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On the Existence and Uniform Attractivity of the Solutions of a Class of

Nonlinear Integral Equations on Unbounded Interval

İsmet Özdemir* and Bekir İlhan

Abstract. In this paper, we prove the existence and uniform attractivity of the solu-

tions of a class of functional integral equations which contain a number of classical

nonlinear integral equations as special cases. Our investigations will be carried out in

the space of continuous and bounded functions on an unbounded interval. The main

tools here are the measure of noncompactness and the suitable fixed point theorem.

We introduce also some examples and remarks showing the difference between our

main result and some previous results.

1. Introduction

It is well known that integral equations have wide application in engineering, mechan-

ics, physics, economics, optimization, queing theory and so on. The theory of integral

equations is rapidly developing with the help of tools in functional analysis, topology and

fixed-point theory.

Agarwal and O’Regan [1] gave the existence of the solutions for the nonlinear integral

equation

(1.1) x(t) =

∫ ∞
0

k(t, s)f(s, x(s)) ds, t ∈ R+,

in the space Cl[0,∞), where Cl[0,∞) denotes the space of bounded and continuous func-

tions on R+ which have limit at infinity, in 2004.

Meehan and O’Regan [10, 11] discussed both the existence of the solutions for the

nonlinear integral equation

(1.2) x(t) = h(t) + µ

∫ ∞
0

k(t, s)f(s, x(s)) ds, t ∈ R+,

in the space Cl[0,∞) and the existence of the solutions for the nonlinear integral equation

(1.3) x(t) = h(t) +

∫ ∞
0

k(t, s) [f(x(s)) + g(x(s))] ds, t ∈ R+,
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in the space BC(R+,R), where BC(R+,R) denotes the space of bounded and continuous

functions on R+, in 1999 and 2000, respectively. Later in [12] they established the existence

of at least one positive solution of nonlinear integral equation

(1.4) x(t) = h(t) +

∫ ∞
0

k(t, s)f(s, x(s)) ds, t ∈ R+,

in the space Lp(R+) in 2001.

In 2004, Banaś and Po ludniak [4] investigated the monotonic solutions for the nonlinear

integral equation

(1.5) x(t) = f(t) +

∫ ∞
0

u(t, s, x(s)) ds, t ∈ R+,

in the space of Lebesque integrable functions on unbounded interval by using the Darbo

fixed point theorem and the measure of noncompactness defined in Definition 2.1.

Banaś and Martin [5] studied the existence and asymptotic stability of the solutions

for the nonlinear integral equation

(1.6) x(t) = g(t) + f(t, x(t))

∫ ∞
0

K(t, s)h(s, x(s)) ds, t ∈ R+,

in the Banach space BC(R+,R), in 2006.

In 2004, Cabellaro and others [6], in 2008, Banaś and Olszowy [3] and more recently

in 2013, Darwish and others [7] studied the existence of the solutions for the Urysohn

integral equation defined on unbounded interval

(1.7) x(t) = a(t) + f(t, x(t))

∫ ∞
0

u(t, s, x(s)) ds, t ∈ R+,

with the help of measure of noncompactness and a fixed point theorem in the space

BC(R+,R). Of course authors studied integral equation (1.7) under different assumptions

and measure of noncompactness, also they have given rather different existence theorems.

Olszowy [13–15] studied (1.7) in the Fréchet space of real functions being defined and

continuous on R+ and has given results about monotonicity of the solutions of the integral

equation (1.7).

In 2010, Karoui and others [9] studied (1.7) in the space Lp(R+) by means of Schauder’s

fixed point theorem.

Motivated by recent researches in this field, we study the more general nonlinear

integral equation,

(1.8) x(t) = (T1x)(t) + (T2x)(t)

∫ ∞
0

u(t, s, x(s)) ds, t ∈ R+,

where the functions u(t, s, x) and the operators Ti, (i = 1, 2) appearing in (1.8) are given,

while x = x(t) is an unknown function. It is clear that (1.8) includes (1.1)–(1.7) as special
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cases. Using the technique of a suitable measure of noncompactness, we prove an existence

theorem for (1.8). We give some examples satisfying the conditions given in this paper.

The approach applied in this paper depends on extending and generalizing of the methods

and tools used in the study of some nonlinear integral equations which are presented in the

papers [4–7,9]. It is worthwhile mentioning that the class of integral equations considered

in this paper are more general then those investigated up to now.

2. Auxiliary facts and notations

In this section, we give a collection of auxiliary facts which will be needed in the sequel.

Assume that (E, ‖·‖) is a real Banach space with zero element θ. Let B(x, r) denote the

closed ball centered at x and with radius r. The symbol Br stands for the ball B(θ, r).

If X is a subset of E, then X and ConvX denote the closure and convex closure of X,

respectively. With the symbols λX andX+Y , we denote the standard algebraic operations

on sets. Moreover, we denote by ME the family of all nonempty and bounded subsets of

E and NE its subfamily consisting of all relatively compact subsets. The definition of the

concept of a measure of noncompactness presented below comes from [2].

Definition 2.1. A function µ : ME → R+ = [0,∞) is said to be a measure of noncom-

pactness in E if it satisfies the following conditions:

(1) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ;

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y );

(3) µ(X) = µ(ConvX) = µ(X);

(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];

(5) if {Xn} is a sequence of nonempty, bounded, closed subsets of the set E such that

Xn+1 ⊂ Xn, (n = 1, 2, . . .) and limn→∞ µ(Xn) = 0, then the set X∞ =
⋂∞
n=1Xn is

nonempty.

In the sequel, we will work in the Banach space BC(R+,R). The space BC(R+,R) is

furnished with the standard norm ‖x‖ = sup {|x(t)| : t ∈ R+}.
We will use a measure of noncompactness in the space BC(R+,R). In order to define

this measure let us fix a nonempty and bounded subset X of BC(R+,R). For x ∈ X,

ε ≥ 0 and L > 0 denoted by wL(x, ε) the modulus of continuity of function x, i.e.,

wL(x, ε) = sup {|x(s)− x(t)| : t, s ∈ [0, L] and |t− s| ≤ ε} .
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Further let us put

wL(X, ε) = sup
{
wL(x, ε) : x ∈ X

}
,

wL0 (X) = lim
ε→0

wL(X, ε)

and

(2.1) w0(X) = lim
L→∞

wL0 (X).

Moreover, if t ∈ R+ is a fixed number, let us denote

X(t) = {x(t) : x ∈ X}

and

diamX(t) = sup {|x(t)− y(t)| : x, y ∈ X} .

With help of the above mappings we define the following measure of noncompactness in

BC(R+,R), [2]:

(2.2) µ(X) = w0(X) + lim sup
t→∞

diamX(t).

The kernel of this measure consists of all nonempty and bounded subsets X of BC(R+,R)

such that functions from X are locally equicontinuous on R+ and the thickness of the

bundle formed by functions from X tends to zero at infinity.

Now we recall definitions of the concepts of local attractivity and asymptotic stability

of the solutions of operator equations. Let us assume that Ω is a nonempty subset of the

space BC(R+,R) and F is an operator defined on Ω with values in BC(R+,R). Let us

consider the operator equation of the form

(2.3) x(t) = (Fx)(t), t ∈ R+.

Definition 2.2. We say that solutions of (2.3) are locally attractive if there exist an

x0 ∈ BC(R+,R) and an r > 0 such that for all solutions x = x(t) and y = y(t) of (2.3)

belonging to B(x0, r) ∩ Ω we have that

lim
t→∞

(x(t)− y(t)) = 0.

In the case when limit is uniform with respect to the set B(x0, r) ∩ Ω, that is, when for

each ε ≥ 0 there exists L > 0 such that

|x(t)− y(t)| ≤ ε

for all x, y ∈ B(x0, r)∩Ω being solutions of (2.3) for any t ≥ L, we will say that solutions

of (2.3) are uniformly locally attractive (or equivalently asymptotically stable) on R+, [8].
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Finally, we will make use of the following fixed-point theorem, [2].

Theorem 2.3. Let Q be a nonempty, bounded, closed and convex subset of the Banach

space E and let

F : Q→ Q

be a continuous transformation such that µ(FX) ≤ kµ(X) for any nonempty subset X of

Q, where µ is a measure of noncompactness in E and k ∈ [0, 1) is a constant. Then F

has a fixed point in the set Q.

Remark 2.4. Denote by FixF the set of all fixed points of the operator F belonging to Q.

It can be readily seen that the set FixF belongs to the family kerµ, [2].

3. The main result

We will consider the existence of the solutions of (1.8) assuming that the following condi-

tions are satisfied:

(i) The operators Ti : BC(R+,R) → BC(R+,R) are continuous and there exist contin-

uous nondecreasing functions di : R+ → R+ such that

|(Tix)(t)| ≤ di(‖x‖)

for all x ∈ BC(R+,R) and t ∈ R+, (i = 1, 2).

(ii) The function u : R+×R+×R→ R is a continuous function and there exist continuous

functions a, b, ψ : R+ → R+ such that limt→∞ a(t) = 0, ‖b‖1 =
∫∞
0 |b(s)| ds <∞ and

ψ is nondecreasing on R+ such that

|u(t, s, x)| ≤ a(t)b(s)ψ(|x|) for all t, s ∈ R+ and x ∈ R.

(iii) There exists a positive real number r0 satisfying the inequality

d1(r0) + d2(r0) ‖a‖ ‖b‖1 ψ(r0) ≤ r0.

(iv) There exist the nonnegative constants kr0 and qr0 for r0 such that the inequalities

µ(T1X) ≤ kr0µ(X)

and

ω0(T2X) ≤ qr0ω0(X)

hold for all nonempty and bounded subsets X of Br0 , where ω0 and µ are defined

by (2.1) and (2.2).
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(v) We assume that

kr0 + qr0 ‖a‖ ‖b‖1 ψ(r0) < 1.

(vi) There exists a continuous nondecreasing function φr0 : R+ → R+ which holds φr0(0) =

0 and

|u(t2, s, x)− u(t1, s, x)| ≤ φr0(|t2 − t1|)τ(s)

for all t1, t2, s ∈ R+ and x ∈ R with |x| ≤ r0, where τ is an element of the space

BC(R+,R+) such that
∫∞
0 τ(s) ds <∞.

(vii) There exists a continuous nondecreasing function ηr0 : R+ → R+ which holds ηr0(0) =

0 and

|u(t, s, x)− u(t, s, y)| ≤ ηr0(|x− y|)v(s)

for all t, s ∈ R+ and x, y ∈ R with |x| ≤ r0, |y| ≤ r0, where v is an element of the

space BC(R+,R+) such that
∫∞
0 v(s) ds <∞.

Now we can formulate an existence result concerning the functional integral equation

(1.8).

Theorem 3.1. Under assumptions (i)–(vii), there exists a positive real number r0 such

that the equation (1.8) has at least one solution x = x(t) belonging to Br0 ⊂ BC(R+,R).

Moreover, the solutions of the equation (1.8) are uniformly locally attractive on R+.

Proof. We define operator F on Br0 in the following way:

(Fx)(t) = (T1x)(t) + (T2x)(t)

∫ ∞
0

u(t, s, x(s)) ds.

Notice that in view of assumptions (i) and (ii), the function t → (Fx)(t) is well defined

on the interval R+. At first we show that the function (Fx) is continuous on R+. To do

this fix arbitrarily L > 0 and ε ≥ 0. Take arbitrary numbers t, t0 ∈ [0, L] with |t− t0| ≤ ε.
Then in view of assumptions we obtain that

|(Fx)(t)− (Fx)(t0)|

=

∣∣∣∣(T1x)(t) + (T2x)(t)

∫ ∞

0

u(t, s, x(s)) ds− (T1x)(t0)− (T2x)(t0)

∫ ∞

0

u(t0, s, x(s)) ds

∣∣∣∣
≤ |(T1x)(t)− (T1x)(t0)|+ |(T2x)(t)− (T2x)(t0)|

∣∣∣∣∫ ∞

0

u(t, s, x(s)) ds

∣∣∣∣
+ |(T2x)(t0)|

∣∣∣∣∫ ∞

0

[u(t, s, x(s))− u(t0, s, x(s))] ds

∣∣∣∣
≤ ωL(T1x, ε) + ωL(T2x, ε)

∫ ∞

0

|u(t, s, x(s))| ds

+ d2(‖x‖)
∫ ∞

0

|u(t, s, x(s))− u(t0, s, x(s))| ds

≤ ωL(T1x, ε) + ωL(T2x, ε)a(t)

∫ ∞

0

b(s)ψ(|x(s)|) ds+ d2(‖x‖)
∫ ∞

0

φr0(|t− t0|)τ(s) ds

≤ ωL(T1x, ε) + ωL(T2x, ε) ‖a‖ψ(‖x‖) ‖b‖1 + d2(‖x‖)φr0(ε) ‖τ‖1 ,

(3.1)
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where

ωL(Tix, ε) = sup {|(Tix)(s)− (Tix)(t)| : t, s ∈ [0, L] and |t− s| ≤ ε}

for i = 1, 2. By uniform continuity of the functions (Tix) on the set [0, L], we deduce that

ωL(Tix, ε)→ 0 as ε→ 0. Thus we have that (Fx) is continuous on [0, L]. Since L > 0 is

arbitrary, (Fx) is continuous on R+. Next we show that (Fx) is bounded on R+. By our

assumptions, for arbitrarily fixed t ∈ R+, we derive that

|(Fx)(t)| =
∣∣∣∣(T1x)(t) + (T2x)(t)

∫ ∞
0

u(t, s, x(s)) ds

∣∣∣∣
≤ |(T1x)(t)|+ |(T2x)(t)|

∫ ∞
0
|u(t, s, x(s))| ds

≤ d1(‖x‖) + d2(‖x‖)
∫ ∞
0

a(t)b(s)ψ(|x(s)|) ds.

(3.2)

Hence, from (3.2), we obtain the following evaluation:

(3.3) ‖Fx‖ ≤ d1(‖x‖) + d2(‖x‖) ‖a‖ ‖b‖1 ψ(‖x‖)

which implies that the function (Fx) is bounded on R+. Combining this fact with the

continuity of the function (Fx) on R+, we conclude that the operator F transforms the

ball Br0 into the space BC(R+,R). Moreover linking (3.3) and the assumption (iii) we

deduce that the operator F maps the ball Br0 into itself, where r0 is a number indicated

in assumption (iii). Now, we shall prove that operator F is continuous on Br0 . To do this,

consider ε > 0 and fixed y0 ∈ Br0 . Then,

|(Fx)(t)− (Fy0)(t)|

=

∣∣∣∣(T1x)(t) + (T2x)(t)

∫ ∞
0

u(t, s, x(s)) ds− (T1y0)(t)− (T2y0)(t)

∫ ∞
0

u(t, s, y0(s)) ds

∣∣∣∣
≤ |(T1x)(t)− (T1y0)(t)|+ |(T2x)(t)− (T2y0)(t)|

∫ ∞
0
|u(t, s, x(s))| ds

+ |(T2y0)(t)|
∫ ∞
0
|u(t, s, x(s))− u(t, s, y0(s))| ds.

(3.4)

Hence from estimate (3.4) we get

‖Fx− Fy0‖ ≤ ‖T1x− T1y0‖+ ‖T2x− T2y0‖ ‖a‖ ‖b‖1 ψ(r0)

+ d2(r0)

∫ ∞
0

v(s)ηr0(|x(s)− y0(s)|) ds.
(3.5)

Since the operators Ti are continuous for any y0 ∈ Br0 , there exist the numbers δi(ε) > 0

with δi(ε) ≤ ε such that we have ‖Tix− Tiy0‖ ≤ ε for all x satisfying ‖x− y0‖ < δi. Let

us take δ(ε) = min {δ1(ε), δ2(ε)}. In this case if ‖x− y0‖ < δ(ε), (3.5) becomes

(3.6) ‖Fx− Fy0‖ ≤ ε+ ε ‖a‖ ‖b‖1 ψ(r0) + d2(r0) ‖v‖1 ηr0(ε).
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Therefore from (3.6) and assumption (vii) we have that F is continuous on the ball Br0 .

Further, we shall show that operator F satisfies the Darbo condition on the ball Br0 .

In order to do this, let us take a nonempty subset X of the ball Br0 . Fix ε ≥ 0, L > 0

and choose x ∈ X and t1, t2 ∈ [0, L] such that |t1 − t2| ≤ ε. Then in view of (3.1) we have

that

(3.7) ωL(Fx, ε) ≤ ωL(T1x, ε) + ωL(T2x, ε) ‖a‖ ‖b‖1 ψ(r0) + d2(r0)φr0(ε) ‖τ‖1

and by (3.7), we get

ωL(FX, ε) ≤ ωL(T1X, ε) + ωL(T2X, ε) ‖a‖ ‖b‖1 ψ(r0) + d2(r0)φr0(ε) ‖τ‖1

which yields

(3.8) ωL0 (FX) ≤ ωL0 (T1X) + ωL0 (T2X) ‖a‖ ‖b‖1 ψ(r0).

If we take limit as L→∞, we have by (3.8) that

(3.9) ω0(FX) ≤ ω0(T1X) + ω0(T2X) ‖a‖ ‖b‖1 ψ(r0).

Further let us take a nonempty subset X of the ball Br0 . For x, y ∈ X and t ∈ R+, from

estimate (3.4) and the conditions (i) and (ii) we get that

diam(FX)(t) ≤ diam(T1X)(t) + diam(T2X)(t)a(t) ‖b‖1 ψ(r0)

+ 2d2(r0)a(t) ‖b‖1 ψ(r0).
(3.10)

If we take limitsupremum as t→∞ in (3.10) we have the inequality

(3.11) lim sup
t→∞

diam(FX)(t) ≤ lim sup
t→∞

diam(T1X)(t).

By linking (3.9) and (3.11) we derive that

µ(FX) ≤ µ(T1X) + qr0ω0(X) ‖a‖ ‖b‖1 ψ(r0)

≤ kr0µ(X) + qr0 ‖a‖ ‖b‖1 ψ(r0)µ(X)

≤ lr0µ(X)

(3.12)

from (iv) and the inequality ω0(X) ≤ µ(X), where lr0 = kr0 + qr0 ‖a‖ ‖b‖1 ψ(r0).

Now let us observe that by assumption (v) and (3.12) we have that F is a contraction

with respect to the measure of noncompactness µ. Hence by Theorem 2.3 the operator F

has at least one fixed point x in the ball Br0 . Obviously, every function x = x(t) being a

fixed point of the operator F is a solution of (1.8). Further, keeping in mind Remark 2.4,

we conclude that the set FixF of all fixed points of the operator F belonging to the ball

Br0 is a member of the kerµ. Hence, in view of the description of the kerµ we infer that

all of solutions of (1.8) belonging to the ball Br0 are uniformly attractive on R+. This

step completes the proof of our theorem.
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4. Examples

Example 4.1. Consider the following integral equation:

(4.1) x(t) = α sin(x(t) + 1) + βx2(t)

∫ ∞
0

arctanx(s)

exp(t)(s2 + 1)
ds,

where t ∈ R+ and α, β are any constants such that 0 < |α| < 1. Notice that (4.1) is a

special case of (1.8) if we put

(T1x)(t) = α sin(x(t) + 1), (T2x)(t) = βx2(t)

and

u(t, s, x) =
arctanx

exp(t)(s2 + 1)
.

It is easily verified that the assumptions of Theorem 3.1 are satisfied. T1 and T2 are

continuous operators on the space BC(R+,R). Further for all t ∈ R+ and x ∈ BC(R+,R),

(4.2) |(T1x)(t)| ≤ |α| |sin(x(t) + 1)| ≤ |α|

and

(4.3) |(T2x)(t)| ≤ |β|
∣∣x2(t)∣∣ ≤ |β| ‖x‖2 .

Hence assumption (i) is satisfied with d1(x) = |α| and d2(x) = |β|x2. Now notice that the

function u is continuous on the set R+ × R+ × R. Moreover, we get

(4.4) |u(t, s, x)| =
∣∣∣∣ arctanx

exp(t)(s2 + 1)

∣∣∣∣ ≤ π

2 exp(t)(s2 + 1)

for all t, s ∈ R+ and x ∈ R. Thus, according to assumption (ii) we may put a(t) =

π/(2 exp(t)), b(s) = 1/(s2 + 1) and ψ(x) = 1. Further we get

‖a‖ = sup

{∣∣∣∣ π

2 exp(t)

∣∣∣∣ : t ≥ 0

}
=
π

2
, ‖b‖1 =

∫ ∞
0

ds

s2 + 1
=
π

2

and obviously, we have that a(t) → 0 as t → ∞. Now if we consider (4.2)–(4.4), the

assumption (iii) takes the following form:

(4.5) |α|+ |β| r20
π2

4
≤ r0.

Apart from this, fixing a nonempty and bounded subset X of the ball Br0 , let x ∈ X,

ε ≥ 0, L > 0 and t, s ∈ [0, L] such that |t− s| ≤ ε. Then

|(T1x)(t)− (T1x)(s)| = |α| |sin(x(t) + 1)− sin(x(s) + 1)|

≤ |α| |x(t)− x(s)|
(4.6)
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and

|(T2x)(t)− (T2x)(s)| =
∣∣βx2(t)− βx2(s)∣∣

= |β| |x(t) + x(s)| |x(t)− x(s)|

≤ 2 |β| r0 |x(t)− x(s)| .

(4.7)

From estimates (4.6), (4.7) and in view of (2.1), we get

(4.8) ω0(T1X) ≤ |α|ω0(X)

and

(4.9) ω0(T2X) ≤ 2r0 |β|ω0(X).

(4.9) implies that the second inequality of assumption (iv) is satisfied with the constant

qr0 = 2r0 |β|. For x, y ∈ X, we get

|(T1x)(t)− (T1y)(t)| = |α [sin(x(t) + 1)− sin(y(t) + 1)]|

≤ |α| |x(t)− y(t)| .
(4.10)

Using (4.10), we have

(4.11) lim sup
t→∞

diam(T1X)(t) ≤ |α| lim sup
t→∞

diamX(t).

From (4.8) and (4.11), we get

(4.12) µ(T1X) ≤ |α|µ(X).

So, we have by (4.12) that the first inequality of assumption (iv) is satisfied with kr0 = |α|.
Now if we consider (4.9) and (4.12), the inequality of assumption (v) takes the following

form:

(4.13) |α|+ r0 |β|π2

2
< 1.

We consider two cases.

Case 1: β 6= 0. Since 0 < |α| < 1, it can be easily verified that if

1− |α| |β|π2 > 0 and |α|2 + |α| |β|π2 − 1 < 0,

then

r0 ∈
(

0,
2(1− |α|)
|β|π2

)⋂[
2− 2

√
1− |α| |β|π2
|β|π2

,
2 + 2

√
1− |α| |β|π2
|β|π2

]

which is equivalent to r0 ∈
[
2−2
√

1−|α||β|π2

|β|π2 , 2(1−|α|)|β|π2

)
as the positive solution of the system

of inequalities (4.5) and (4.13).
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Case 2: β = 0. Then, since 0 < |α| < 1, it is clear that r0 ∈ [|α| ,∞) is the solution of

the inequalities (4.5) and (4.13).

Additionally, without loss of generality assume that t1 < t2, for all t1, t2 and s ∈ R+

and x ∈ R with |x| ≤ r0 we have

|u(t1, s, x)− u(t2, s, x)| =
∣∣∣∣ arctanx

exp(t1)(s2 + 1)
− arctanx

exp(t2)(s2 + 1)

∣∣∣∣
=
|arctanx|
s2 + 1

|exp(t2)− exp(t1)|
exp(t1 + t2)

≤ |arctanx|
s2 + 1

exp(ξ) |t2 − t1|
exp(t1 + t2)

≤ π

2(s2 + 1)
|t2 − t1| ,

where ξ ∈ (t1, t2). If we put φr0(t) = t and τ(s) = π/[2(s2 + 1)], the assumption (vi) is

satisfied. Finally, without loss of generality assume that x < y, for all t ∈ R+ and x, y ∈ R
with |x| ≤ r0, |y| ≤ r0 we get

|u(t, s, x)− u(t, s, y)| =
∣∣∣∣arctanx− arctan y

exp(t)(s2 + 1)

∣∣∣∣ ≤ |x− y|
exp(t)(1 + ξ2)(1 + s2)

≤ |x− y|
1 + s2

,

where ξ ∈ (x, y). If we take ηr0(t) = t and v(s) = 1/(s2 + 1), the assumption (vii) is

satisfied.

Since all of the assumptions of Theorem 3.1 are fullfilled, we deduce that the integral

equation (4.1) has at least one solution belonging to the ball Br0 of the space BC(R+,R).

Taking into account Remark 2.4 and the measure of noncompactness µ given by (2.2), we

infer easily that any solutions of (4.1) which belong to the ball Br0 are asymptotically

stable on R+ as defined in Definition 2.2.

Remark 4.2. Notice that none of the existence theorems given in [1,3–7,9–15] are applicable

to (4.1), since the integral equation (4.1) cannot be derived from any of the integral

equations handled in mentioned papers.

Example 4.3. Let us consider the following integral equation:

(4.14) x(t) = h(t) +
x2(t)

1 + t

∫ ∞
0

exp(−t)(e− 1)x(s)

(t+ 1)(s+ e)(s+ 1)
ds,

where h is an element of the space BC(R+,R) such that ‖h‖ ≤ 1/
√

7 and t ∈ R+. Observe

that (T1x)(t) = h(t), (T2x)(t) = x2(t)
1+t and u(t, s, x) = exp(−t)(e−1)x

(t+1)(s+e)(s+1) .

It is clear that T1 and T2 are continuous operators on the space BC(R+,R). Addition-

ally for all t ∈ R+ and for all x ∈ BC(R+,R),

|(T1x)(t)| = |h(t)| ≤ ‖h‖
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and

|(T2x)(t)| ≤
∣∣∣∣x2(t)1 + t

∣∣∣∣ ≤ ‖x‖2 .
Hence assumption (i) is satisfied with d1(x) = ‖h‖ and d2(x) = x2. The function u(t, s, x)

is continuous on the set R+ × R+ × R. Further we get

|u(t, s, x)| =
∣∣∣∣ exp(−t)(e− 1)x

(t+ 1)(s+ e)(s+ 1)

∣∣∣∣ =
exp(−t)(e− 1) |x|

(t+ 1)(s+ e)(s+ 1)

for all t, s ∈ R+ and x ∈ R. If we choose a(t) = exp(−t)
t+1 , b(s) = e−1

(s+e)(s+1) and ψ(x) = x, as-

sumption (ii) is satisfied. In fact, we have that ‖a‖ = a(0) = 1 and ‖b‖1 =
∫∞
0

(e−1) ds
(s+e)(s+1) =

1 and obviously a(t)→ 0 as t→∞. Now, if we consider the previous functions, then the

inequality in the assumption (iii) is

(4.15) ‖h‖+ r30 ≤ r0.

Apart from this for ε ≥ 0, L > 0, ‖x‖ ≤ r0 and t, s ∈ [0, L] such that |t− s| ≤ ε, we have

that

(4.16) |(T1x)(t)− (T1x)(s)| = |h(t)− h(s)|

and

|(T2x)(t)− (T2x)(s)| =
∣∣∣∣x2(t)1 + t

− x2(s)

1 + s

∣∣∣∣
≤
∣∣(1 + s)

[
x2(t)− x2(s)

]
+ [(1 + s)− (1 + t)]x2(s)

∣∣
(1 + t)(1 + s)

≤ 2r0
1 + t

|x(t)− x(s)|+ r20 |t− s|
(1 + t)(1 + s)

≤ 2r0 |x(t)− x(s)|+ r20ε.

(4.17)

Taking into account that the function h is uniformly continuous on the set [0, L], we obtain

by (4.16) that

ω0(T1X) = 0.

In view of (2.1) we have by (4.17) that

ω0(T2X) ≤ 2r0ω0(X).

Moreover, fixing a nonempty and bounded subset X of the ball Br0 , for x, y ∈ X, we get

(4.18) |(T1x)(t)− (T1y)(t)| = 0.

Using (4.18), we have

lim sup
t→∞

diam(T1X)(t) = 0.
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Thus we deduce that the inequalities of the assumption (iv) are satisfied with constants

kr0 = 0 and qr0 = 2r0. Next we have that the inequality of the assumption (v) is the

equivalent to

(4.19) 2r20 < 1.

It can be calculated that the number r0 ∈ (0.5128, 0.6395) is the solution of the in-

equalities (4.15) and (4.19). Further, without loss of generality assume that t1 < t2, for

all t1, t2 and s ∈ R+ and x ∈ R with |x| ≤ r0 we have

|u(t1, s, x)− u(t2, s, x)| =
∣∣∣∣ exp(−t1)(e− 1)x

(t1 + 1)(s+ e)(s+ 1)
− exp(−t2)(e− 1)x

(t2 + 1)(s+ e)(s+ 1)

∣∣∣∣
≤ (e− 1) |x|

(s+ e)(s+ 1)

∣∣∣∣exp(−t1)
t1 + 1

− exp(−t2)
t2 + 1

∣∣∣∣
≤ (e− 1)r0

(s+ e)(s+ 1)

∣∣∣∣(t2 + 1) exp(t2)− (t1 + 1) exp(t1)

(t1 + 1)(t2 + 1) exp(t1 + t2)

∣∣∣∣
≤ (e− 1)r0

(s+ e)(s+ 1)

∣∣∣∣(t2 + 1) (exp(t2)− exp(t1)) + exp(t1)(t1 − t2)
(t1 + 1)(t2 + 1) exp(t1 + t2)

∣∣∣∣
≤ (e− 1)r0

(s+ e)(s+ 1)

[(t2 + 1) exp(ξ) + exp(t1)] |t1 − t2|
(t1 + 1)(t2 + 1) exp(t1 + t2)

≤ (e− 1)r0 |t1 − t2|
(s+ e)(s+ 1)

,

where ξ ∈ (t1, t2). If we put φr0(t) = r0t and τ(s) = e−1
(s+e)(s+1) assumption (vi) is satisfied.

Next, let us observe that for all t ∈ R+ and x, y ∈ R with |x| ≤ r0, |y| ≤ r0 we have that

|u(t, s, x)− u(t, s, y)| = exp(−t)(e− 1) |x− y|
(t+ 1)(s+ e)(s+ 1)

≤ (e− 1) |x− y|
(s+ e)(s+ 1)

.

If we take ηr0(t) = t and v(s) = e−1
(s+e)(s+1) , the assumption (vii) is satisfied.

Thus, on the basis of Theorem 3.1 we conclude that (4.14) has at least one solution in

the space BC(R+,R) belonging to the ball Br0 . Obviously, all of the solutions of (4.14)

from the ball Br0 are asymptotic stable on R+.

Remark 4.4. Let us observe that (4.14) is a special case of the functional integral equation

which is handled in [3, 6, 7, 15], where f(t, x) = x2/(1 + t).

It is easily seen that assumptions (i)–(v) of Theorem 2 in [6] are fulfilled with kr = 2r,

‖a‖ = 1, ‖b‖1 = 1, M = 0 and ψ(r) = r. Hence the inequality of assumption (vi), given

in [6], takes the following form:

(4.20) ‖h‖+ 2r3 ≤ r.

It can be checked that if ‖h‖ ∈ [1/
√

13, 1/
√

7], then (4.20) does not have a positive solution.
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Further, if we choose h(t) = (t+ 1)/(4t+ 3), then we have ‖h‖ = 1/3 and assumptions

of Theorem 3.1 are satisfied as considered above, but since limt→∞ h(t) 6= 0, assumption (i)

of Theorem 3.2 in [3] is not satisfied.

Besides, being h a decreasing function on R+, assumption (i) of Theorem 3.1 in [15] is

not satisfied.

On the other hand, we have

|f(t, x)− f(t, y)| =
∣∣∣∣ x21 + t

− y2

1 + t

∣∣∣∣ ≤ |x+ y|
1 + t

|x− y| .

It can be seen that there is not any constant number k such that the function f(t, x) satis-

fies the Lipschitz condition with respect to the second variable. Hence, the assumption (iii)

of Theorem 8 in [7] is not satisfied.

Therefore existence theorems in [3, 6, 7, 15] are inapplicable to (4.14).

Example 4.5. Let us consider the following integral equation:

(4.21) x(t) = t exp(−2t) +
√
x2(t) + 5

∫ ∞
0

√
1 + |x(s)|

exp(t+ s+ 1)
ds,

where t ∈ R+. Observe that (T1x)(t) = t exp(−2t), (T2x)(t) =
√
x2(t) + 5 and u(t, s, x) =√

1 + |x|/ exp(t+ s+ 1).

It is clear that T1 and T2 are continuous operators on the space BC(R+,R). Moreover

for all t ∈ R+ and for all x ∈ BC(R+,R), we have

|(T1x)(t)| = |t exp(−2t)| ≤ 1

2e

and

|(T2x)(t)| =
∣∣∣√x2(t) + 5

∣∣∣ ≤√‖x‖2 + 5.

Hence assumption (i) is satisfied with d1(x) = 1/(2e) and d2(x) =
√
x2 + 5, respectively.

The function u(t, s, x) is continuous on the set R+ × R+ × R. Further, we get

|u(t, s, x)| =

∣∣∣∣∣
√

1 + |x|
exp(t+ s+ 1)

∣∣∣∣∣ =

√
1 + |x|

exp(t+ s+ 1)

for all t, s ∈ R+ and x ∈ R. Thus the functions appearing in assumption (ii) have the form

a(t) = exp(−t − 1), b(s) = exp(−s) and ψ(x) =
√
x+ 1. Clearly we have that a(t) → 0

as t → ∞, ‖a‖ = 1/e and ‖b‖1 =
∫∞
0 exp(−s) ds = 1. In order to verify assumption (iii)

which has the form:

(4.22)
1

2e
+

1

e

√
r20 + 5

√
r0 + 1 ≤ r0.
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Moreover the operators T1 and T2 satisfy the assumption (iv). Indeed for ε ≥ 0, L > 0,

‖x‖ ≤ r0 and t, s ∈ [0, L] such that |t− s| ≤ ε, we obtain

(4.23) |(T1x)(t)− (T1x)(s)| = |t exp(−2t)− s exp(−2s)|

and without loss of generality, assuming that x(t) < x(s), we get

|(T2x)(t)− (T2x)(s)| =
∣∣∣√x2(t) + 5−

√
x2(s) + 5

∣∣∣
≤ |x(t)− x(s)| 2 |ξ|

2
√
ξ2 + 5

≤ |x(t)− x(s)| ,

(4.24)

where ξ ∈ (x(t), x(s)). In view of (2.1) and taking into account that the function t exp(−2t)

is uniformly continuous on the set [0, L], we have by (4.23) and (4.24) that

(4.25) ω0(T1X) = 0

and

ω0(T2X) ≤ ω0(X).

Fixing a nonempty and bounded subset X of the ball Br0 , for x, y ∈ X, we get

(4.26) |(T1x)(t)− (T1y)(t)| = 0.

Using (4.26), we have

(4.27) lim sup
t→∞

diam(T1X)(t) = 0.

From (4.25) and (4.27), we get

(4.28) µ(T1X) = 0.

So, we get that the inequalities of assumption (iv) are satisfied with the constants kr0 = 0

and qr0 = 1.

Next we have that the inequality of assumption (v) as follows:

(4.29)

√
r0 + 1

e
< 1.

By direct computation we see that the number r0 ∈ (2.43, 4.32) is the solution of the

inequalities (4.22) and (4.29).



400 İsmet Özdemir and Bekir İlhan

Further, without loss of generality, we assume that t1 < t2, for all t1, t2, s ∈ R+ and

x ∈ R with |x| ≤ r0, we have

|u(t1, s, x)− u(t2, s, x)| =

∣∣∣∣∣
√

1 + |x|
exp(t1 + s+ 1)

−
√

1 + |x|
exp(t2 + s+ 1)

∣∣∣∣∣
≤
√

1 + |x|
exp(s+ 1)

∣∣∣∣ 1

exp(t1)
− 1

exp(t2)

∣∣∣∣
≤
√

1 + |x|
exp(s+ 1)

|exp(t2)− exp(t1)|
exp(t1 + t2)

≤
√

1 + |x|
exp(s+ 1)

|t2 − t1| exp(ξ)

exp(t1 + t2)

≤
√

1 + r0
exp(s+ 1)

|t2 − t1| ,

where ξ ∈ (t1, t2). If we put φr0(t) =
√

1 + r0 t and τ(s) = 1/ exp(s+ 1), assumption (vi)

is satisfied.

Finally, without loss of generality assume that x < y, let us observe that for all t ∈ R+

and x, y ∈ R with |x| ≤ r0, |y| ≤ r0 we have the inequality

|u(t, s, x)− u(t, s, y)| =

∣∣∣∣∣
√

1 + |x|
exp(t+ s+ 1)

−
√

1 + |y|
exp(t+ s+ 1)

∣∣∣∣∣
≤ |x− y|

2
√

1 + |ξ| exp(t+ s+ 1)

≤ |x− y|
2 exp(s+ 1)

,

where ξ ∈ (x, y). If we take ηr0(t) = t/2 and v(s) = 1/ exp(s+ 1), the assumption (vii) is

satisfied. The result follows from Theorem 3.1.

Remark 4.6. Observe that if we put a(t) = t exp(−2t), f(t, x) =
√
x2 + 5 and u(t, s, x) =√

1 + |x|/ exp(t + s + 1), then (4.21) is a special case of (1.7) which is handled in [7]. It

is easily seen that a ∈ BC(R+,R) and ‖a‖ = 1/(2e). f(t, 0) ∈ BC(R+,R) and f satisfies

the Lipschitz condition with respect to the second variable for k = 1.

On the other hand, we have g(t, s) = 1/ exp(t + s + 1) and h(r) = r/2 which are

imposed in the assumption (iv) of Theorem 8 in [7] for the inequality:

|u(t, s, x)− u(t, s, y)| ≤ g(t, s)h(|x− y|)

to be satisfied for t, s ∈ R+ and x, y ∈ R.

Moreover we get f =
√

5, g = 1/e and u = 1/e, where

f = sup
{
|f(t, 0)| : t ∈ R+

}
, g = sup

{∫ ∞
0

g(t, s) ds : t ∈ R+

}
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and

u = sup

{∫ ∞
0
|u(t, s, 0)| ds : t ∈ R+

}
.

Thus, assumptions (i)–(vi) of Theorem 8 in [7] are fulfilled.

Finally, let us note that the inequality of assumption (vii), given in [7]:

‖a‖+ kgrh(r) + kur + fgh(r) + fu ≤ r

takes the following form:

(4.30)
r2 +

√
5r + 1

2e
+
r +
√

5

e
≤ r.

It can be checked that (4.30) does not have a positive solution.

Therefore, Theorem 8 in [7] is inapplicable to (4.21).
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Faculty of Education, İnönü University, 44280, Malatya, Turkey

E-mail address: ismet.ozdemir2344@gmail.com

Bekir İlhan
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