Positive Toeplitz Operators Between Different Doubling Fock Spaces

Zhangjian Hu and Xiaofen Lv*

Abstract. Let $F^p(\phi)$ be the weighted Fock space on the complex plane \mathbb{C} , where ϕ is subharmonic with $\Delta \phi \, dA$ a doubling measure. In this paper, we characterize the positive Borel measure μ on \mathbb{C} for which the induced Toeplitz operator T_{μ} is bounded (or compact) from one weighted Fock space $F^p(\phi)$ to another $F^q(\phi)$ for $0 < p, q < \infty$.

1. Introduction

Let \mathbb{C} be the complex plane. Set $D(z,r) = \{w \in \mathbb{C} : |w-z| < r\}$ for $z \in \mathbb{C}$ and r > 0. A positive Borel measure ν on \mathbb{C} , written as $\nu \ge 0$, is called doubling if there exists some constant C > 0 such that

$$\nu(D(z,2r)) \le C\nu(D(z,r))$$

for $z \in \mathbb{C}$ and r > 0. Let dA be the Lebesgue area measure on \mathbb{C} . As in [9,17], suppose ϕ is subharmonic, real-valued and not identically zero on \mathbb{C} with $\nu = \Delta \phi \, dA$ doubling. For $z \in \mathbb{C}$, we denote by $\rho(z)$ the positive radius such that $\nu(D(z, \rho(z))) = 1$. The function ρ^{-2} can be viewed as a regularized version of $\Delta \phi$, see [9] or [17] for details.

Suppose $0 , the space <math>L^p(\phi)$ consists of all Lebesgue measurable functions f on \mathbb{C} for which

$$\left\|f\right\|_{p,\phi} = \left(\int_{\mathbb{C}} \left|f(z)e^{-\phi(z)}\right|^p dA(z)\right)^{1/p} < \infty.$$

Let $H(\mathbb{C})$ be the family of all entire functions on \mathbb{C} . The weighted Fock space $F^p(\phi)$ is defined as

$$F^p(\phi) = L^p(\phi) \cap H(\mathbb{C}).$$

It is clear that $F^p(\phi)$ is a Banach space under $\|\cdot\|_{p,\phi}$ if $p \ge 1$, and $F^p(\phi)$ is an *F*-space under $d(f,g) = \|f-g\|_{p,\phi}^p$ if 0 . Fock spaces in the present paper cover lots in the $literature. When <math>\phi(z) = \frac{1}{2} |z|^2$, $F^2(\phi)$ is the classical Fock space, which has been studied

Received November 20, 2015; Accepted September 20, 2016.

Communicated by Duy-Minh Nhieu.

²⁰¹⁰ Mathematics Subject Classification. 47B38, 32A37.

Key words and phrases. Fock space, Doubling measure, Toeplitz operator.

This work is supported by National Natural Science Foundation of China (11271124, 11601149, 11526089,

¹¹⁵⁷¹¹⁰⁵⁾ and Zhejiang Provincial Natural Science Foundation (LY15A010014, LQ13A010005).

^{*}Corresponding author.

by many authors, see [1-3, 10, 13, 15, 24] and more references therein. As mentioned in [14] and [6], when $\phi(z) = -m \ln(A + |z|^2) + |z|^2$ with some suitable A > 0 and positive integer $m F^2(\phi)$ is just the Fock-Sobolev space introduced in [7]. The Fock-Sobolev space has also been investigated in [4–6, 8, 23]. For $\phi(z) = |z|^m$, $F^2(\phi)$ is the generalized Fock space in [20] and [21]. If n = 1 and the weight φ is as in [14, 16, 22], then $0 < c \le \Delta \varphi(z) \le C$ for all $z \in \mathbb{C}$ which implies $\Delta \varphi \, dA$ is doubling.

Let $K(\cdot, \cdot)$ be the Bergman kernel for $F^2(\phi)$, that is, for $f \in F^2(\phi)$

$$f(\cdot) = Pf(\cdot) = \int_{\mathbb{C}} K(\cdot, w) f(w) e^{-2\phi(w)} dA(w)$$

Suppose μ is a Borel measure on \mathbb{C} , Toeplitz operator T_{μ} with symbol μ is defined as

$$T_{\mu}f(\cdot) = \int_{\mathbb{C}} K(\cdot, w) f(w) e^{-2\phi(w)} d\mu(w)$$

if it is well (densely) defined.

When $d\mu = g \, dA$ for some restricted function g, for example g is bounded or $g \in$ BMO, the induced Toeplitz operator T_{μ} has been well studied, see [1–3, 10] and other references. Also, positive Toeplitz operators have been studied on Fock spaces by many people. For $\mu \ge 0$, in 2008 Isralowitz and Zhu characterized the boundedness, compactness and Schatten-p classes of Toeplitz operators T_{μ} on $F^2(\frac{1}{2}|z|^2)$, see [15]; Wang, Cao and Xia extended [15] to Fock-Sobolev spaces in [23]. In [13], we obtained some sufficient and necessary conditions on μ for which T_{μ} is bounded (or compact) from $F^p(\frac{1}{2}|z|^2)$ to $F^q(\frac{1}{2}|z|^2)$ for $1 < p, q < \infty$. Denote $d = \partial + \overline{\partial}$ and $d^c = \sqrt{-1} (\overline{\partial} - \partial)$. With the restriction that $dd^c \varphi \simeq dd^c |z|^2$ on the weight φ in \mathbb{C}^n , in 2012, Schuster and Varolin [22] studied the boundedness and compactness of Toeplitz operators in terms of averaging functions and Berezin transforms. In 2014, the corresponding problems were discussed from $F^p(\varphi)$ to $F^q(\varphi)$ for $0 < p, q < \infty$ in [14], between $F^p(\varphi)$ and $F^{\infty}(\varphi)$ for 0 in [16]. In2015, Oliver and Pascuas [19] characterized the boundedness and compactness of positive $Toeplitz operators on the weighted Fock space <math>F^p(\phi)$ for $1 \le p < \infty$.

The purpose of this work is to extend those of [13-16, 19, 22, 23]. In Section 2, we will give some basic estimates about the Bergman kernel. Section 3 is devoted to characterize those $\mu \geq 0$ for which the induced operators T_{μ} are bounded (or compact) from $F^{p}(\phi)$ to $F^{q}(\phi)$ for $0 < p, q < \infty$.

We would like to mention that the approach in [13-16, 19, 22, 23] does not work well in the present case. The research in [13, 15, 19, 22, 23] depends strongly on the restricted range of the exponent p, say p = 2 or 1 , where the Banach space technique canbe applied to. Also, the proof in <math>[14, 16] relies on two points: one is the inclusion

$$F^p(\varphi) \subset F^q(\varphi) \quad \text{for } 0$$

and the other is that Pf = f for any $f \in F^p(\varphi)$ while 0 . However, these $two points are not available in the present case. For example, take <math>\phi(z) = |z|^4$, $\Delta \phi \, dA$ is doubling, but

$$F^p(\phi) \setminus F^q(\phi) \neq \emptyset$$
 and $F^q(\phi) \setminus F^p(\phi) \neq \emptyset$

for $p \neq q$, see [11] for details.

In what follows, we use C to denote positive constants whose value may change from line to line but does not depend on the functions being considered. Two quantities Aand B are called equivalent, denoted by " $A \simeq B$ ", if there exists some C such that $C^{-1}A \leq B \leq CA$.

2. Some basic estimates

In this section, we are going to give some basic estimates which will be used in the following sections.

For r > 0 and $z \in \mathbb{C}$, write $D^r(z) = D(z, r\rho(z))$, and $D(z) = D^1(z)$ for short. By [17], there exist some absolute constants γ and C > 0 such that, for $z \in \mathbb{C}$ and $w \in D^r(z)$,

(2.1)
$$\rho(w) \simeq \rho(z) \text{ if } r \le 1, \text{ and } \frac{1}{Cr^{\gamma}} \le \frac{\rho(w)}{\rho(z)} \le Cr^{\gamma} \text{ if } r > 1.$$

Then, for fixed r > 0 there exists some constant $\alpha > 0$ such that

(2.2)
$$\frac{1}{\alpha}\rho(z) \le \rho(w) \le \alpha\rho(z)$$

for $z \in \mathbb{C}$ and $w \in D^r(z)$. From (2.2) and the triangle inequality, for r > 0 we have $m_1 = m_1(r), m_2 = m_2(r)$ that

(2.3)
$$D^r(z) \subseteq D^{m_1r}(w)$$
 and $D^r(w) \subseteq D^{m_2r}(z)$ whenever $w \in D^r(z)$.

Clearly, $m_j > 1$ for j = 1, 2. And furthermore,

(2.4)
$$\tau = \sup_{0 < r \le 1} \left[m_1(r) + m_2(r) \right] < \infty.$$

In 2009, Marzo and Ortega-Cerdà [18] obtained pointwise estimates on the Bergman kernel $K(\cdot, \cdot)$ as follows.

(A) There exist $C, \epsilon > 0$ such that

(2.5)
$$|K(w,z)| \le C \frac{e^{\phi(w)+\phi(z)}}{\rho(w)\rho(z)} e^{-\left(\frac{|z-w|}{\rho(z)}\right)^{\epsilon}}, \quad w,z \in \mathbb{C}.$$

(B) There exists some $r_0 > 0$ such that for $z \in \mathbb{C}$ and $w \in D^{r_0}(z)$, we have

(2.6)
$$|K(w,z)| \simeq \frac{e^{\phi(w)+\phi(z)}}{\rho(z)^2}.$$

With these two basic estimates we are going to give some lemmas. When $k \ge 0$ and p = 1, Lemma 2.1 is similar to Lemma 2.7 in [18].

Lemma 2.1. Given p, t > 0 and real number k, there is C > 0 such that

$$\int_{\mathbb{C}} \rho(w)^k e^{-p\left(\frac{|z-w|}{\rho(z)}\right)^t} dA(w) \le C\rho(z)^{k+2}, \quad z \in \mathbb{C}.$$

Proof. By a straightforward calculation, we have

$$\begin{split} \int_{\mathbb{C}} \rho(w)^{k} e^{-p\left(\frac{|z-w|}{\rho(z)}\right)^{t}} dA(w) &= \left(\int_{D(z)} + \int_{\mathbb{C}\setminus D(z)}\right) \rho(w)^{k} e^{-p\left(\frac{|z-w|}{\rho(z)}\right)^{t}} dA(w) \\ &\leq \int_{D(z)} \rho(w)^{k} dA(w) + \int_{\mathbb{C}\setminus D(z)} \rho(w)^{k} dA(w) \int_{p\left(\frac{|z-w|}{\rho(z)}\right)^{t}}^{\infty} e^{-s} ds \\ &\leq C\rho(z)^{k+2} + \int_{p}^{\infty} e^{-s} ds \int_{D^{(s/p)}\frac{1}{t}(z)} \rho(w)^{k} dA(w) \\ &\leq C\rho(z)^{k+2} + \int_{p}^{\infty} \sup_{w \in D^{(s/p)}\frac{1}{t}(z)} \rho(w)^{k} A\left(D^{(s/p)\frac{1}{t}}(z)\right) e^{-s} ds. \end{split}$$

From (2.1) we know

$$\int_{p}^{\infty} \sup_{w \in D^{(s/p)^{\frac{1}{t}}}(z)} \rho(w)^{k} A\left(D^{(s/p)^{1/t}}(z)\right) e^{-s} ds \le C\rho(z)^{k+2} \int_{p}^{\infty} \left(\frac{s}{p}\right)^{k\gamma/t+2/t} e^{-s} ds$$
$$= C\rho(z)^{k+2}.$$

Therefore,

$$\int_{\mathbb{C}} \rho(w)^k e^{-p\left(\frac{|z-w|}{\rho(z)}\right)^t} dA(w) \le C\rho(z)^{k+2}.$$

The proof is ended.

The next lemma is about the $L^p(\phi)$ -norm of the Bergman kernel $K(\cdot, \cdot)$. While $p \ge 1$, Lemma 2.2 is just Proposition 2.9 in [19].

Lemma 2.2. For 0 , we have

$$\|K(\cdot,z)\|_{p,\phi} \simeq e^{\phi(z)}\rho(z)^{2/p-2}, \quad z\in\mathbb{C}.$$

Proof. Notice that, $|K(\cdot, \cdot)|$ is symmetric in the two variables, by (2.5) and Lemma 2.1, we obtain

$$\begin{split} \int_{\mathbb{C}} |K(w,z)|^p e^{-p\phi(w)} dA(w) &\leq C \frac{e^{p\phi(z)}}{\rho(z)^p} \int_{\mathbb{C}} \rho(w)^{-p} e^{-p\left(\frac{|z-w|}{\rho(z)}\right)^{\epsilon}} dA(w) \\ &\leq C e^{p\phi(z)} \rho(z)^{2-2p}. \end{split}$$

The other direction follows easily from (2.6). The proof is completed.

For p > 0 and $z \in \mathbb{C}$, set $k_{p,z}(\cdot) = K(\cdot, z)/||K(\cdot, z)||_{p,\phi}$ to be the normalized Bergman kernel for $F^p(\phi)$.

Lemma 2.3. The set $\{k_{p,z} : z \in \mathbb{C}\}$ is bounded in $F^p(\phi)$, and $k_{p,z} \to 0$ uniformly on compact subsets of \mathbb{C} as $z \to \infty$.

Proof. By definition, we know $||k_{p,z}||_{p,\phi} = 1$. As that on page 869 in [17] we have $\eta, C > 0$ and $\beta \in (0, 1)$ such that

(2.7)
$$\frac{1}{C} |z|^{-\eta} \le \rho(z) \le C |z|^{\beta} \quad \text{for } |z| > 1.$$

Write

$$c = \begin{cases} -\eta(1-\frac{2}{p}) & \text{if } p < 2, \\ \beta(1-\frac{2}{p}) & \text{if } p \ge 2. \end{cases}$$

Thus, Lemma 2.2 and (2.5) yield

$$|k_{p,z}(w)| \le C e^{\phi(w)} \rho(w)^{-1} |z|^c e^{-\left(\frac{|z|-|w|}{\rho(w)}\right)^{\epsilon}}.$$

Hence, $k_{p,z} \to 0$ uniformly on any compact subset of \mathbb{C} as $z \to \infty$. The proof is completed.

For our later use, we need the concepts of averaging functions and Berezin transforms. If $E \subset \mathbb{C}$ measurable, write $A(E) = \int_E dA$. For $\mu \ge 0$ and r > 0, the average of μ is defined as

$$\widehat{\mu}_r(z) = \mu(D^r(z))/A(D^r(z)), \quad z \in \mathbb{C}.$$

Lemma 2.4. Suppose $0 , <math>\mu \ge 0$, r > 0. There exists some constant C such that

$$\int_{\mathbb{C}} \left| f(z)e^{-\phi(z)} \right|^p d\mu(z) \le C \int_{\mathbb{C}} \left| f(z)e^{-\phi(z)} \right|^p \widehat{\mu}_r(z) \, dA(z)$$

for $f \in H(\mathbb{C})$.

Proof. Given r > 0, from (2.2), there is some $\delta > 0$ such that

$$\chi_{D^{\delta}(z)}(w) \le \chi_{D^{r}(w)}(z)$$

for $z, w \in \mathbb{C}$. Checking the proof of Lemma 19 in [17] carefully, we have some C > 0 such that

(2.8)
$$\left| f(z)e^{-\phi(z)} \right|^p \le \frac{C}{A(D^{\delta}(z))} \int_{D^{\delta}(z)} \left| f(w)e^{-\phi(w)} \right|^p dA(w)$$

for $f \in H(\mathbb{C})$ and $z \in \mathbb{C}$. Hence, Fubini's theorem and (2.2) give

$$\begin{split} \int_{\mathbb{C}} \left| f(z)e^{-\phi(z)} \right|^p d\mu(z) &\leq C \int_{\mathbb{C}} \frac{1}{A(D^{\delta}(z))} \int_{\mathbb{C}} \chi_{D^{\delta}(z)}(w) \left| f(w)e^{-\phi(w)} \right|^p dA(w) d\mu(z) \\ &\leq C \int_{\mathbb{C}} \left| f(w)e^{-\phi(w)} \right|^p dA(w) \int_{\mathbb{C}} \frac{\chi_{D^r(w)}(z)}{\rho(w)^2} d\mu(z) \\ &= C \int_{\mathbb{C}} \left| f(w)e^{-\phi(w)} \right|^p \widehat{\mu}_r(w) dA(w). \end{split}$$

The proof is completed.

Given t > 0, we set the t-Berezin transform of μ to be

(2.9)
$$\widetilde{\mu}_t(z) = \int_{\mathbb{C}} |k_{t,z}(w)|^t e^{-t\phi(w)} d\mu(w), \quad z \in \mathbb{C}.$$

Given a measurable function f and $d\mu = f dA$, we write $\hat{f}_r(z) = \hat{\mu}_r$ and $\tilde{f}_t = \tilde{\mu}_t$ for short. When $\phi(z) = \frac{1}{2} |z|^2$, the *t*-Berezin transform is closely connected with the heat flow on \mathbb{C} which is very important for PDE and relative topics, see [1]. And $\tilde{\mu}_2$ is just the classical Berezin transform on Fock spaces.

Given r > 0, we call a sequence $\{a_k\}_{k=1}^{\infty}$ in \mathbb{C} is an *r*-lattice if $\{D^r(a_k)\}_k$ covers \mathbb{C} and the disks $\{D^{r/5}(a_k)\}_k$ are pairwise disjoint. For r > 0, the existence of some *r*-lattice comes from a standard covering lemma, see [17] for details. Given an *r*-lattice $\{a_k\}_k$ and m > 0, there exists some integer N such that each $z \in \mathbb{C}$ can be in at most N disks of $\{D^{mr}(a_k)\}_k$. Equivalently,

(2.10)
$$\sum_{k=1}^{\infty} \chi_{D^{mr}(a_k)}(z) \le N \quad \text{for } z \in \mathbb{C},$$

see [12].

As usual we set the Lebesgue space $L^p = L^p(\mathbb{C}, dA)$. Similar to Lemma 2.1 of [13], we know that both operators $f \mapsto \hat{f}_r$ and $f \mapsto \tilde{f}_t$ are bounded on L^p for $1 \le p \le \infty$. That is, if $1 \le p \le \infty$,

(2.11)
$$\left\|\widehat{f}_r\right\|_{L^p} \le C \|f\|_{L^p} \text{ and } \left\|\widetilde{f}_t\right\|_{L^p} \le C \|f\|_{L^p}$$

The following lemma, Lemma 2.5, shows the equivalence between the L^p -norm of averaging functions and t-Berezin transforms. When the weight ϕ satisfies $\rho(\cdot) \simeq 1$, this can be seen in Lemma 2.3 of [14].

Lemma 2.5. Suppose $0 , <math>\mu \ge 0$. Then the following statements are equivalent:

- (A) $\widetilde{\mu}_t \in L^p$ for some (or any) t > 0;
- (B) $\widehat{\mu}_{\delta} \in L^p$ for some (or any) $\delta > 0$;

(C) The sequence $\left\{\widehat{\mu}_r(a_k)\rho(a_k)^{2/p}\right\}_k \in l^p$ for some (or any) r-lattice $\{a_k\}_k$.

Furthermore,

(2.12)
$$\|\widetilde{\mu}_t\|_{L^p} \simeq \|\widehat{\mu}_\delta\|_{L^p} \simeq \left\|\left\{\widehat{\mu}_r(a_k)\rho(a_k)^{2/p}\right\}_k\right\|_{l^p}$$

Proof. First, given $p \in (0, \infty)$, $s \in \mathbb{R}$, and r-lattice $\{a_k\}_k$, δ -lattice $\{b_k\}_k$ we claim

(2.13)
$$\left\| \left\{ \widehat{\mu}_r(a_j) \rho(a_j)^{s+2/p} \right\}_j \right\|_{l^p} \simeq \left\| \left\{ \widehat{\mu}_\delta(b_j) \rho(b_j)^{s+2/p} \right\}_j \right\|_{l^p}.$$

To see this, for $z \in \mathbb{C}$ set

$$J_z = \left\{ j : D^{\delta}(z) \cap D^r(a_j) \neq \emptyset \right\},\,$$

and set $|J_z|$ to be the cardinality of J_z . Notice that $\{D^{r/5}(a_j)\}_k$ are pairwise disjoint, and there is some $\alpha > 0$ such that

(2.14)
$$\frac{1}{\alpha}\rho(z) \le \rho(a_j) \le \alpha\rho(z) \text{ and } D^{r/5}(a_j) \subset D^{2\alpha r+\delta}(z)$$

for $j \in J_z$. By $A\left(\bigcup_{j \in J_z} D^{r/5}(a_j)\right) \leq A(D^{2\alpha r+\delta}(z))$ to know $|J_z| \leq M$ with some integer M > 0 independent of z. Define

$$S_{j,k} = \begin{cases} 1 & \text{if } D^{\delta}(b_k) \cap D^r(a_j) \neq \emptyset, \\ 0 & \text{if } D^{\delta}(b_k) \cap D^r(a_j) = \emptyset. \end{cases}$$

Then, $\sum_{j=1}^{\infty} S_{j,k} = |J_{b_k}| \le M$. Symmetrically, set

$$L_z = \left\{ k : D^{\delta}(b_k) \cap D^r(z) \neq \emptyset \right\}.$$

We have $D^r(a_j) \subset \bigcup_{k \in L_{a_j}} D^{\delta}(b_k)$. Similarly

$$\rho(b_k) \simeq \rho(a_j) \quad \text{for } k \in L_{a_j}.$$

Then,

(2.15)
$$\widehat{\mu}_r(a_j)\rho(a_j)^{s+2/p} \le C \sum_{k \in L_{a_j}} \widehat{\mu}_\delta(b_k)\rho(b_k)^{s+2/p}$$

Therefore,

$$\sum_{j=1}^{\infty} \widehat{\mu}_r(a_j)^p \rho(a_j)^{sp+2} \leq C \sum_{j=1}^{\infty} \left(\sum_{k \in L_{a_j}} \widehat{\mu}_{\delta}(b_k) \rho(b_k)^{s+2/p} \right)^p$$
$$\leq C \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} S_{j,k} \widehat{\mu}_{\delta}(b_k)^p \rho(b_k)^{sp+2}$$
$$\leq CM \sum_{k=1}^{\infty} \widehat{\mu}_{\delta}(b_k)^p \rho(b_k)^{sp+2}.$$

By symmetry, we obtain (2.13).

Similar to that in Theorem 4.4 of [15], with (2.2) and (2.13), we can check the equivalence between (B) and (C). Moreover, for fixed $\delta, r > 0$, we obtain

(2.16)
$$\|\widehat{\mu}_{\delta}\|_{L^p} \simeq \|\widehat{\mu}_r\|_{L^p}.$$

To prove (A) \Rightarrow (B), we take r_0 as in (2.6). Then

(2.17)
$$\widehat{\mu}_{r_0}(z) \le C \widetilde{\mu}_t(z).$$

From (2.16), the conclusion (B) follows. Now we prove the implication (B) \Rightarrow (A). If $1 \le p < \infty$, taking $f(w) = k_{t,z}(w)$ and t = p in Lemma 2.4, we know

$$\widetilde{\mu}_t(z) \le C[\widetilde{\mu}_{\delta}]_t(z), \quad z \in \mathbb{C}.$$

By (2.11), $f \mapsto \tilde{f}_t$ is bounded on L^p ,

$$\|\widetilde{\mu}_t\|_{L^p} \le C \left\| \widetilde{[\widehat{\mu}_{\delta}]}_t \right\|_{L^p} \le C \|\widehat{\mu}_{\delta}\|_{L^p}.$$

Next, suppose $0 and <math>\hat{\mu}_{\delta} \in L^p$ for some $\delta > 0$. For any *r*-lattice $\{a_k\}_k$, from the proof above we have

(2.18)
$$\left\|\left\{\widehat{\mu}_r(a_k)\rho(a_k)^{2/p}\right\}_k\right\|_{l^p} \le C \left\|\widehat{\mu}_\delta\right\|_{L^p}.$$

Also, we have some constant m > 1 such that

$$\bigcup_{z \in D^r(a_k)} D^r(z) \subseteq D^{mr}(a_k) \quad \text{for } z \in \mathbb{C}.$$

We can divide $\{a_k\}_k$ into J subsequence $\{a_{j,k}\}_k$, $j = 1, 2, \ldots, J$, each $\{a_{j,k}\}_k$ is an mr-lattice. From (2.18), we have

$$\sum_{k=1}^{\infty} \widehat{\mu}_{mr}(a_k)^p \rho(a_k)^2 = \sum_{j=1}^{J} \sum_{k=1}^{\infty} \widehat{\mu}_{mr}(a_{j,k})^p \rho(a_{j,k})^2 \le C \|\widehat{\mu}_{\delta}\|_{L^p}^p.$$

Hence, Lemma 2.2, (2.8), (2.5) imply

$$\begin{aligned} |\widetilde{\mu}_{t}(z)|^{p} &\leq Ce^{-tp\phi(z)}\rho(z)^{2tp-2p} \left(\int_{\mathbb{C}} |K(w,z)|^{t} e^{-t\phi(w)} \widehat{\mu}_{r}(w) \, dA(w) \right)^{p} \\ &\leq Ce^{-tp\phi(z)}\rho(z)^{2tp-2p} \left(\sum_{j=1}^{\infty} \int_{D^{r}(a_{j})} |K(w,z)|^{t} e^{-t\phi(w)} \widehat{\mu}_{r}(w) \, dA(w) \right)^{p} \\ &\leq Ce^{-tp\phi(z)}\rho(z)^{2tp-2p} \left(\sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_{j}) \int_{D^{r}(a_{j})} |K(w,z)|^{t} e^{-t\phi(w)} \, dA(w) \right)^{p} \end{aligned}$$

$$\leq C e^{-tp\phi(z)} \rho(z)^{2tp-2p} \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \left(\int_{D^r(a_j)} |K(w,z)|^t e^{-t\phi(w)} dA(w) \right)^p$$

$$\leq C \rho(z)^{tp-2p} \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \rho(a_j)^{2p} \sup_{w \in D^r(a_j)} \rho(w)^{-tp} e^{-tp\left(\frac{|z-w|}{\rho(w)}\right)^\epsilon}.$$

For $z \in D^{2r}(a_j)$, (2.2) implies

$$\rho(z)^{tp-2p}\rho(a_j)^{2p}\sup_{w\in D^r(a_j)}\rho(w)^{-tp}e^{-tp\left(\frac{|z-w|}{\rho(w)}\right)^{\epsilon}} \le C.$$

If $z \in \mathbb{C} \setminus D^{2r}(a_j)$ and $w \in D^r(a_j)$, (2.2) shows

$$e^{-tp\left(\frac{|z-w|}{\rho(w)}\right)^{\epsilon}} \leq e^{-tp\left(\frac{|z-a_j|-|w-a_j|}{\rho(w)}\right)^{\epsilon}} \leq e^{-\alpha^{\epsilon}tp\left(\frac{|z-a_j|}{\rho(a_j)}-r\right)^{\epsilon}} \leq e^{-(\alpha/2)^{\epsilon}tp\left(\frac{|z-a_j|}{\rho(a_j)}\right)^{\epsilon}}.$$

These, (2.2) and Lemma 2.1 yield

$$\begin{split} &\int_{\mathbb{C}} \rho(z)^{tp-2p} \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \rho(a_j)^{2p} \sup_{w \in D^r(a_j)} \rho(w)^{-tp} e^{-tp \left(\frac{|z-w|}{\rho(w)}\right)^{\epsilon}} dA(z) \\ &= \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \rho(a_j)^{2p} \left(\int_{D^{2r}(a_j)} + \int_{\mathbb{C} \setminus D^{2r}(a_j)} \right) \rho(z)^{tp-2p} \\ &\times \sup_{w \in D^r(a_j)} \rho(w)^{-tp} e^{-tp \left(\frac{|z-w|}{\rho(w)}\right)^{\epsilon}} dA(z) \\ &\leq C \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \left(\rho(a_j)^2 + \rho(a_j)^{2p-tp} \int_{\mathbb{C} \setminus D^{2r}(a_j)} \rho(z)^{tp-2p} e^{-(\alpha/2)^{\epsilon}tp \left(\frac{|z-a_j|}{\rho(a_j)}\right)^{\epsilon}} dA(z) \right) \\ &\leq C \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \rho(a_j)^2. \end{split}$$

Therefore,

$$\|\widetilde{\mu}_t\|_{L^p}^p \le C \sum_{j=1}^{\infty} \widehat{\mu}_{mr}(a_j)^p \rho(a_j)^2 \le C \|\widehat{\mu}_\delta\|_{L^p}^p.$$

The quantity equivalence (2.12) comes from a carefully checking of the implication above. The proof is completed. $\hfill \Box$

The next lemma, Lemma 2.6, is some partial result about atomic decomposition on $F^p(\phi)$.

Lemma 2.6. Let $\{a_k\}_k$ be an r-lattice. For $0 and <math>\{\lambda_k\}_k \in l^p$, set

(2.19)
$$f(z) = \sum_{k=1}^{\infty} \lambda_k k_{2,a_k}(z) \rho(a_k)^{1-2/p}.$$

Then $f \in F^{p}(\phi)$ and $||f||_{p,\phi} \leq C ||\{\lambda_k\}_k||_{l^p}$.

Proof. The proof is similar to that of Lemma 2.4 from [14]. If 0 , Lemma 2.2 gives

$$\|f\|_{p,\phi}^{p} \leq \sum_{k=1}^{\infty} |\lambda_{k}|^{p} \|k_{2,a_{k}}\|_{p,\phi}^{p} \rho(a_{k})^{p-2} \leq C \|\{\lambda_{k}\}_{k}\|_{l^{p}}^{p}.$$

For $1 , define <math>F(z) = \sum_{k=1}^{\infty} |\lambda_k| \rho(a_k)^{-2/p} \chi_{D^r(a_k)}(z)$. With the 1-Berezin transform, from (2.9) and (2.8) we get

$$|f(z)| e^{-\phi(z)} \le C e^{-\phi(z)} \sum_{k=1}^{\infty} |\lambda_k| \rho(a_k)^{2-2/p} |K(z, a_k)| e^{-\phi(a_k)} \le C \widetilde{F}_1(z).$$

By (2.10) and the boundedness of $F \to \widetilde{F}_1$ on L^p , we see

$$\|f\|_{p,\phi} \le C \|\widetilde{F}_1\|_{L^p} \le C \|F\|_{L^p} \le C \|\{\lambda_k\}_k\|_{l^p}.$$

This completes the proof.

3. Toeplitz operators

In this section, we are going to characterize those $\mu \geq 0$ for which the induced Toeplitz operator T_{μ} is bounded (or compact) from one weighted Fock space to another. To this purpose, we need the relatively compact subsets in $F^{p}(\phi)$. With the same proof as that of Lemma 3.2 in [14], we know a bounded subset $E \subset F^{p}(\phi)$ is relatively compact if and only if for each $\varepsilon > 0$ there is some S > 0 such that

(3.1)
$$\sup_{f \in E} \int_{|z| \ge S} \left| f(z) e^{-\phi(z)} \right|^p dA(z) < \varepsilon.$$

This observation on the compact subsets in Fock spaces is crucial to our study on the compactness of T_{μ} from $F^{p}(\phi)$ to $F^{q}(\phi)$. While 1 , our result coincides with that in [19]. But the proof in [19] strongly depends on some basic facts about compactness of operators in the setting of Banach spaces, see [22, Proposition 4.3] as well.

When p = q > 1 the following lemma, Lemma 3.1, can be found in [19].

Lemma 3.1. Suppose $\mu \geq 0$ satisfying $\hat{\mu}_{\delta}\rho^{\sigma} \in L^{\infty}$ for some $\delta > 0$ and $\sigma \in \mathbb{R}$. Then T_{μ} is well-defined on $F^{p}(\phi)$ for 0 . And, for <math>R > 0, Toeplitz operator $T_{\mu_{R}}$ is compact from $F^{p}(\phi)$ to $F^{q}(\phi)$ for $0 < p, q < \infty$, where μ_{R} is defined by

(3.2)
$$\mu_R(V) = \mu\left(V \cap \overline{D(0,R)}\right) \quad for \ V \subseteq \mathbb{C} \ measurable.$$

Proof. Suppose $\widehat{\mu}_{\delta} \rho^{\sigma} \in L^{\infty}$. For $f \in F^p(\phi)$ and $z \in \mathbb{C}$, from (2.8) to know

(3.3)
$$|f(z)| e^{-\phi(z)} \le C\rho(z)^{-2/p} \|f\|_{p,\phi}.$$

Applying (2.8) to the weight 2ϕ and the holomorphic function $K(\cdot, z)f(\cdot)$ to get

(3.4)
$$|T_{\mu}f(z)| \le C \int_{\mathbb{C}} |K(w,z)| |f(w)| e^{-2\phi(w)} \widehat{\mu}_{\delta}(w) dA(w)$$

Then by Lemma 2.1,

$$\begin{aligned} |T_{\mu}f(z)| &\leq C \, \|f\|_{p,\phi} \, \|\widehat{\mu}_{\delta}\rho^{\sigma}\|_{L^{\infty}} \int_{\mathbb{C}} \rho(w)^{-\sigma-2/p} \, |K(w,z)| \, e^{-\phi(w)} \, dA(w) \\ &\leq C e^{\phi(z)} \rho(z)^{-1} \, \|\widehat{\mu}_{\delta}\rho^{\sigma}\|_{L^{\infty}} \, \|f\|_{p,\phi} \int_{\mathbb{C}} \rho(w)^{-1-\sigma-2/p} e^{-\left(\frac{|z-w|}{\rho(z)}\right)^{\epsilon}} \, dA(w) \\ &\leq C e^{\phi(z)} \rho(z)^{-\sigma-2/p} \, \|\widehat{\mu}_{\delta}\rho^{\sigma}\|_{L^{\infty}} \, \|f\|_{p,\phi} < \infty. \end{aligned}$$

This means that T_{μ} is well-defined on $F^{p}(\phi)$.

Next, we show the compactness of T_{μ_R} . To see this, we claim there are some $\eta, \theta, \epsilon > 0$, such that for $f \in F^p(\phi)$

$$\int_{|z|\geq S} \left| T_{\mu_R} f(z) e^{-\phi(z)} \right|^q dA(z) \leq C \, \|f\|_{p,\phi}^q \int_{|z|\geq S} |z|^{\eta q} \, e^{-\theta|z|^{\epsilon}} \, dA(z)$$

when S is large enough. In fact, there is some positive constant M, whenever $|w| \leq R$ we have

$$M^{-1} \le \rho(w) \le M$$

and

$$|z - w| \ge |z| - |w| \ge |z| - R \ge \frac{|z|}{2}$$
 if $|z| \ge \frac{R}{2}$

The estimates (2.7) and (3.3) imply, when S is large enough,

where the constant C_1 is independent of f and S. Hence,

$$\|T_{\mu_R}f\|_{q,\phi}^q = \left(\int_{|z|\le S} + \int_{|z|>S}\right) \left|T_{\mu_R}f(z)e^{-\phi(z)}\right|^q dA(z) \le C \|f\|_{p,\phi}^q.$$

Thus, T_{μ_R} is bounded from $F^p(\phi)$ to $F^q(\phi)$. Suppose E is the unit ball of $F^p(\phi)$, then $\{T_{\mu_R}f: f \in E\}$ is a bounded subset in $F^q(\phi)$. To prove the compactness, for $\varepsilon > 0$, since $\int_0^\infty r^{\eta q+2n-1}e^{-\theta r^{\epsilon}} dr < \infty$, there exists some S large enough such that

$$\int_{S}^{\infty} r^{\eta q + 2n - 1} e^{-\theta r^{\epsilon}} \, dr < \frac{\varepsilon}{C_1 + 1}$$

This implies

$$\sup_{f \in E} \int_{|z| \ge S} \left| T_{\mu_R} f(z) e^{-\phi(z)} \right|^q dA(z) \le C_1 \int_S^\infty r^{\eta q + 2n - 1} e^{-\theta r^\epsilon} dr < \varepsilon.$$

The proof is completed.

We are now in the position to characterize the boundedness (and the compactness) of positive Toeplitz operators T_{μ} from one weighted Fock space $F^{p}(\phi)$ to another $F^{q}(\phi)$. Because the inclusion between any two spaces $F^{p}(\phi)$ and $F^{q}(\phi)$ is no longer valid while $p \neq q$, and also $F^{p}(\phi)$ is not a Banach space with 0 , the approach in [13–16, 19, 22, 23] does not work here.

Theorem 3.2. Let $0 , and let <math>\mu \ge 0$. Then the following statements are equivalent:

- (A) $T_{\mu} \colon F^p(\phi) \to F^q(\phi)$ is bounded;
- (B) $\tilde{\mu}_t \rho^{2(p-q)/(pq)} \in L^{\infty}$ for some (or any) t > 0;
- (C) $\hat{\mu}_{\delta} \rho^{2(p-q)/(pq)} \in L^{\infty}$ for some (or any) $\delta > 0$;

(D) The sequence $\left\{\widehat{\mu}_r(a_k)\rho(a_k)^{2(p-q)/(pq)}\right\}_k \in l^{\infty}$ for some (or any) r-lattice $\{a_k\}_k$.

Furthermore,

(3.5)
$$\|T_{\mu}\|_{F^{p}(\phi) \to F^{q}(\phi)} \simeq \left\|\widetilde{\mu}_{t}\rho^{2(p-q)/(pq)}\right\|_{L^{\infty}} \simeq \left\|\widehat{\mu}_{\delta}\rho^{2(p-q)/(pq)}\right\|_{L^{\infty}} \\ \simeq \left\|\left\{\widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)}\right\}_{k}\right\|_{l^{\infty}}.$$

Proof. It is trivial that (D) follows from (C) because of (2.13), moreover

(3.6)
$$\left\| \left\{ \widehat{\mu}_r(a_k) \rho(a_k)^{2(p-q)/(pq)} \right\}_k \right\|_{l^{\infty}} \le \left\| \widehat{\mu}_{\delta} \rho^{2(p-q)/(pq)} \right\|_{L^{\infty}}.$$

Estimate (2.17) tells us that (B) implies (C) for r_0 with r_0 in (2.6). Notice that, (2.16) is still true for $p = \infty$. These imply

(3.7)
$$\left\|\widehat{\mu}_{\delta}\rho^{2(p-q)/(pq)}\right\|_{L^{\infty}} \simeq \left\|\widehat{\mu}_{r_0}\rho^{2(p-q)/(pq)}\right\|_{L^{\infty}} \le C \left\|\widetilde{\mu}_{t}\rho^{2(p-q)/(pq)}\right\|_{L^{\infty}}$$

for all $\delta > 0$.

Now we prove that (D) implies (B). By (2.2), we have some m > 0 such that $D^r(z) \subset D^{mr}(a)$ for $z \in D^r(a)$ and $a \in \mathbb{C}$. For any t > 0, set s = tpq/(pq - p + q). The inequality (2.8) tells us, for $f \in F^s(\phi)$,

(3.8)
$$\sup_{z \in D^{r}(a)} \left| f(z)e^{-\phi(z)} \right|^{s} \le \frac{C}{\rho(a)^{2}} \int_{D^{mr}(a)} \left| f(w)e^{-\phi(w)} \right|^{s} dA(w).$$

By Lemma 2.2,

$$k_{t,z}(w)|^t \rho(z)^{2(p-q)/(pq)} \simeq |k_{s,z}(w)|^t.$$

Then from (3.8) and (2.10) we obtain

$$\begin{split} \widetilde{\mu}_{t}(z)\rho(z)^{2(p-q)/(pq)} &\simeq \int_{\mathbb{C}} |k_{s,z}(w)|^{t} e^{-t\phi(w)} d\mu(w) \\ &\leq \sum_{k=1}^{\infty} \int_{D^{r}(a_{k})} |k_{s,z}(w)|^{t} e^{-t\phi(w)} d\mu(w) \\ &\leq \sum_{k=1}^{\infty} \mu(D^{r}(a_{k})) \left(\sup_{w \in D^{r}(a_{k})} \left| k_{s,z}(w) e^{-\phi(w)} \right|^{s} \right)^{(pq-p+q)/(pq)} \\ &\leq C \sum_{k=1}^{\infty} \widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)} \left(\int_{D^{mr}(a_{k})} \left| k_{s,z}(w) e^{-\phi(w)} \right|^{s} dA(w) \right)^{(pq-p+q)/(pq)} \\ &\leq C \sup_{k} \widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)} \left(\sum_{k=1}^{\infty} \int_{D^{mr}(a_{k})} \left| k_{s,z}(w) e^{-\phi(w)} \right|^{s} dA(w) \right)^{(pq-p+q)/(pq)} \\ &\leq C N^{(pq-p+q)/(pq)} \sup_{k} \widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)} \| k_{s,z} \|_{s,\phi}^{t}. \end{split}$$

This gives

(3.9)
$$\left\| \widetilde{\mu}_t \rho^{2(p-q)/(pq)} \right\|_{L^{\infty}} \leq C \left\| \left\{ \widehat{\mu}_r(a_k) \rho(a_k)^{2(p-q)/(pq)} \right\}_k \right\|_{l^{\infty}}.$$

That is, (D) implies (B).

To prove the implication from (A) to (B) we suppose the statement (A) is valid. By Lemma 2.2, (2.8) and the fact that

$$|K_{2,z}(w)|^2 \rho(z)^{2(p-q)/(pq)} \simeq e^{-\phi(z)} k_{p,z}(w) K(z,w)$$

we have

(3.10)

$$\widetilde{\mu}_{2}(z)\rho(z)^{2(p-q)/(pq)} \leq C\rho(z)^{2/q} |T_{\mu}k_{p,z}(z)| e^{-\phi(z)} \\
\leq C \left(\int_{D(z)} \left| T_{\mu}k_{p,z}(w)e^{-\phi(w)} \right|^{q} dA(w) \right)^{1/q}.$$

Then

(3.11)
$$\widetilde{\mu}_2(z)\rho(z)^{2(p-q)/(pq)} \le C \|T_\mu k_{p,z}\|_{q,\phi} \le C \|T_\mu\|_{F^p(\phi) \to F^q(\phi)}.$$

This and the equivalence between (B) and (C) shows the estimate (3.11) remains true when $\tilde{\mu}_2$ is replaced by $\tilde{\mu}_t$ for any t > 0.

Now we are going to prove the implication (C) \Rightarrow (A). Lemma 3.1 tells us that T_{μ} is well-defined on $F^p(\phi)$. Given $\delta > 0$, we first claim there is some positive constant C such that

(3.12)
$$\|T_{\mu}f\|_{q,\phi}^{q} \leq C \int_{\mathbb{C}} |f(w)|^{q} e^{-q\phi(w)} \widehat{\mu}_{\delta}(w)^{q} dA(w)$$

for $f \in F^p(\phi)$. In fact, if q > 1, (3.4) and Hölder's inequality tell us

$$\begin{split} |T_{\mu}f(z)|^{q} e^{-q\phi(z)} &\leq C \left(\int_{\mathbb{C}} \widehat{\mu}_{\delta}(w) \left| f(w) \right| \left| K(w,z) \right| e^{-2\phi(w)} e^{-\phi(z)} \, dA(w) \right)^{q} \\ &\leq C \int_{\mathbb{C}} \left| f(w) \right|^{q} e^{-q\phi(w)} \widehat{\mu}_{\delta}(w)^{q} \left| K(w,z) e^{-\phi(w)} e^{-\phi(z)} \right| dA(w) \\ &\times \left(\int_{\mathbb{C}} \left| K(w,z) e^{-\phi(w)} e^{-\phi(z)} \right| dA(w) \right)^{q/q'} \\ &\leq C \int_{\mathbb{C}} |f(w)|^{q} e^{-q\phi(w)} \widehat{\mu}_{\delta}(w)^{q} \left| K(w,z) e^{-\phi(w)} e^{-\phi(z)} \right| dA(w). \end{split}$$

Integrating both sides above, applying Fubini's Theorem and Lemma 2.2 to get (3.12). To deal with the case $q \leq 1$, for given $\delta > 0$ we pick some r > 0 so that $\tau^2 r \leq \min \{\delta, 1\}$ with τ as in (2.4), and let $\{a_k\}_k$ be some r-lattice. By (2.8) we know, for $f \in F^p(\phi)$,

$$\begin{split} |T_{\mu}f(z)|^{q} &\leq \left(\sum_{k=1}^{\infty} \int_{D^{r}(a_{k})} |f(w)K(w,z)| \, e^{-2\phi(w)} \, d\mu(w)\right)^{q} \\ &\leq \sum_{k=1}^{\infty} \left(\int_{D^{r}(a_{k})} |f(w)K(w,z)| \, e^{-2\phi(w)} \, d\mu(w) \right)^{q} \\ &\leq \sum_{k=1}^{\infty} \widehat{\mu}_{r}(a_{k})^{q} \rho(a_{k})^{2q} \left(\sup_{w \in D^{r}(a_{k})} |f(w)K(w,z)| \, e^{-2\phi(w)} \right)^{q} \end{split}$$

From (2.8), there are some constant C > 0 such that $|T_{\mu}f(z)|^q$ is no more than C times

$$\sum_{k=1}^{\infty} \widehat{\mu}_r(a_k)^q \rho(a_k)^{2q-2} \int_{D^{\tau r}(a_k)} |f(w)|^q |K(w,z)|^q e^{-2q\phi(w)} dA(w).$$

From (2.3) and (2.4), we have $D^{r}(a_{k}) \subseteq D^{\tau^{2}r}(w)$ if $w \in D^{\tau r}(a_{k})$. This, together with

(2.2) and (2.10), implies

$$\begin{split} |T_{\mu}f(z)|^{q} &\leq C \sum_{k=1}^{\infty} \int_{D^{\tau r}(a_{k})} \widehat{\mu}_{\tau^{2}r}(w)^{q} \rho(w)^{2q-2} |f(w)|^{q} |K(w,z)|^{q} e^{-2q\phi(w)} dA(w) \\ &\leq C N \int_{\mathbb{C}} \widehat{\mu}_{\tau^{2}r}(w)^{q} \rho(w)^{2q-2} |f(w)|^{q} |K(w,z)|^{q} e^{-2q\phi(w)} dA(w) \\ &\leq C \int_{\mathbb{C}} \widehat{\mu}_{\delta}(w)^{q} \rho(w)^{2q-2} |f(w)|^{q} |K(w,z)|^{q} e^{-2q\phi(w)} dA(w). \end{split}$$

Similarly, integrating both sides of the above with respect to $e^{-q\phi(z)} dA(z)$ and applying Fubini's Theorem to get (3.12).

Now we prove (C) \Leftrightarrow (A). Suppose (C) is true, by $p \leq q$, (3.12) and (3.3) we obtain

$$\begin{aligned} \|T_{\mu}f\|_{q,\phi}^{q} &\leq C \int_{\mathbb{C}} |f(w)|^{p} e^{-p\phi(w)} \widehat{\mu}_{\delta}(w)^{q} \left(\rho(w)^{-2/p} \|f\|_{p,\phi}\right)^{q-p} dA(w) \\ &\leq C \left\|\widehat{\mu}_{\delta}\rho^{2(p-q)/(pq)}\right\|_{L^{\infty}}^{q} \|f\|_{p,\phi}^{q} \end{aligned}$$

for $f \in F^p(\phi)$. Therefore, T_{μ} is bounded from $F^p(\phi)$ to $F^q(\phi)$ and

(3.13)
$$||T_{\mu}||_{F^{p}(\phi) \to F^{q}(\phi)} \leq C \left\| \widehat{\mu}_{\delta} \rho^{2(p-q)/(pq)} \right\|_{L^{\infty}}$$

The estimates of (3.5) come from (3.6), (3.7), (3.9), (3.11) and (3.13). The proof is ended. $\hfill \Box$

For the compactness of T_{μ} while $p \leq q$ we have the following Theorem 3.3.

Theorem 3.3. Let $0 , and let <math>\mu \ge 0$. Then the following statements are equivalent:

(A) $T_{\mu} \colon F^{p}(\phi) \to F^{q}(\phi)$ is compact;

(B)
$$\widetilde{\mu}_t(z)\rho(z)^{2(p-q)/(pq)} \to 0 \text{ as } z \to \infty \text{ for some (or any) } t > 0;$$

- (C) $\widehat{\mu}_{\delta}(z)\rho(z)^{2(p-q)/(pq)} \to 0 \text{ as } z \to \infty \text{ for some (or any) } \delta > 0;$
- (D) $\widehat{\mu}_r(a_k)\rho(a_k)^{2(p-q)/(pq)} \to 0 \text{ as } k \to \infty \text{ for some (or any) } r\text{-lattice } \{a_k\}_k.$

Proof. The proof of the implication that "(B) \Rightarrow (C)" and "(C) \Rightarrow (D)" can be carried out as the same part of Theorem 3.2.

Now we assume μ satisfies condition (D) for some *r*-lattice $\{a_k\}_k$. Then, for $\varepsilon > 0$ there exists some integer K > 0 such that $\widehat{\mu}_r(a_k)\rho(a_k)^{2(p-q)/(pq)} < \varepsilon$ whenever k > K. Notice that, $\bigcup_{k=1}^K \overline{B^{mr}(a_k)}$ is a compact subset of \mathbb{C} , and $\{k_{s,z}\}_{z\in\mathbb{C}} \subseteq F^s(\phi)$ uniformly converges to 0 on $\bigcup_{k=1}^{K} \overline{B^{mr}(a_k)}$ as $z \to \infty$, where s = tpq/(pq-p+q). From Lemma 2.2, (3.8) and (2.10), when |z| is sufficiently large we have

$$\begin{split} \widetilde{\mu}_{t}(z)\rho(z)^{2(p-q)/(pq)} \\ &\simeq \int_{\mathbb{C}} |k_{s,z}(w)|^{t} e^{-t\phi(w)} d\mu(w) \\ &\leq \int_{\bigcup_{k=1}^{K} \overline{B^{mr}(a_{k})}} |k_{s,z}(w)|^{t} e^{-t\phi(w)} d\mu(w) \\ &+ \sum_{k=K+1}^{\infty} \mu(B^{r}(a_{k})) \left(\sup_{w \in B^{r}(a_{k})} \left| k_{s,z}(w) e^{-\phi(w)} \right|^{s} \right)^{(pq-p+q)/pq)} \\ &< \varepsilon + C \sum_{k=K+1}^{\infty} \widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)} \left(\int_{B^{mr}(a_{k})} \left| k_{s,z}(w) e^{-\phi(w)} \right|^{s} dA(w) \right)^{(pq-p+q)/pq)} \\ &< \varepsilon + C \sup_{k \ge K+1} \widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)} \\ &\qquad \times \left(\sum_{k=K+1}^{\infty} \int_{B^{mr}(a_{k})} \left| k_{s,z}(w) e^{-\phi(w)} \right|^{s} dA(w) \right)^{(pq-p+q)/(pq)} \\ &< \varepsilon + C N^{(pq-p+q)/(pq)} \| k_{s,z} \|_{s,\phi}^{t} \varepsilon = C\varepsilon \end{split}$$

where C is independent of ε . This yields that $\tilde{\mu}_t(z)\rho(z)^{2(p-q)/(pq)} \to 0$ as $z \to \infty$. So, μ satisfies (B) for any t > 0.

To prove "(A) \Rightarrow (B)", we suppose T_{μ} is compact from $F^{p}(\phi)$ to $F^{q}(\phi)$. Since $\{k_{p,z} : z \in \mathbb{C}\}$ is bounded in $F^{p}(\phi)$, $\{T_{\mu}k_{p,z} : z \in \mathbb{C}\}$ is relatively compact in $F^{q}(\phi)$. By (3.1), for any $\varepsilon > 0$ there exists some S > 0 such that

$$\sup_{z \in \mathbb{C}} \int_{|w| > S} \left| T_{\mu} k_{p,z}(w) e^{-\phi(w)} \right|^q dA(w) < \varepsilon^q$$

When |z| is sufficiently large and $w \in D(z)$,

$$|w| \ge |z| - |w - z| \ge |z| - \rho(z) \ge |z| - C |z|^{\beta} \ge |z|^{\beta} > S,$$

where $\beta \in (0,1)$ as in (2.7). Hence, $D(z) \subseteq \{w : |w| > S\}$. By (3.10), we obtain

$$\widetilde{\mu}_{2}(z)\rho(z)^{2(p-q)/(pq)} \leq C\left(\int_{D(z)} \left|T_{\mu}k_{p,z}(w)e^{-\phi(w)}\right|^{q} dA(w)\right)^{1/q} < C\varepsilon$$

when |z| is sufficiently large. Hence,

$$\lim_{z \to \infty} \widetilde{\mu}_2(z) \rho(z)^{2(p-q)/(pq)} = 0.$$

The equivalence between (B) and (C) shows the above limit is still valid if μ_2 is replaced by μ_t for any t > 0. Finally, we suppose the statement (C) is true. Set μ_R as (3.2). Lemma 3.1 shows that T_{μ_R} is compact from $F^p(\phi)$ to $F^q(\phi)$. And also, $\mu - \mu_R \ge 0$. By (C) and (3.5), for $\delta > 0$ fixed we have

$$\|T_{\mu} - T_{\mu_R}\|_{F^p(\phi) \to F^q(\phi)} \simeq \left\| \widehat{(\mu - \mu_R)}_{\delta} \rho^{2(p-q)/(pq)} \right\|_{L^{\infty}} \to 0$$

as $R \to \infty$. Therefore, T_{μ} is compact from $F^p(\phi)$ to $F^q(\phi)$. The proof is completed. \Box

Now we are in the position to characterize the boundedness (and equivalently the compactness) of T_{μ} for q < p.

Theorem 3.4. Let $0 < q < p < \infty$, and let $\mu \ge 0$. Then the following statements are equivalent:

- (A) $T_{\mu} \colon F^{p}(\phi) \to F^{q}(\phi)$ is bounded;
- (B) $T_{\mu}: F^{p}(\phi) \to F^{q}(\phi)$ is compact;
- (C) $\widetilde{\mu}_t \in L^{pq/(p-q)}$ for some (or any) t > 0;
- (D) $\widehat{\mu}_{\delta} \in L^{pq/(p-q)}$ for some (or any) $\delta > 0$;

(E)
$$\left\{\widehat{\mu}_r(a_k)\rho(a_k)^{2(p-q)/(pq)}\right\}_k \in l^{pq/(p-q)}$$
 for some (or any) r-lattice $\{a_k\}_k$.

Furthermore,

(3.14)
$$\|T_{\mu}\|_{F^{p}(\phi) \to F^{q}(\phi)} \simeq \|\widehat{\mu}_{t}\|_{L^{pq/(p-q)}} \simeq \|\widehat{\mu}_{\delta}\|_{L^{pq/(p-q)}} \simeq \left\| \left\{ \widehat{\mu}_{r}(a_{k})\rho(a_{k})^{2(p-q)/(pq)} \right\}_{k} \right\|_{l^{pq/(p-q)}}.$$

Proof. The equivalence among the statements (C), (D) and (E) follows from Lemma 2.5. It is trivial that (B) \Rightarrow (A). To finish our proof, we are going to prove the implications (A) \Rightarrow (E), (D) \Rightarrow (A) and (D) \Rightarrow (B).

To get (A) \Rightarrow (E), we borrow some idea from [14]. First, we claim that (E) is true for $r = r_0$ with r_0 in (2.6). For any r_0 -lattice $\{a_k\}_k$ and sequence $\{\lambda_k\}_k \in l^p$, set f as (2.19). Lemma 2.6 shows $f \in F^p(\phi)$ with $||f||_{p,\phi} \leq C ||\{\lambda_k\}_k||_{l^p}$. By Khinchine's inequality and the boundedness of T_{μ} , we have

$$\int_{\mathbb{C}} \left(\sum_{k=1}^{\infty} \left| \lambda_k \rho(a_k)^{1-2/p} T_{\mu}(k_{2,a_k})(z) \right|^2 \right)^{q/2} e^{-q\phi(z)} \, dA(z)$$

$$\leq C \, \|T_{\mu}\|_{F^p(\phi) \to F^q(\phi)}^q \, \|\{\lambda_k\}_k\|_{l^p}^q \, .$$

Meanwhile, there is

$$\begin{split} &\int_{\mathbb{C}} \left(\sum_{k=1}^{\infty} \left| \lambda_k \rho(a_k)^{1-2/p} T_{\mu}(k_{2,a_k})(z) \right|^2 \right)^{q/2} e^{-q\phi(z)} \, dA(z) \\ &\geq C \sum_{j=1}^{\infty} |\lambda_j|^q \, \rho(a_j)^{2+2q-2q/p} \left| \int_{D^{r_0}(a_j)} |K(w,a_j)|^2 \, e^{-2\phi(w)} \, d\mu(w) \right|^q e^{-2q\phi(a_j)} \\ &\geq C \sum_{j=1}^{\infty} |\lambda_j|^q \, \widehat{\mu}_{r_0}(a_j)^q \rho(a_j)^{2-2q/p}, \end{split}$$

the last inequality follows from (2.2) and (2.6). Setting $\beta_j = |\lambda_j|^q$, then $\{\beta_j\}_{j=1}^{\infty} \in l^{p/q}$. Therefore,

$$\sum_{j=1}^{\infty} \beta_j \widehat{\mu}_{r_0}(a_j)^q \rho(a_j)^{2-2q/p} \le C \|T_\mu\|_{F^p(\phi) \to F^q(\phi)}^q \left\| \{\lambda_j\}_j \right\|_{l^p}^q$$
$$= C \|T_\mu\|_{F^p(\phi) \to F^q(\phi)}^q \left\| \{\beta_j\}_j \right\|_{l^{p/q}}$$

The duality argument shows

$$\left\{\widehat{\mu}_{r_0}(a_j)^q \rho(a_j)^{2-2q/p}\right\}_{j=1}^{\infty} \in l^{p/(p-q)}$$

and

$$\left\| \left\{ \widehat{\mu}_{r_0}(a_j)^q \rho(a_j)^{2-2q/p} \right\}_j \right\|_{l^{p/(p-q)}} \le C \|T_\mu\|_{F^p(\phi) \to F^q(\phi)}^q.$$

This and Lemma 2.5 imply

(3.15)
$$\left\| \left\{ \widehat{\mu}_r(b_j) \rho(b_j)^{2(p-q)/(pq)} \right\}_j \right\|_{l^{pq/(p-q)}} \le C \left\| T_\mu \right\|_{F^p(\phi) \to F^q(\phi)}$$

for any r-lattice $\{b_i\}$. From this, the conclusion (E) follows.

Now we prove (D) \Rightarrow (A). Suppose $\hat{\mu}_{\delta} \in L^{pq/(p-q)}$ for some $\delta > 0$. By Lemma 2.5, we know $\{\hat{\mu}_{\delta}(a_k)\rho(a_k)^{2(p-q)/(pq)}\}_k \in l^{\infty}$ for some δ -lattice $\{a_k\}_k$. Theorem 3.2 gives $\hat{\mu}_{\delta}\rho^{2(p-q)/(pq)} \in L^{\infty}$, which shows that T_{μ} is well-defined on $F^p(\phi)$, see Lemma 3.1. Notice that p/q > 1. By (3.12), Hölder's inequality and Lemma 2.2, we obtain

$$\begin{aligned} \|T_{\mu}f\|_{q,\phi}^{q} &\leq C \left\{ \int_{\mathbb{C}} \left(|f(w)|^{q} e^{-q\phi(w)} \right)^{p/q} dA(w) \right\}^{q/p} \left\{ \int_{\mathbb{C}} \widehat{\mu}_{\delta}(w)^{pq/(p-q)} dA(w) \right\}^{(p-q)/p} \\ &\leq C \|\widehat{\mu}_{\delta}\|_{L^{pq/(p-q)}}^{q} \|f\|_{p,\phi}^{q} \end{aligned}$$

for $f \in F^p(\phi)$. Hence, T_{μ} is bounded from $F^p(\phi)$ to $F^q(\phi)$ and

(3.16)
$$||T_{\mu}||_{F^{p}(\phi) \to F^{q}(\phi)} \leq C ||\widehat{\mu}_{\delta}||_{L^{pq/(p-q)}}.$$

To prove (D) \Rightarrow (B), we take μ_R as (3.2). Then $\mu - \mu_R \ge 0$, and for $\delta > 0$ we have $\| (\widehat{\mu - \mu_R})_{\delta} \|_{L^{pq/(p-q)}} \to 0$ as $R \to \infty$. By (3.16),

$$\|T_{\mu} - T_{\mu_R}\|_{F^p(\phi) \to F^q(\phi)} = \|T_{(\mu - \mu_R)}\|_{F^p(\phi) \to F^q(\phi)} \simeq \|(\mu - \mu_R)_{\delta}\|_{L^{pq/(p-q)}} \to 0$$

whenever $R \to \infty$. Since T_{μ_R} is compact from $F^p(\phi)$ to $F^q(\phi)$, the operator $T_{\mu}: F^p(\phi) \to F^q(\phi)$ is compact as well.

The norm equivalence (3.14) comes from Lemma 2.5, (3.15) and (3.16). The proof is completed. $\hfill \Box$

Acknowledgments

The authors would like to thank the referees for making some very good suggestions.

References

- W. Bauer, L. A. Coburn and J. Isralowitz, *Heat flow, BMO, and the compactness of Toeplitz operators*, J. Funct. Anal. **259** (2010), no. 1, 57–78. https://doi.org/10.1016/j.jfa.2010.03.016
- W. Bauer and J. Isralowitz, Compactness characterization of operators in the Toeplitz algebra of the Fock space F^p_α, J. Funct. Anal. 263 (2012), no. 5, 1323–1355.
 https://doi.org/10.1016/j.jfa.2012.04.020
- [3] C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813-829. https://doi.org/10.2307/2000671
- H. R. Cho, B. R. Choe and H. Koo, Linear combinations of composition operators on the Fock-Sobolev spaces, Potential Anal. 41 (2014), no. 4, 1223–1246. https://doi.org/10.1007/s11118-014-9417-6
- [5] _____, Fock-Sobolev spaces of fractional order, Potential Anal. 43 (2015), no. 2, 199-240. https://doi.org/10.1007/s11118-015-9468-3
- [6] H. R. Cho, J. Isralowitz and J.-C. Joo, Toeplitz operators on Fock-Sobolev type spaces, Integral Equations Operator Theory 82 (2015), no. 1, 1–32. https://doi.org/10.1007/s00020-015-2223-8
- [7] H. R. Cho and K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal. 263 (2012), no. 8, 2483-2506. https://doi.org/10.1016/j.jfa.2012.08.003

- [8] B. R. Choe and J. Yang, Commutants of Toeplitz operators with radial symbols on the Fock-Sobolev space, J. Math. Anal. Appl. 415 (2014), no. 2, 779-790. https://doi.org/10.1016/j.jmaa.2014.02.018
- [9] M. Christ, On the ∂ equation in weighted L² norms in C, J. Geom. Anal. 1 (1991), no. 3, 193-230. https://doi.org/10.1007/BF02921303
- [10] L. A. Coburn, J. Isralowitz and B. Li, Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc. 363 (2011), no. 6, 3015–3030. https://doi.org/10.1090/s0002-9947-2011-05278-5
- [11] O. Constantin and J. Á. Peláez, Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, J. Geom. Anal. 26 (2016), no. 2, 1109–1154. https://doi.org/10.1007/s12220-015-9585-7
- G. M. Dall'Ara, Pointwise eatimates of weighted Bergman kernels in several complex variables, Adv. Math. 285 (2015), 1706-1740. https://doi.org/10.1016/j.aim.2015.06.024
- [13] Z. Hu and X. Lv, Toeplitz operators from one Fock space to another, Integral Equations Operator Theory 70 (2011), no. 4, 541-559. https://doi.org/10.1007/s00020-011-1887-y
- [14] _____, Toeplitz operators on Fock spaces $F^p(\varphi)$, Integral Equations Operator Theory 80 (2014), no. 1, 33–59. https://doi.org/10.1007/s00020-014-2168-3
- [15] J. Isralowitz and K. Zhu, Toeplitz operators on the Fock space, Integral Equations Operator Theory 66 (2010), no. 4, 593-611. https://doi.org/10.1007/s00020-010-1768-9
- [16] J. Lu and X. Lv, Toeplitz operators between Fock spaces, Bull. Aust. Math. Soc. 92 (2015), no. 2, 316–324. https://doi.org/10.1017/s0004972715000477
- [17] N. Marco, X. Massaneda and J. Ortega-Cerdà, Interpolating and sampling sequences for entire functions, Geom. Funct. Anal. 13 (2003), no. 4, 862–914. https://doi.org/10.1007/s00039-003-0434-7
- [18] J. Marzo and J. Ortega-Cerdà, Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal. 19 (2009), no. 4, 890-910. https://doi.org/10.1007/s12220-009-9083-x
- [19] R. Oliver and D. Pascuas, Toeplitz operators on doubling Fock spaces, J. Math. Anal. Appl. 435 (2016), no. 2, 1426–1457. https://doi.org/10.1016/j.jmaa.2015.11.023

- G. Schneider and K. A. Schneider, Generalized Hankel operators on the Fock space, Math. Nachr. 282 (2009), no. 12, 1811–1826. https://doi.org/10.1002/mana.200810169
- [21] _____, Generalized Hankel operators on the Fock space II, Math. Nachr. 284 (2011), no. 14-15, 1967–1984. https://doi.org/10.1002/mana.200910149
- [22] A. P. Schuster and D. Varolin, Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces, Integral Equations Operator Theory 72 (2012), no. 3, 363-392. https://doi.org/10.1007/s00020-011-1939-3
- [23] X. Wang, G. Cao and J. Xia, Toeplitz operators on Fock-Sobolev spaces with positive measure symbols, Sci. China Math. 57 (2014), no. 7, 1443–1462. https://doi.org/10.1007/s11425-014-4813-3
- [24] K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, Springer, New York, 2012. https://doi.org/10.1007/978-1-4419-8801-0

Zhangjian Hu and Xiaofen Lv

Department of Mathematics, Huzhou University, Huzhou, Zhejiang 313000, China *E-mail address*: huzj@zjhu.edu.cn, lvxf@zjhu.edu.cn