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Near-rings of Endo-transition Preserving Functions on Additive Group

Semiautomata
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Abstract. An additive group semiautomaton or, in brief, GS-automaton is a general-

ization of the well known linear state machines. The purpose of this paper is to study

the near-ring of endo-transition preserving functions of additive GS-automata. This

class of near-rings is a subclass of the celebrated centralizer near-rings, and includes

near-rings of infra-endomorphisms. Complete characterizations using both algebraic

and graphical properties of the additive GS-automaton such that the near-ring is 0-

symmetric or constant are given. Conditions such that this near-ring being simple or

being a ring are also provided.

1. Introduction

A triplet (Q,X, δ) with a function δ : Q×X → Q is called a semiautomaton [12] or state

machine [9, 11], where Q is the set of states, X the set of inputs and δ : Q ×X → Q the

state transition function (or next state function). It is called faithful if δ(q, x) = δ(q, y)

for all q ∈ Q then x = y. Let X∗ be the free monoid over X with ∧, the empty string,

as identity. The state transition function can be extended to X∗ by recursively defining

δ(q,∧) = q and δ(q, xy) = δ(δ(q, x), y) for all q ∈ Q and x, y ∈ X. This system (Q,X, δ)

is called a group semiautomaton (abbr., GS-automaton) if the set of state (Q,+) is a

group [2, 12, 14]. A GS-automaton S = (Q,X, δ) is said to be additive [5] if there is an

input x0 ∈ X such that:

(1) δ(q, x) = δ(q, x0) + δ(0, x) for all q ∈ Q, x ∈ X;

(2) δ(q1 + q2, x0) = δ(q1, x0) + δ(q2, x0) for all q1, q2 ∈ Q.

Condition (1) is called the decomposition property and condition (2) is called the ad-

ditivity property. An additive GS-automaton S = (Q,X, δ) will also be denoted by

S = (Q,X, x0, δ) when the input x0 is specified. Consequently, the decomposition prop-

erty or the additivity property implies that δ(0, x0) = 0. An input x0 ∈ X in (1) and (2)
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above is therefore called an endo-input in a GS-automaton S = (Q,X, δ) for it acts like

an endomorphism of the underlying group.

The definition of additive GS-automata has its root on linear sequential machines

[9, 11]. It can also be viewed as one type of system which abstracts the properties of

certain algebraic structures. Any given group (G,+) can be naturally associated with

an additive GS-automaton where the state transition function δ is defined by using the

binary operation associated with G. Explicitly, consider the GS-automaton G = (G,G, δ)

where δ : G × G → G is defined as δ(q, x) = q + x for all q, x ∈ G. A quick verification

shows that this GS-automaton is additive. The GS-automaton G had been investigated

in [3–5] for their associated syntactic near-rings.

In the following, let M(Q) be the collection of all functions from Q into Q. Recall

that M(Q) is a left near-ring using function addition and composition as operations. For

details and terminologies about near-rings, please refer to [2,14] but be aware that in [14]

we are using left near-rings instead of right near-rings.

In an additive GS-automaton S = (Q,X, δ), we are interested in the endo-transition

preserving functions of S. A function f ∈M(Q) is said to preserve endo-transition if

δ(q, x)f = δ(qf, x0)

for all q ∈ Q, x ∈ X. Several reasons motivate and support the study of these functions.

The collection of all endo-transition preserving functions of S, denoted by F(S), forms an

interesting algebraic object. Indeed it is a subnear-ring of a centralizer near-ring MΩ(Q) =

{f ∈M(Q) | fϕ = ϕf for all ϕ ∈ Ω} for some semigroup Ω ⊆ End(Q) by Proposition 2.1.

As a subnear-ring of MΩ(Q), the 0-symmetric property of F(S) extends to MΩ(Q) by

Theorem 2.6. Also, there is a bijection between F(S) and the set of transition preserving

functions of S. Explicitly, if f ∈ F(S) then f + 1 satisfies the identity

δ(q, x)(f + 1) = δ(q(f + 1), x)

for all q ∈ Q, x ∈ X and vice versa. Finally, it includes certain classes on studied near-

rings. When (Q,+) is abelian, X = {x} and η(q, x) = q+q for all q ∈ Q, the GS-automaton

G2 = (G,X, η) is additive and F(G2) is a near-ring of infra-endomorphisms [7].

Given a GS-automaton S = (Q,X, δ), let P be a subgroup of Q and Y a subset of

X. If the range of the restricted mapping δ|P×Y of δ on P × Y is contained in P , then

(P, Y, δ|P×Y ) is said a group subsemiautomaton or simply subsemiautomaton of S. We

will denote this GS-automaton by (P, Y, δ) if no confusion will arise. If T = (P, Y, δ) is

a subsemiautomaton of S, it is called a spanning (resp., induced) subsemiautomaton of

S if P = Q (resp., Y = X). These terminologies are consistent with graph theory if we

representing S as a multigraph where Q is the set of vertices and the acting of X on Q via



Near-rings of Endo-transition Preserving Functions on Additive Group Semiautomata 35

the function δ is the set of direct edges. Explicitly, a directed edge (labeled by x) connects

vertices p into q if δ(p, x) = q for some x ∈ X. The graph of a spanning (resp., induced)

subsemiautomaton is just the spanning (resp., induced) subgraph of the multigraph of S.

A state q of a semiautomaton S = (Q,X, δ) is called reachable from a state p if there

exists an input word w ∈ X∗ such that δ(p, w) = q. The state p is called a predecessor

of q and q is called successor of p. In the case that the length of the word |w| = 1, the

state p is said adjacent to q or the state q is adjacent from p. Two adjacent states p, q

are called (strongly) connected if p can reach q (and) or q can reach p by some w ∈ X.

A subset C of Q is called connected if for any two states p, q ∈ C, there exists a finite

sequence of states x0 = p, x1, x2, . . . , xn = q in C such that xi and xi+1 are connected for

all i = 0, 1, . . . , n−1. The set C is called strongly connected if every state in C is reachable

by any other. Explicitly, for any given states p, q ∈ C, there exists a word w ∈ X∗ such

that δ(p, w) = q. The GS-automata G = (G,G, δ) defined in previous paragraph is strongly

connected. It is proved in Proposition 3.1 that if an additive GS-automaton S is strongly

connected, then F(S) is a constant near-ring. The converse is shown in Proposition 3.7,

it says that if F(S) is a nonzero constant near-ring, then S is connected. A maximal

connected subset of Q is called a connected component of S. The complement of strongly

connected is said totally disconnected, that is for all p 6= q ∈ C, δ(p, x) 6= q for all x ∈ X.

In an additive GS-automaton S = (Q,X, δ), it is shown in Theorem 3.5 that S is totally

disconnected if and only if F(S) = M(Q).

If S is any semiautomaton, then one can always find a connected subsemiautomaton

for a given state q ∈ Q by finding the connected component (denoted conn(q)) in S which

contains q. Be aware that conn(q) is not necessarily a group subsemiautomaton of a GS-

automaton for conn(q) is in general not a group. Define the complex of state 0, denoted

CP(0) = (cp(0), X, δ), as the group subsemiautomaton generated by the set

reach(0) = {q ∈ Q | there exists w ∈ X∗ such that δ(0, w) = q} .

Observe that CP(0) is the smallest induced subsemiautomaton of S which plays an im-

portant role in the algebraic theory of GS-automata. It is immediate that reach(0) is a

connected subset of the component conn(0). In contrast to the linear case [8, 9], reach(0)

need not be strongly connected even when S is additive [6, Example 2.2].

The state transition function δ : Q × X → Q in an additive GS-automaton S =

(Q,X, {x0} , δ) can be characterized by the input alphabets as an act on the state group

Q. Explicitly, Let Ψ: Q→ Q and Υ: X → Q be defined as δ(q, x0) = qΨ and δ(0, x) = xΥ

for all q ∈ Q, x ∈ X, respectively. A direct verification shows that Ψ is a group endomor-

phism of Q, and δ(q, x) = qΨ + xΥ. The following result quoted from [5, Proposition 1]

will be frequently used in the subsequent sections.
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Theorem 1.1. The GS-automaton S = (Q,X, δ) is additive if and only if there exist a

group endomorphism Ψ: Q → Q, a map Υ: X → Q and an input x0 ∈ X with x0Υ = 0

such that δ(q, x) = qΨ + xΥ for all q ∈ Q, x ∈ X.

Due to Theorem 1.1, an additive GS-automaton will sometimes be denoted by S =

(Q,X, δ = (Ψ,Υ)) or S = (Q,X, (Ψ,Υ)) where the state transition function δ(q, x) =

qΨ + xΥ for all q ∈ Q, x ∈ X. Since the state transition function δ : Q×X → Q can be

extended to the free monoid X∗ via δ(q, xy) = δ(δ(q, x), y) for all x, y ∈ X, the following

result extends the domain of Υ to the free monoid X∗. Let w = x1x2 · · ·xn ∈ X∗ be a

word of length n where xi ∈ X for all i = 1, 2, . . . , n. Then

wΥ =

(
n−1∑
i=1

xiΥΨn−i

)
+ xnΥ.

Let 1 be the identity mapping on the group Q. The subsemigroup of End(Q) generated

by the set {Ψ, 1} is denoted by Ω(S) or simply Ω whenever no confusion will arise. A

subset H of Q is said Ω-invariant if hϕ ∈ H for all h ∈ H, ϕ ∈ Ω. It can now be seen

that, for w ∈ X∗, wΥ is a finite sum of elements xiΥϕj for some ϕj ∈ Ω. Note that

wΥ = δ(0, w) is in fact the state reachable from 0 via the input string w, thus every

element in reach(0) is a finite sum of elements in the set {xΥϕ | x ∈ X,ϕ ∈ Ω}.
By definition, CP(0) is the GS-automaton generated by reach(0), the state group

cp(0) is thus a subset of the set of finite sums of elements in {(±)xΥϕ | x ∈ X,ϕ ∈ Ω}.
Surprisingly, they are equal [6, Theorem 2.5]. We quote this result as following.

Theorem 1.2. Let S = (Q,X, δ = (Ψ,Υ)) be an additive GS-automaton. Then the state

group of the GS-automaton CP(0) is generated additively by the set {xΥϕ | x ∈ X,ϕ ∈ Ω}
as a subgroup of Q.

Since elements in Ω are group endomorphisms of G, the set cp(0) is an Ω-invariant

subgroup of Q by Theorem 1.2.

Corollary 1.3. Let S = (Q,X, δ) be an additive GS-automaton. Then cp(0) is an Ω-

invariant subgroup of Q.

2. Endo-transition preserving functions

If f ∈ F(S) for some additive GS-automaton S = (Q,X, {x0} , δ), it would be convenient

to characterize the mapping f using the identity δ(q, x) = qΨ+xΥ shown in Theorem 1.1.

Explicitly, δ(qf, x0) = qfΨ + x0Υ = qfΨ for x0Υ = 0. Therefore we may rewrite F(S) as

F(S) = {f ∈M(Q) | δ(q, x)f = qfΨ for all q ∈ Q, x ∈ X} .
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If f ∈ F(S), q ∈ Q and w = x1x2 · · ·xn ∈ X∗ where x′is ∈ X for i = 1, 2, . . . , n, then

δ(q, w)f = δ(δ(q, x1x2 · · ·xn−1), xn)f = δ(q, x1x2 · · ·xn−1)fΨ. Inductively, it can be seen

that

δ(q, w)f = qfΨn = qfΨ|w| for all q ∈ Q,w ∈ X∗.

The set F(S) had been studied in [8] for the linear case and in [13] for the homomorphic

case, recall that both cases are additive. Note that the zero mapping is contained in F(S)

and thus it is not empty. Let q ∈ Q, x ∈ X and f ∈ F(S). Then qΨf = (qΨ + x0Υ)f =

δ(q, x0)f = qfΨ. Consequently, Ψf = fΨ. Thus F(S) is contained in the centralizer of Ω

in M(Q), denoted by MΩ(Q).

Furthermore, let f, g ∈ F(S) and q ∈ Q, x ∈ X. Then

δ(q, x)(f + g) = δ(q, x)f + δ(q, x)g

= qfΨ + qgΨ

= q(f + g)Ψ;

and δ(q, x)(fg) = (δ(q, x)f)g = (qfΨ)g = q(fg)Ψ for g ∈ MΩ(Q) by the previous ar-

gument. Thus f + g, fg ∈ F(S). Also, by the fact that 0 = δ(q, x)(f + (−f)) =

qfΨ + δ(q, x)(−f), it follows that δ(q, x)(−f) = −qfΨ = q(−f)Ψ or −f ∈ F(S). It

can easily be seen that F(S) is indeed a right MΩ(Q)-subgroup of MΩ(Q). As a conclu-

sion, F(S), as a nonempty subset of M(Q), is indeed a subnear-ring.

Proposition 2.1. Let S = (Q,X, (Ψ,Υ)) be an additive GS-automaton. Then the set

F(S) is a subnear-ring of MΩ(Q). Moreover, it is a right MΩ(Q)-subgroup of MΩ(Q).

The following example shows that F(S) ⊆MΩ(Q) in Proposition 2.1 could be proper.

Example 2.2. Let (Z6,+) be the cyclic group of order 6, and X = {x, y} where δ(q, x) =

2q and δ(q, y) = 2q + 3 for all q ∈ Z6. Then the GS-automaton S = (Z6, X, {x} , δ) is

additive. Let f ∈ M(Z6) where qf = 5q. Observe that Ω is generated multiplicatively

by {Ψ, idZ6} where Ψ = 2̃ and idZ6 = 1̃ with qk̃ = kq for all k ∈ Z, q ∈ Z6. It follows

that Ω =
{

2̃, 4̃, 1̃
}

. Evidently, f ∈ MΩ(Z6). On the other hand, since δ(0, y)f = 3 and

δ(0f, x) = δ(0, x) = 0, thus f 6∈ F(S), and consequently, F(S) $MΩ(Q).

The subsequent result characterizes the conditions such that F(S) is a centralizer

near-ring MΩ(Q).

Theorem 2.3. Let S = (Q,X, δ = (Ψ,Υ)) be an additive GS-automaton and Ω be the

semigroup generated by {Ψ, 1}. Then the followings are equivalent.

(1) F(S) = MΩ(Q);
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(2) xΥ = 0 (i.e., δ(0, x) = 0) for all x ∈ X;

(3) cp(0) = {0};

(4) ({0} , X, δ) is an induced subsemiautomaton of S;

(5) The identity mapping 1 ∈ F(S).

Proof. We first prove the equivalence of (1) and (2). Assume F(S) = MΩ(Q). Then, in

particular, the identity mapping 1 ∈MΩ(Q) = F(S). It follows that

δ(q, x) = δ(q, x)1 = q1Ψ = qΨ

for all q ∈ Q, x ∈ X. Consequently, xΥ = 0 for all x ∈ X by Theorem 1.1. Conversely,

assume xΥ = 0 for all x ∈ X and let f ∈MΩ(Q). Then δ(q, x)f = (qΨ + xΥ)f = qΨf =

qfΨ. Thus f ∈ F(S). Hence F(S) = MΩ(Q) by Proposition 2.1.

The equivalence of (2) and (3) follows from Theorem 1.2. Since CP(0) = (cp(0), X, δ) is

the smallest induced subsemiautomaton of S, the equivalence of (3) and (4) is immediate.

Finally, if the identity mapping 1 ∈ F(S) then, in particular, xΥ = δ(0, x) = δ(0, x)1 =

01Ψ = 0 for all x ∈ X. On the other hand, if xΥ = 0 for all x ∈ X, then δ(q, x)1 =

qΨ + xΥ = q1Ψ, or 1 ∈ F(S). Hence (5) and (2) are equivalent.

A common question maybe asked: When will F(S) be a ring or an abstract affine near-

ring? However, unlike the near-ring of homogeneous functions on a unital R-module, the

near-ring F(S) discussed here is not zero-symmetric and the constant subnear-ring F(S)c

(if not zero) is not an ideal of F(S) in general even when S is additive and Q is a finite

abelian group as shown in the following example.

Example 2.4. Let S = (Z6, {x} , δ) with δ(q, x) = 4q for all q ∈ Z6. Then S is an

additive GS-automaton and Ψ ∈ End(Z6). Let f ∈ M(Z6) defined by qf = q + 2 for all

q ∈ Z6. Then δ(q, x)f = 4q + 2 = 4(q + 2) = qfΨ. It follows that f ∈ F(S) but f is

not zero-symmetric. Also, the connected components in S are C1 = {0, 3}, C2 = {1, 4},
C3 = {2, 5}. The function f maps C1 into C3, C2 into C1 and C3 into C2. Thus the

connected components are not invariant by the function f ∈ F(S).

Moreover, let h, θ2 ∈ M(Z6) defined by qh = 2 if q ∈ {1, 2, 4, 5}, qh = q if q ∈ {0, 3}
and qθ2 = 2 for all q ∈ Z6. Then h, θ2 ∈ F(S). Let g = (h + θ2)h − h2 ∈ F(S). Observe

that 0g = 2 and 1g = 0. Thus g 6∈ F(S)c and F(S)c is not an ideal of F(S). Consequently,

F(S) is not an abstract affine near-ring.

For a given function ϕ ∈ M(Q), let Fix(ϕ) = {q ∈ Q | qϕ = q} be the set of fixed

elements of ϕ in Q. If θa is a constant function in F(S), then for all q ∈ Q, x ∈ X,

a = δ(q, x)θa = qθaΨ = aΨ.
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This implies that a ∈ Fix(Ψ). The converse is also true, for if a ∈ Fix(Ψ), then δ(q, x)θa =

a and qθaΨ = aΨ = a for all q ∈ Q, x ∈ X. Thus the constant subnear-ring F(S)c is

characterized.

Proposition 2.5. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Then the constant subnear-ring

of F(S) is F(S)c = {θa | a ∈ Fix(Ψ)}.

Therefore F(S) is 0-symmetric if and only if Fix(Ψ) = {0} or, we say, Ψ is fixed

point free. This condition is equivalent to aΩ = {aϕ | ϕ ∈ Ω} 6= {a} for all a ∈ Q \ {0}.
Moreover, if θa ∈ F(S) then θa ∈MΩ(Q) by Proposition 2.1. A quick checking shows that

the converse is also true.

Theorem 2.6. Let S = (Q,X, δ = (Ψ,Υ)) be additive and Ω be the semigroup generated

by {Ψ, 1}. Then the followings are equivalent.

(1) aΩ = {aϕ | ϕ ∈ Ω} 6= {a} for all a ∈ Q \ {0};

(2) Ψ is fixed point free;

(3) F(S) is 0-symmetric;

(4) MΩ(Q) is 0-symmetric.

As a consequence, F(S) is 0-symmetric if Ψ is fixed point free. We may ask: When is

F(S) = M0(Q)? If δ(q, x) = 0 for all q ∈ Q, x ∈ X and f ∈M0(Q), then δ(q, x)f = 0f = 0

and qfΨ = δ(qf, x0) = 0 by Theorem 1.1. Thus δ(q, x)f = qfΨ and f ∈ F(S). Hence

F(S) = M0(Q).

In fact, the condition δ(q, x) = 0 for all q ∈ Q, x ∈ X is also necessary for F(S) =

M0(Q) as shown in the next result.

Theorem 2.7. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Then F(S) = M0(Q) if and only

if δ(q, x) = 0 for all q ∈ Q, x ∈ X.

Proof. It remains to show the sufficiency. Assume F(S) = M0(Q). Then the identity map

1 ∈ F(S) and so xΥ = 0 for all x ∈ X by Theorem 2.3. If Ψ 6= 0, then there exist nonzero

a, b ∈ Q such that aΨ = b. Note that a 6= b since Ψ is fixed point free by Theorem 2.6.

Define a function f : Q→ Q via

qf =

b if q = b;

0 otherwise.

Apparently, f ∈M0(Q) = F(S). As a result,

b = bf = aΨf = δ(a, x0)f = afΨ = 0Ψ = 0,
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a contradiction. Hence Ψ = 0 and δ(q, x) = qΨ + xΥ = 0 for all q ∈ Q, x ∈ X by

Theorem 1.1. This completes the proof.

Proposition 2.8. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Then F(S)0 C F(S) if and

only if cf = 0 for all c ∈ Fix(Ψ), f ∈ F(S)0.

Proof. Let F(S)0 C F(S). In particular, F(S)0 is left invariant. Let f ∈ F(S)0. Recall

that the constant mapping θc ∈ F(S) for all c ∈ Fix(Ψ) by Proposition 2.5, and thus

θcf ∈ F(S)0 for all c ∈ Fix(Ψ). Consequently, cf = (0θc)f = 0(θcf) = 0.

Conversely, assume cF(S)0 = 0 for all c ∈ Fix(Ψ). Since, as a near-ring, the 0-

symmetric part F(S)0 is a right ideal of F(S), it suffices to show that F(S)0 is left

invariant. Given f ∈ F(S)0 and g ∈ F(S). Note that 0g ∈ Fix(Ψ), say 0g = d for some

d ∈ Fix(Ψ). Then 0(gf) = (0g)f = df = 0 by hypothesis. Hence gf ∈ F(S)0 and F(S)0

is left invariant.

Accordingly, consider the annihilator (0 : Fix(Ψ)) in F(S) as

A(S) = {f ∈ F(S) | cf = 0 for all c ∈ Fix(Ψ)} .

Since 0 ∈ A(S) ⊆ F(S)0, A(S) is a nonempty subset of F(S)0. The annihilator A(S) is an

ideal of F(S) by a quick verification or by noting that Fix(Ψ) is an F(S)-subgroup of Q.

Therefore, if Fix(Ψ) 6= 0 then F(S) is not 0-symmetric by Theorem 2.6 and, consequently,

A(S) is a proper ideal of F(S). The converse of this fact is stated as following result.

Corollary 2.9. Let S = (Q,X, δ) be additive. If F(S) is simple, then either the annihi-

lator A(S) = 0 or F(S) is 0-symmetric.

In the proof of Proposition 2.8, it says that if I is a common ideal of F(S)0 and F(S)

then I ⊆ A(S). That is, A(S) is the largest common ideal of F(S)0 and F(S). Therefore,

F(S)0 C F(S) if and only if F(S)0 = A(S).

Proposition 2.10. Let S = (Q,X, δ) be additive with cp(0) = 0. Assume Q is a mono-

genic F(S)-group. Then F(S) ⊆ End(Q) if and only if F(S) is a ring.

Proof. If F(S) ⊆ End(Q), then F(S) is distributive. Since cp(0) = 0, the identity mapping

is contained in F(S) by Theorem 2.3. Thus F(S) is a distributive near-ring with unity,

and therefore F(S) is a ring.

Conversely, assume F(S) is a ring. Since Q is monogenic, dF(S) = Q for some d ∈ Q.

Let a, b ∈ Q, then there exist g, h ∈ F(S) such that dg = a and dh = b. Let f ∈ F(S).

Then

(a+ b)f = (dg + dh)f = d((g + h)f) = d(gf + hf)

= dgf + dhf = af + bf.

Hence f is a group endomorphism of Q, so F(S) ⊆ End(Q).
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3. F(S) determined by graphical properties

In Proposition 2.5, an element a ∈ Fix(Ψ) will determine a constant mapping θa ∈ F(S).

Moreover, if f ∈ F(S), and q ∈ reach(a) then q = δ(a,w) for some w ∈ X∗. It follows

that

qf = δ(a,w)f = afΨ|w| = aΨ|w|f = af.

That is to say, the image of the successors of a by the mapping f in F(S) is completely

determined by a. Also, from the identity (af)Ψ = (aΨ)f = af shows that the image of a

under f is contained in the set Fix(Ψ). This phenomenon enables us to characterize the

near-ring F(S) when S is totally disconnected or strongly connected.

Proposition 3.1. Let S = (Q,X, {x0} , δ) be an additive GS-automaton.

(1) If S is totally disconnected, then F(S) = M(Q).

(2) If reach(0) = Q, then F(S) is a constant near-ring. In particular, when S is strongly

connected, then F(S) is a constant near-ring.

Proof. (1) If S is totally disconnected, then δ(q, x) = q for all q ∈ Q, x ∈ X. Thus

δ(q, x)f = qf = δ(qf, x0) for all f ∈M(Q). Thus F(S) = M(Q).

(2) Observe that if f ∈ F(S) then, given w ∈ X∗,

δ(0, w)f = 0fΨ|w| = 0Ψ|w|f = 0f.

In other words, qf = 0f for any q ∈ reach(0). Thus F(S) is a constant near-ring. Finally,

if S is strongly connected, then reach(0) = Q.

The Proposition 3.1 shows that F(S) can not be zero if the additive GS-automaton S
is totally disconnected and |Q| ≥ 2. The following examples show that when S is strongly

connected, the set F(S) could be zero or a nontrivial constant near-ring even when Q is

a finite cyclic group.

Example 3.2. Let (Q,+) = Z3 be the cyclic group of order 3, and X = {x, y, z}.
Define δ : Q × X → Q via δ(q, x) = 2q, δ(q, y) = 2q + 1 and δ(q, z) = 2q + 2. Then

Z = (Z3, X, {x} , δ) is additive. The system Z is strongly connected and thus F(Z)

is constant by Proposition 3.1. Since Fix(Ψ) = {0}, we have F(Z) is 0-symmetric by

Theorem 2.6. Thus F(Z) = {0}.
Moreover, define η : Q×X → Q via η(q, x) = q, η(q, y) = q+1 and η(q, z) = q+2. Then

Y = (Z3, X, {x} , η) is additive. The system Y is strongly connected and F(Y) = Mc(Z3)
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by Propositions 3.1 and 2.5.
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Digraph of Z = (Z3, X, δ) Digraph of Y = (Z3, X, η)

Example 3.2 motivates the following result.

Corollary 3.3. Let S = (Q,X, (Ψ,Υ)) be additive and strongly connected. Then F(S) =

{0} if and only if Ψ is fixed point free.

Proof. Assume that S = (Q,X, (Ψ,Υ)) is additive and strongly connected. Then F(S) is

a constant near-ring by Proposition 3.1(2). Therefore F(S) = F(S)c = {θa | a ∈ Fix(Ψ)}
by Proposition 2.5. Immediately, we have that F(S) = {0} if and only if Ψ is fixed point

free.

Given a group (G,+), consider its associated GS-automaton G = (G,G, δ). For any

given p, q ∈ G, δ(p,−p + q) = q and so G is strongly connected. Since G is additive with

Ψ = Υ = idG, Fix(Ψ) = G. It follows that F(G) = Mc(G) by Propositions 3.1(2) and 2.5.

Corollary 3.4. Let G = (G,G, δ) be the associated GS-automaton for a given group G

with δ(q, x) = q + x for all q, x ∈ G. Then F(G) = Mc(G) the near-ring of constant

mappings on G.

The converse of Proposition 3.1(1) is true, as shown in Theorem 3.5, but the converse

of Proposition 3.1(2) is false in general, as expressed in Example 3.6. The following results

in this section will demonstrate this assertion.

Theorem 3.5. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Then the followings are equivalent.

(1) S is totally disconnected;

(2) F(S) = M(Q);

(3) δ(q, x) = q for all q ∈ Q, x ∈ X.

Proof. The sufficiency of (1) implying (2) follows from Proposition 3.1(1). We may suppose

that |Q| ≥ 2. If there exist a 6= b ∈ Q, x ∈ X such that δ(a, x) = b, then bf = δ(a, x)f =

afΨ for all f ∈ M(Q). Pick a nonzero c ∈ Q and let g ∈ M(Q) such that ag = 0 and

bg = c. Consequently, c = bg = agΨ = 0, a contradiction. Hence S is totally disconnected

and (2) implies (1).

The equivalence of (1) and (3) is immediate.
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The following example provides an additive GS-automaton S, where F(S) is a non-

trivial constant near-ring but in S, reach(0) 6= Q (and thus S is not strongly connected).

Therefore the converse of Proposition 3.1(2) is not true in general.

Example 3.6. [6, Example 2.2] Let (Q,+) = Z be the group of integers, and X = {x, y}.
Define δ : Z × X → Z via δ(q, x) = q and δ(q, y) = q + 1. Then S = (Q,X, {x} , δ) is

additive. Observe that reach(0) = {0} ∪ N 6= Z, Fix(Ψ) = Z, and Ω = {1}.
Let f ∈ F(S). Then δ(q, y)f = qfΨ implies (q + 1)f = qf for all q ∈ Q. Thus F(S)

is a constant near-ring. Indeed F(S) = Mc(Z) by Proposition 2.5.

· · · y // •−2 y //

x

YY •−1 y //

x

YY •0 y //

x

YY •1 y //

x

YY •2 y //

x

YY · · ·

Digraph of S = (Z, X, δ)

The example demonstrated in Example 3.6 is connected, which turns out to be true

when F(S) is a nontrivial constant near-ring as presented in the following result.

Proposition 3.7. Let S = (Q,X, δ = (Ψ,Υ)) be additive and suppose that F(S) 6= 0. If

F(S) is a constant near-ring, then S is connected.

Proof. Assume that F(S) is a nontrivial constant near-ring. Then there is a nonzero

a ∈ Fix(Ψ) by Theorem 2.6. If S is not connected, then let C1 = conn(0) and C2 = Q\C1.

We will construct a nonconstant element in F(S). Define a function f ∈M(Q) such that

qf =

a if q ∈ C1;

0 if q ∈ C2.

Case I. a ∈ C1. If q ∈ C1 then δ(q, x) ∈ C1 since C1 is a connected component. Thus

δ(q, x)f = a = aΨ = qfΨ. If q ∈ C2 then δ(q, x) ∈ C2, otherwise q is adjacent to an

element in C1, contradicting to the choice of q. Thus δ(q, x)f = 0 = qfΨ.

Case II. a ∈ C2. Use a similar argument as used in Case I to see that if q ∈ C1 then

δ(q, x)f = a = qfΨ. If q ∈ C2 then δ(q, x)f = 0 = qfΨ. Therefore f ∈ F(S) but f is not

a constant function. Hence S is connected.

The method used in Proposition 3.7 can be generalized to construct elements in F(S)

when S is not connected and Fix(Ψ) 6= {0}. Explicitly, let {Ci}i∈I be the collection of all

distinct connected components in S and {aj}j∈J = Fix(Ψ). Let σ : I → J be any function

and define f : Q→ Q via

qf = aiσ if q ∈ Ci.

Since q and δ(q, x) are in the same connected component, qf = δ(q, x)f = aiσ for all

q ∈ Ci, x ∈ X. Thus qfΨ = aiσ = δ(q, x)f , and consequently, f ∈ F(S). When I, J are

finite, the cardinality |F(S)| ≥ |J ||I|. We write this as the following result.
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Proposition 3.8. Let S = (Q,X, (Ψ,Υ)) be additive. If the graph of S has n distinct

connected components and the mapping Ψ has m fixed points, then the near-ring F(S)

contains at least mn elements.

It is interesting that Proposition 3.8 can be used to give a combinatorial prove for (1)

implying (2) in Theorem 3.5 when Q is finite. Let |Q| = n. If S is totally disconnected,

then S has n connected components and Ψ has n fixed points. It follows that the order

|F(S)| ≥ nn = |M(Q)| by Proposition 3.8 and, consequently, F(S) = M(Q).

The following technical lemma is frequently used.

Lemma 3.9. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Suppose qf = c ∈ Fix(Ψ) for some

q ∈ Q, f ∈ F(S). Let a be a predecessor of q and b be a successor of q. Then

(1) af = c if Ψ is an automorphism of the group Q.

(2) bf = c.

Proof. Let f ∈ F(S) and a, b ∈ Q where a is a predecessor of q and b is a successor of q.

Then there are µ, ν ∈ X∗ such that δ(a, µ) = q and δ(q, ν) = b. Observe that

bf = δ(q, ν)f = qfΨ|ν| = cΨ|ν| = c

and

afΨ|µ| = δ(a, µ)f = qf = c = cΨ|µ|.

Since Ψ|µ| ∈ Aut(Q), thus afΨ|µ| = cΨ|µ| implies af = c.

Theorem 3.10. Let S = (Q,X, δ = (Ψ,Υ)) be additive and Ψ is a group automorphism

of Q. Assume that F(S) 6= 0. Then S is connected if and only if F(S) is a constant

near-ring.

Proof. Suppose that S is connected. Let f ∈ F(S). Note that (0f)Ψ = (0Ψ)f = 0f for

all x ∈ X by Proposition 2.1. Hence 0f ∈ Fix(Ψ), say 0f = c for some c ∈ Fix(Ψ).

Let C1 = reach(0) ∪ {predecessors of 0}. Then for all q ∈ C1, qf = c by Lemma 3.9.

Inductively, let

Ci = Ci−1 ∪ {q ∈ Q | q is adjacent to or from some element in Ci−1} .

Then qf = c for all q ∈ Ci by Lemma 3.9. Since S is connected, and input words in S
have finite length, thus

⋃
i∈NCi = Q. Therefore qf = c for all q ∈ Q and f is constant.

The converse also holds from Proposition 3.7.

The next example shows that the hypothesis assuming Ψ is a group automorphism in

Lemma 3.9(1) and in Theorem 3.10 is not superfluous.
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Example 3.11. Let (Q,+) = Z6 be the cyclic group of order 6, and X = {x, y}. Define

δ : Q × X → Q via δ(q, x) = 4q and δ(q, y) = 4q + 2. The system S = (Z6, X, {x} , δ)
is additive. The digraph of S is connected but not strongly connected, and Fix(Ψ) =

{0, 2, 4}. Define a function f ∈ M(Q) via qf = 3q. Then δ(q, x)f = 12q = 0 = qfΨ and

δ(q, y)f = 3(4q + 2) = 0 = qfΨ. Thus f ∈ F(S), and F(S) is not a constant near-ring.

Also, note that 3 is a predecessor of 2 where 2f = 0 ∈ Fix(Ψ) but 3f = 3 6= 0.

In this case, End(Q) ∼= Z6, F(S)0 = {0, f} ⊆ End(Q), F(S)c = {θ0 = 0, θ2, θ4} and

F(S)0 C F(S).
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Digraph of S = (Z6, X, δ)

It is now appropriate to answer the question: When will F(S) = Mc(Q) for an ad-

ditive GS-automaton S = (Q,X, δ = (Ψ,Υ))? Recall that F(S)c = {θa | a ∈ Fix(Ψ)} by

Proposition 2.5. It follows that Fix(Ψ) = Q or Ψ = 1 be the identity map of Q is necessary

for F(S) = Mc(Q).

By letting Ψ = 1, then the hypothesis of Theorem 3.10 is fulfilled and thus F(S) is a

constant near-ring equals to Mc(Q) if S is connected and vice versa.

Recall that there is a directed edge from q to p if there is an alphabet x ∈ X such that

δ(q, x) = p. In this case, δ(q, x) = q + xΥ and so q + xΥ = p or q = p− xΥ is equivalent

to q is adjacent to p or p is adjacent from q. If S is connected then, for any given q ∈ Q,

there is a route (undirected) connects 0 and q. Explicitly, say q0 = 0, q1, . . . , qn = q is

this route where each pairs qi, qi+1 are adjacent for i = 0, 1, . . . , n− 1. If qi is adjacent to

(from) qi+1, then qi +xiΥ = qi+1 (qi−xiΥ = qi+1) for i = 0, 1, . . . , n− 1, respectively. By

abusing the notation, we write this as qi+(±)xiΥ = qi+1 for i = 0, 1, . . . , n−1, where (±)

means plus or minus depending on qi is adjacent to or from qi+1. Inductively, by adding

these n identities qi + (±)xiΥ = qi+1 for i = 0, 1, . . . , n− 1, we get

n−1∑
i=0

(±)xiΥ = q0 +
n−1∑
i=0

(±)xiΥ = qn = q.

Thus q ∈ cp(0), or equivalently, Q = cp(0).

Conversely, if Q = cp(0) then, for any given q ∈ Q, q =
∑n

j=1(±)xjΥ where xj ∈ X
for all j = 1, 2, . . . , n by Theorem 1.2. That means there is a route (undirected) from 0 to

q and thus S is connected. We write this as the following.
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Theorem 3.12. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Then the followings are equiva-

lent.

(1) F(S) = Mc(Q);

(2) δ(q, x) = q + xΥ for all q ∈ Q, x ∈ X and S is connected;

(3) δ(q, x) = q + xΥ for all q ∈ Q, x ∈ X and Q = cp(0).

Motivated by Example 3.11 in which the 0-symmetric subnear-ring is an ideal of F(S),

we have the following characterization.

Proposition 3.13. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Assume F(S) is not 0-

symmetric. If F(S) is simple, then each connected component of S contains at least one

element in Fix(Ψ).

Proof. Since F(S) is not 0-symmetric, Fix(Ψ) 6= 0 by Theorem 2.6. Pick a nonzero

d ∈ Fix(Ψ). To the contrary, assume there is a connected component C contains no

element in Fix(Ψ). Note that Q \ C is not empty for conn(0) ⊆ Q \ C. Define a function

f : Q→ Q via

qf =

d if q ∈ C;

0 otherwise.

Note that both q and δ(q, x) are in the same component. If q ∈ C, then δ(q, x)f = d = qfΨ

for all x ∈ X. If q 6∈ C, then δ(q, x)f = 0 = qfΨ. Hence f ∈ F(S). Note that

f ∈ A(S) = {f ∈ F(S) | cf = 0 for all c ∈ Fix(Ψ)} and thus A(S) is a nonzero ideal of

F(S). This contradicts the simplicity of F(S).

The converse of Proposition 3.13 is false in general. In Example 3.11, S is connected

and F(S) is not 0-symmetric but F(S) is not simple. Seeing that F(S)0 is simple in this

example and recall that A(S) is also an ideal of F(S)0, we modify Proposition 3.13 as

follows.

Proposition 3.14. Let S = (Q,X, δ = (Ψ,Υ)) be additive. Assume F(S) is not 0-

symmetric. If F(S)0 is simple, then each connected component of S contains at least one

element in Fix(Ψ).
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