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Low Regularity Global Well-posedness for the Quantum Zakharov System in

1D

Tsai-Jung Chen, Yung-Fu Fang* and Kuan-Hsiang Wang

Abstract. In this paper, we consider the quantum Zakharov system in one spatial

dimension. We prove the global well-posedness of the system with L2-Schrödinger

data and some wave data. The regularity of the wave data is in the largest set. We

give counterexamples for the boundary of the set. As the quantum parameter tends

to zero, we formally recover the result of Colliander-Holmer-Tzirakis for the classical

Zakharov system.

1. Introduction

Zakharov system describes the propagation of Langmuir waves in an ionized plasma, that

is the nonlinear interaction between the quantum Langmuir waves and the quantum ion-

acoustic waves. Langmuir waves are rapid oscillations of the electron density in conducting

media, such as plasmas. The system reads as follows:

(1.1)


iEt + ∂2xE = nE, x ∈ R,

ntt − ∂2xn = ∂2x |E|
2 ,

E(0) = E0, n(0) = n0, ∂tn(0) = n1,

where E is the slowly varying envelope of the rapidly oscillating electric field and n is the

deviation of the ion density from its mean value. E is complex valued and n is real valued.

The regular solutions of (1.1) satisfy the conservation of mass∫
|E(t)|2 dx =

∫
|E(0)|2 dx = constant

and the conservation of the Hamiltonian∫
|∂xE(t)|2 +

1

2
n(t)2 + n(t) |E(t)|2 +

1

2
ν(t)2 dx = constant,

where ∂tn = ∂xν and ∂tν = ∂x(n+ |E|2).
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The (1.1) has been investigated extensively and we list some of the works in the refer-

ence. In 1997, Ginibre-Tsutsumi-Velo proved a local well-posedness result for (E0, n0, n1) ∈
Hk ⊕ H` ⊕ H`−1 provided that −1 ≤ ` − k < 1/2, 0 ≤ ` + 1/2 ≤ 2k, see [4]. In 2008,

Colliander-Holmer-Tzirakis showed the global well-posedness for (1.1) with (E0, n0, n1) ∈
L2 ⊕H−1/2 ⊕H−3/2, see [1].

Taking quantum effects into account, we consider the quantum Zakharov system

(1.2)


iEt + ∂2xE − ε2∂4xE = nE, x ∈ R,

ntt − ∂2xn+ ε2∂4xn = ∂2x |E|
2 ,

E(0) = E0, n(0) = n0, ∂tn(0) = n1.

The quantum parameter ε for some plasmas typically goes from value of order 10−5 to the

values of order unity, see [3, 6]. It is known that ε = ~ωi
κBTe

, where ~ is Planck’s constant

divided by 2π, ωi is the ion plasma frequency, κB is the Boltzmann constant and Te is the

electron fluid temperature.

Analogous to (1.1), (1.2) also possesses the conservation of mass

(1.3)

∫
|E(t)|2 dx =

∫
|E(0)|2 dx

and the conservation of Hamiltonian∫
|∂xE|2 + ε2

∣∣∂2xE∣∣2 +
1

2
n2 + n |E|2 +

1

2
ν2 +

ε2

2
|∂xn|2 dx = constant,

where ∂tn = ∂xν and ∂tν = ∂x(n+ |E|2 − ε2∂2xn).

The works on the (1.2) are less than those on the (1.1), and we only mention two

of them and some are listed in the reference. In 2016, Jiang-Lin-Shao proved the local

well-posedness for (1.2) with initial data (E0, n0, n1) ∈ H2k ⊕H2` ⊕H2`−2 provided that

−3/4 < `− k < 3/4, −k− 3/4 < ` < 2k+ 3/4 and k > −3/8, see [7]. In 2016, Fang-Shih-

Wang improved the result of local well-posedness for (1.2) with initial data to a wider

range, see [2]. In 2013, Guo-Zhang-Guo proved the global well-posedness of (1.2) in the

energy and above energy spaces and investigate the semi-classical limit behavior of (1.2)

as ε tends to zero, see [5]. Our main result is as follows.

Theorem 1.1. Let −3/4 ≤ ` ≤ 3/4 and 0 < ε ≤ 1. The (1.2) is globally well-posed for

initial data (E0, n0, n1) ∈ L2 ×H2` ×H2`−2 and the solution (E,n) satisfies (1.3) and

‖n(t)‖H2` + ‖∂tn(t)‖H2`−2

≤ ec|t|(‖E0‖2L2+1)ε−2|`+1/2|
max

(
‖n0‖H2` + ‖n1‖H2`−2 , ‖E0‖2L2

)
.

Thus, for k ≥ 0, we establish global well-posedness in the largest space for which local

well-posedness holds. We extend the local well-posedness in the work of Jiang-Lin-Shao
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to the lowest point on the boundary and also formally recover the work of Colliander-

Holmer-Tzirakis as ε approaches zero.

The outline of the paper is as follows. In Sections 3 and 4, we state the homoge-

neous estimates, Duhamel estimates and multilinear estimates. We then invoke Strichartz

estimates and (1.3) to derive global well-posedness of (1.2). In Section 5, we prove the

multilinear estimates which is the key to this work. Also we give a counterexample for

the key estimates. In the appendix, we show some technical lemmas.

2. Notations and solution formulae

Denote 〈ξ〉 = (1 + ξ2)1/2, ξε = ξ
√

1 + ε2ξ2 and Dε =
√

1− ε2∂2x, which will be used

through out the paper. For the fourth order Schrödinger equation

iEt + ∂2xE − ε2∂4xE = F,

we obtain the solution formula

(2.1) E(t, x) = Uε(t)E0(x)− i
∫ t

0
Uε(t− s)F (s, x) ds,

where Uε(t) := eit∂
2
xD

2
ε is the Schrödinger propagator. Denote the Duhamel operator

Uε ∗R F (t, x) = −i
∫ t

0
Uε(t− s)F (s, x) ds.

For the fourth order wave equation

ntt − ∂2xn+ ε2∂4xn = ∂xG,

we denote the modified fourth order wave propagators via Fourier transform by

F (Wε±(t)(n0, n1))(ξ) :=
1

2
e∓itξε n̂0 ∓

1

2

e∓itξε

iξε
n̂1H ∓

1

2

e∓itξε − 1

iξε
n̂1L,

where n1H high frequency part of n1 and n1L = n1 − n1H and Duhamel operators

F (Wε± ∗R G)(t, ξ) :=
1

2

∫ t

0
e∓i(t−s)ξεĜ(s, ξ) ds.

Hence the solution n is split into n = n+ + n−, where

(2.2) n±(t, x) := Wε±(t)(n0, n1)(x)∓Wε± ∗R Gε(t, x)

and Gε = D−1ε G. Also we denote

Wε(t)(n0, n1)(x) := Wε+(t)(n0, n1)(x) +Wε−(t)(n0, n1)(x),

Wε ∗R Gε := −Wε+ ∗R Gε +Wε− ∗R Gε,
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thus

(2.3) n = Wε(t)(n0, n1) +Wε ∗R Gε.

Thus (1.2) can be rewritten as

(2.4)

i∂tE + ∂2xD
2
εE = (n+ + n−)E, x ∈ R,

∂tn± ± ∂xDεn± = ∓1
2D
−1
ε ∂x |E|2 + 1

2n1L,

and the solution formulae are as follows:

(2.5) E(t, x) = Uε(t)E0(x) + Uε ∗R ((n+ + n−)E) (t, x)

and

(2.6) n±(t, x) = Wε±(t)(n0, n1)(x)∓Wε± ∗R
(
D−1ε ∂x |E|2

)
(t, x).

Notice that the wave parts in (2.6) are mixtures of transport equation and Schrödinger

equation.

Denote the Sobolev spaces H`, H`
ε and A`ε, used in the paper with the norms

‖f‖2H` :=

∫
〈ξ〉2`

∣∣∣f̂(ξ)
∣∣∣2 dξ, ‖f‖2H`

ε
:=

∫
〈ξε〉2`

∣∣∣f̂(ξ)
∣∣∣2 dξ,

and

‖f‖2A`ε :=

∫
|ξε|≤1

∣∣∣f̂(ξ)
∣∣∣2 dξ +

∫
1≤|ξε|

|ξε|2`
∣∣∣f̂(ξ)

∣∣∣2 dξ.
To characterize the quantum parameter ε, we also use the following equivalent norm∫

|ξ|≤6

∣∣∣f̂(ξ)
∣∣∣2 dξ +

∫
6<|ξ|≤12ε−1

|ξ|2`
∣∣∣f̂(ξ)

∣∣∣2 dξ +

∫
12ε−1<|ξ|

ε2` |ξ|4`
∣∣∣f̂(ξ)

∣∣∣2 dξ.
For 0 < ε ≤ 1, we obtain the relations between the above norms as

εmax{0,`} ‖f‖H2` . ‖f‖H`
ε
∼ ‖f‖A`ε . εmin{`,0} ‖f‖H2` .

We define the norm

‖n(t)‖Wε
:= ‖(n(t), ∂tn(t))‖Wε

:=
(
‖n(t)‖2A`ε + ‖∂tn(t)‖2

A`−1
ε

)1/2
.

Also we define the fourth order Schrödinger-Bourgain space XSε
0,α, α ∈ R, with the norm

‖E‖
XSε

0,α
:=

(∫ 〈
τ + ξ2ε

〉2α ∣∣∣Ê(τ, ξ)
∣∣∣2 dτdξ)1/2

,

and the reduced fourth order wave Bourgain spaces X
Wε±
`,α , α ∈ R, with the norm

‖n‖
X
Wε±
`,α

:=

(∫
〈ξε〉2` 〈τ ± ξε〉2α |n̂(τ, ξ)|2 dτdξ

)1/2

.

Now we state the estimates needed for proof of Theorem 1.1.
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3. Homogeneous estimates and Duhamel estimates

Proofs of some lemmas stated below are analogous to those in [1, 4, 8], with necessary

changes and adaptations. Let ψ be a cut-off function such that ψ(t) is 1 for |t| ≤ 1, 0 for

|t| > 2 and ψT (t) = ψ(t/T ). Also let χS(τ) be the indicator function on S, that is 1 if

τ ∈ S, 0 if τ /∈ S.

Lemma 3.1 (Homogeneous estimates). Suppose T ≤ 1. For (2.1), we have

(a1) ‖Uε(t)E0‖C([0,T ];L2) = ‖E0‖L2.

(a2) If 0 ≤ b1 ≤ 1/2, then ‖ψT (t)Uε(t)E0‖XSε
0,b1

. T 1/2−b1 ‖E0‖L2.

(a3) (Strichartz estimates). If (q, r) = (4/θ, 2/(1− θ)) and θ ∈ [0, 1], then∥∥∥Dθ/2
ε Uε(t)E0

∥∥∥
LqtL

r
x

. ‖E0‖L2 .

For (2.3) and (2.2), we have

(b1) ‖Wε(t)(n0, n1)‖C([0,T ];Wε)
≤ (1 + T ) ‖(n0, n1)‖Wε

.

(b2) If 0 ≤ b ≤ 1/2, then ‖ψT (t)Wε±(t)(n0, n1)‖
X
Wε±
`,b

. T 1/2−b ‖(n0, n1)‖Wε
.

Lemma 3.2 (Duhamel estimates). Suppose T ≤ 1. For (2.1), we have

(a1) If 0 ≤ c1 < 1/2, then ‖Uε ∗R F‖C([0,T ];L2
x)

. T 1/2−c1 ‖F‖
XSε

0,−c1
.

(a2) If 0 ≤ c1 < 1/2, 0 ≤ b1 and b1 + c1 ≤ 1, then

‖ψT (t)Uε ∗R F‖XSε
0,b1

. T 1−b1−c1 ‖F‖
XSε

0,−c1
.

(a3) (Strichartz estimates). If (q, r) = (4/θ, 2/(1− θ)), θ ∈ [0, 1] and d > 1/2, then∥∥∥Dθ
εUε ∗R F

∥∥∥
Lq [0,T ]Lrx

+
∥∥∥Dθ

εUε ∗R F
∥∥∥
C([0,T ];L2

x)
. ‖F‖Lq′ [0,T ]Lr′x ,

(3.1)
∥∥∥Dθ/2

ε E
∥∥∥
LqtL

r
x

. ‖E‖
XSε

0,d
.

For (2.2) and (2.3), we have

(b1) If 0 ≤ c < 1/2, then ‖Wε ∗R G‖C([0,T ];Wε)
. T 1/2−c

(
‖G‖

X
Wε+
`,−c

+ ‖G‖
X
Wε−
`,−c

)
.

(b2) If 0 ≤ c < 1/2, 0 ≤ b, b+ c ≤ 1 then

‖ψT (t)Wε± ∗R G‖XWε±
`,b

. T 1−b−c ‖G‖
X
Wε±
`,−c

.

We skip the proofs of Lemmas 3.1 and 3.2 and the readers are referred to [1, 4, 8].

For more complete discussion of Strichartz estimates for the fourth order Schrödinger

equations, see [9].
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4. Local and global well-posedness for QZ system

We prove Theorem 1.1 whose proof essentially follows from those in [1, 4], however some

adaptations and changes are required. We use the conservation law (1.3) to control the

growth of E(t) from one local time step to the next. We track the growth of n(t) in the

norm Wε using the estimates from the local theory. We now state the estimates.

Lemma 4.1 (Multilinear Estimates). Let −3/4 ≤ ` ≤ 3/4 and 0 < ε ≤ 1. We have the

following estimates.

(a) If max {1/4,−`/2} < b1, c1 < 1/2, 1/4 ≤ b < 1/2 and b + b1 + c1 ≥ max{1, (−2` +

3)/4}, then

(4.1) ‖n±E‖XSε
0,−c1

. εmin{`+1/2,0} ‖n±‖
X
Wε±
`,b

‖E‖
XSε

0,b1

.

(b) If max {1/4, `/2} < b1 < 1/2, 1/4 ≤ c < 1/2 and 2b1 + c ≥ max {1, (2`+ 3)/4}, then

(4.2)
∥∥D−1ε ∂x(E1E2)

∥∥
X
Wε±
`,−c

. εmin{−`−1/2,0} ‖E1‖XSε
0,b1

‖E2‖XSε
0,b1

.

(c) If 3/8 < b1, c1 < 1/2 and 0 ≤ b, c < 1/2, then∥∥D−1ε ∂x(E1E2)
∥∥
X
Wε±
−3/4,−c

. ε−1/4 ‖E1‖XSε
0,b1

‖E2‖XSε
0,b1

and

‖n±E‖XSε
0,−c1

. ‖n±‖
X
Wε±
3/4,b

‖E‖
XSε

0,b1

.

For the initial data (E(0), n(0), ∂tn(0)) ∈ L2×H−1/2ε ×H−3/2ε , we can prove multilinear

estimates which are analogous to those in [1].

Corollary 4.2. [1, Lemma 3.1]

(a) If 1/4 < b, b1, c1 < 1/2 and b+ b1 + c1 ≥ 1, then

‖n±E‖XSε
0,−c1

. ‖n±‖
X
Wε±
−1/2,b

‖E‖
XSε

0,b1

.

(b) If 1/4 < b1, c < 1/2 and 2b1 + c ≥ 1, then∥∥D−1ε ∂x(E1E2)
∥∥
X
Wε±
−1/2,−c

. ‖E1‖XSε
0,b1

‖E2‖XSε
0,b1

.

Remark 4.3. Let ` = −1/2. Observe that the constants in the estimates of Lemmas 4.1(a)

and 4.1(b) are independent of ε. Taking the limit of the estimates in Lemmas 4.1(a) and

4.1(b) as ε tends to zero, we get the multilinear estimates given in [1], and thus we formally

recover the result of (1.1) in [1].
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For the system (2.4), we have the solution formulae (2.5) and (2.6).

Thus we consider the maps ΛSε and ΛWε± such that

ΛSε(E,n±) = ψTUεE0 + ψTUε ∗R [(n+ + n−)E],(4.3)

ΛWε±(E) = ψTWε±(n0, n1)∓ ψTWε± ∗R (D−1ε ∂x |E|2).(4.4)

For some 0 < T < 1, we seek a fixed point (E(t), n±(t)) = (ΛSε(E,n±),ΛWε±(E)).

Estimating (4.3) in XSε
0,b1

, applying the estimate in Lemmas 3.1(a2), 3.2(a2) and following

through with Lemma 4.1(a) and (c); and estimating (4.4) in X
Wε±
`,b , applying the estimates

in Lemmas 3.1(b2), 3.2(b2) and following through with Lemma 4.1(b) and (c), we obtain

‖ΛSε(E,n±)‖
XSε

0,b1

. T 1/2−b1 ‖E0‖L2 + T 1−b1−c1 ‖n±‖
X
Wε±
`,b

‖E‖
XSε

0,b1

. T 1/2−b1 ‖E0‖L2

(
1 + T 3/2−b−b1−c1 ‖(n0, n1)‖Wε

)
and ∥∥ΛWε±(E)

∥∥
X
Wε±
`,b

. T 1/2−b
(
‖(n0, n1)‖Wε

+ T 3/2−2b1−c ‖E0‖2L2

)
.

Also we have∥∥ΛSε(E,n±)− ΛSε(E
′, n′±)

∥∥
XSε

0,b1

. T 3/2−2b1−c1 ‖E0‖L2

∥∥n± − n′±∥∥XWε±
`,b

+ T 3/2−b−b1−c1 ‖(n0, n1)‖Wε

∥∥E − E′∥∥
XSε

0,b1

and ∥∥ΛWε±(E)− ΛWε±(E′)
∥∥
X
Wε±
`,b

. T 3/2−b1−b−c ‖E0‖L2

∥∥E − E′∥∥
XSε

0,b1

.

By taking T such that

T 3/2−2b1−c1 ‖E0‖L2 . 1, T 3/2−b1−b−c ‖E0‖L2 . 1,

(4.5) T 3/2−b−b1−c1 ‖(n0, n1)‖Wε
. 1,

and

(4.6) T 3/2−2b1−c ‖E0‖2L2 . ‖(n0, n1)‖Wε
,

one can obtain sufficient conditions for a contraction argument yielding the existence of a

fixed point E ∈ XSε
0,b1

, n± ∈ XWε±
`,b of (4.3)–(4.4) such that

(4.7) ‖E‖
XSε

0,b1

. T 1/2−b1 ‖E0‖L2 and ‖n±‖
X
Wε±
`,b

. T 1/2−b ‖(n0, n1)‖Wε
.
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To prove the global existence for−1/2 ≤ ` ≤ 3/4, we interpolate between Lemma 4.1(a)

with `′ = −1/2 and b′ = b′1 = c′1 = 1/3, and Lemma 4.1(c) with `′′ = 3/4, b′′ = 14/128

and b′′1 = c′′1 = 49/128. Then we obtain

‖n±E‖XSε
0,−c1

. ‖n±‖
X
Wε±
`,b

‖E‖
XSε

0,b1

,

where b = 14
128θ+ 1

3(1− θ), b1 = c1 = 49
128θ+ 1

3(1− θ) and ` = 5
4θ−

1
2 . On the other hand,

we need the interpolation between Lemma 4.1(b) with `′ = −1/2 and c′ = b′1 = 1/3, and

Lemma 4.1(b) with `′′ = 3/4, b′′1 = 49/128 and c′′ = 46/128. Hence we get∥∥D−1ε ∂x(E1E2)
∥∥
X
Wε±
`,−c

. ε−(`+1/2) ‖E1‖XSε
0,b1

‖E2‖XSε
0,b1

,

where b1 = 49
128θ + 1

3(1− θ), c = 46
128θ + 1

3(1− θ) and ` = 5
4θ −

1
2 .

To prove the global well-posedness for −3/4 ≤ ` ≤ −1/2, we analogously interpolate

between Lemma 4.1(a) with `′ = −1/2 and c′1 = b′1 = b′ = 1/3, and Lemma 4.1(a) with

`′′ = −3/4, c′′1 = b′′1 = 49/128 and b′′ = 46/128. Then we obtain

‖n±E‖XSε
0,−c1

. ε`+1/2 ‖n±‖
X
Wε±
`,b

‖E‖
XSε

0,b1

,

where c1 = b1 = 49
128θ+ 1

3(1− θ), b = 46
128θ+ 1

3(1− θ) and ` = −1
2 −

1
4θ. On the other hand,

we need the interpolation between Lemma 4.1(b) with c′ = b′1 = 1/3 and `′ = −1/2, and

Lemma 4.1(c) with `′′ = −3/4, b′′1 = 49/128 and c′′ = 14/128. Hence we get∥∥D−1ε ∂x(E1E2)
∥∥
X
Wε±
`,−c

. ε`+1/2 ‖E1‖XSε
0,b1

‖E2‖XSε
0,b1

,

where b1 = 49
128θ + 1

3(1− θ), c = 14
128θ + 1

3(1− θ) and ` = −1
2 −

1
4θ.

By applying Lemmas 3.1(a1), 3.2(a1) and (4.7), we can show that E ∈ C([0, T ];L2
x).

Then we invoke the conservation law (1.3) to conclude ‖E(T )‖L2
x

= ‖E0‖L2 . Thus we

are concerned with the possibility of growth of ‖n(t)‖Wε
in time. Assume that after

some number of iterations we have ‖n(t)‖Wε
� ‖E(t)‖2L2

x
= ‖E0‖2L2

x
. We reset this time

position as the initial time t = 0 so that ‖E0‖2L2
x
� ‖(n0, n1)‖Wε

. Let us take the quantum

parameter into account. Thus (4.6) and (4.5) become

(4.8) ε−|`+1/2|T 3/2−b−b1−c1 ‖(n0, n1)‖Wε
. 1

and

(4.9) ε−|`+1/2|T 3/2−2b1−c ‖E0‖2L2 . ‖(n0, n1)‖Wε
.

Then (4.9) is satisfied and by (4.8), we choose a time increment of size

(4.10) T ∼ ‖(n0, n1)‖−1/(3/2−b−b1−c1)Wε
ε|`+1/2|/(3/2−b−b1−c1).
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Using (4.5), the quantity b+b1+c1 we choose satisfies the conditions in Lemma 4.1(a).

Since

n = Wε(t)(n0, n1) +Wε ∗R
(
D−1ε ∂x |E|2

)
we can apply Lemmas 3.1(b1), 3.2(b1), (4.7) and (4.10) to obtain

‖n(T )‖Wε
≤ (1 + T ) ‖(n0, n1)‖Wε

+ ε−|`+1/2|T 3/2−2b1−c ‖E0‖2L2

≤ ‖(n0, n1)‖Wε
+ Cε−|`+1/2|T 3/2−2b1−c

(
‖E0‖2L2 + 1

)
,

where C is some fixed constant and 1− (3/2− b− b1 − c1) = 3/2− 2b1 − c. Now we can

carry out m iterations on time intervals, each of length (4.10) to get

‖n(mT )‖Wε
≤ ‖(n0, n1)‖Wε

+mCT 3/2−2b1−c
(
‖E0‖2L2 + 1

)
ε−|`+1/2|.

Thus, for some m, the upper bound in the above reaches 2 ‖(n0, n1)‖Wε
. Hence we get

(4.11) m ∼
‖(n0, n1)‖Wε

ε|`+1/2|

T 3/2−2b1−c(‖E0‖2L2 + 1)
.

The total time the solution n advances after these m iterations, by (4.10) and (4.11), is

mT ∼ ε2|`+1/2|

‖E0‖2L2 + 1

which is independent of ‖n(t)‖Wε
.

We can keep repeating this procedure. Each time the solution n advancing a time

of length about the size of (‖E0‖2L2 + 1)−1ε2|`+1/2|, which is independent of the size of

‖n(t)‖Wε
, the size of ‖n(t)‖Wε

will at most double. This implies that the solution grows

at most exponentially in time as stated in Theorem 1.1.

Remark 4.4. Let k = 0. For ` = 3/4, we choose b = 14/128, b1 = c1 = 49/128 and

c = 46/128 to satisfy all the conditions stated in Lemmas 3.1, 3.2, 4.1(b) and 4.1(c).

Notice that the choice also meets the optimal condition 2b1 + c = 9/8.

For ` = −1/2, we choose b = b1 = c = c1 = 1/3 to satisfy all the required conditions in

Lemmas 4.1(a), 4.1(b), and this choice is the same as that in [1] which meets the optimal

conditions b+ b1 + c1 = 1 and 2b1 + c = 1.

For ` = −3/4, we choose b = 46/128, b1 = c1 = 49/128 and c = 14/128 which satisfy

all the conditions stated in Lemmas 3.1, 3.2, 4.1(a) and 4.1(c). Notice that the choice also

meets the optimal condition b+ b1 + c1 = 9/8.

The range −3/4 ≤ ` ≤ 3/4 for local well-posedness is optimal. We can modify the

counterexamples in [4] to show that the multilinear estimates fail when |`| > 3/4.
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5. Proof for the multilinear estimates

We need the following calculus lemmas whose proofs are elementary. Denote A :=√
1 + (x− y)2, A1 :=

√
1 + x2, A2 :=

√
1 + y2 and B± := x± y. Let

f(x, y) =
2A(A1 +A2)

(A1 +A2)2 +B2
+

and

F (x, y) =
(1 +B2

−)y −B−A2(A1 +A2)(
(A1 +A2)2 +B2

+

)
AA2

− 2A(A1 +A2) ((A1 +A2)y +B+A2)(
(A1 +A2)2 +B2

+

)2
A2

.

Lemma 5.1. For any x, y ∈ R, we have

0 < f(x, y) < 2, f(x, y) ∼ 1 + |x− y|
1 + |x|+ |y|

,
∂

∂y
f(x, y) = 2F (x, y) and |F (x, y)| < 2.

The proof is given in the next section.

Remark 5.2. The bound for |F | is not optimal, however we will not pursuit this.

Define [λ]+ = λ if λ > 0, δ if λ = 0, 0 if λ < 0.

Lemma 5.3. Let ξ = ξ1 − ξ2 and |ξ| > 6. For any σ1, ξ1 ∈ R and α ≥ 0,

sup
σ1

∫
|ξ1ε− 1

2
f|≥2|ξ2ε− 1

2
f|

〈
σ1 − ξ21ε + ξε + ξ22ε

〉−α
dξ2 . 〈ξ1ε〉[1−2α]+ .

The proof of the lemma will be given in the end.

Lemma 5.4. [4, Lemma 4.2] Let 0 ≤ a− ≤ a+, a+ +a− > 1/2 and α = 2a−− [1− 2a+]+.

Then the following estimate holds for all s ∈ R∫
y
〈y − s〉−2a+ 〈y + s〉−2a− dy ≤ c 〈s〉−α .

We now prove the multilinear estimates.

Proof of Lemma 4.1(a). We prove the case of n+ only. By duality argument, the estimate

is equivalent to

(5.1) |〈n+E, g〉| . ‖n+‖
X
Wε+
`,b

‖E‖
XSε

0,b1

‖g‖
XSε

0,c1

for all function g ∈ XSε
0,c1

. We set v̂ = 〈ξε〉` 〈τ + ξε〉b n̂+, v̂2 =
〈
τ + ξ2ε

〉b1 Ê, v̂1 =〈
τ + ξ2ε

〉c1 ĝ. Thus we can rewrite the left-hand side of (5.1) and denote the integral

by S which gives the following bound

|S| ≤
∫

1

〈ξε〉`
|v̂(τ, ξ)|
〈σ〉b

|v̂2(τ2, ξ2)|
〈σ2〉b1

|v̂1(τ1, ξ1)|
〈σ1〉c1

dτ2dξ2dτ1dξ1,
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where

(5.2) τ = τ1 − τ2, ξ = ξ1 − ξ2, σ = τ + ξε, σ2 = τ2 + ξ22ε and σ1 = τ1 + ξ21ε.

We split S into two parts, one is on |ξ| ≤ 6 and denoted by S1, while the other part

is on |ξ| > 6 and denoted by S2. The proof of the estimate for S1 is the same as that of

Lemma 4.1(a) in [1]. Thus we obtain |S1| . ‖v‖L2 ‖v1‖L2 ‖v2‖L2 provided that b1 > 1/4

and c ≥ 1/4.

For |ξ| > 6, we split the region on which the integral S2 is taken into three parts.

Region σ dominant, |σ| ≥ max(|σ1| , |σ2|). We can rewrite the bound for |S2| as follows:∫
|v̂|
〈σ〉b

〈ξε〉−`
∫
|v̂1|
〈σ1〉c1

|v̂2|
〈σ2〉b1

dσ2dξ2dσdξ.

Using the Cauchy-Schwarz inequality, we get the following bound(
sup
σ,ξ
〈σ〉−2b 〈ξε〉−2`

∫
〈σ1〉−2c1 〈σ2〉−2b1 dξ2dσ2

)1/2

‖v‖L2 ‖v1‖L2 ‖v2‖L2 ,

which gives the desired result if the above supremum

(5.3) sup
σ,ξ
〈σ〉−2b 〈ξε〉−2`

∫
〈σ1〉−2c1 〈σ2〉−2b1 dξ2dσ2

is finite. The inner integral is taken over fixed σ, ξ and σ2. Since ξ1 = ξ + ξ2, we have

dξ1 = dξ2, and since

(5.4) σ1 − σ − σ2 = (ξ + ξ2)
2 + ε2(ξ + ξ2)

4 − ξ22 − ε2ξ42 − ξ
√

1 + ε2ξ2,

we have

(5.5)

∣∣∣∣dσ1dξ2

∣∣∣∣ = |ξ|
(
2 + ε2(4ξ2 + 12ξξ2 + 12ξ22)

)
∼ |ξ|

(
1 + ε2(ξ2 + ξ22)

)
.

Thus

〈ξε〉−2`
∣∣∣∣ dξ2dσ1

∣∣∣∣ . |ξε|−2`

|ξ|
(
1 + ε2(ξ2 + ξ22)

) . |ξ|−2`−1
(
1 + ε2ξ2

)−`−1
.

The integral in the supremum (5.3) becomes

〈σ〉−2b
∫ |σ|
0

∫ |σ|
0
〈σ1〉−2c1 〈σ2〉−2b1 dσ1dσ2 . 〈σ〉−2b+[1−2c1]++[1−2b1]+ .

For 6 < |ξ| < 12ε−1, we have

(5.3) . sup
σ,ξ
|ξ|−2`−1 〈σ〉−2b+[1−2c1]++[1−2b1]+ . εmin{2`+1,0}
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provided that −2b+[1−2c1]+ +[1−2b1]+ ≤ 0. If b1, c1 < 1/2, then the exponent becomes

2− 2b− 2b1 − 2c1, and it is sufficient to have b+ b1 + c1 ≥ 1.

For 12ε−1 < |ξ|, we get

(5.3) . sup
σ,ξ

ε−2`−2 |ξ|−4`−3 〈σ〉−2b+[1−2c1]++[1−2b1]+ . ε2`+1

provided that ` ≥ −3/4 and −2b + [1 − 2c1]+ + [1 − 2b1]+ ≤ 0. If b1, c1 < 1/2, then the

exponent becomes 2− 2b− 2b1 − 2c1, and it is sufficient to have b+ b1 + c1 ≥ 1.

Region σ1 dominant, |σ1| ≥ max(|σ| , |σ2|). We can rewrite the bound for |S2| as

follows: ∫
|v̂1|
〈σ1〉c1

∫
〈ξε〉−`

|v̂|
〈σ〉b

|v̂2|
〈σ2〉b1

dσ2dξ2dσ1dξ1.

Using the Cauchy-Schwarz inequality, we get the following bound(
sup
σ1,ξ1

〈σ1〉−2c1
∫
〈ξε〉−2` 〈σ〉−2b 〈σ2〉−2b1 dξ2dσ2

)1/2

‖v‖L2 ‖v1‖L2 ‖v2‖L2 ,

which gives the desired result if the above supremum

(5.6) sup
σ1,ξ1

〈σ1〉−2c1
∫
〈ξε〉−2` 〈σ〉−2b 〈σ2〉−2b1 dξ2dσ2

is finite. We observe that

(5.7) σ − σ1 + σ2 = −ξ21ε + ξ22ε + (ξ1 − ξ2)ε = −
(
ξ1ε −

1

2
f

)2

+

(
ξ2ε −

1

2
f

)2

,

where f(εξ1, εξ2) = (ξ1 − ξ2)ε/(ξ1ε − ξ2ε). Again we need to split the integral into two

parts.

Subregion:
∣∣ξ1ε − 1

2f
∣∣ ≤ 2

∣∣ξ2ε − 1
2f
∣∣. Then |ξε| ≤ 3f

∣∣ξ2ε − 1
2f
∣∣. The inner integral in

(5.6) over ξ2 is taken with σ1, ξ1, σ2 fixed. Denote x := εξ1 and y := εξ2. Thus

f(εξ1, εξ2) = f(x, y) = 2
A(A1 +A2)

(A1 +A2)2 +B2
+

and
d

dξ2
f(εξ1, εξ2) = 2εF (εξ1, εξ2),

see Lemma 5.1. From (5.7), we have

dσ

dξ2ε
=

(
ξ1ε −

1

2
f

)
2εF

dξ2
dξ2ε

+

(
ξ2ε −

1

2
f

)(
2− 2εF

dξ2
dξ2ε

)
and

(5.8)
dξ2ε
dξ2

=
1 + 2ε2ξ22√

1 + ε2ξ22
∼ 1 + ε |ξ2| .

Notice that

(5.9)

∣∣∣∣ dσdξ2ε
∣∣∣∣ ≥ ∣∣∣∣ξ2ε − 1

2
f

∣∣∣∣G,
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where G := 2
(

1− 3ε |F | dξ2dξ2ε

)
. From Lemma 5.1, |F | < 2 together with |ξ2| > 6, we have

3ε |F | dξ2dξ2ε
≤ 6ε√

1+72ε2
< 1

2 . Thus 1 ≤ G ≤ 2 for ε ≤ 1. Using (5.8) and (5.9) we have

〈ξε〉−2`
dξ2
dσ
∼ |ξε|−2`

dξ2
dξ2ε

dξ2ε
dσ

. |ξ|−2`−1
(
1 + ε2ξ2

)−`−1
.

For 6 < |ξ| < 12ε−1, we obtain

(5.6) . sup
σ1,ξ1

〈σ1〉−2c1
∫ |σ1|
0

∫ |σ1|
0
|ξ|−2`−1 〈σ〉−2b 〈σ2〉−2b1 dσdσ2

. sup
σ1

εmin{2`+1,0} 〈σ1〉−2c1+[1−2b]++[1−2b1]+

. εmin{2`+1,0}

provided that −2c1 + [1− 2b]+ + [1− 2b1]+ ≤ 0. If b1, b < 1/2, then the exponent becomes
2− 2b− 2b1 − 2c1, and it is sufficient to have b+ b1 + c1 ≥ 1.

For 12ε−1 < |ξ|, the supremum is bounded by

(5.6) . sup
σ1,ξ1

〈σ1〉−2c1
∫ |σ1|
0

∫ |σ1|
0

ε−2`−2 |ξ|−4`−3 〈σ〉−2b 〈σ2〉−2b1 dσdσ2

. sup
σ1

ε2`+1 〈σ1〉−2c1+[1−2b]++[1−2b1]+

. ε2`+1

provided that ` ≥ −3/4 and −2c1 + [1 − 2b]+ + [1 − 2b1]+ ≤ 0. If b1, b < 1/2, then the
exponent becomes 2− 2b− b1 − 2c1, and it is sufficient to have b+ b1 + c1 ≥ 1.

Subregion:
∣∣ξ1ε − 1

2f
∣∣ ≥ 2

∣∣ξ2ε − 1
2f
∣∣. Since ξ = ξ1 − ξ2, we have

(5.10)
1

2
f

∣∣∣∣ξ1ε − 1

2
f

∣∣∣∣ ≤ |ξε| ≤ 3

2
f

∣∣∣∣ξ1ε − 1

2
f

∣∣∣∣ and 〈ξε〉 ∼
〈
f

(
ξ1ε −

1

2
f

)〉
.

Also we have

(5.11)
3

4

(
ξ1ε −

1

2
f

)2

≤
(
ξ1ε −

1

2
f

)2

−
(
ξ2ε −

1

2
f

)2

= σ1 − σ2 − σ ≤ 3 |σ1|

and thus

(5.12)

(
ξ1ε −

1

2
f

)2

≤ 4 |σ1| , f

∣∣∣∣ξ2ε − 1

2
f

∣∣∣∣ ≤ 1

2
f

∣∣∣∣ξ1ε − 1

2
f

∣∣∣∣ ≤ |ξε| .
From Lemma 5.1, we have

(5.13) f ∼ 1 + ε |ξ|
1 + ε(|ξ1|+ |ξ2|)

,

and also we have C1 < f < C2 on the subregion for some positive constants C1 and C2.

Thus

(5.14) |ξ|
√

1 + ε2ξ2 = |ξε| ∼ f
∣∣∣∣ξ1ε − 1

2
f

∣∣∣∣ ∼ 1 + ε |ξ|
1 + ε |ξ1|

|ξ1|
√

1 + ε2ξ21 ∼ (1 + ε |ξ|) |ξ1| .
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Hence the supremum (5.6) is bounded by

sup
σ1,ξ1

〈ξ1ε〉−2`−4c1
∫
〈σ〉−2b 〈σ2〉−2b1 dσ2dξ2.

The inner integral over σ2 is taken with fixed ξ2, ξ1, σ1. By Lemma 5.4,∫ 〈
σ2 − [σ1 − ξ21ε + ξε + ξ22ε]

〉−2b 〈σ2〉−2b1 dσ2 . 〈σ1 − ξ21ε + ξε + ξ22ε
〉−α

if b + b1 > 1/2, where α = 2b − [1 − 2b1]+ if b1 ≥ b, 2b1 − [1 − 2b]+ if b ≥ b1. Applying
Lemma 5.3, we get

sup
σ1

∫
|ξ1ε− 1

2
f|≥2|ξ2ε− 1

2
f|

〈
σ1 − ξ21ε + ξε + ξ22ε

〉−α
. 〈ξ1ε〉[1−2α]+ .

For 6 < |ξ| < 12ε−1, we derive

(5.6) . sup
ξ1

〈ξ1ε〉−2`−1 〈ξ1ε〉1−4c1+[1−2α]+ . εmin{2`+1,0}

provided that 1− 4c1 + [1− 2α]+ ≤ 0.

For 12ε−1 < |ξ|, the supremum is bounded by

(5.6) . sup
ξ1

〈ξ1ε〉−2`−1 〈ξ1ε〉1−4c1+[1−2α]+ . ε2`+1

provided that −2` − 4c1 + [1 − 2α]+ ≤ 0. We now discuss the above two exponents and

combine them into max {1,−2`} − 4c1 + [1 − 2α]+ ≤ 0. Suppose that b, b1 < 1/2 but

b+ b1 > 1/2. Then α = −1 + 2b+ 2b1.

Case 1. α > 1/2 if and only if b+ b1 > 3/4. Then we need c1 ≥ max {1/4,−`/2}.
Case 2. α = 1/2 if and only if b+ b1 = 3/4. Then we need c1 > max {1/4,−`/2}.
Case 3. α < 1/2 if and only if b+ b1 < 3/4. Then the exponent is max {1,−2`}+ 3− 4b−
4b1 − 4c1. We need b+ b1 + c1 ≥ max {1, (−2`+ 3)/4}.
Combine the above we need conditions as follows:

b, b1 <
1

2
, b+ b1 >

1

2
, c1 > max

{
1

4
,− `

2

}
and b+ b1 + c1 ≥ max

{
1,
−2`+ 3

4

}
.

Region σ2 dominant, |σ2| ≥ max(|σ| , |σ1|). This case is analogous to the case of region

σ1 dominant so that we skip the proof. The conditions resulted from this case are as

follows:

b, c1 <
1

2
, b+c1 >

1

2
, b1 > max

{
1

4
,− `

2

}
and b+b1+c1 ≥ max

{
1,
−2`+ 3

4

}
.

Proof of Lemma 4.1(b). The proof for the part (b1) is proceeded in the same vein with

that of the part (a). We prove the case of + only. By duality argument, the estimate is

equivalent to

(5.15)
∣∣〈D−1ε ∂x(E1E2), g

〉∣∣ . ‖E1‖XSε
0,b1

‖E2‖XSε
0,b1

‖g‖
X
Wε+
−`,c
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for all function g ∈ XWε+

−`,c . We set

(5.16) v̂ = 〈ξε〉−` 〈τ + ξε〉c ĝ, v̂1 =
〈
τ + ξ2ε

〉b1 Ê1, v̂2 =
〈
τ + ξ2ε

〉b1 Ê2.

Thus we can rewrite the left-hand side of (5.15) and denote it by W . Then we get the

following bound

|W | .
∫

|ξ|√
1 + ε2ξ2

〈ξε〉`
|v̂|
〈σ〉c

|v̂2|
〈σ1〉b1

|v̂1|
〈σ1〉b1

dτ2dξ2dτ1dξ1,

where τ , ξ, σ, σ2 and σ1 are given as in (5.2). We then split W into two parts, one is on

|ξ| ≤ 6 and denoted by W1, while the other part is on |ξ| > 6 and denoted by W2. The

proof of the estimate for W1 is the same as that of Lemma 4.1(b) in [1]. Thus we obtain

|W1| . ‖v‖L2 ‖v1‖L2 ‖v2‖L2 provided that b1 > 1/4 and c ≥ 1/4.

For |ξ| > 6, we split the region on which the integral W2 is split into three parts.

Region σ dominant, |σ| ≥ max(|σ1| , |σ2|). We can rewrite the bound for |W2| as

follows: ∫
|v̂|
〈σ〉c

∫
|ξ|
D̂ε

〈ξε〉`
|v̂1|
〈σ1〉b1

|v̂2|
〈σ2〉b1

dσ2dξ2dσdξ.

Analogously we want to show that the following supremum

(5.17) sup
σ,ξ
〈σ〉−2c

∫
|ξ|2

D̂2
ε

〈ξε〉2` 〈σ1〉−2b1 〈σ2〉−2b1 dξ2dσ2

is finite. Using (5.4) and (5.5), we get

|ξ|2

D̂2
ε

〈ξε〉2`
∣∣∣∣ dξ2dσ1

∣∣∣∣ . |ξ|2
D̂2
ε

|ξε|2`

|ξ|
(
1 + ε2(ξ2 + ξ22)

) . |ξ|2`+1 (1 + ε2ξ2
)`−2

.

For 6 < |ξ| < 12ε−1, we have

(5.17) . sup
σ,ξ
|ξ|2`+1 〈σ〉−2c+[1−2b1]++[1−2b1]+ . εmin{−2`−1,0}

provided that −2c+ [1− 2b1]+ + [1− 2b1]+ ≤ 0. If b1, c < 1/2, then the exponent becomes

2− 4b1 − 2c, and it is sufficient to have 2b1 + c ≥ 1. For 12ε−1 < |ξ|, we obtain

(5.17) . sup
σ,ξ

ε2`−4 |ξ|4`−3 〈σ〉−2c+[1−2b1]++[1−2b1]+ . ε−2`−1

provided that ` ≤ 3/4 and −2c + [1 − 2b1]+ + [1 − 2b1]+ ≤ 0. If b1, c < 1/2, then the

exponent becomes 2− 4b1 − 2c, and it is sufficient to have 2b1 + c ≥ 1.

Region σ1 dominant, |σ1| ≥ max(|σ| , |σ2|). We can rewrite the bound for |W2| as

follows: ∫
|v̂1|
〈σ1〉b1

∫
|ξ|
D̂ε

〈ξε〉`
|v̂|
〈σ〉c

|v̂2|
〈σ2〉b1

dσ2dξ2dσ1dξ1.
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Analogously we want to show that the following supremum is finite:

(5.18) sup
σ1,ξ1

〈σ1〉−2b1
∫
|ξ|2

D̂2
ε

〈ξε〉2` 〈σ〉−2c 〈σ2〉−2b1 dξ2dσ2.

Subregion:
∣∣ξ1ε − 1

2f
∣∣ ≤ 2

∣∣ξ2ε − 1
2f
∣∣. Using |ξε| ≤ 3f

∣∣ξ2ε − 1
2f
∣∣ and (5.9), we have

|ξ|2

D̂2
ε

〈ξε〉2`
dξ2
dσ

.
|ξ|2

D̂2
ε

|ξε|2`
1∣∣ξ2ε − 1
2f
∣∣G 1

1 + ε |ξ2|
. |ξ|2`+1 (1 + ε2ξ2

)`−2
.

For 6 < |ξ| < 12ε−1, we get

(5.18) . sup
σ1,ξ1

〈σ1〉−2b1
∫ |σ1|
0

∫ |σ1|
0
|ξ|2`+1 〈σ〉−2c 〈σ2〉−2b1 dσdσ2

. εmax{−2`−1,0} sup
σ1
〈σ1〉−2b1+[1−2c]++[1−2b1]+

. εmax{−2`−1,0}

provided that −2b1 + [1− 2c]+ + [1− 2b1]+ ≤ 0. If b1, c < 1/2, then the exponent becomes

2− 4b1 − 2c, and it is sufficient to have 2b1 + c ≥ 1.

For 12ε−1 < |ξ|, the supremum is bounded by

(5.18) . sup
σ1,ξ1

〈σ1〉−2b1
∫ |σ1|
0

∫ |σ1|
0

ε2`−4 |ξ|4`−3 〈σ〉−2c 〈σ2〉−2b1 dσdσ2

. sup
σ1

ε−2`−1 〈σ1〉−2b1+[1−2c]++[1−2b1]+

. ε−2`−1

provided that ` ≤ 3/4 and −2b1 + [1 − 2c]+ + [1 − 2b1]+ ≤ 0. If b1, c < 1/2, then the

exponent becomes 2− 4b1 − 2c, and it is sufficient to have 2b1 + c ≥ 1.

Subregion:
∣∣ξ1ε − 1

2f
∣∣ ≥ 2

∣∣ξ2ε − 1
2f
∣∣. Using Lemma 5.1 and (5.10)–(5.14), the supre-

mum (5.18) is bounded by

sup
σ1,ξ1

|ξ1|2 D̂−21,ε 〈ξ1ε〉
2`+2−4b1

∫
〈σ〉−2c 〈σ2〉−2b1 dσ2dξ2.

Using Lemmas 5.3 and 5.4, we have the following bound

sup
ξ1

|ξ1|2 D̂−21,ε 〈ξ1ε〉
2`−1 〈ξ1ε〉1−4b1+[1−2β]+ ,

where β = 2c− [1− 2b1]+ if b1 ≥ c, 2b1 − [1− 2c]+ if c ≥ b1.
For 6 < |ξ| < 12ε−1, we have

(5.18) . sup
ξ1

〈ξ1ε〉2`+1 〈ξ1ε〉1−4b1+[1−2β]+ . εmin{−2`−1,0}
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provided that 1− 4b1 + [1− 2β]+ ≤ 0. For 12ε−1 < |ξ|, we get

(5.18) . sup
ξ1

ε−2 〈ξ1ε〉2`−1 〈ξ1ε〉1−4b1+[1−2β]+ . ε−2`−1

provided that 2`−4b1 + [1−2β]+ ≤ 0. We now combine the above two parts and consider

the exponent max {1, 2`}−4b1 + [1−2β]+ ≤ 0. Suppose that c, b1 < 1/2 but c+ b1 > 1/2.

Then β = −1 + 2c+ 2b1.

Case 1. β > 1/2 if and only if c+ b1 > 3/4. Then we need b1 ≥ max {1/4, `/2}.
Case 2. β = 1/2 if and only if c+ b1 = 3/4. Then we need b1 > max {1/4, `/2}.
Case 3. β < 1/2 if and only if c+b1 < 3/4. Then the exponent is max {4, 2`+ 3}−8b1−4c.

We need 2b1 + c ≥ max {1, (2`+ 3)/4}.
Combine the above we need conditions as follows:

c, b1 < 1/2, c+ b1 >
1

2
, b1 > max

{
1

4
,
`

2

}
and 2b1 + c ≥ max

{
1,

2`+ 3

4

}
.

Region σ2 dominant, |σ2| ≥ max(|σ| , |σ1|). This case is analogous to the case of region

σ1 dominant so that we omit the proof. The conditions resulted from this case are the

same.

Proof of Lemma 4.1(c). For the second part of (c), we prove the case of + only. By duality

argument, the estimate is equivalent to∣∣〈D−1ε ∂x(E1E2), g
〉∣∣ . ‖E1‖XSε

0,b1

‖E2‖XSε
0,b1

‖g‖
X
Wε+
3/4,c

for all function g ∈ X
Wε+

3/4,c. We set v̂, v̂1 and v̂2 as in (5.16). Thus we can rewrite the

left-hand side of the formula and then use the fact that D̂ε . D̂1εD̂2ε and assume that

b1 > 3/8 and c ≥ 0 to obtain

|S| .
∫
|ξ|1/4

D̂
7/4
ε

|v̂(τ, ξ)|
〈σ〉c

|v̂2(τ2, ξ2)|
〈σ2〉b1

|v̂1(τ1, ξ1)|
〈σ1〉b1

dτ2dξ2dτ1dξ1

. ε−1/4

∥∥∥∥∥
(
D̂

1/4
1ε |v̂1|
〈σ1〉3/8+

)∨∥∥∥∥∥
L4
tL

4
x

∥∥∥∥∥
(
|v̂|
D̂

7/4
ε

)∨∥∥∥∥∥
L2
tL

2
x

∥∥∥∥∥
(
D̂

1/4
2ε |v̂2|
〈σ2〉3/8+

)∨∥∥∥∥∥
L4
tL

4
x

,

where the variables τ , ξ, σ, σ2 and σ1 are given as in (5.2). To bound the first and the

third quantities above, we need

(5.19)
∥∥|v̂j |∨∥∥L2

tL
2
x

= ‖vj‖L2
tL

2
x
.

Then we interpolate between (5.19) and (3.1) with θ = 2/3 to get∥∥∥∥[〈σj〉−(3/8+) |v̂j |
]∨∥∥∥∥

L4
tL

4
x

.
∥∥∥D−1/4jε vj

∥∥∥
L2
tL

2
x

for j = 1, 2.
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To estimate the second quantity, we get∥∥∥∥[D̂−7/4ε |v̂|
]∨∥∥∥∥

L2
tL

2
x

. ‖v‖L2
tL

2
x
.

Thus we obtain |S| . ε−1/4 ‖v‖L2 ‖v1‖L2 ‖v2‖L2 .

The proof for the first part is analogous.

Proposition 5.5. Assume that the estimates in (4.1) and (4.2) hold for some b, b1, c, c1

and for all v, v1, v2 ∈ L2. Then one must have −3/4 ≤ ` ≤ 3/4 .

Proof. Let L ≥ ε−1. For S and W , We define

v̂ = χ

(
2L+

√
1 + 4ε2L2

2ε2L2
≤ ξ ≤ 2L+

√
1 + 4ε2L2

2ε2L2
+ 2L−3

)
χ(|σ| . ε−1),

v̂1 = χ

(
L+

√
1 + 4ε2L2

2ε2L2
≤ ξ1 ≤ L+

√
1 + 4ε2L2

2ε2L2
+ L−3

)
χ(|σ1| ≤ 1),

v̂2 = χ
(
L ≤ −ξ2 ≤ L+ L−3

)
χ(|σ2| ≤ 1).

Thus we can compute that

‖v‖L2 ‖v1‖L2 ‖v2‖L2 ∼ ε−1/2L−9/2, S ∼ (εL2)−`L−6 and W ∼ ε−1(εL2)`L−6.

If (4.1) and (4.2) are to hold, then we have −3/4 ≤ ` ≤ 3/4.

6. Appendix

Proof of Lemma 5.1. It is clear that f > 0 and for f on x+ y 6= 0, we have

f(x, y) = 2
A(A1 +A2)

(A1 +A2)2 + (x+ y)2
< 2

A

(A1 +A2)
≤ 2.

For f on x+ y = 0, we get f(x,−x) =
√

1 + 4x2/
√

1 + x2 < 2. Since F has two parts, we

call the first part F1 and the second part F2. For F1, we have

|F1| ≤
(1 +B2

−) |y|
(A1 +A2)2(1 +B2

−)1/2A2
+

|B−|A2(A1 +A2)

(A1 +A2)2(1 +B2
−)1/2A2

<
1

2
+

1

2
= 1.

For F2, we again decompose it into two parts such that F2 = F21 · F22, where

F21 = −

√
1 +B2

−(A1 +A2)

(A1 +A2)2 +B2
+

and F22 =
2 ((A1 +A2)y +B+A2)(

(A1 +A2)2 +B2
+

)
A2

.

Through some calculations, we derive that |F21| < 1 and |F22| < 1, thus we have |F2| ≤
1.
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Proof of Lemma 5.3. Recall that ξε = ξ
√

1 + ε2ξ2, ξ = ξ1− ξ2, |ξ| > 6 and |ξ1| > 4. Since

the sets {
ξ2 :

∣∣∣∣ξ1ε − 1

2
f

∣∣∣∣ ≥ 2

∣∣∣∣ξ2ε − 1

2
f

∣∣∣∣} ⊂ {ξ2 : |ξ1ε| ≥ |ξ2ε|} = {ξ2 : |ξ1| ≥ |ξ2|} ,

it is sufficient to prove the estimate

sup
σ1

∫
|ξ2|≤|ξ1|

〈
σ1 − ξ21ε + ξε + ξ22ε

〉−α
dξ2 . 〈ξ1ε〉[1−2α]+ .

Denote Y (ξ2) = σ1 − ξ21ε + ξε + ξ22ε. Thus we have

Y ′(ξ2) = − 1 + 2ε2ξ2√
1 + ε2ξ2

+ 2ξ2 + 4ε2ξ32 and Y ′′(ξ2) = ε
3εξ + 2ε3ξ3√

(1 + ε2ξ2)3
+ 2 + 12ε2ξ22 .

Then we can show that Y ′′(ξ2) > 0 for all ξ2, which implies that Y ′(ξ2) is increasing and

Y (ξ2) in convex. Together with the facts Y ′(1/2) < 0 and Y ′(|ξ1| /2) > 0, Intermediate

Value Theorem asserts that there is a unique number K in [1/2, |ξ1| /2] such that Y ′(K) =

0, and thus Y (K) is the minimum of Y . Denote A = |ξ1|, I = [−A,A] and the two roots

of Y (ξ2) by R1 and R2 if there is any. Let R1 ≤ R2 and B = min {R2, A}. For all possible

values of σ1 and ξ1, we distinguish the following cases.

1. For Y (K) ≥ 0, we split I into I1 = [−A,−1/2], I2 = [−1/2, 1/2], I3 = [1/2,K] and

I4 = [K,A]. Then we define the function z(ξ2) = zj(ξ2) on Ij for j = 1, 2, 3, 4, where

z1(ξ2) =
1

4

(
ξ2 +

1

2

)2

ε

, z2(ξ2) = 0, z3(ξ2) =
1

16
(ξ2ε −Kε)

2, z4(ξ2) =
1

4
(ξ2 −K)2ε.

2. For Y (K) < 0 and 1/2 ≤ R1, we split I into I1 = [−A,−1/2], I2 = [−1/2, 1/2],

I3 = [1/2, R1], I4 = [R1,K], I5 = [K,B] and I6 = [B,A]. Then we define the

function z(ξ2) = zj(ξ2) on Ij for j = 1, 2, 3, 4, 5, 6, where

z1(ξ2) =
1

4

(
ξ2 +

1

2

)2

ε

, z2(ξ2) = 0,

z3(ξ2) =
1

16
(ξ2ε −R1ε)

2, z4(ξ2) = − 1

16

(Kε −R1ε)
2

K −R1
(ξ2 −R1),

z5(ξ2) =
1

4

[
(B −K) + ε2(B −K)3

]
(ξ2 −B), z6(ξ2) =

1

4
(ξ2 −B)2ε.

3. For Y (K) < 0 and −1/2 ≤ R1 ≤ 1/2, we split I into I1 = [−A,−1/2], I2 =

[−1/2, 1/2], I3 = [1/2,K], I4 = [K,B] and I5 = [B,A]. Then we define the function

z(ξ2) = zj(ξ2) on Ij for j = 1, 2, 3, 4, 5, where

z1(ξ2) =
1

4

(
ξ2 +

1

2

)2

ε

, z2(ξ2) = 0, z3(ξ2) = − 1

16

(Kε − (1/2)ε)
2

K − 1/2

(
ξ2 −

1

2

)
,

z4(ξ2) =
1

4

[
(B −K) + ε2(B −K)3

]
(ξ2 −B), z5(ξ2) =

1

4
(ξ2 −B)2ε.
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4. For Y (K) < 0 and −A ≤ R1 ≤ −1/2, we split I into I1 = [−A,R1], I2 = [R1,−1/2],

I3 = [−1/2, 1/2], I4 = [1/2,K], I5 = [K,B] and I6 = [B,A]. Then we define the

function z(ξ2) = zj(ξ2) on Ij for j = 1, 2, 3, 4, 5, 6, where

z1(ξ2) =
1

4
(ξ2 +R1)

2
ε, z2(ξ2) =

1

4

[(
R1 +

1

2

)
+ ε2

(
R1 +

1

2

)3
]

(ξ2 −R1),

z3(ξ2) = 0, z4(ξ2) = − 1

16

(Kε − (1/2)ε)
2

K − 1/2

(
ξ2 −

1

2

)
,

z5(ξ2) =
1

4

[
(B −K) + ε2(B −K)3

]
(ξ2 −B), z6(ξ2) =

1

4
(ξ2 −B)2ε.

5. For Y (K) < 0 and R1 ≤ −A, we split I into I1 = [−A,−1/2], I2 = [−1/2, 1/2], I3 =

[1/2,K], I4 = [K,B] and I5 = [B,A]. Then we define the function z(ξ2) = zj(ξ2) on

Ij for j = 1, 2, 3, 4, 5, where

z1(ξ2) =
1

4

[(
−A+

1

2

)
+ ε2

(
−A+

1

2

)3
]

(ξ2 +A), z2(ξ2) = 0,

z3(ξ2) = − 1

16

(Kε − (1/2)ε)
2

K − 1/2

(
ξ2 −

1

2

)
,

z4(ξ2) =
1

4

[
(B −K) + ε2(B −K)3

]
(ξ2 −B), z5(ξ2) =

1

4
(ξ2 −B)2ε.

Through some straight forward calculations we obtain 0 ≤ |z(ξ2)| ≤ |Y (ξ2)|. Hence we

can replace the function Y by z such that the integral become manageable:∫
I
〈Y (ξ2)〉−α dξ2 ≤

∑
j=1

∫
Ij

〈zj(ξ2)〉−α dξ2 . 〈ξ1ε〉[1−2α]+ .
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