b-coloring of Cartesian Product of Trees

R. Balakrishnan, S. Francis Raj and T. Kavaskar*

Abstract

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number $b(G)$ of G. The b-spectrum $S_{b}(G)$ of a graph G is the set of positive integers $k, \chi(G) \leq$ $k \leq b(G)$, for which G has a b-coloring using k colors. A graph G is b-continuous if $S_{b}(G)=\{\chi(G), \ldots, b(G)\}$. It is known that for any two graphs G and $H, b(G \square H) \geq$ $\max \{b(G), b(H)\}$, where \square stands for the Cartesian product. In this paper, we determine some families of graphs G and H for which $b(G \square H) \geq b(G)+b(H)-1$. Further if $T_{i}, i=1,2, \ldots, n$, are trees with $b\left(T_{i}\right) \geq 3$, then $b\left(T_{1} \square \cdots \square T_{n}\right) \geq \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)$ and $S_{b}\left(T_{1} \square \cdots \square T_{n}\right) \supseteq\left\{2, \ldots, \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)\right\}$. Also if $b\left(T_{i}\right)=\Delta\left(T_{i}\right)+1$ for each i, then $b\left(T_{1} \square \cdots \square T_{n}\right)=\Delta\left(T_{1} \square \cdots \square T_{n}\right)+1$, and $T_{1} \square \cdots \square T_{n}$ is b-continuous.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. A b-coloring of a graph G is a proper coloring of G in which each color class has a color dominating vertex (c.d.v.), that is, a vertex that has a neighbor in each of the other color classes. The b-chromatic number $b(G)$ of G is the largest k such that G has a b-coloring using k colors. For a given b-coloring of a graph, a set of c.d.v.'s, one from each class, is known as a color dominating system (c.d.s.) of that b-coloring. A k-stable dominating system denotes a b-coloring using k colors containing a color dominating system which is independent. Recently, there has been an increasing interest in the study of b-coloring. See, for instance, $7,10-15$. The concept of b-coloring was introduced by Irving and Manlove 9 in analogy to the achromatic number of a graph G (which gives the maximum number of color classes in a complete coloring of $G[8])$. They have shown that the determination of $b(G)$ is NP-hard for general graphs, but polynomial for trees. From the very definition of $b(G)$, the chromatic number $\chi(G)$ of G is the least k for which G admits a b-coloring using k colors. Thus $\chi(G) \leq b(G) \leq 1+\Delta(G)$, where $\Delta(G)$ is the maximum degree of G.

[^0]While considering the hypercube Q_{3}, it is easy to note that Q_{3} has a b-coloring using 2 colors and 4 colors but none with 3 colors. Thus a statement similar to the interpolation theorem for complete coloring [8] is not true for b-coloring. Graphs G for which there exists a b-coloring using k colors for every $k \in\{\chi(G), \ldots, b(G)\}$ are known as b-continuous graphs. From the time of its introduction, there had been several papers on b-continuity of graphs 4.6]. Some of the known families of graphs which are b-continuous are chordal graphs (which include trees), cographs and P_{4}-sparse graphs [4, 5]. The b-spectrum of a graph G, denoted by $S_{b}(G)$, is defined by:

$$
S_{b}(G)=\{k: G \text { has a } b \text {-coloring using } k \text { colors }\} .
$$

Clearly $S_{b}(G) \subseteq\{\chi(G), \ldots, b(G)\}$ and G is b-continuous iff $S_{b}(G)=\{\chi(G), \ldots, b(G)\}$.
The Cartesian product of two graphs $G=\left(V_{1}, E_{1}\right)$ and $H=\left(V_{2}, E_{2}\right)$, denoted by $G \square H$, has vertex set $V_{1} \times V_{2}$, and two vertices $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) are adjacent in $G \square H$ iff either $x_{1}=x_{2}$ and y_{1} is adjacent to y_{2} in H, or $y_{1}=y_{2}$ and x_{1} is adjacent to x_{2} in G.

This paper deals with the b-chromatic number of Cartesian products of graphs. The study of the b-chromatic number of Cartesian product of graphs was initiated by Kouider and Mahéo in [13] wherein they have proved the following results.

Theorem 1.1. (M. Kouider and M. Mahéo (13) For any two graphs G and $H, b(G \square H) \geq$ $\max \{b(G), b(H)\}$.

Theorem 1.2. (M. Kouider and M. Mahéo [13]) Let G and H be two graphs such that G has a $b(G)$-stable dominating system, and H has a $b(H)$-stable dominating system. Then $b(G \square H) \geq b(G)+b(H)-1$, and the graph $G \square H$ has a $(b(G)+b(H)-1)$-stable dominating system.

The above result can be generalized as follows (with the same proof).
Observation 1.3. Let G and H be two graphs such that G has a k-stable dominating system, and H has an ℓ-stable dominating system. Then $G \square H$ has a $(k+\ell-1)$-stable dominating system.

One of the main problems concerning b-colorings is to completely characterize those graphs G and H for which $b(G \square H)=\max \{b(G), b(H)\}$. Equivalently, one has to characterize those graphs G and H for which $b(G \square H)>\max \{b(G), b(H)\}$. Theorem 1.2 gives one such family. In [1,2, we found a few more classes of graphs G and H for which $b(G \square H) \geq b(G)+b(H)-1$. These include odd graphs. In particular, we have proved for odd graphs $O_{k_{i}}, 1 \leq i \leq n$ and $k_{i} \geq 4$ for each $i, O_{k_{1}} \square O_{k_{2}} \square \cdots \square O_{k_{n}}$ is b-continuous and $b\left(O_{k_{1}} \square O_{k_{2}} \square \cdots \square O_{k_{n}}\right)=1+\sum_{i=1}^{n} k_{i}$.

In this paper, we prove that if T_{i} is a tree with $b\left(T_{i}\right) \geq 3$, for $1 \leq i \leq n$, then $b\left(T_{1} \square \cdots \square T_{n}\right) \geq \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)$ and $S_{b}\left(T_{1} \square \cdots \square T_{n}\right) \supseteq\left\{2, \ldots, \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)\right\}$.

Also if $b\left(T_{i}\right)=\Delta\left(T_{i}\right)+1$ for each i, then $b\left(T_{1} \square \cdots \square T_{n}\right)=\Delta\left(T_{1} \square \cdots \square T_{n}\right)+1$, and $T_{1} \square \cdots \square T_{n}$ is b-continuous.

2. b-coloring of Cartesian product of trees

We start with the following observation from [2].
Observation 2.1. (i) If G has a b-coloring using k colors and H has a b-coloring using ℓ colors with $k \leq \ell$, then $G \square H$ has a b-coloring using ℓ colors (and hence $b(G \square H) \geq \ell$).
(ii) If G and H are b-continuous graphs, then

$$
S_{b}(G \square H) \supseteq\{\chi(G \square H)=\max \{\chi(G), \chi(H)\}, \ldots, \max \{b(G), b(H)\}\}
$$

In particular, if G and H are b-continuous and $b(G \square H)=\max \{b(G), b(H)\}$, then $G \square H$ is b-continuous.

We now give a lower bound for the b-chromatic number of the Cartesian product of trees. First we recall a lemma given by Kratochvíl, Tuza and Voigt 12 on connected graphs G with $b(G)=2$. Let G be a bipartite graph with bipartition X and Y. A vertex $x \in X(y \in Y)$ is called a full vertex (or a charismatic vertex) of $X(Y)$ if it is adjacent to all the vertices of $Y(X)$.

Lemma 2.2. 12 Let G be a non-trivial connected graph. Then $b(G)=2$ iff G is bipartite and has a full vertex in each part of the bipartition.

Observation 2.3. For trees T with $b(T) \geq 3, P_{5}$ is an induced subgraph. Any P_{5} can be given a b-coloring using 3 colors in which the three middle vertices are c.d.v.'s of distinct color classes. Moreover this b-coloring of P_{5} can be extended to a b-coloring of T using the same three colors. Thus for trees with $b(T) \geq 3$, there exists a b-coloring using 3 colors for which we have a c.d.s. forming a star.

We use this fact in the proof of the next theorem.
Theorem 2.4. Let T_{1} and T_{2} be any two trees with $b\left(T_{1}\right), b\left(T_{2}\right) \geq 3$, then $b\left(T_{1} \square T_{2}\right) \geq$ $b\left(T_{1}\right)+b\left(T_{2}\right)-1$ and $\left\{2, \ldots, b\left(T_{1}\right)+b\left(T_{2}\right)-1\right\} \subseteq S_{b}\left(T_{1} \square T_{2}\right)$. In particular, if $b\left(T_{1}\right)=$ $1+\Delta\left(T_{1}\right)$ and $b\left(T_{2}\right)=1+\Delta\left(T_{2}\right)$, then $T_{1} \square T_{2}$ is b-continuous.

Proof. By Observation 2.1, $T_{1} \square T_{2}$ has a b-coloring using s colors, for every $s \in\{2, \ldots$, $\left.\max \left\{b\left(T_{1}\right), b\left(T_{2}\right)\right\}\right\}$. Hence all that remains is to show that $T_{1} \square T_{2}$ has a b-coloring using s colors for $s \in\left\{\max \left\{b\left(T_{1}\right), b\left(T_{2}\right)\right\}+1, \ldots, b\left(T_{1}\right)+b\left(T_{2}\right)-1\right\}$, where $\max \left\{b\left(T_{1}\right), b\left(T_{2}\right)\right\}+$ $1 \geq 4$. As already mentioned in the introduction, trees are b-continuous and hence it suffices to show that if T_{1} has a b-coloring using k colors and T_{2} has a b-coloring using ℓ
colors and if $b\left(T_{1}\right) \geq k \geq 2$ and $b\left(T_{2}\right) \geq \ell \geq 3$, then $T_{1} \square T_{2}$ has a b-coloring using $k+\ell-1$ colors.

Let g be a b-coloring of T_{1} using k colors with $S=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ as a c.d.s. Also let h be a b-coloring of T_{2} using ℓ colors with $S^{*}=\left\{y_{0}, y_{1}, \ldots, y_{\ell-1}\right\}$ as a c.d.s. Clearly, $\langle S\rangle$ and $\left\langle S^{*}\right\rangle$ are forests. Let U_{i} denote the color class of g containing $x_{i}, 0 \leq i \leq k-1$ and V_{j} denote the color class of h containing $y_{j}, 0 \leq j \leq \ell-1$. Set $X=V\left(T_{1}\right) \backslash S$ and $Y=V\left(T_{2}\right) \backslash S^{*}$. Let us first consider $k, \ell \geq 4$.

If both S and S^{*} are stable, then by Observation $1.3, T_{1} \square T_{2}$ has a b-coloring using $k+\ell-1$ colors. If not, at least one of S or S^{*} is not stable. Without loss of generality, let S^{*} be the set that is not stable. As $\langle S\rangle$ is a forest, there exists at least one vertex, say x_{0}, such that $d_{S}\left(x_{0}\right) \leq 1$. In what follows, we assume that whenever $d_{S}\left(x_{0}\right)=1$, then the neighbor of x_{0} is x_{1} in $\langle S\rangle$. While considering S^{*}, we have the following two cases.

Case 1. $\left\langle S^{*}\right\rangle$ is a star with center at y_{0}.
As T_{1} is a tree, it is a bipartite graph with bipartition, say, S_{0} and S_{1}. Without loss of generality, let $x_{0} \in S_{0}$ and $x_{1} \in S_{1}$. We shall construct a b-coloring, say, c of $T_{1} \square T_{2}$ using $k+\ell-1$ colors by means of g and h as follows:

Figure 1: Coloring c in Case 1 of the proof of Theorem 2.4
(1) For $x \in U_{i}, i=0,1, \ldots, k-1$ (See box (1) of Figure 1), set

$$
c\left(x, y_{0}\right)=i
$$

(2) Consider the vertices in $X \times\left(\left(S^{*} \cup V_{0}\right)-\left\{y_{0}\right\}\right)$. (See box (2) of Figure 1).
(i) For $x \in U_{0}-\left\{x_{0}\right\}$ and $y \in\left(\left(S^{*} \cup V_{0}\right)-\left\{y_{0}\right\}\right)$, set

$$
c(x, y)= \begin{cases}k+[(i+j-1) \bmod (\ell-1)] & \text { if } x \in\left(U_{0} \cap S_{i}\right)-\left\{x_{0}\right\}, i=0,1 \text { and } \\ & y=y_{j}, 1 \leq j \leq \ell-1 \\ 0 & \text { if } y \in V_{0}-\left\{y_{0}\right\} .\end{cases}
$$

(ii) For $x \in X \backslash U_{0}, y \in\left(S^{*} \cup V_{0}\right)-\left\{y_{0}\right\}$, set

$$
c(x, y)= \begin{cases}1+[i \bmod (k-1)] & \text { if } x \in U_{i}, 1 \leq i \leq k-1 \text { and } y \in S^{*}-\left\{y_{0}\right\} \\ c\left(x, y_{0}\right) & \text { if } y \in V_{0}-\left\{y_{0}\right\}\end{cases}
$$

(3) Consider the vertices in $V\left(T_{1}\right) \times\left(Y \backslash V_{0}\right)$. (See box (3) of Figure 1). For $x \in S_{i}$, $i=0,1$, and $y \in V_{j}-\left\{y_{j}\right\}, 1 \leq j \leq \ell-1$, set

$$
c(x, y)=k+[(i+j-1) \bmod (\ell-1)] .
$$

(4) Finally we consider the vertices in $S \times\left(S^{*} \cup V_{0}-\left\{y_{0}\right\}\right)$. (See box (4) of Figure 1), set

$$
c(x, y)= \begin{cases}k+[(i+j-1) \bmod (\ell-1)] & \text { if } x \in S \cap S_{i}, i=0,1, y=y_{j}, 1 \leq j \leq \ell-1 \\ c\left(x, y_{0}\right) & \text { if } y \in V_{0}-\left\{y_{0}\right\} .\end{cases}
$$

Clearly, this coloring is proper. Consider the vertices in $\left(S \times\left\{y_{0}\right\}\right) \cup\left(\left\{x_{0}\right\} \times S^{*}\right)$. We shall show that these vertices are c.d.v.'s of distinct color classes. It is quite evident that the vertices in $S \times\left\{y_{0}\right\}$ are c.d.v.'s of their corresponding color classes.

When $d_{S}\left(x_{0}\right)=0$, the vertices in $\left\{x_{0}\right\} \times S^{*}$ are c.d.v.'s for c and hence c is a b-coloring using $k+\ell-1$ colors. Recall that $d_{S}\left(x_{0}\right) \leq 1$. Thus the only other possibility is $d_{S}\left(x_{0}\right)=1$ and in this case as assumed earlier, let $N_{S}\left(x_{0}\right)=x_{1}$. Here suppose x_{0} has a neighbor in $U_{1} \backslash\left\{x_{1}\right\}$, then again the vertices in $\left\{x_{0}\right\} \times S^{*}$ are c.d.v.'s for c and hence c is a b-coloring using $k+\ell-1$ colors, or else, x_{0} has no neighbor in $U_{1} \backslash\left\{x_{1}\right\}$ in which case the vertices in $\left\{x_{0}\right\} \times S^{*}$ have no neighbors with color 2 in $T_{1} \square T_{2}$.

In order to overcome this case we shall recolor some of the vertices in $\left\{x_{0}\right\} \times Y$ by using the fact that these colors are also present in box (4) of Figure 1. Recall that S^{*} is a star having center y_{0} and with $y_{1}, \ldots, y_{\ell-1}$ forming an independent set in T_{2}. As the y_{j} 's are c.d.v.'s in T_{2} for $1 \leq j \leq \ell-1$, each y_{j} should have a neighbor in $V_{s} \backslash\left\{y_{s}\right\}$, for each $s=1, \ldots, j-1, j+1, \ldots, \ell-1$. Call such a neighbor in $V_{s} \backslash\left\{y_{s}\right\}$ as $y_{j_{s}}$. As x_{0} is adjacent to x_{1}, the vertex $\left(x_{0}, y_{j}\right)$ is adjacent to the vertices $\left(x_{1}, y_{j}\right)$, receiving the colors $k+[j(\bmod (\ell-1))]$. Now recolor the vertex $\left(x_{0}, y_{j_{s}}\right)$ by color 2 , where $s=1+[j(\bmod (\ell-1))]$. After this recoloring, it can be seen that the set of vertices
$\left\{\left(x_{0}, y_{j}\right): 1 \leq j \leq \ell-1\right\}$ forms c.d.v.'s of their corresponding color classes and hence in this case also we have found a b-coloring using $k+\ell-1$ colors.

Case 2. $\left\langle S^{*}\right\rangle$ is not a star.
If $\langle S\rangle$ is a star, then we can interchange T_{2} by T_{1} in Case 1 and get the result. Therefore we assume that $\langle S\rangle$ also is not a star.

As T_{1} is a tree, it is a bipartite graph with bipartition, say, S_{0} and S_{1}. Without loss of generality, let $x_{0} \in S_{0}$. As $\left\langle S^{*}\right\rangle$ is a forest but not stable, S^{*} has at least one vertex y_{0} such that $d_{S^{*}}\left(y_{0}\right)=1$. Let $y_{1} \in S^{*}$ be the neighbor of y_{0} in $\left\langle S^{*}\right\rangle$. As $\left\langle S^{*}\right\rangle$ is not a star, there exists a vertex, say y_{2}, in S^{*} such that $y_{1} y_{2} \notin E\left(T_{2}\right)$.

As y_{1} is a c.d.v., y_{1} should have a neighbor in $V_{2} \backslash\left\{y_{2}\right\}$, say, $y_{1_{2}}$ (see Figure 2). Consider the neighbors of $y_{1_{2}}$ in S^{*}, say, S_{1}^{*}. Note that y_{0} is not a neighbor of $y_{1_{2}}$ (Otherwise, we get a K_{3}). Without loss of generality let $S_{1}^{*}=\left\{y_{1}, y_{3}, y_{4}, \ldots, y_{r}\right\}, r \leq \ell-1$. As $\left(S^{*} \backslash S_{1}^{*}\right) \cup V_{0}$ is bipartite (because T_{2} is a tree), $\left(S^{*} \backslash S_{1}^{*}\right) \cup V_{0}$ has a bipartition, say, S_{0}^{*}, S_{2}^{*}, where S_{0}^{*} contains y_{0}. That is $S^{*} \cup V_{0}=S_{0}^{*} \cup S_{1}^{*} \cup S_{2}^{*}$. Now we shall construct a b-coloring, say c, using $k+\ell-1$ colors by means of g and h as follows:

Figure 2: Coloring c in Case 2 of the proof of Theorem 2.4
(1) For $x \in U_{i}, 0 \leq i \leq k-1$ (See box (1) of Figure 2), set

$$
c\left(x, y_{0}\right)=i .
$$

(2) Now we color the vertices in $V\left(T_{1}\right) \times Y \backslash V_{0}$ (See box (2) of Figure 2): For $x \in S_{i}$,
$0 \leq i \leq 1$, and $y \in V_{j}-\left\{y_{j}\right\}, 1 \leq j \leq \ell-1$, set

$$
c(x, y)=k+[(i+j-1) \bmod (\ell-1)] .
$$

(3) For the vertices in $U_{0} \times\left(S^{*} \cup V_{0}-\left\{y_{0}\right\}\right)$ (See boxes (3) and (4) of Figure 2), set

$$
c(x, y)= \begin{cases}k+[(i+j-1) \bmod (\ell-1)] & \text { if } x \in U_{0} \cap S_{i}, 0 \leq i \leq 1 \text { and } \\ & y=y_{j}, 1 \leq j \leq \ell-1, \\ 0 & \text { if } y \in V_{0}-\left\{y_{0}\right\}\end{cases}
$$

(4) Finally, we consider the vertices in $\left(V\left(T_{1}\right) \backslash U_{0}\right) \times\left(\bigcup_{j=0}^{2} S_{j}^{*} \backslash\left\{y_{0}\right\}\right)$ (See boxes (5) and (6) of Figure 2). For $x \in U_{i}, 1 \leq i \leq k-1$ and $y \in S_{j}^{*}, 0 \leq j \leq 2$, set

$$
c(x, y)=1+[(i+j-1) \bmod (k-1)] .
$$

In a routine way, one can check that c is a proper coloring using $k+\ell-1$ colors. As usual, we try to make $\left(\left\{x_{0}\right\} \times S^{*}\right) \cup\left(S \times\left\{y_{0}\right\}\right)$ as a c.d.s. for c. Obviously $\left\{x_{0}\right\} \times S^{*}$ are c.d.v.'s for their respective colors.

As y_{0} is adjacent to y_{1}, y_{0} may have no neighbors in $V_{1} \backslash\left\{y_{1}\right\}$. So we recolor the vertices in $\left(S \backslash\left\{x_{0}\right\}\right) \times\left\{y_{1}\right\}$ by setting
$c\left(x, y_{1}\right)=c(x, y)=k+i, x \in\left(S \cap S_{i}\right) \backslash\left\{x_{0}\right\}, i=0,1$, and $y \in V_{1} \backslash\left\{y_{1}\right\}, 1 \leq i \leq k-1$ (see box (1) of Figure 3).

Clearly this recoloring does not disturb the proper coloring and this recoloring guarantees that the vertices in $S \times\left\{y_{0}\right\}$ are c.d.v.'s of distinct color classes. But note that there is a possibility for $\left(x_{0}, y_{1}\right)$ to loss its color dominating property.

If $d_{S}\left(x_{0}\right)=0$, then all vertices in $\left\{x_{0}\right\} \times S^{*}$ are c.d.v.'s of their corresponding color classes and therefore this becomes a b-coloring using $k+\ell-1$ colors. Otherwise $d_{S}\left(x_{0}\right)=1$. Recall that x_{1} is adjacent to x_{0} in S. If x_{0} has a neighbor in $U_{1} \backslash\left\{x_{1}\right\}$, then we are done. If not, $\left(x_{0}, y_{1}\right)$ has no neighbor in the color class 2 in $T_{1} \square T_{2}$, so recolor the vertex ($x_{0}, y_{1_{2}}$) by 2 (see box (2) of Figure 3).

This may lead to the vertices in $\left\{x_{0}\right\} \times\left(S_{1}^{*} \backslash\left\{y_{1}\right\}\right)$ having no neighbors with color $k+1$. In order to overcome this problem we do the following recoloring in $\left\{x_{1}\right\} \times\left(S_{1}^{*} \backslash\left\{y_{1}\right\}\right)$:

$$
c\left(x_{1}, y\right)=k+1, \quad y \in S_{1}^{*} \backslash\left\{y_{1}\right\}
$$

(see box (3) of Figure 3). Thus, $\left\{x_{0}\right\} \times S_{1}^{*}$ are c.d.v.'s.
Note that the vertices in $\left\{x_{1}\right\} \times\left(V_{1} \backslash\left\{y_{1}\right\}\right)$ received color $k+1$ and these vertices may have a neighbor in $\left\{x_{1}\right\} \times\left(S_{1}^{*} \backslash\left\{y_{1}\right\}\right)$ and this might make c improper. We get over this

Figure 3: Recoloring of c in Case 2 of the proof of Theorem 2.4
by recoloring the vertices in $\left\{x_{1}\right\} \times\left(V_{1} \backslash\left\{y_{1}\right\}\right)$ by 0 (see box (4) of Figure 3). Checking this recolored c for $G \square H$ to be proper is routine. Thus c is a b-coloring of $T_{1} \square T_{2}$ using $k+\ell-1$ colors, and hence $\left\{7,8, \ldots, b\left(T_{1}\right)+b\left(T_{2}\right)-1\right\} \subseteq S_{b}\left(T_{1} \square T_{2}\right)$.

Next, we consider the case when $k \geq 3$ and $\ell=3$. By Observation 2.3, we can always find a b-coloring using 3 colors for T_{2} with a c.d.s. which is a star. Thus by using arguments similar to those used in Case 1, we can show that there exists a b-coloring using $k+3-1$ colors for $T_{1} \square T_{2}$. When $k=3$ and $\ell \geq 3$, we can find, in a similar way, a b-coloring using $\ell+3-1$ colors for $T_{1} \square T_{2}$. This shows that $\{5,6\} \in S_{b}\left(T_{1} \square T_{2}\right)$ when $b\left(T_{1}\right)=b\left(T_{2}\right)=3$.

Figure 4: Coloring when $k=2$ and $\ell=3$ in the proof of Theorem 2.4

The only case left out is when either k or ℓ is 2 and the other is 3 . Without loss
of generality, assume that $k=2$ and $\ell=3$. In this case, we can give a b-coloring using $2+3-1=4$ colors as shown in Figure 4. This proves that $4 \in S_{b}\left(T_{1} \square T_{2}\right)$ when $b\left(T_{1}\right)=b\left(T_{2}\right)=3$.

Thus $T_{1} \square T_{2}$ has a b-coloring using s colors, for each $s \in\left\{2,3, \ldots, b\left(T_{1}\right)+b\left(T_{2}\right)-1\right\}$ and hence $b\left(T_{1} \square T_{2}\right) \geq b\left(T_{1}\right)+b\left(T_{2}\right)-1$.

Corollary 2.5. Let $T_{i}, i=1,2, \ldots, n$, be trees with $b\left(T_{i}\right) \geq 3$. Then $b\left(T_{1} \square \cdots \square T_{n}\right) \geq$ $\sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)$ and $S_{b}\left(T_{1} \square \cdots \square T_{n}\right) \supseteq\left\{2, \ldots, \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)\right\}$. In particular, if $b\left(T_{i}\right)=\Delta\left(T_{i}\right)+1$ for each i, then $b\left(T_{1} \square \cdots \square T_{n}\right)=\Delta\left(T_{1} \square \cdots \square T_{n}\right)+1$, and $T_{1} \square \cdots \square T_{n}$ is b-continuous.

Proof. First let us prove the first part. Proof is by induction on n. By Theorem 2.4 , the result is true for $n=2$. So assume that the result is true for $j \leq n-1$. We shall show that the result is true for n. Consider $T_{1} \square T_{2} \square \cdots \square T_{n}=\left(T_{1} \square T_{2} \square \cdots \square T_{n-1}\right) \square T_{n}$. By induction hypothesis $b\left(T_{1} \square T_{2} \square \cdots \square T_{n-1}\right) \geq \sum_{i=1}^{n-1} b\left(T_{i}\right)-(n-2)$ and $S_{b}\left(T_{1} \square T_{2} \square\right.$ $\left.\cdots \square T_{n-1}\right) \supseteq\left\{2,3, \ldots, \sum_{i=1}^{n-1} b\left(T_{i}\right)-(n-2)\right\}$. Note that by applying the technique used in Theorem 2.4 step by step to $T_{1} \square T_{2} \square \cdots \square T_{n-1}$, we can find a b-coloring using k colors (where $2 \leq k \leq \sum_{i=1}^{n-1} b\left(T_{i}\right)-(n-2)$) for which there is a c.d.s. S of $T_{1} \square T_{2} \square \cdots \square T_{n-1}$ which has a vertex of degree one in $\langle S\rangle$. We know that $\chi\left(T_{1} \square T_{2} \square \cdots \square T_{n-1}\right)=2$. Thus by using arguments similar to Theorem 2.4 to $\left[T_{1} \square T_{2} \square \cdots \square T_{n-1}\right] \square T_{n}$, we can prove that $b\left(T_{1} \square \cdots \square T_{n}\right) \geq \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)$ and $S_{b}\left(T_{1} \square \cdots \square T_{n}\right) \supseteq\left\{2, \ldots, \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)\right\}$.

Next we prove the second part. Suppose $b\left(T_{i}\right)=\Delta\left(T_{i}\right)+1,1 \leq i \leq n$, then

$$
\begin{aligned}
b\left(T_{1} \square \cdots \square T_{n}\right) & \geq \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)=\sum_{i=1}^{n}\left(\Delta\left(T_{i}\right)+1\right)-(n-1) \\
& =\sum_{i=1}^{n} \Delta\left(T_{i}\right)+1=\Delta\left(T_{1} \square \cdots \square T_{n}\right)+1 .
\end{aligned}
$$

Since for any graph $G, b(G) \leq \Delta(G)+1, b\left(T_{1} \square \cdots \square T_{n}\right)=\Delta\left(T_{1} \square \cdots \square T_{n}\right)+1$. Since $S_{b}\left(T_{1} \square \cdots \square T_{n}\right) \supseteq\left\{2, \ldots, \sum_{i=1}^{n} b\left(T_{i}\right)-(n-1)=\Delta\left(T_{1} \square \cdots \square T_{n}\right)+1\right\}, T_{1} \square \cdots \square T_{n}$ is $b-$ continuous.

One can observe that the technique used in Theorem 2.4 can be extended to a more general setup as given below.

Theorem 2.6. Let G be a graph having a b-coloring using k colors with a c.d.s. S containing a vertex x whose degree is at most one in $\langle S\rangle$. Let H be a bipartite graph having a b-coloring using ℓ colors with a c.d.s. S^{*} such that $\left\langle S^{*}\right\rangle$ is a forest other than a star. If $4 \leq k<\ell$ and $b(G)<b(H)$, then $G \square H$ has a b-coloring using $k+\ell-1$ colors and $b(G \square H) \geq b(G)+b(H)-1$.

Acknowledgments

The authors thank the referees for their critical study of the paper and useful comments. For the first author, this research was supported by the Department of Science and Technology, Government of India grant DST SR / S4 / MS: 497 / 2009 while for the third author, it was supported by Dr.D.S.Kothari Post Doctoral Fellowship, University Grants Commission, Government of India at the Department of Mathematics, Bharathidasan University, Tiruchirappalli, India.

References

[1] R. Balakrishnan, S. Francis Raj and T. Kavaskar, b-chromatic number of Cartesian product of some families of graphs, Graphs Combin. 30 (2014), no. 3, 511-520. http://dx.doi.org/10.1007/s00373-013-1285-0
[2] \qquad , b-coloring of Cartesian product of odd graphs, to appear in Ars Combin.
[3] R. Balakrishnan and T. Kavaskar, b-coloring of Kneser graphs, Discrete Appl. Math. 160 (2012), no. 1-2, 9-14. http://dx.doi.org/10.1016/j.dam.2011.10.022
[4] F. Bonomo, G. Durán, F. Maffray, J. Marenco and M. Valencia-Pabon, On the bcoloring of cographs and P_{4}-sparse graphs, Graphs Combin. 25 (2009), no. 2, 153-167. http://dx.doi.org/10.1007/s00373-008-0829-1
[5] T. Faik, About the b-continuity of graphs, Electron. Notes Discrete Math. 17 (2004), 151-156. http://dx.doi.org/10.1016/j.endm.2004.03.030
[6] T. Faik and J. F. Sacle, Some b-continuous classes of graph, Technical Report N1350, LRI, Universite de Paris, Sud, 2003.
[7] H. Hajiabolhassan, On the b-chromatic number of Kneser graphs, Discrete Appl. Math. 158 (2010), no. 3, 232-234. http://dx.doi.org/10.1016/j.dam.2009.09.023
[8] F. Harary and S. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970), no. 2, 154-161. http://dx.doi.org/10.1016/s0021-9800(70)80072-2
[9] R. W. Irving and D. F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999), no. 1-3, 127-141.
[10] R. Javadi, B. Omoomi, On the b-coloring of Cartesian product of graphs, Ars Combin. 107 (2012), 521-536.
[11] M. Jakovac and S. Klavžar, The b-chromatic number of cubic graphs, Graphs Combin. 26 (2010), no. 1, 107-118. http://dx.doi.org/10.1007/s00373-010-0898-9
[12] J. Kratochvíl, Z. Tuza and M. Voigt, On the b-chromatic number of graphs, Lecture Notes in Comput. Sci. 2573 (2002), 310-320.
[13] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002), no. 1-2, 267-277. http://dx.doi.org/10.1016/s0012-365x(01)00469-1
[14] \qquad , The b-chromatic number of the Cartesian product of two graphs, Studia Sci. Math. Hungar. 44 (2007), no. 1, 49-55. http://dx.doi.org/10.1556/sscmath.44.2007.1.5
[15] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006), no. 7, 617-623.
http://dx.doi.org/10.1016/j.disc.2006.01.012
R. Balakrishnan

Department of Mathematics, Bharathidasan University, Tiruchirappalli-620024, India E-mail address: mathbala@sify.com
S. Francis Raj

Department of Mathematics, Pondicherry University, Pondicherry-605014, India
E-mail address: francisraj_s@yahoo.com
T. Kavaskar

Department of Mathematics, Bharathidasan University, Tiruchirappalli-620024, India
E-mail address: t_kavaskar@yahoo.com

[^0]: Received July 17, 2014, accepted July 29, 2015.
 Communicated by Xuding Zhu.
 2010 Mathematics Subject Classification. 05C15.
 Key words and phrases. b-Chromatic number, b-Continuity, b-Spectrum, Cartesian product, Trees.
 *Corresponding author.

