (φ(u′))′ +

f(t, u) = 0, where φ : (−a, a) → (−b, b), 0 < a, b ≤ ∞, is some homeomorphism such

that φ(0) = 0. Our approach is based on Krasnosel’skĭı type compression-expansion

arguments and on a weak Harnack type inequality for positive supersolutions of the

operator (φ(u′))′. In the case of the systems, the localization of solutions is obtained in

a component-wise manner. The theory applies in particular to equations and systems

with p-Laplacian, bounded or singular homeomorphisms.

1. Introduction

We present existence, localization and multiplicity results for positive solutions of the

two-point boundary value problem

(1.1)

(φ(u′))′ + f(t, u) = 0, 0 < t < 1

u′(0) = u(1) = 0.

Important motivations for this study are the cases of the equations with p-Laplacian

and curvature operators in Euclidian and Minkowski spaces, for which problem (1.1)

respectively becomes

(1.2)


(
|u′|p−2 u′

)′
+ f(t, u) = 0, 0 < t < 1

u′(0) = u(1) = 0,

(1.3)


(

u′√
1 + u′2

)′
+ f(t, u) = 0, 0 < t < 1

u′(0) = u(1) = 0,
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(1.4)


(

u′√
1− u′2

)′
+ f(t, u) = 0, 0 < t < 1

u′(0) = u(1) = 0.

The problem (1.1) can be considered as a particular, as n = 1, of the corresponding

problem for an n-dimensional system,

(1.5)

(φi(u
′
i))
′ + fi(t, u1, u2, . . . , un) = 0, 0 < t < 1

u′i(0) = ui(1) = 0 (i = 1, 2, . . . , n).

First we shall concentrate on the problem (1.1) for a single equation, and then we shall

extend the results to the general case (1.5) of systems in a component-wise manner.

Such type of equations involving the φ-Laplacian has been investigated in a large

number of papers using fixed point methods, degree theory, upper and lower solution

techniques and variational methods. We refer to the papers [1–6, 9–13, 18, 19], to the

survey work [11], and the bibliographies therein.

Inspired by the three typical examples (1.2), (1.3), (1.4), in the literature, the cases

of homeomorphisms of R, φ : R → R; of homeomorphisms with bounded range, φ : R →
(−b, b); and of homeomorphisms with bounded domain, φ : (−a, a) → R, have been dis-

cussed separately. In this paper, these three cases will be treated unitarily by assuming

that φ is a homeomorphism from (−a, a) to (−b, b), and 0 < a, b ≤ ∞.

We are interested not only on the existence of positive solutions to the problems (1.1)

and (1.5), but also on their localization and multiplicity. We shall succeed this by using

the technique based on Krasnosel’skĭı’s fixed point theorem in cones [8].

Theorem 1.1 (Krasnosel’skĭı). Let (X, |·|) be a normed linear space; K ⊂ X a cone;

r,R ∈ R+, 0 < r < R; Kr,R = {u ∈ K : r ≤ |u| ≤ R}, and let N : Kr,R → K be a compact

map. Assume that one of the following conditions is satisfied:

(a) N(u) ≮ u if |u| = r, and N(u) ≯ u if |u| = R.

(b) N(u) ≯ u if |u| = r, and N(u) ≮ u if |u| = R.

Then N has a fixed point u in K with r ≤ |u| ≤ R.

Here for two elements u, v ∈ X, the strict ordering u < v means v − u ∈ K \ {0}.
It is a well known fact that in applications, the technique based on Krasnosel’skĭı’s

theorem requires the construction of a suitable cone of positive functions, which, in the

case of most boundary value problems is done using the properties of the corresponding

Green functions. Alternatively, and for many other problems for which Green functions

are not known, one can use weak Harnack type inequalities associated to the differential
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operators and the boundary conditions, as shown in [16] and [17]. In our case, such an

inequality will arise as a consequence of the concavity of the positive solutions.

As concerns the systems, we shall allow the homeomorphisms φi have different do-

mains and ranges and we shall be interested to localize each component of a solution

u = (u1, u2, . . . , un). In this respect we shall use the following vectorial version of Kras-

nosel’skĭı’s theorem given in [14] (see also [15]).

Theorem 1.2. [14] Let (X, |·|) be a normed linear space; K1,K2, . . . ,Kn ⊂ X cones;

K := K1 ×K2 × · · · ×Kn; r,R ∈ Rn+, r = (r1, r2, . . . , rn), R = (R1, R2, . . . , Rn) with 0 <

ri < Ri for all i; Kr,R = {u ∈ K : ri ≤ |ui| ≤ Ri, i = 1, 2, . . . , n}, and let N : Kr,R → K,

N = (N1, N2, . . . , Nn) be a compact map. Assume that for each i ∈ {1, 2, . . . , n}, one of

the following conditions is satisfied in Kr,R:

(a) Ni(u) ≮ ui if |ui| = ri, and Ni(u) ≯ ui if |ui| = Ri.

(b) Ni(u) ≯ ui if |ui| = ri, and Ni(u) ≮ ui if |ui| = Ri.

Then N has a fixed point u in K with ri ≤ |ui| ≤ Ri for i = 1, 2, . . . , n.

Note that in the previous theorem, the same symbol < is used to denote the strict

ordering induced by any of the cones K1,K2, . . . ,Kn.

It deserves to be underlined the fact that asking the compression condition (a) to be

satisfied by some indices i, and the expansion condition (b) by the others, it is allowed

that the system nonlinearities behave differently one from another.

2. Positive solutions of φ-Laplace equations

This section deals with positive solutions for the problem (1.1). We make the following

assumptions: φ : (−a, a) → (−b, b), 0 < a, b ≤ ∞ is an increasing homeomorphism such

that φ(0) = 0 and f : [0, 1]× R+ → R+ is a continuous function.

By a positive solution of the problem (1.1) we mean a function u ∈ C1[0, 1]∩C([0, 1];R+),

with u′(0) = u(1) = 0, such that u′(t) ∈ (−a, a) for every t ∈ [0, 1], φ ◦ u′ is continuously

differentiable on [0, 1] and the equation in (1.1) is satisfied on [0, 1].

First we obtain the equivalent integral equation to the problem (1.1). Integration of

the differential equation from (1.1) and the conditions u′(0) = 0 and φ(0) = 0 give

−φ(u′(t)) =

∫ t

0
f(s, u(s)) ds.

Then

u′(t) = φ−1
(
−
∫ t

0
f(s, u(s)) ds

)
.
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Integrating from t to 1 and taking into account that u(1) = 0, we obtain

(2.1) u(t) = −
∫ 1

t
φ−1

(
−
∫ τ

0
f(s, u(s)) ds

)
dτ.

Conversely, if a function u ∈ C([0, 1];R+) satisfies (2.1), which implicitly means that∫ τ
0 f(s, u(s)) ds < b for all τ ∈ [0, 1], then u is a positive solution of the problem (1.1).

Next, assuming in addition that f(t, x) < b for all t ∈ [0, 1] and x ∈ R+, we may define

the integral operator N : C([0, 1];R+)→ C([0, 1];R+) by

(2.2) N(u)(t) = −
∫ 1

t
φ−1

(
−
∫ τ

0
f(s, u(s)) ds

)
dτ,

and thus, finding positive solutions to (1.1) is equivalent to the fixed point problem for the

operator N on C([0, 1];R+). Note that by standard arguments based on Ascoli-Arzela’s

theorem, N is completely continuous. Let |·|∞ denote the max norm on C[0, 1].

In order to apply Krasnosel’skĭı’s fixed point theorem in cones we need a weak Harnack

type inequality for the differential operator Lu := −(φ(u′))′ and the boundary conditions

u′(0) = u(1) = 0.

Lemma 2.1. For each c ∈ (0, 1), and any u ∈ C1[0, 1]∩C([0, 1];R+) with u′(0) = u(1) =

0, u′(t) ∈ (−a, a) for every t ∈ [0, 1], φ ◦u′ ∈W 1,1(0, 1) and (φ(u′))′ ≤ 0 on [0, 1], one has

(2.3) u(t) ≥ (1− c) |u|∞ , for all t ∈ [0, c].

Proof. From (φ(u))′ ≤ 0 on [0, 1], one has that the function φ◦u′ is nonincreasing on [0, 1].

Then, from u′ = φ−1(φ ◦ u′), and φ−1 increasing, we deduce that u′ is nonincreasing on

[0, 1]. Thus u is concave on [0, 1]. On the other hand, since the function φ ◦ u′ vanishes

at t = 0, φ(u′(t)) ≤ 0 for every t ∈ [0, 1]. Then u′ ≤ 0 on [0, 1], which shows that u is

nonincreasing on [0, 1]. Hence u is nonnegative, nonincreasing, concave and |u|∞ = u(0).

If mint∈[0,c] u(t) = 0, then the concavity of u implies u = 0 on [0, 1], and so (2.3) holds. If

mint∈[0,c] u(t) > 0, then we may assume without loss of generality that mint∈[0,c] u(t) = 1

(otherwise, multiply (2.3) by a suitable positive constant). Then u(c) = 1. The function

u being concave, its graph on [0, c] is under the line containing the points (1, 0) and (c, 1)

and so we have u(0) ≤ 1
1−c . Hence (1 − c) |u|∞ ≤ 1. Finally, since 1 ≤ u(t) for t ∈ [0, c],

we obtain (2.3).

For our first result we make the following assumptions:

(A1) φ : (−a, a) → (−b, b), 0 < a, b ≤ ∞ is an increasing homeomorphism such that

φ(0) = 0;

(A2) f : [0, 1]× R+ → R+ is continuous, f(t, ·) is nondecreasing on R+ for each t ∈ [0, 1],

and f(t, x) < b for all t ∈ [0, 1] and x ∈ R+.
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Theorem 2.2. Let the conditions (A1) and (A2) hold and assume that there exist c, α, β >

0 with c < 1 and α 6= β such that

(2.4) Φ(α) := −
∫ c

0
φ−1

(
−
∫ τ

0
f(s, (1− c)α) ds

)
dτ ≥ α,

(2.5) Ψ(β) := −
∫ 1

0
φ−1

(
−
∫ τ

0
f(s, β) ds

)
dτ < β.

Then (1.1) has at least one positive solution u with r ≤ |u|∞ ≤ R, where r = min {α, β},
R = max {α, β}.

Proof. We shall apply Krasnosel’skĭı’s fixed point theorem in cones. In our case, X =

C[0, 1], the cone K is the following one

K = {u ∈ C([0, 1];R+) : u(t) ≥ (1− c) |u|∞ for all t ∈ [0, c]} ,

and N is the operator given by (2.2). Notice that if u, v ∈ C([0, 1];R+) and v < u, that is

u− v ∈ K \ {0}, then (u− v)(0) ≥ (1− c) |u− v|∞ > 0. Hence

(2.6) |u|∞ ≥ u(0) > v(0).

First we remark that N(K) ⊂ K. Indeed, if u ∈ K and v := N(u), then −(φ(v′))′ =

f(t, u). We have f(t, u(t)) ≥ 0 for every t ∈ [0, 1], so (φ(v′))′ ≤ 0 on [0, 1]. Then Lemma 2.1

guarantees that v(t) ≥ (1− c) |v|∞ for t ∈ [0, c], that is v ∈ K as desired. Next we prove

that

(2.7) u ≯ N(u) for every u ∈ K with |u|∞ = α.

To this end, assume the contrary, i.e., u > N(u) for some u ∈ K with |u|∞ = α. Then

using (2.6), the definition of K, and the monotonicity of f and φ, we deduce

α = |u|∞ > N(u)(0) = −
∫ 1

0
φ−1

(
−
∫ τ

0
f(s, u(s)) ds

)
dτ

≥ −
∫ c

0
φ−1

(
−
∫ τ

0
f(s, u(s)) ds

)
dτ ≥ −

∫ c

0
φ−1

(
−
∫ τ

0
f(s, (1− c)α) ds

)
dτ,

which contradicts (2.4). Thus (2.7) holds. The next step is to prove that

(2.8) u ≮ N(u) for every u ∈ K with |u|∞ = β.

Assume the contrary, i.e., u < N(u) for some u ∈ K with |u|∞ = β. Then we would

obtain

β = |u|∞ ≤ |N(u)|∞ = N(u)(0) = −
∫ 1

0
φ−1

(
−
∫ τ

0
f(s, u(s)) ds

)
dτ

≤ −
∫ 1

0
φ−1

(
−
∫ τ

0
f(s, β) ds

)
dτ,
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which contradicts (2.5). Thus (2.8) holds. Therefore, Krasnosel’skĭı’s theorem applies and

yields the result.

Remark 2.3. The existence and localization result, Theorem 2.2, immediately yields mul-

tiplicity results for the problem (1.1), in case that several (finitely many or infinitely

many) couples of distinct numbers α, β satisfying (2.4), (2.5) exist such any two of the

corresponding intervals (α, β) are disjoint.

Remark 2.4. (a) If we do not assume that f(t, ·) is nondecreasing on R+ for each t ∈ [0, 1],

then the conclusion of Theorem 2.2 remains true under the following conditions replacing

(2.4) and (2.5):

−
∫ c

0
φ−1

(
−
∫ τ

0
min

x∈[(1−c)α,α]
f(s, x) ds

)
dτ ≥ α,

−
∫ 1

0
φ−1

(
−
∫ τ

0
max
x∈[0,β]

f(s, x) ds

)
dτ < β.

(b) The conclusion of Theorem 2.2 remains true if we replace the hypothesis that

f(t, x) < b for all t ∈ [0, 1] and x ∈ R+, by the assumption

(2.9) f(t, x) < b for all t ∈ [0, 1] and x ∈ [0, R].

Indeed, the operator N does not need to be defined on the whole cone K. It suffices to

be defined on the conical annulus Kr,R and for this the condition (2.9) is enough.

The next theorems answer the question how can the numbers α, β satisfying the

conditions (2.4), (2.5) be guaranteed. The first result is about the existence of at least

one pair of such numbers.

Theorem 2.5. Let (A1) and (A2) hold and assume that one of the following conditions

is satisfied:

(i) lim sup
λ→∞

Φ(λ)

λ
> 1 and lim inf

λ→0

Ψ(λ)

λ
< 1;

(ii) lim sup
λ→0

Φ(λ)

λ
> 1 and lim inf

λ→∞

Ψ(λ)

λ
< 1.

Then (1.1) has at least one positive solution.

Proof. In order to apply Theorem 2.2, we look for two numbers α, β > 0, α 6= β with

Φ(α) ≥ α and Ψ(β) < β.

In case (i), one can chose α large enough and β small enough; while in case (ii), α is chosen

small enough and β is chosen large enough.
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The next result is about a sequence of positive solutions of the problem (1.1), whose

existence is guaranteed by the oscillations of f towards infinity or zero.

Theorem 2.6. Let (A1) and (A2) hold. If the condition

(iii) lim sup
λ→∞

Φ(λ)

λ
> 1 and lim inf

λ→∞

Ψ(λ)

λ
< 1 holds, then (1.1) has a sequence of positive

solutions (un)n≥1 such that |un|∞ →∞ as n→∞.

If the condition

(iv) lim sup
λ→0

Φ(λ)

λ
> 1 and lim inf

λ→0

Ψ(λ)

λ
< 1 holds, then (1.1) has a sequence of positive

solutions (un)n≥1 such that |un|∞ → 0 as n→∞.

Proof. Clearly (iii) guarantees the existence of two sequences (αn)n≥1, (βn)n≥1 such that

(2.10) 0 < αn < βn < αn+1 < βn+1 for every n ≥ 1, and αn →∞ as n→∞.

For each n, Theorem 2.2 yields a positive solution un with αn ≤ |un|∞ ≤ βn. The condition

(2.10) implies that these solutions are distinct and that |un|∞ →∞ as n→∞. A similar

reasoning can be done in case (iv).

Remark 2.7. Since Φ(λ) ∈ [0, a) for every λ > 0, the conditions (i) from Theorem 2.5 and

(iii) from Theorem 2.6 can not occur if a <∞.

For the remaining part of this section, we shall take into consideration some particular

cases, including the problems (1.2), (1.3) and (1.4).

First note that if φ is odd, then the conditions (2.4), (2.5) become∫ c

0
φ−1

(∫ τ

0
f(s, (1− c)α) ds

)
dτ ≥ α,∫ 1

0
φ−1

(∫ τ

0
f(s, β) ds

)
dτ < β.

In particular, for φ(t) = t, which was the case considered in [7], these conditions reduce to∫ c

0

∫ τ

0
f(s, (1− c)α) ds dτ ≥ α,

∫ 1

0

∫ τ

0
f(s, β) ds dτ < β.

If in addition f(t, x) does not depend on t, they read as

f((1− c)α)

α
≥ 2

c2
,

f(β)

β
< 2.

Theorem 2.2 gives the following results for the problems (1.2), (1.3) and (1.4):
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Corollary 2.8. Let φ(λ) = |λ|p−2 λ for λ ∈ R, where p > 1, and let (A2) holds with

b =∞. If there exist c, α, β > 0 with c < 1 and α 6= β such that∫ c

0

(∫ τ

0
f(s, (1− c)α) ds

) 1
p−1

dτ ≥ α,∫ 1

0

(∫ τ

0
f(s, β) ds

) 1
p−1

dτ < β,

then (1.2) has at least one positive solution u with r ≤ |u|∞ ≤ R, where r = min {α, β},
R = max {α, β}.

Proof. In this case φ−1(λ) = |λ|1/(p−1) signλ for λ ∈ R.

Corollary 2.9. Let φ(λ) = λ/
√

1 + λ2 for λ ∈ R, and let (A2) hold with b = 1. If there

exist c, α, β > 0 with c < 1 and α 6= β such that

∫ c

0

 ∫ τ
0 f(s, (1− c)α) ds√

1−
(∫ τ

0 f(s, (1− c)α) ds
)2
 dτ ≥ α,

∫ 1

0

 ∫ τ
0 f(s, β) ds√

1−
(∫ τ

0 f(s, β) ds
)2
 dτ < β,

then (1.3) has at least one positive solution u with r ≤ |u|∞ ≤ R, where r = min{α, β},
R = max{α, β}.

Proof. Here φ−1(λ) = λ/
√

1− λ2 for λ ∈ (−1, 1).

Corollary 2.10. Let φ(λ) = λ/
√

1− λ2 for λ ∈ (−1, 1), and let (A2) hold with b = ∞.

If there exist c, α, β > 0 with c < 1 and α 6= β such that

∫ c

0

 ∫ τ
0 f(s, (1− c)α) ds√

1 +
(∫ τ

0 f(s, (1− c)α) ds
)2
 dτ ≥ α,

∫ 1

0

 ∫ τ
0 f(s, β) ds√

1 +
(∫ τ

0 f(s, β) ds
)2
 dτ < β,

then (1.4) has at least one positive solution u with r ≤ |u|∞ ≤ R, where r = min {α, β},
R = max {α, β}.

Proof. This time φ−1(λ) = λ/
√

1 + λ2 for λ ∈ R.

As in the general case, one can discuss the existence of the numbers α, β with the

required properties, and the multiplicity of solutions, for each one of the problems (1.2),
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(1.3) and (1.4), by taking into consideration the asymptotic behavior of the nonlinearity

towards infinity and zero.

We conclude this section by two examples illustrating Corollaries 2.9 and 2.10.

Example 2.11. Consider the problem (1.3) where

(2.11) f : [0, 1]× R+ → R+, f(t, x) =
γx

x+ δ

and γ, δ > 0. In this case a =∞, b = 1 and one can easily check that the condition (A2),

particularly, the inequality f(t, x) < 1, holds if and only if γ ≤ 1. Direct computation

shows that

Φ(α) =
1−
√

1−A2c2

A
, Ψ(β) =

1−
√

1−B2

B
,

where

(2.12) A =
γ(1− c)α

(1− c)α+ δ
, B =

γβ

β + δ
.

Now it is easy to see that

(2.13) lim
λ→0

Φ(λ)

λ
=
γ(1− c)c2

2δ
and lim

λ→∞

Ψ(λ)

λ
= 0.

Hence the condition (ii) from Theorem 2.5 is satisfied if γ(1−c)c
2

2δ > 1. Thus, if δ < γ (1−c)c2
2

and γ ≤ 1, then the problem (1.3) has at least one positive solution.

Example 2.12. Consider the problem (1.4) for the same function (2.11). In this case

a = 1, b =∞ and the condition (A2) holds for any γ, δ > 0. We have

Φ(α) =

√
1 +A2c2 − 1

A
, Ψ(β) =

√
1 +B2 − 1

B
,

where A,B are given by (2.12), and the limits (2.13) also hold. Thus, if δ < γ (1−c)c2
2 and

γ > 0, then the problem (1.4) has at least one positive solution.

3. Positive solutions of φ-Laplace systems

In this section we extend the above results to the general case (1.5). We shall allow the

homeomorphisms φi have different domains and ranges, namely φi : (−ai, ai) → (−bi, bi),
0 < ai, bi ≤ ∞, and we shall assume that φi are increasing with φi(0) = 0, and that

fi : [0, 1] × Rn+ → R+ are continuous functions (i = 1, 2, . . . , n. Under these assumptions

problem (1.5) is equivalent to the integral system

ui(t) = −
∫ 1

t
φ−1i

[
−
∫ τ

0
fi(s, u(s)) ds

]
dτ, i = 1, 2, . . . , n,
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where u = (u1, u2, . . . , un).

According to Lemma 2.1, for each i and any constant ci ∈ (0, 1), a weak Harnack

type inequality holds for the differential operator Liv := −(φi(v
′))′ and the boundary

conditions v′(0) = v(1) = 0. Based on this we define the cones

(3.1) Ki = {ui ∈ C([0, 1];R+) : ui(t) ≥ (1− ci) |ui|∞ for all t ∈ [0, ci]} ,

for i = 1, 2, . . . , n, and take the product cone

K := K1 ×K2 × · · · ×Kn

in C([0, 1],Rn).

Let N : C([0, 1];Rn+)→ C([0, 1];Rn+), N = (N1, N2, . . . , Nn) be defined by

Ni(u)(t) = −
∫ 1

t
φ−1i

[
−
∫ τ

0
fi(s, u(s)) ds

]
dτ (i = 1, 2, . . . , n).

If uj ∈ Kj for each j, then fi(s, u(s)) ≥ 0 and from Lemma 2.1, one has Ni(u) ∈ Ki. Thus

the cone K is invariant by N . Moreover, the operator N is completely continuous since,

by standard arguments, the components Ni are completely continuous.

The following result is a generalization of Theorem 2.2 and guarantees the existence

of positive solutions to the problem (1.5) and their component-wise localization. For any

index i ∈ {1, 2, . . . , n}, we shall say that the homeomorphism φi : (−ai, ai) → (−bi, bi)
satisfies (A1) if φi is increasing and φi(0) = 0, and that the continuous function fi : [0, 1]×
Rn+ → R+ satisfies (A2) if for each t ∈ [0, 1], fi(t, x1, . . . , xn) is nondecreasing on R+ with

respect to any variable xj , j = 1, 2, . . . , n, and fi(t, x) < bi for all t ∈ [0, 1] and x ∈ Rn+.

Theorem 3.1. Let φi, fi satisfy (A1) and (A2) for i = 1, 2, . . . , n. Assume that there

exist ci, αi, βi > 0 with ci < 1 and αi 6= βi such that

(3.2) Φi(α) := −
∫ ci

0
φ−1i

(
−
∫ τ

0
fi(s, (1− c1)α1, . . . , (1− cn)αn) ds

)
dτ ≥ αi,

(3.3) Ψi(β) := −
∫ 1

0
φ−1i

(
−
∫ τ

0
fi(s, β) ds

)
dτ < βi,

for i = 1, 2, . . . , n, where α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn). Then (1.5) has

at least one positive solution u = (u1, u2, . . . , un) with ri ≤ |ui|∞ ≤ Ri, where ri =

min {αi, βi}, Ri = max {αi, βi}, i = 1, 2, . . . , n.

Proof. The result is a consequence of the vectorial version of Krasnosel’skĭı’s fixed point

theorem in cones.



Existence, Localization and Multiplicity of Positive Solutions 87

We conclude this paper by the following generalization of Theorem 2.6, on the existence

of a sequence of positive solutions to the problem (1.5). We shall say that for a given index

i, the condition (i) holds if for every λ1, λ2, . . . , λi−1 > 0,

lim sup
λi→∞

Φi(λ)

λi
> 1 and lim inf

λi→0

Ψi(λ)

λi
< 1,

uniformly with respect to λi+1, λi+2, . . . , λn ∈ (0,∞). We shall understand the condition

(ii) in a similar manner. Analogously, we say that (iii) holds for some index i, if for every

λ1, λ2, . . . , λi−1 > 0,

lim sup
λi→∞

Φi(λ)

λi
> 1 and lim inf

λi→∞

Ψi(λ)

λi
< 1,

uniformly with respect to λi+1, λi+2, . . . , λn ∈ (0,∞). The condition (iv) is understood in

a similar manner.

Theorem 3.2. Let φi, fi satisfy (A1) and (A2) for every i = 1, 2, . . . , n. Assume that

the set of indices I = {1, 2, . . . , n} admits the partition I = I1∪ I2∪ I3∪ I4, Ij ∩ Ik = ∅ for

j 6= k, such that condition (i) holds for every i ∈ I1, condition (ii) holds for every i ∈ I2,

condition (iii) holds for every i ∈ I3, and condition (iv) holds for every i ∈ I4. If I3 6= ∅
or I4 6= ∅, then the problem (1.5) has a sequence of positive solutions.

Proof. We apply Theorem 3.1. To this aim, the pairs of positive numbers αi, βi are

successively obtained for i = 1, 2, . . . , n. At step i, in case that i ∈ I1 ∪ I2, such a pair of

numbers is obtained as explained in the proof of Theorem 2.5; in case that i ∈ I3 ∪ I4, as

shown in the proof of Theorem 2.6, an entire sequence of distinct pairs of such numbers

can be obtained, which finally guarantees the existence of a sequence of positive solutions

for the problem (1.5).
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