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On the Existence and Uniform Attractivity of the Solutions of a Class of

Nonlinear Integral Equations on Unbounded Interval

Ismet Ozdemir* and Bekir ilhan

Abstract. In this paper, we prove the existence and uniform attractivity of the solu-
tions of a class of functional integral equations which contain a number of classical
nonlinear integral equations as special cases. Our investigations will be carried out in
the space of continuous and bounded functions on an unbounded interval. The main
tools here are the measure of noncompactness and the suitable fixed point theorem.
We introduce also some examples and remarks showing the difference between our

main result and some previous results.

1. Introduction

It is well known that integral equations have wide application in engineering, mechan-
ics, physics, economics, optimization, queing theory and so on. The theory of integral
equations is rapidly developing with the help of tools in functional analysis, topology and
fixed-point theory.

Agarwal and O’Regan [1] gave the existence of the solutions for the nonlinear integral

equation

(1.1) :L'(t):/Oook(t,s)f(s,x(s))ds, L € RY,

in the space C;[0, 00), where C;[0, c0) denotes the space of bounded and continuous func-
tions on R™ which have limit at infinity, in 2004.
Meehan and O’Regan [10,/11] discussed both the existence of the solutions for the

nonlinear integral equation

(1.2) x(t) = h(t) + u/ooo k(t,s)f(s,x(s))ds, t&RT,

in the space C;[0, 00) and the existence of the solutions for the nonlinear integral equation

(13) o) = hit) + | Tkt 8) [f(a(s) + gla(s)]ds, ¢ € R,
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in the space BC(R',R), where BC(R™,R) denotes the space of bounded and continuous
functions on R, in 1999 and 2000, respectively. Later in [12] they established the existence

of at least one positive solution of nonlinear integral equation
o
(1.4) x(t) = h(t) +/ k(t,s)f(s,x(s))ds, te€RT,
0

in the space LP(R*) in 2001.
In 2004, Banas and Poludniak [4] investigated the monotonic solutions for the nonlinear

integral equation

(1.5) x(t) = f(t) + /000 u(t,s,x(s))ds, te€RT,

in the space of Lebesque integrable functions on unbounded interval by using the Darbo
fixed point theorem and the measure of noncompactness defined in Definition [2.1
Bana$ and Martin [5] studied the existence and asymptotic stability of the solutions

for the nonlinear integral equation
(o)
(1.6) x(t) = g(t) + f(t,ﬂf(t))/ K(t,s)h(s,x(s))ds, t€RT,
0

in the Banach space BC(RT,R), in 2006.
In 2004, Cabellaro and others [6], in 2008, Banas and Olszowy [3] and more recently
in 2013, Darwish and others [7] studied the existence of the solutions for the Urysohn

integral equation defined on unbounded interval

(1.7) z(t) = a(t) + f(t, z(t)) /000 u(t,s,z(s))ds, teR",

with the help of measure of noncompactness and a fixed point theorem in the space
BC(R™,R). Of course authors studied integral equation under different assumptions
and measure of noncompactness, also they have given rather different existence theorems.

Olszowy [13H15] studied in the Fréchet space of real functions being defined and
continuous on R™ and has given results about monotonicity of the solutions of the integral
equation .

In 2010, Karoui and others [9] studied in the space LP?(R™) by means of Schauder’s
fixed point theorem.

Motivated by recent researches in this field, we study the more general nonlinear

integral equation,
(1.8) x(t) = (Thx)(t) + (Taz)(t) /000 u(t,s,z(s))ds, teR",

where the functions u(t, s, z) and the operators T;, (i = 1,2) appearing in (1.8 are given,
while z = x(t) is an unknown function. It is clear that ((1.8) includes (|1.1)—(1.7]) as special
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cases. Using the technique of a suitable measure of noncompactness, we prove an existence
theorem for . We give some examples satisfying the conditions given in this paper.
The approach applied in this paper depends on extending and generalizing of the methods
and tools used in the study of some nonlinear integral equations which are presented in the
papers [4-7,9]. It is worthwhile mentioning that the class of integral equations considered

in this paper are more general then those investigated up to now.

2. Auxiliary facts and notations

In this section, we give a collection of auxiliary facts which will be needed in the sequel.
Assume that (E,|[|-]|) is a real Banach space with zero element 6. Let B(x,r) denote the
closed ball centered at x and with radius r. The symbol B, stands for the ball B(6,r).
If X is a subset of E, then X and Conv X denote the closure and convex closure of X,
respectively. With the symbols AX and X +Y, we denote the standard algebraic operations
on sets. Moreover, we denote by MM the family of all nonempty and bounded subsets of
E and 91y its subfamily consisting of all relatively compact subsets. The definition of the

concept of a measure of noncompactness presented below comes from [2].

Definition 2.1. A function p: Mg — RT = [0,00) is said to be a measure of noncom-

pactness in F if it satisfies the following conditions:
(1) The family ker p = {X € Mg : u(X) = 0} is nonempty and ker u C Ng;
(2) X CY = p(X) < p(Y);
(3) #(X) = pu(Conv X) = p(X);
(4) pAX + (1 =N)Y) < Ap(X)+ (1 = N)pY) for X € [0,1];

(5) if {X,,} is a sequence of nonempty, bounded, closed subsets of the set E such that
Xnt1 C Xy, (n=1,2,...) and limy, 00 u(X,) = 0, then the set Xoo = (oo X5, is

nonempty.

In the sequel, we will work in the Banach space BC(R™,R). The space BC(RT,R) is
furnished with the standard norm |z|| = sup {|z(¢)| : t € R*}.

We will use a measure of noncompactness in the space BC(R™,R). In order to define
this measure let us fix a nonempty and bounded subset X of BC(RT,R). For z € X,
€ >0and L > 0 denoted by w”(z,¢) the modulus of continuity of function z, i.e.,

wh(z,e) = sup {|z(s) — z(t)| : t,s € [0,L] and |t — 5| < €}.
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Further let us put

wh (X, e) :sup{wL(x,E) cxeX},
w (X) = lim wl (X, ¢)

e—0
and

(2.1) wo(X) = lim wk(X).

L—oo

Moreover, if t € R is a fixed number, let us denote
X(t)=A{z(t) : z € X}

and
diam X (t) = sup {|z(¢t) —y(t)| : x,y € X}.

With help of the above mappings we define the following measure of noncompactness in
BC(R*,R), [2]:

(2.2) p(X) = wo(X) + limsup diam X (t).

t—o00

The kernel of this measure consists of all nonempty and bounded subsets X of BC(R™, R)
such that functions from X are locally equicontinuous on R* and the thickness of the
bundle formed by functions from X tends to zero at infinity.

Now we recall definitions of the concepts of local attractivity and asymptotic stability
of the solutions of operator equations. Let us assume that 2 is a nonempty subset of the
space BC(R*,R) and F is an operator defined on Q with values in BC(R™,R). Let us

consider the operator equation of the form
(2.3) z(t) = (Fz)(t), teR*.

Definition 2.2. We say that solutions of (2.3) are locally attractive if there exist an
zg € BC(RT,R) and an r > 0 such that for all solutions = x(t) and y = y(t) of (2.3)
belonging to B(xg,r) N2 we have that

lim (x(t) —y(t)) = 0.

t—o00

In the case when limit is uniform with respect to the set B(zg,r) N €2, that is, when for
each € > 0 there exists L > 0 such that

[z(t) —y(t)| < e

for all x,y € B(xo,7) N being solutions of (2.3) for any ¢ > L, we will say that solutions
of (2.3)) are uniformly locally attractive (or equivalently asymptotically stable) on RT, [8].
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Finally, we will make use of the following fixed-point theorem, [2].

Theorem 2.3. Let (Q be a nonempty, bounded, closed and convex subset of the Banach

space E and let
F:Q—Q
be a continuous transformation such that p(FX) < ku(X) for any nonempty subset X of

Q, where u is a measure of noncompactness in E and k € [0,1) is a constant. Then F
has a fixed point in the set Q.

Remark 2.4. Denote by Fix F' the set of all fixed points of the operator F' belonging to Q.

It can be readily seen that the set Fix F' belongs to the family ker u, [2].

3. The main result

We will consider the existence of the solutions of (1.8]) assuming that the following condi-

tions are satisfied:

(i) The operators T;: BC(RT,R) — BC(R",R) are continuous and there exist contin-

uous nondecreasing functions d;: R™ — R* such that
[(Tiz) ()] < di([|=]])
for all z € BC(R',R) and t € RT, (i = 1,2).

(ii) The function u: RT xR* xR — R is a continuous function and there exist continuous
functions a, b, : RT — RT such that limy o a(t) = 0, ||b]l; =[5 |b(s)|ds < oo and

1) is nondecreasing on RT such that

lu(t, s, z)| < a(t)b(s)y(|z|) for all t,s € RT and z € R.
(iii) There exists a positive real number rq satisfying the inequality
d1(ro) + da(ro) [lal 1b]l, ¥ (ro) < ro.
(iv) There exist the nonnegative constants k,, and g,, for ro such that the inequalities
(11 X) < ko pu(X)

and
wo(TeX) < growo(X)

hold for all nonempty and bounded subsets X of B,,, where wy and p are defined

by and .
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(v) We assume that
kro + aro lall [[bll ¢(ro) < 1.

(vi) There exists a continuous nondecreasing function ¢,,: Rt — RT which holds ¢,,(0) =
0 and
|ute; s,2) — u(ty, s, 2)| < ¢ry(|t2 — ta])7(s)
for all t1,t3,s € RT and x € R with || < rg, where 7 is an element of the space

BC(R*,R") such that [;* 7(s)ds < oc.

(vii) There exists a continuous nondecreasing function 7, : Rt — R* which holds n,,(0) =
0 and
u(t, s, ) — u(t, s,y)| < (|2 = yl)v(s)
for all t,s € R* and z,y € R with |z| < rg, |y| < ro, where v is an element of the
space BC(R',R") such that [;* v(s)ds < oc.
Now we can formulate an existence result concerning the functional integral equation

3.
Theorem 3.1. Under assumptions (1)—(vii), there exists a positive real number ro such
that the equation (1.8)) has at least one solution x = x(t) belonging to B,, C BC(RT,R).

Moreover, the solutions of the equation (1.8) are uniformly locally attractive on RT.

Proof. We define operator F' on By, in the following way:
(Fa)(t) = (Tia)t) + (Zan)(®) [ ult,s.a(5)) ds.
0

Notice that in view of assumptions (i) and (ii), the function ¢ — (Fz)(t) is well defined
on the interval RT. At first we show that the function (Fz) is continuous on R*. To do
this fix arbitrarily L > 0 and ¢ > 0. Take arbitrary numbers t, ¢y € [0, L] with [t — o] < €.
Then in view of assumptions we obtain that

[(Fz)(t) — (F)(to)]|

= ’(Tlx)(t) + (Toz)(t) /000 u(t, s, z(s))ds — (Thz)(tg) — (Tox)(to) /OO u(to, s,x(s)) ds

0

/000 u(t, s, x(s)) ds

< |(Tha) () — (Taw)(to)| + [(Tox) () — (Tax)(to)]

+ [(T2) (to)]

/OO [u(t, s, z(s)) — u(to, s, x(s))] ds
(3.1) 0 -
< wh(Tyz,e) + W (Tyw, ) /0 lu(t, s, z(s))| ds

Faa(lel) [ futt 5,206 s, o(9)
<wH(Tix,e) + W (Thx,e)aft) /0 b(s)y(|z(s)|) ds + da([|z])) /0 Gro ([t — tol)7(s) ds

<wh(Tiz,e) +w™(Tow,e) llall (l|z]) [1bll; + da(lll)¢ro () Iy
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where

wE(Tyz, e) = sup {|(Tiz)(s) — (Tyz)(t)| : t,s € [0, L] and |t — 5| < &}
for i = 1,2. By uniform continuity of the functions (7;x) on the set [0, L], we deduce that
wl(T;z,e) — 0 as e — 0. Thus we have that (Fz) is continuous on [0, L]. Since L > 0 is

arbitrary, (Fz) is continuous on RT. Next we show that (Fz) is bounded on R*. By our

assumptions, for arbitrarily fixed t € R™, we derive that

(Fa)(0)] = |(T)e) + (Ta)te) [ (s, 2(s)) ds

(3.2) < [(Ty)(0)] + (Toa) (1 |/ ult, s, 2(s)) | ds
< dy(lzl) + do(lz]) /0 a(t)b(s)p([2(5))) ds.

Hence, from (3.2), we obtain the following evaluation:
(3:3) [Fz|| < di(l[=]]) + da([[=]]) |l [[bll; ©(=[])

which implies that the function (Fz) is bounded on R*. Combining this fact with the
continuity of the function (Fz) on RT, we conclude that the operator F transforms the
ball By, into the space BC(R*,R). Moreover linking and the assumption (iii) we
deduce that the operator F' maps the ball B, into itself, where 7y is a number indicated
in assumption (iii). Now, we shall prove that operator F' is continuous on B,,. To do this,
consider € > 0 and fixed yo € B,,. Then,

(3.4)
[(Fz)(t) — (Fyo)(t)]

- ‘(le)(t) +(Ta)(0) [ ults.a(9) ds — (D)) = (Toan)0) [ altss, () ds
0 0
< [(Tyz)(£) — (Tuao)(B)] + [(Tox)(£) — (Towo) (0) / ult, s, 2(s))] ds
|(Toyo)(t |/ u(t, s, z(s)) —u(t, s,yo(s))| ds.

Hence from estimate we get

|Fz — Pyoll < [Ti — Tuoll + 1o — Tagol lall b1l 4 (ro)
+ da(ro) /0 o()mo (2(5) — yo(s)]) ds.

Since the operators T; are continuous for any yo € By, there exist the numbers d;(¢) > 0

(3.5)

with 0;(g) < € such that we have ||T;z — Tiyo|| < € for all x satisfying ||z — yo|| < d;. Let
us take §(g) = min {d1(¢), d2(¢)}. In this case if ||z — yo|| < §(¢), (3-5) becomes

(3.6) [Fx = Fyoll < e+ ellal| [[bll, ©(ro) + d2(ro) [vlly 7ry (€)-
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Therefore from and assumption (vii) we have that F is continuous on the ball By, .

Further, we shall show that operator F' satisfies the Darbo condition on the ball B,,.
In order to do this, let us take a nonempty subset X of the ball B,,. Fix e > 0, L > 0
and choose x € X and t1,t2 € [0, L] such that |t; — t2| < e. Then in view of we have
that

(3.7)  WH(Fr,e) Swh(Tvz,e) +wh(Tox,e) all b ¥(ro) + da(ro)éry (e) Il
and by , we get

WHFX,e) < wM(T1X,e) + wh(T2X, €) [lall bl ¥ (ro) + da(r0)dry (€) I 71l
which yields
(3.8) Wi (FX) < wg (T1X) + g (T2X) [lall 0]l 9 (ro).
If we take limit as L — oo, we have by that
(3.9) wo(FX) < wo(T1X) 4+ wo(T2X) [lal [|b]ly ¥ (ro)-

Further let us take a nonempty subset X of the ball B,,. For x,y € X and t € RT, from
estimate (3.4]) and the conditions (i) and (ii) we get that

diam(FX)(t) < diam(T1.X)(t) + diam(752X)(t)a(t) ||b]|; ¥(ro)
+ 2da(ro)a(t) [|blly 1 (ro)-
If we take limitsupremum as ¢ — oo in (3.10) we have the inequality

(3.10)

(3.11) lim sup diam(FX)(¢) < limsup diam(77X)(¢).
t—o0 t—r00

By linking (3.9) and (3.11)) we derive that
p(FX) < (T X) + growo(X) [lall [[bll, ©(ro)

(3.12) < kro (X)) + aro llal| [[bl]; 2 (ro) p(X)
< lnp(X)

from (iv) and the inequality wo(X) < p(X), where 1,y = kyy + qr, ||al] [|0]l; 2(70).

Now let us observe that by assumption (v) and we have that F' is a contraction
with respect to the measure of noncompactness p. Hence by Theorem [2.3] the operator F
has at least one fixed point z in the ball B,,. Obviously, every function x = z(t) being a
fixed point of the operator F' is a solution of . Further, keeping in mind Remark
we conclude that the set Fix F' of all fixed points of the operator F' belonging to the ball
B,, is a member of the ker 1. Hence, in view of the description of the ker 1 we infer that
all of solutions of belonging to the ball B, are uniformly attractive on R*. This

step completes the proof of our theorem. O
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4. Examples

Example 4.1. Consider the following integral equation:

arctan z(s)

exp(D)(s2 +1)

(4.1) z(t) = asin(z(t) + 1) + Bz2(t) /000

where t € RT and «a, (8 are any constants such that 0 < |a| < 1. Notice that (4.1 is a
special case of (|1.8) if we put

(Tyz)(t) = asin(x(t) + 1), (Thx)(t) = Bx*(t)

and
arctan x

exp(t)(s?+1)
It is easily verified that the assumptions of Theorem are satisfied. 77 and 75 are
continuous operators on the space BC(RT,R). Further for all t € RT and » € BC(RT,R),

u(t,s,x) =

(4.2) [(Thz)(8)| < |af |sin(z(t) + 1)| < |af
and
(4.3) (Tox) ()] < 18] [«* ()] < 18] [l

Hence assumption (i) is satisfied with dy(x) = |a| and da(z) = | 3| 22. Now notice that the

function u is continuous on the set R™ x RT x R. Moreover, we get

arctanx ™
exp(t)(s2+1) ' ~ 2exp(t)(s2+1)

(4.4) lu(t, s, x)| =

for all t,s € Rt and x € R. Thus, according to assumption (ii) we may put a(t) =
7/(2exp(t)), b(s) = 1/(s® + 1) and 9 (z) = 1. Further we get

m 7T < ds T
lal| =sup{ |-———=[:t>0¢t ==, [bll, =] ==
2exp(t) 2 , s2+1 2

and obviously, we have that a(t) — 0 as t — oo. Now if we consider (4.2)—(4.4), the

assumption (iii) takes the following form:

27T2
(4.5) o] + | 5] Uy < 7.

Apart from this, fixing a nonempty and bounded subset X of the ball B,,, let z € X,
€>0,L>0andt,s € [0,L] such that |t —s| <e. Then

(Thz)(t) — (Thz)(s)| = [af [sin(z(t) + 1) — sin(z(s) + 1)]

4.6
(4.6) <lal|z(t) — z(s)]
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and
|(Tz)(t) — (Tax)(s)| = |Bz*(t) — Ba(s)]
(4.7) = Bl |2(t) + ()| [x(t) — x(s)]
< 21| ro fe(t) — (s)].
From estimates , and in view of , we get

(4.8) wo(T1X) < |a| wo(X)
and
(49) wO(TQX) < 21”0 |ﬂ| wO(X).

(4.9) implies that the second inequality of assumption (iv) is satisfied with the constant
qro = 219 |B|. For z,y € X, we get

(Thz)(t) — (Tay) ()] = |ev[sin(z(t) + 1) —sin(y(t) + 1)]]

4.10
(4.10) < laf () =y (1)

Using (4.10)), we have

(4.11) lim sup diam(71 X)(¢) < |a|lim sup diam X ().

t—o00 t—o00

From (4.8)) and (4.11)), we get
(4.12) W X) < Jal p(X).

So, we have by (4.12)) that the first inequality of assumption (iv) is satisfied with k., = |a/].
Now if we consider (4.9) and (4.12)), the inequality of assumption (v) takes the following
form:

2
(4.13) jof 4 T0lBlm

2

<1

We consider two cases.
Case 1: B # 0. Since 0 < |a| < 1, it can be easily verified that if

1—]al|g|7® >0 and |a*+|a]|8|7® -1 <0,

then

e <O 2(1a|)>m 2—2y/1—|a||B|7% 242y/1—|a||B| 7>
ERETES EER ’ EES

2-2/1-|e||B|m*  2(1—|a])

which is equivalent to ro € B2 s 1B ) as the positive solution of the system

of inequalities (4.5) and (4.13)).
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Case 2: = 0. Then, since 0 < |a] < 1, it is clear that ¢ € [|c|, 00) is the solution of
the inequalities (4.5) and (4.13)).
Additionally, without loss of generality assume that t; < to, for all ¢1, to and s € RT

and = € R with |z| < r¢ we have

arctan x arctan x
exp(t) (s> +1)  exp(ts)(s2 + 1)
_|arctan z| |exp(t2) — exp(t1)|
o os241 exp(t1 + t2)

larctan z| exp(§) [t2 — t1]

s2+1  exp(ty + to)

<Lyt —tq]

|U(t1, S, LIZ‘) - U(t% S, ﬂ?)‘ =

where £ € (t1,t2). If we put ¢, (t) = t and 7(s) = 7/[2(s2 + 1)], the assumption (vi) is
satisfied. Finally, without loss of generality assume that z <y, forallt € R* and z,y € R
with |z]| <7, |y| < ro we get

arctan x — arctany |z — y| |z — |
exp(t)(s2+1) [~ exp(t)(1+&)(1+s?) = 1+’

‘u(tv S, I‘) - u(ta S, y)’ =

where ¢ € (z,y). If we take n,,(t) = t and v(s) = 1/(s% + 1), the assumption (vii) is
satisfied.

Since all of the assumptions of Theorem are fullfilled, we deduce that the integral
equation has at least one solution belonging to the ball B,, of the space BC(R™,R).
Taking into account Remark and the measure of noncompactness y given by , we
infer easily that any solutions of which belong to the ball B,, are asymptotically
stable on RT as defined in Definition 2.2

Remark 4.2. Notice that none of the existence theorems given in [1}3H7,9-15] are applicable
to (4.1), since the integral equation (4.1) cannot be derived from any of the integral

equations handled in mentioned papers.

Example 4.3. Let us consider the following integral equation:

_ a?(t) [ exp(=t)(e — Dz(s)
(4.14) 2(t) = h(t) + 1+t/0 G+ Dis+e)ls+1) ™

where h is an element of the space BC(R*, R) such that ||h]| < 1/4/7 and t € R*. Observe

272 exp(— e—1)x
that (Tyx)(t) = h(t), (Taz)(t) = 14(-1? and u(t,s,z) = %.

It is clear that T} and T are continuous operators on the space BC(R™,R). Addition-
ally for all t € RT and for all x € BC(R",R),

[(Taz)(8)] = [n()] < Al
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and

2
(@) < [ 20 < ol

Hence assumption (i) is satisfied with dy(z) = ||h|| and d2(z) = 2. The function u(t, s, z)

is continuous on the set R™ x R x R. Further we get

o)) — | R = | _exp(=t)e=1)la
T+ D(s+e)(s+1)| (1) (s+e)(s+1)

for all t,s € R* and z € R. If we choose a(t) = exfj&t), b(s) = W

sumption (ii) is satisfied. In fact, we have that ||a|| = a(0) = 1 and ||b||; = fo

and ¢¥(z) = x, as-

(e— l)ds
(st+e)(s+1) —
1 and obviously a(t) — 0 as t — co. Now, if we consider the previous functions, then the

inequality in the assumption (iii) is

(4.15) Al + 73 < 7o.

Apart from this for ¢ > 0, L > 0, ||z|| < 1 and t,s € [0, L] such that |t — s| < e, we have
that

(4.16) (Thz)(t) — (Thz)(s) = [h(t) — h(s)]

and

1+t 1+ s
_ 10+ 8) [0 = 2] + [(1+ 8) — (15 0] 2%(9)
(4.17) - (1+6)(1+s)
< 20 1ot — as)) + 01 Sl
=1+t A+ s)

< 2ro|z(t) — z(s)| + r%s.

Taking into account that the function A is uniformly continuous on the set [0, L], we obtain

by (E16) that

wo(Th X) = 0.
In view of we have by that
wo(TeX) < 2rowo(X).
Moreover, fixing a nonempty and bounded subset X of the ball B, for z,y € X, we get
(4.18) [(Thz)(t) — (Thy) (1) = 0.
Using , we have

lim sup diam(7} X ) (¢t) = 0.

t—o00
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Thus we deduce that the inequalities of the assumption (iv) are satisfied with constants
ky, = 0 and g,, = 2r9. Next we have that the inequality of the assumption (v) is the

equivalent to
(4.19) 2r3 < 1.

It can be calculated that the number 7o € (0.5128,0.6395) is the solution of the in-
equalities (4.15) and (4.19). Further, without loss of generality assume that t; < ta, for
all t1, to and s € R* and x € R with |z| < r¢ we have

|u(ty, s, ) — u(te, s, )| = (ti+1)(s+e)(s+1) (ta+1)(s+e)(s+1)

(e—1)|z[ |exp(—t1) exp(—t2)
T (s+e)(s+1)| t1+1 to +1
(e —1)rg (ta + 1) exp(te) — (t1 + 1) exp(t1)
T (s+e)(s+1) (t1 + 1)(t2 + 1) exp(ty + t2)
(e—1)rg |(ta+1) (exp(te) — exp(t1)) + exp(t1)(t1 — t2)
T (s+e)(s+1) (t1 + 1)(t2 + 1) exp(t1 + t2)
(e—Dro [(t2 +1)exp(§) +exp(t1)] [t1 — t2
(s+e)(s+1) (t1+1)(t2+1)exp(ts +1t2)
(6 — 1)7“0 ’tl — tg‘
(s+e)(s+1)

exp(—ti)(e— Lo exp(—ta)(e — a ‘

IN

IN

9

where £ € (t1,t2). If we put ¢, (t) = rot and 7(s) = ﬁéﬂ) assumption (vi) is satisfied.

Next, let us observe that for all t € RT and z,y € R with |z| < ro, |y| < 79 we have that

exp(~t)(e—1)fr—y| _(e-Dlz—y|
(t+1)(s+e)(s+1) ~ (s+e)(s+1)

lu(t, s, x) —u(t,s,y)| =

If we take n,,(t) =t and v(s) = %, the assumption (vii) is satisfied.
Thus, on the basis of Theorem [3.1| we conclude that (4.14) has at least one solution in
the space BC(R™,R) belonging to the ball B,,. Obviously, all of the solutions of (4.14])

from the ball B,, are asymptotic stable on RT.

Remark 4.4. Let us observe that is a special case of the functional integral equation
which is handled in [3}/6,/7,[15], where f(t,z) = 22/(1 + ).

It is easily seen that assumptions (i)—(v) of Theorem 2 in [6] are fulfilled with k, = 2r,
llal| =1, ||b]l; =1, M =0 and ¢ (r) = r. Hence the inequality of assumption (vi), given

in [6], takes the following form:
(4.20) A +2r3 < r.

It can be checked that if ||A|| € [1/4/13,1/4/7], then (4.20) does not have a positive solution.
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Further, if we choose h(t) = (t+1)/(4t + 3), then we have ||h|| = 1/3 and assumptions
of Theorem [3.1] are satisfied as considered above, but since lim;_,o h(t) # 0, assumption (i)
of Theorem 3.2 in [3] is not satisfied.

Besides, being h a decreasing function on R™, assumption (i) of Theorem 3.1 in [15] is
not satisfied.

On the other hand, we have

a? y? |z +yl

It can be seen that there is not any constant number & such that the function f(¢, z) satis-
fies the Lipschitz condition with respect to the second variable. Hence, the assumption (iii)
of Theorem 8 in |7] is not satisfied.

Therefore existence theorems in [3,6}/7,15] are inapplicable to .

Example 4.5. Let us consider the following integral equation:

(4.21) 2(t) = texp(—2t) + /22 / Vit

expt+s+1)

where t € RT. Observe that (T1x)(t) = texp(—2t), (Tox)(t) = /22(t) + 5 and u(t, s, z) =

V14 |z|/exp(t + s+ 1).

It is clear that T} and T are continuous operators on the space BC(R™, R). Moreover
for all t € RT and for all z € BC(RT,R), we have

1
2e

(o) (®)] = [V +5] < /llall” + 5.

Hence assumption (i) is satisfied with dy(z) = 1/(2¢) and da(z) = V2 + 5, respectively.

The function u(t, s,x) is continuous on the set RT x RT x R. Further, we get

1+ |z V14 |z

exp(t+s+1) exp(t+s+1)

[(Thz) ()] = [t exp(=2t)| <

and

|u(t’ va)| =

for all t,s € RT and x € R. Thus the functions appearing in assumption (ii) have the form
a(t) = exp(—t — 1), b(s) = exp(—s) and ¢(z) = vz + 1. Clearly we have that a(t) — 0
as t — oo, [la|| = 1/e and [|b]|; = [;° exp(—s)ds = 1. In order to verify assumption (ii)
which has the form:

1

1
(4.22) % + - 73 4+ 5vVro + 1 < ro.
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Moreover the operators 77 and T5 satisfy the assumption (iv). Indeed for € > 0, L > 0,
|z|| < roand t,s € [0, L] such that |t — s| < &, we obtain

(4.23) |(Tyz)(t) — (Thx)(s)| = |texp(—2t) — sexp(—2s)|

and without loss of generality, assuming that x(t) < x(s), we get

(Ty2) () = (Tye)(s)] = |V/a2(6) + 5 — V/a2(s) + 5

|z(t) — x(s)[ 2 €]
(4.24) < N
< fa(t) — z(s)],

where § € (z(t), z(s)). In view of (2.1)) and taking into account that the function ¢t exp(—2t)
is uniformly continuous on the set [0, L], we have by (4.23]) and (4.24) that

(425) wg(TlX) =0

and

wo(TaX) < wo(X).
Fixing a nonempty and bounded subset X of the ball B,,, for x,y € X, we get
(4.26) |(Th)(t) — (Try)(t)| = 0.

Using (4.26), we have

(4.27) lim sup diam(71X)(¢) = 0.

t—o00

From (4.25)) and (4.27)), we get

(4.28) W(TX) = 0.

So, we get that the inequalities of assumption (iv) are satisfied with the constants k,, = 0
and gr, = 1.

Next we have that the inequality of assumption (v) as follows:

Vro+ 1

e

(4.29) <1.

By direct computation we see that the number ro € (2.43,4.32) is the solution of the

inequalities (4.22) and (4.29).
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Further, without loss of generality, we assume that t; < to, for all ¢1,t2,s € RT and
x € R with |z| < rp, we have

V14 |z V14 |z

exp(ti +s+1) exp(ta+s+1)
Vit | 1 1
“exp(s+1) |exp(t1) exp(t2)
V14 |z| |exp(ta) —exp(ty)|
T exp(s+1)  exp(ts +t2)
V1] [t2 =t exp(§)
~exp(s+1) exp(t; +t2)

VI+trg

~exp(s+1)

‘u(tlv S, :Z:) - u(t27 S, ‘/E)| =

‘tQ _t1’7

where & € (t1,t2). If we put ¢, (t) = /1 + 179t and 7(s) = 1/ exp(s + 1), assumption (vi)
is satisfied.

Finally, without loss of generality assume that 2 < ¥, let us observe that for all t € RT
and z,y € R with |z| <1, |y| < rg we have the inequality

V14 |z V14 yl

exp(t+s+1) exp(t+s+1)

|U(t,8,1‘) - U(t,S,y)| =

|z —
T 2y/1+4 |¢lexp(t+s+1)
|z — Y|
~ 2exp(s+1)’

where & € (z,y). If we take n,,(t) = t/2 and v(s) = 1/ exp(s + 1), the assumption (vii) is
satisfied. The result follows from Theorem B.11

Remark 4.6. Observe that if we put a(t) = texp(—2t), f(t,x) = Va2 + 5 and u(t, s, z) =

1+ |z]/exp(t + s + 1), then is a special case of which is handled in [7]. It
is easily seen that a € BC(R",R) and |ja|]| = 1/(2¢). f(¢,0) € BC(RT,R) and f satisfies
the Lipschitz condition with respect to the second variable for k£ = 1.

On the other hand, we have g(t,s) = 1/exp(t + s+ 1) and h(r) = r/2 which are

imposed in the assumption (iv) of Theorem 8 in 7] for the inequality:

ult, s, z) = u(t,s,y)| < g(t, s)h(|z —yl)

to be satisfied for t,s € RT and z,y € R.
Moreover we get f = /5, G = 1/e and @ = 1/e, where

f=sup{|f(t0):teR"}, g:sup{/oog(t,s)dsztER+}
0
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and

u:sup{/ |u(t,s,0)ds:t€R+}.
0

Thus, assumptions (i)—(vi) of Theorem 8 in [7] are fulfilled.

Finally, let us note that the inequality of assumption (vii), given in [7]:

llal| + kgrh(r) + kur + fgh(r) + fu <r

takes the following form:

(4.30)

2
r +\/5r+1+r+\/5§ﬂ

2e e

It can be checked that (4.30)) does not have a positive solution.

1]

Therefore, Theorem 8 in [7] is inapplicable to (4.21)).
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