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Homogenization and Electronic Polarization Effects in Dielectric Materials

Jiann-Sheng Jiang

Abstract. This paper is devoted to the electronic polarization effect of dielectric

materials in plasma physics. Using the two-scale convergence method introduced

by G. Nguetseng and G. Allaire, we study the electronic polarization effect induced

by two-scale homogenization. The microscopic properties of electrons in dielectric

materials are characterized by Vlasov-Poisson system. The homogenized equations

describing the mean behaviors of the microscopic equations are obtained. We also

derive the modified Gauss law through the polarization effect. From the homogenized

Poisson equation, the dielectric function is also acquired.

1. Introduction

The purpose of this paper is devoted to studying the electronic polarization effect by the

theory of homogenization. The electronic polarization (or optical polarization) has been

applied in physics or engineering like as optical polarization modulation, fiber optic polar-

ization, semiconductor optical amplifier and so on. We will give a rigorous mathematical

analysis of electronic polarization effect, which can be used as the foundations for the

further improvement.

Electronic polarization can be thought of as the charge redistribution in a material

caused by an external electric field. If an electric field is applied to a medium made up

of a large number of atoms or molecules, which causes deformation or translation of the

originally symmetrical distribution of the electron clouds of atoms or molecules. This is

essentially the displacement of the outer electron clouds with respect to the inner positive

atomic cores. From the macroscopic point of view, the charge density is changed and

represents the polarization behavior.

In order to investigate this phenomenon, from the theory of plasma that states in

[18, 19, 23] also to see [29, 30], we consider the perfect dielectric material such that inside
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the material no mobile charge carriers (electrons or ions) are present. We also suppose

that the electrons are initial in a periodically modulated potential Vin(x) in reference to

dielectric materials, where x ∈ Ω, and Ω is a periodic bounded domain in R3
x. This is

owing to the potential that electrons see inside a crystal will be periodic in space since

the atoms (or ions) are periodically arranged in space. When an external electric field

is applied to the medium, the modulated potential Vin(x) and the external electric field

induce a highly oscillating distribution function of electrons inside a crystal in dielectric

materials. And the averaging polarization effect hence occurs. We note that the topics are

fundamentally important not only for dielectric materials, but also for electronic materials

whose properties may be directly or indirectly associated with some of the dielectric phe-

nomena. The topic can be characterized by the uniform and unmagnetized Vlasov-Poisson

system

∂tF
ε(x, t,v) + v · ∇xF

ε(x, t,v)− e

m
(E(x, t) +∇xV

ε(x, t)) · ∇vF
ε(x, t,v) = 0,(1.1)

∇x · (E(x, t) +∇xV
ε(x, t)) = −4πeρε(x, t),(1.2)

where F ε(x, t,v) is the velocity distribution function of electrons at location x and time

t, traveling with velocity v = (v1, v2, v3), with the initial F0(v) in the equilibrium. The

macroscopic density ρε(x, t) is defined by

ρε(x, t) =

∫
R3
v

F ε(x, t,v) dv − n0

where

n0 =

∫
R3
v

F0(v) dv

is the equilibrium number density of electrons which is the same as that of the ions. Note

that

E(x, t) = −∇xΦ(x, t)

is the external electric field corresponding to the electrostatic potential Φ. The supple-

mentary of the initial conditions are given by V ε(x, 0) = Vin(x) and Φ(x, 0) which are

considered in H1(Ω). Also the initial potential Vin(x) is assumed to be harmonic, i.e.,

4xVin(x) = 0, causing from the charges equilibrium in the dielectric material. The ions

are assumed to be infinitely massive, that is, ion motion will be neglected. Thus the

Vlasov-Poisson system (1.1)–(1.2) describes the nonlinear plasma waves on a uniform ion

background. For other relative studies about Vlasov-Poisson system we refer to [5, 8, 13].

The homogenization theory studies the behavior of the associated solution sequence

{F ε}ε as ε→ 0 and asks whether average behavior can be discerned from (1.1). We note

that homogenization sometimes changes the type of the equation. Indeed, in some situa-

tions, the limit of a sequence of partial differential operators is not a partial differential
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operator. Tartar first investigated these problems [25–28], that there is an integral term

(the nonlocal effect or memory effect) which appears in homogenization to arise from an

equation with pure differential structure we also refer to [1, 3, 4, 10]. That is the homog-

enization process results in memory or nonlocal effects described by integro-differential

equations we mention to [14–17].

To obtain a more accurate description of the limiting behavior of (1.1), it is more

efficient to apply the two-scale convergence method introduced by G. Nguetseng [21, 22]

and G. Allaire [2]. The basic idea is to consider the behavior of the homogenization

process not only from the macroscopic point of view, but also from the microscopic one, by

introducing an additional microscopic variable. The various asymptotic limits of solutions

to the Vlasov-Poission equation in the presence of a strong external magnetic field is

discussed in [11] also to see [9, 13].

The homogenization can be carried out formally by the method of asymptotic expan-

sions, which provides us a great variety of models and equations posed in a periodic do-

main, given respectively by Bensoussan-Lions-Papanicolaou [6], E. Sanchez-Palencia [24]

and references therein. The mathematical justification can be found in Section 3. The

starting point is to look for a formal asymptotic expansion of F ε, which is serving as a

function of ε for ε→ 0 and the heuristic device is to consider that F ε in the equation (1.1)

having two-scale expansions

(1.3) F ε(x, t,v) = F0(x,y, t,v) + εF1(x,y, t,v) + ε2F2(x,y, t,v) + · · · ,

where y = x/ε and Fi, i = 0, 1, 2, . . ., are Y -periodic functions of the fast variable y.

Furthermore, we also assume the zero mean conditions

F̃i = 0, i = 1, 2, 3, . . . ,

where F̃ denotes the average value of F over one period Y :

F̃ ≡ 1

|Y |

∫
Y
F (x,y, t,v) dy.

Plugging (1.3) into the equations (1.1) and (1.2) gives

∂t(F0 + εF1 + · · · ) + v ·
(
∇x +

1

ε
∇y

)
(F0 + εF1 + · · · )

− e

m

((
∇x +

1

ε
∇y

)
V (y, t) + E(x, t)

)
· ∇v(F0 + εF1 + · · · ) = 0

(1.4)

and (
∇x +

1

ε
∇y

)
·
(
E(x, t) +

(
∇x +

1

ε
∇y

)
V (y, t)

)
= −4πe

(∫
R3
v

(F0 + εF1 + · · · ) dv − n0

)
.

(1.5)



322 Jiann-Sheng Jiang

To gather the order ε, from the equation (1.4) and (1.5), we get the following equations

respectively

ε−1 : v · ∇yF0(x,y, t,v)− e

m
∇yV (y, t) · ∇vF0(x,y, t,v) = 0,(1.6)

ε0 : ∂tF0(x,y, t,v) + v · (∇xF0(x,y, t,v) +∇yF1(x,y, t,v))

− e

m
E(x, t) · ∇vF0(x,y, t,v)− e

m
∇yV (y, t) · ∇vF1(x,y, t,v) = 0,

(1.7)

ε−2 : 4yV (y, t) = 0,(1.8)

ε−1 : ∇y · E(x, t) +∇x · ∇yV (y, t) = 0,(1.9)

ε0 : ∇x · E(x, t) = −4πe

(∫
R3
v

F0(x,y, t,v) dv − n0

)
.(1.10)

Taking averaging in y, the equations (1.7) and (1.10) express the homogenized system,

with the restrained equations (1.6), (1.8) and (1.9), as follows:

∂tF̃0(x, t,v) + v · ∇xF̃0(x, t,v)− e

m
E(x, t) · ∇vF̃0(x, t,v) = 0,

∇x · E(x, t) = −4πe

(∫
R3
v

F̃0(x, t,v) dv − n0

)
.

Notice that if we define P such that

4πe

(∫
R3
v

F̃0(x, t,v) dv − n0

)
≡ ∇x · P(x, t),

then the Gauss law becomes

∇x · (E(x, t) + P(x, t)) = 0

where P(x, t) is the polarized electric field induced by the averaging effect of the interac-

tions of the external electric field and the internal potential of the materials. From above

sketchy expressions, we will derive the following theorems.

Theorem 1.1. Let F ε(x,v, 0) = F0(v) > 0, F ε(x, t,v) → 0 as |v| → ∞ and Ω be a

bounded periodic domain in R3
x. Assume that the initial distribution function satisfies

F0(v) and |v|k F0(v), k ≥ 3, being an integer, are bounded in L1∩L∞(R3
v), and Φ(x, 0) =

Φin(x) ∈ H1(Ω), the sequence {(F ε, V ε)}ε of solutions of (1.1)–(1.2) converges in the

two-scale limit to (F , V ) solution of the system

∂tF (x,y, t,v) + v · ∇xF (x,y, t,v)− e

m
E(x, t) · ∇vF (x,y, t,v) = 0,

∇x · E(x, t) = −4πe

(∫
R3
v

F (x,y, t,v) dv − n0

)
,

4yV (y, t) = 0,

v · ∇yF (x,y, t,v)− e

m
∇yV (y, t) · ∇vF (x,y, t,v) = 0.(1.11)
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Theorem 1.2. Under the same hypothesis of Theorem 1.1, there is a subsequence {F ε(x,
t,v)}ε, still denoted by {F ε(x, t,v)}ε, of the solutions of the Vlasov-Poisson system (1.1)–

(1.2) such that F ε(x, t,v) converges weakly ∗ in L∞(0, T ;L2(Ω × R3
v)) to the equilibrium

distribution function F (x, t,v) solving the homogenized Vlasov-Poisson system

∂tF (x, t,v) + v · ∇xF (x, t,v)− e

m
E(x, t) · ∇vF (x, t,v) = 0,(1.12)

∇x · E(x, t) = −4πe

(∫
R3
v

F (x, t,v) dv − n0

)
(1.13)

or
∇x · (E(x, t) + P(x, t)) = 0,

where

F (x,y, t,v) = F (η(y,v),x, t), F (x, t,v) =

∫
Y
F (x,y, t,v) dy

and η(y,v) is the characteristic curve of the equation (1.11). The polarized electric field

is given by

∇x · P(x, t) = 4πe

(∫
R3
v

F (x, t,v) dv − n0

)
.

2. Basic a-priori estimates

The two-scale convergence was introduced by G. Nguetseng [21] and G. Allaire [2] as an

efficient tool to study the homogenization problem. It is an alternative approach to the

energy method of Tartar (see [7] and references therein). In particular, in applications

there are homogenization problems where the solutions do not have classical limit and the

weak limit cannot be viewed as a satisfactory approximation of the solution, the asymptotic

behavior of the solution can be characterized by so-called two-scale limit (see [2,16,20,21]

for detail and applications).

We denote by C∞# (Y ) the space of infinitely differentiable functions defined on Y =

[0, 1)3 and extended to R3 by Y -periodicity. For p > 1 and an open subset Ω ⊂ R3,

Lp(Ω;C∞# (Y )) is the space of functions of Lp(Ω) with value in C∞# (Y ). A bounded se-

quence {uε}ε in Lp(Ω) is said to (weakly) two-scale converge to u(x,y) ∈ Lp(Ω × Y ) if

and only if

lim
ε→0

∫
Ω
uε(x)ψ

(
x,

x

ε

)
dx =

∫
Ω

∫
Y
u(x,y)ψ(x,y) dydx

for any function ψ(x,y) ∈ D(Ω;C∞# (Y )) that is Y -periodic with respect to the second

argument. This definition is justified by the following compactness theorem.

Theorem 2.1. Let ψ(x,x/ε) be measurable in Ω and ψ(x,y) ∈ Lp(Ω;C∞# (Y )), 1 < p <∞
then for ε > 0 we have∥∥∥ψ (x, x

ε

)∥∥∥
Lp(Ω)

≤ ‖ψ(x,y)‖Lp(Ω;C∞
# (Y )) ≡

[∫
Ω

sup
y∈Y
|ψ(x,y)|p dx

]1/p

.
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Moreover, if ψ(x,y) ∈ Lp(Ω;C∞# (Y )) then

lim
ε→0

∫
Ω
ψp
(
x,

x

ε

)
dx =

∫
Ω

∫
Y
ψp(x,y) dydx

and ψ(x,x/ε) two-scale converges to ψ(x,y).

The proof is similar to the L2 case as given by Allaire in [2] with modification (see

also [9, 15]). Therefore, the proof is omitted. We now focus our attention to derive the

priori estimates that are available for the Vlasov equation. First of all, we notice that its

solution F ε(x,v, t) satisfies the following estimate.

Lemma 2.2. Under assumptions (1.1)–(1.2), there exists a constant C independent of ε

such that the solution F ε of the Vlasov equation (1.1) satisfies

(2.1) ‖F ε‖L∞(0,T ;L2(Ω×R3
v)) ≤ C.

Proof. Multiplying the Vlasov equation (1.1) by F ε and integrating over Ω×R3
v we obtain

the following equality

1

2

∫∫
Ω×R3

v

∂t(F
ε(x, t,v))2 dxdv +

1

2

∫∫
Ω×R3

v

v · ∇x(F ε(x, t,v))2 dxdv

− 1

2

e

m

∫∫
Ω×R3

v

(∇xV
ε(x, t) + E(x, t)) · ∇v(F ε(x, t,v))2 dxdv = 0.

The second and third integrals vanish after integration by part. Hence, we get

d

dt

∫
Ω×R3

v

(F ε(x, t,v))2 dxdv = 0.

The L2 norm of F ε is conserved and (2.1) follows immediately because F0 ∈ L2(R3
v). This

completes the proof.

The homogenization of the Vlasov-Poisson equation relies on the macroscopic averages

such as the density and current. The first equation of fluid theory is the continuity

equation. Integrating equation (1.1) over R3
v, we get

∂t

∫
R3
v

F ε(x, t,v) dv +∇x ·
∫
R3
v

vF ε(x, t,v) dv

−
∫
R3
v

e

m
(∇xV

ε(x, t) + E(x, t)) · ∇vF
ε(x, t,v) dv = 0.

Hence we have obtained the charge continuity equation

(2.2) ∂tρ
ε(x, t) +∇x · J ε(x, t) = 0,
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where ρε is the macroscopic density

ρε(x, t) =

∫
R3
v

F ε(x, t,v) dv − n0

and J ε is the macroscopic current density

J ε(x, t) =

∫
R3
v

vF ε(x, t,v) dv.

Employing (2.2) and integrating by part we obtain∫
Ω
J ε(x, t) · (∇xV

ε(x, t) + E(x, t)) dx

=

∫
Ω
J ε(x, t) · (∇xV

ε(x, t)−∇xΦ(x, t)) dx

= −
∫

Ω
(∇x · J ε(x, t)) (V ε(x, t)− Φ(x, t)) dx

=

∫
Ω
∂tρ

ε(x, t) (V ε(x, t)− Φ(x, t)) dx.

(2.3)

On the other hand, the Poisson equation (1.2) yields∫
Ω
∂tρ

ε(x, t) (V ε(x, t)− Φ(x, t)) dx

=
−1

4πe

∫
Ω

(∂t (∇x · ∇x(V ε(x, t)− Φ(x, t)))) (V ε(x, t)− Φ(x, t)) dx

=
1

8πe
∂t

∫
Ω
|∇x (V ε(x, t)− Φ(x, t))|2 dx.

(2.4)

Moreover, we multiply the Vlasov equation (1.1) by |v|2 and integrate over R3
v × Ω to

obtain

∂t

∫∫
R3
v×Ω
|v|2 F ε(x, t,v) dvdx

− e

m

∫∫
R3
v×Ω

(∇xV
ε(x, t) + E(x, t)) · |v|2∇vF

ε(x, t,v) dvdx = 0.

(2.5)

After integration by parts, (2.5) becomes

∂t

∫∫
R3
v×Ω
|v|2 F ε(x, t,v) dvdx

+
2e

m

∫∫
R3
v×Ω

(∇xV
ε(x, t) + E(x, t)) · vF ε(x, t,v) dvdx = 0,

or

(2.6) ∂t

∫∫
R3
v×Ω
|v|2 F ε(x, t,v) dvdx +

2e

m

∫
Ω

(∇xV
ε(x, t) + E(x, t)) · J ε(x, t) dx = 0.
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Using relation (2.3), the equation (2.6) can be further be rewritten as

∂t

∫∫
R3
v×Ω
|v|2 F ε(x, t,v) dvdx +

2e

m

∫
Ω
∂tρ

ε(x, t) (V ε(x, t)− Φ(x, t)) dx = 0.

Also by means of the equation (2.4), we get

∂t

∫∫
R3
v×Ω
|v|2 F ε(x, t) dvdx +

1

4πm

∫
Ω
∂t |∇x (V ε(x, t)− Φ(x, t))|2 dx = 0,

or

d

dt

(∫∫
R3
v×Ω
|v|2 F ε(x, t,v) dvdx +

1

4πm

∫
Ω
|∇xV

ε(x, t) + E(x, t)|2 dx

)
= 0.

Thus we have proven the following lemma.

Lemma 2.3. Suppose that |v|2 F0 is bounded in L1(R3
v) and Φin is bounded in H1(Ω) or

equivalently Ein is bounded in L2(Ω), then there is a constant C such that∥∥∥|v|2 F ε∥∥∥
L∞(0,T ;L1(Ω×R3

v))
+ ‖∇xV

ε(x, t) + E(x, t)‖L∞(0,T ;L2(Ω)) ≤ C.

Using the conservation of mass and the conservation of energy, we deduce that the

current J ε(x, t) =
∫
R3
v
vF ε dv is bounded in L∞(0, T ;L1(Ω)). Indeed, we have∫

Ω
|J ε(t)| dx ≤

(∫∫
R3
v×Ω
|v|2 F ε dvdx

)1/2(∫∫
R3
v×Ω

F ε dvdx

)1/2

≤ C.

In order to obtain the L2 bound of ρε, we need the boundness of the third moment.

For this purpose, we first prove the following inequality.

Lemma 2.4. There is a constant C such that∫
R3
v

|v|2 F ε(x, t,v) dv ≤ C

[∫
R3
v

|v|3 F ε(x, t,v) dv

]5/6

.

Proof. Let R > 0. We write∫
R3
v

|v|2 F ε(x, t,v) dv =

∫
|v|≤R

|v|2 F ε(x, t,v) dv +

∫
|v|>R

|v|2 F ε(x, t,v) dv

≤ 4π

3
R5 ‖F ε(x, t,v)‖L∞(Ω×R3

v) +
1

R

∫
R3
v

|v|3 F ε(x, t,v) dv.

Choosing R such that

R6 =

∫
R3
v

|v|3 F ε(x, t,v) dv,

we obtain the inequality∫
R3
v

|v|2 F ε(x, t,v) dv ≤ C

(∫
R3
v

|v|3 F ε(x, t,v) dv

)5/6

,

where the constant C depends on ‖F ε‖L∞(Ω×R3
v). This completes the proof.
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Lemma 2.5. If |v|3 F ε0(v) ∈ L1(R3
v) then |v|3 F ε is bounded in L∞(0, T ;L1(Ω × R3

v)).

Furthermore, from the third moment,

∇x · (E(x, t) +∇xV
ε(x, t)) = −4πeρε(x, t) = −4πe

(∫
R3
v

F ε(x, t,v) dv − n0

)
is bounded in L∞(0, T ;L2(Ω)).

Proof. It suffices to show that
∫
R3
v
F ε(x, t,v) dv is bounded in L∞(0, T ;L2(Ω)). Let R > 0

then we may write∫
R3
v

|F ε(x, t,v)| dv =

∫
|v|≤R

|F ε(x, t,v)| dv +

∫
|v|>R

|F ε(x, t,v)| dv

≤ CR3 ‖F ε(x, t,v)‖L∞(Ω×R3
v) +

1

R3

∫
R3
v

|v|3 F ε(x, t,v) dv.

Choosing R such that

R6 =

∫
R3
v

|v|3 F ε(x, t,v) dv,

we obtain the inequality∫
R3
v

|F ε(x, t,v)| dv ≤ C

(∫
R3
v

|v|3 F ε(x, t,v) dv

)1/2

for some constant C depending on ‖F ε(x, t,v)‖L∞(Ω×R3
v). Therefore, we obtain

(2.7)

∥∥∥∥∥
∫
R3
v

|F ε(x, t,v)| dv

∥∥∥∥∥
L2(Ω)

≤ C1

(∫
R3
v×Ω
|v|3 F ε(x, t,v) dvdx

)1/2

.

Therefore we will have the boundedness of the charge density ρ(x, t) in L∞(0, T ;L2(Ω)),

if we can prove the third moment of the right-hand side of the inequality (2.7) is bounded.

For this aim, by way of Poisson equation (1.2) and the equation (2.7) we have the inequality

‖∇x · (E(x, t) +∇xV
ε(x, t))‖L2(Ω) ≤ C2 + C1

(∫
R3
v×Ω
|v|3 F ε(x, t,v) dvdx

)1/2

for some constants C1 and C2. Since the Sobolev space H1(Ω) is a compact imbedding

into L6(Ω), the above equality implies

(2.8) ‖(E(x, t) +∇xV
ε(x, t))‖L6(Ω) ≤ C2 + C1

(∫
R3
v×Ω
|v|3 F ε(x, t,v) dvdx

)1/2

.

We now return to the Vlasov equation. Multiplying by |v|3 and integrating over T = Ω×R3
v

we have

∂t

∫
T
|v|3 F ε(x, t,v) dxdv − 3

∫
T
|v|v · (E(x, t) +∇xV

ε(x, t))F ε(x, t,v) dxdv = 0.
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As F0 ≥ 0, using the positive preserving of the transport operator we have F ε ≥ 0.

Therefore

∂t

∫
T
|v|3 F ε(x, t,v) dxdv ≤ 3

∫
Ω
|E(x, t) +∇xV

ε(x, t)|

(∫
R3
v

|v|2 F ε(x, t,v) dv

)
dx.

By the Hölder inequality and the equation (2.8), we finally get

∂t

∫
T
|v|3 F ε(x, t,v) dxdv

≤ 3 ‖E(x, t) +∇xV
ε(x, t)‖L6(Ω)

∫
Ω

(∫
R3
v

|v|2 F ε(x, t,v) dv

)6/5

dx

5/6

≤ 3

(
C2 + C1

(∫
T
|v|3 F ε(x, t,v) dvdx

)1/2
)(∫

T
|v|3 F ε(x, t,v) dxdv

)6/5

.

Therefore, |v|3 F ε(x, t,v) is bounded in L∞(0, T ;L1(Ω × R3
v)) by Gronwall’s lemma. As

the result, ρε(x, t) is bounded in L∞(0, T ;L2(Ω)) by (2.7). This completes the proof.

3. Proofs of Theorem 1.1 and Theorem 1.2

In this section, we will prove Theorems 1.1 and 1.2. The basic ideas follow from the follow-

ing compactness theorems of two-scale convergence. The proofs and further descriptions

are referred to [2, 7, 21].

Theorem 3.1. For each bounded sequence {uε}ε in Lp(Ω), 1 < p ≤ ∞, there exists a

subsequence still denoted by {uε}ε which two-scale converges to u(x,y) ∈ Lp(Ω× Y ).

Theorem 3.2. Let uε and ε∇uε be two bounded sequences in L2(Ω) and (L2(Ω))3. Then,

there exists a function u(x,y) in L2(Ω;H1
#(Y )) such that, up to a subsequence, uε and

ε∇uε two-scale converge to u(x, y) and to ∇yu(x,y), respectively.

We remark that Theorem 3.1 shows the well defined for the two-scale convergence,

and which further generalizes the notion of weak convergence. Theorem 3.2 gives the

properties of the derivatives, which points out the functions can be decomposed into the

divergent free part and the gradient part with divergent free part zero. From Lemmas 2.2

and 2.3 we have the two-scale limiting of the Vlasov equation, and combining Lemma 2.5

with Theorem 3.2 we will obtain the two-scale limiting of the Poisson equation. The detail

is given as follows.

Proofs of Theorems 1.1 and 1.2. The first thought, we want to go in search of the two-

scale limit of Poisson equation. For this purpose, we multiply the Poisson equation (1.2)
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by the admissible function ψ(x,x/ε, t) = ψ(x,y, t) which is with compact support in (x, t)

and periodic in y, and we then obtain the equation∫
T

[∇x · (E(x, t) +∇xV
ε(x, t))]ψ

(
x,

x

ε
, t
)
dxdt

= −4πe

∫
T

(∫
R3
v

F ε(x, t,v) dv − n0

)
ψ
(
x,

x

ε
, t
)
dxdt.

(3.1)

Integrating by parts we can rewrite (3.1) as

−
∫
T

(E(x, t) +∇xV
ε(x, t)) ·

(
∇x +

1

ε
∇y
)
ψ
(
x,

x

ε
, t
)
dxdt

= −4πe

∫
T

(∫
R3
v

F ε(x, t,v) dv − n0

)
ψ
(
x,

x

ε
, t
)
dxdt.

(3.2)

On the other hand, we have already derived the two-scale expansions in the Section 1 of

the Vlasov-Poisson system, which predicts the likely order of the potential function V in

variable y given by (1.8). Indeed, if we multiply the factor ε2 on the both sides of the

equation (3.2), we will get the equation

−
∫
T

(εE(x, t) + ε∇xV
ε(x, t)) (ε∇x +∇y)ψ(x,y, t) dxdt

= −4πe

∫
T
ε2

(∫
R3
v

F ε(x, t,v) dv − n0

)
ψ
(
x,

x

ε
, t
)
dxdt.

(3.3)

By Theorems 3.1 and 3.2, the two-scale limit of (3.3) takes the form

−
∫
Y×T

∇yV (y, t) · ∇yψ(x,y, t) dydxdt = 0,

or ∫
Y×T

4yV (y, t)ψ(x,y, t) dydxdt = 0

after integration by parts. We therefore obtain the same restrained equation obtained

by formal two scale expansion of the ε−2-order related to the potential function V (y, t),

which is harmonic in y,

(3.4) 4yV (y, t) = 0.

In order to get the two-scale limit of Poisson equation, we need the restrained equation of

ε−1-order term which can be expressed as (1.9). Hence, we multiply (3.2) by the ε-order

term to obtain

−
∫
T
εE(x, t) · ∇xψ(x,y, t) dxdt−

∫
T

(ε∇xV
ε(x, t)) · ∇xψ(x,y, t) dxdt

−
∫
T
E(x, t) · ∇yψ(x,y, t) dxdt− 1

ε

∫
T

(ε∇xV
ε(x, t)) · ∇yψ(x,y, t) dxdt

= −4πeε

∫
T

(∫
R3

v

F ε(x, t,v) dv − n0

)
ψ(x,y, t) dxdt.

(3.5)
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Owing to the equation (3.4), the fourth term on the left-hand side of the equation (3.5)

vanishes. Therefore, the two-scale limit of the equation (3.5) is given by

−
∫
Y×T

∇yV (y, t) · ∇xψ(x,y, t) dydxdt−
∫
Y×T

E(x, t) · ∇yψ(x,y, t) dydxdt = 0.

That is,

(3.6) ∇x · ∇yV (y, t) +∇y · E(x, t) = 0.

Besides, the equation (3.2) can be separated as

−
∫
T
E(x, t) · ∇xψ(x,y, t) dxdt

− 1

ε

∫
T

(E(x, t) · ∇yψ(x,y, t) + (ε∇xV
ε(x, t)) · ∇xψ(x,y, t)) dxdt

− 1

ε2

∫
T
ε∇xV

ε(x, t) · ∇yψ(x,y, t) dxdt

= −4πe

∫
T

(∫
R3
v

F ε(x, t,v) dv − n0

)
ψ(x,y, t) dxdt.

Notice that the second and third terms vanish because of (3.6) and (3.4). Hence, taking

two-scale limit we obtain

−
∫
Y×T

E(x, t) · ∇xψ(x,y, t) dydxdt

= −4πe

∫
Y×T

(∫
R3
v

F (x,y, t,v) dv − n0

)
ψ(x,y, t) dydxdt.

The two-scale limiting Poisson equation will be

(3.7) ∇x · E(x, t) = −4πe

(∫
R3
v

F (x,y, t,v) dv − n0

)
.

We are now in a position to investigate the two-scale limits of the Vlasov equation.

Multiplying the Vlasov equation (1.1) by the admissible test function, we have∫
O
∂tF

ε(x, t,v)ψ
(
x,

x

ε
, t, v

)
dxdtdv

+

∫
O
v · ∇xF

ε(x, t,v)ψ
(
x,

x

ε
, t, v

)
dxdtdv

− e

m

∫
O

(∇xV
ε(x, t) + E(x, t)) · ∇vF

ε(x, t,v)ψ
(
x,

x

ε
, t,v

)
dxdtdv = 0,

(3.8)
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where O = T × R3
v. After integrating by parts, (3.8) can be rewritten as

−
∫
O
F ε(x, t,v)∂tψ

(
x,

x

ε
, t,v

)
dxdtdv

−
∫
O
v · F ε(x, t,v)∇xψ

(
x,

x

ε
, t,v

)
dxdtdv

−
∫
O

1

ε
v · F ε(x, t,v)∇yψ

(
x,

x

ε
, t,v

)
dxdtdv

+
e

m

∫
O

(∇xV
ε(x, t) + E(x, t)) · F ε(x, t,v)∇vψ

(
x,

x

ε
, t,v

)
dxdtdv = 0.

(3.9)

The two-scale expansions in Section 1 reveals the order ε−1 about the restrained equation

(1.6). To see this, we multiply (3.9) by the factor ε and obtain

−
∫
O
εF ε(x, t,v)∂tψ

(
x,

x

ε
, t,v

)
dxdtdv

−
∫
O
εv · F ε(x, t,v)∇xψ

(
x,

x

ε
, t,v

)
dxdtdv

−
∫
O
v · F ε(x, t,v)∇yψ

(
x,

x

ε
, t,v

)
dxdtdv

+
e

m

∫
O
ε (∇xV

ε(x, t) + E(x, t)) · F ε(x, t,v)∇vψ
(
x,

x

ε
, t,v

)
dxdtdv = 0.

(3.10)

Applying Lemmas 2.2 and 2.3, we obtain the two-scale limit of (3.10)

−
∫
O

∫
Y
v · F (x,y, t,v))∇yψ(x,y, t,v) dydxdtdv

+
e

m

∫
O

∫
Y
∇yV (y, t)F (x,y, t,v) · ∇vψ(x,y, t,v) dydxdtdv = 0.

(3.11)

Integrating by parts again, (3.11) can be further represented as∫
O

∫
Y
v · ∇yF (x,y, t,v))ψ(x,y, t,v) dydxdtdv

− e

m

∫
O

∫
Y
∇yV (y, t) · ∇vF (x,y, t,v))ψ(x,y, t,v) dydxdtdv = 0.

Therefore, we have the restrained equation

(3.12) v · ∇yF (x,y, t,v)− e

m
∇yV (y, t) · ∇vF (x,y, t,v) = 0.

We note that the equation (3.12) can be solved explicitly by the method of characteristics:

F (x,y, t,v) = F (η(y,v),x, t),

where η(y,v) is the characteristic curve of (3.12).
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We now want to view the two-scale limiting equation of the Vlasov equation (1.1).

Similarly, multiplying the equation (1.1) by the admissible function we have∫
O
∂tF

ε(x, t,v)ψ
(
x,

x

ε
, t, v

)
dxdtdv

+

∫
O
v · ∇xF

ε(x, t,v)ψ
(
x,

x

ε
, t,v

)
dxdtdv

− e

m

∫
O
E(x, t) · ∇vF

ε(x, t,v)ψ
(
x,

x

ε
, t,v

)
dxdtdv

− e

m

∫
O
∇xV

ε(x, t) · ∇vF
ε(x, t,v)ψ

(
x,

x

ε
, t,v

)
dxdtdv = 0.

After integration by parts, we obtain

−
∫
O
F ε(x, t,v)∂tψ(x,y, t,v) dxdtdv

−
∫
O
v · F ε(x, t,v)

(
∇x +

1

ε
∇y

)
ψ(x,y, t,v) dxdtdv

+
e

m

∫
O
E(x, t) · F ε(x, t,v)∇vψ(x,y, t,v) dxdtdv

+
e

m

∫
O
∇xV

ε(x, t)F ε(x, t,v) · ∇vψ(x,y, t,v) dxdtdv = 0,

or

−
∫
O
F ε(x, t,v)∂tψ(x,y, t,v) dxdtdv

−
∫
O
v · F ε(x, t,v) · ∇xψ(x,y, t,v) dxdtdv

+
e

m

∫
O
E(x, t) · F ε(x, t,v)∇vψ(x,y, t,v) dxdtdv

− 1

ε

∫
O

[
vF ε(x, t,v) · ∇yψ(x,y, t,v)

− e

m
(ε∇xV

ε(x, t))F ε(x, t,v) · ∇vψ(x,y, t,v)
]
dxdtdv = 0.

(3.13)

Since the admissible test function satisfied the restrained equation (3.12) then by change

of variables, the last term on the left-hand side of (3.13) vanishes, thus the two-scale limits

of the (3.13) will be

−
∫
O×Y

F (x, , t, η(y,v))∂tψ(x, t, η(y,v)) dydxdtdv

−
∫
O×Y

v · F (x, , t, η(y,v)) · ∇xψ(x, t, η(y,v)) dydxdtdv

+
e

m

∫
O×Y

E(x, t) · F (x, , t, η(y,v))∇vψ(x, t, η(y,v)) dydxdtdv = 0.

(3.14)
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Integrating by parts again, (3.14) becomes∫
O×Y

∂tF (x, , t, η(y,v))ψ(x, t, η(y,v)) dxdydtdv

+

∫
O×Y

v · ∇xF (x, , t, η(y,v)) · ψ(x, t, η(y,v)) dxdydtdv

− e

m

∫
O×Y

E(x, t) · ∇vF (x, , t, η(y,v))ψ(x, t, η(y,v)) dxdydtdv = 0.

This means

(3.15) ∂tF (x, , t, η(y,v)) + v · ∇xF (x, , t, η(y,v))− e

m
E(x, t) · ∇vF (x, , t, η(y,v)) = 0.

Combining (3.4), (3.7), (3.12) and (3.15) together we have completed the proof of Theo-

rem 1.1. Moreover, averaging in Y on the equations (3.7) and (3.15), we obtain

∂tF (x, t,v) + v · ∇xF (x, t,v)− e

m
E(x, t) · ∇vF (x, t,v) = 0,

∇x · E(x, t) = −4πe

(∫
R3
v

F (x, t,v) dv − n0

)
,

where F (x,y, t,v) = F (η(y,v),x, t) and F (x, t,v) =
∫
Y F (x, , t, η(y,v)) dy. This yields

Theorem 1.2.

4. Dielectric function and the dispersion relation

From the theory of electric polarization, the electric field strength changes with the time;

then the polarization need not be in the equilibrium with the field. The motions of the

microscopic particles required to reach a certain value of the polarization have character-

istic times. When the electric field varies appreciably within a period of the same order

as the characteristic time, the motions of the microscopic particles will not be sufficiently

rapid to build up the equilibrium polarization, and the actual value of the polarization

will, as it was, lags behind the changing electric field. Therefore, it gives rise to dielectric

loss. To view this and the corresponding dispersion relation, we consider an unbounded

uniform electron plasma with a fixed neutralizing ion background and under equilibrium

conditions, which is given slightly displaced from the equilibrium positions. Since we are

dealing with small deviations from the equilibrium, the equations can be linearized. To

describe small deviations from the equilibrium, we assume the density F ε in (1.1) and

(1.2) can be separated into

F ε(x, t,v) = F0(v) + F ε1(x, t,v),

where v = |v| and the two-scale limiting function will be

F (x,y, t,v) = F0(v) + F 1(x,y, t,v).
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We note that the homogenized function becomes

(4.1) F (x, t,v) = F0(v) + F1(x, t,v).

The restrained equation (3.12) can be rewritten as

(4.2) v · ∇yF 1(x,y, t,v)− e

m
∇yV (y, t) · ∇vF 1(x,y, t,v) =

e

m
∇yV (y, t) · ∇vF0(v).

By characteristics, F1 can be represented as F 1(x,y,v, t) = F 1(η(y,v),x, t), where η is

the characteristic curve of the equation (4.2), and also F1(x, t,v) =
∫
Y F 1(x,y, t,v)dy.

We now focus on deducing dielectric function. To this end, we plug (4.1) into the equa-

tions (1.12) and (1.13), and ignore the second order term. Thus, the linearized Vlasov-

Poisson system becomes

(4.3) ∂tF1(x, t,v) + v · ∇xF1(x, t,v) =
e

m
E(x, t) · ∇vF0(v)

and

(4.4) ∇x · E(x, t) = −4πe

∫
R3
v

F1(x, t,v) dv.

For the mathematical treatment, however, without losing the essential of the plasma

behavior under consideration, we might assume

(4.5) F1(x, t,v) = F̂1(ω,k,v)eik·x−iωt, E(x, t) = Ê(ω,k)eik·x−iωt.

Substituting (4.5) into (4.3), we get

−iωF̂1(ω,k,v) + iv · kF̂1(ω,k,v) =
e

m
Ê(ω,k) · ∇vF0(v),

whose solution is

(4.6) F̂1(ω,k,v) =
e

m
Ê(ω,k) · ∇vF0(v)

−iω + ik · v
.

For definiteness it is convenient to consider the direction of propagation of the waves as

being the direction of the first component. Therefore, k · v = kv1, and (4.6) becomes

F̂1(ω,k,v) =
e

m
Ê(ω,k) · ∇vF0(v)

−iω + ikv1
.

We apply the useful identity

∇vF0(v) =
v

v

dF0(v)

dv
,

to reducing the Poisson equation (4.4) to

(4.7) ikÊ1(ω,k) = −4πe2

m
Ê(ω,k) ·

∫
R3
v

v

v

dF0(v)

dv

1

−iω + ikv1
dv.
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Observe that

−4πe2

m
Êj(ω,k)

∫
R3
v

vj
v

dF0(v)

dv

1

kω − k2v1
dv = 0, j = 2, 3

since the integrand is an odd function of vj . Consequently, the only contribution comes

from the term Ê(ω,k) · ∇vF0(v) to the first component of Ê(ω,k). Explicitly, it is

Ê1(ω,k)∂F0(v)
∂v1

, so that the equation (4.7) can be written as

(4.8) Ê1(ω,k) = −4πe2

m
Ê1(ω,k)

∫
R3
v

∂F0(v)/∂v1

kω − k2v1
dv.

Thus the dipole moment is given by

P̂(ω,k) =

(
4πe2

m

∫
R3
v

∂F0(v)/∂v1

kω − k2v1
dv

)
Ê1(ω,k)

= 4πχ(ω,k)Ê1(ω,k),

where χ is the electric susceptibility, and the dielectric function is defined as

E(ω,k) = 1 + 4πχ = 1 +
4πe2

m

∫
R3
v

∂F0(v)/∂v1

kω − k2v1
dv.

Dividing this equation by Ê1(ω,k) 6= 0, then using (4.8), we have the dispersion relation

(4.9) 1 = −ω2
e

∫
R3
v

∂f0(v)/∂v1

kω − k2v1
dv,

where ω2
e = 4πn0e

2/m is the natural plasma frequency and F0 = n0f0. The equation (4.9)

has a singularity at v1 = ω/k. In order to calculate the integral we need the Plemelj

formula

(4.10) lim
τ→0

∫ ∞
−∞

φ(t)

t− t0 − iτ
dt = Pr

∫ ∞
−∞

φ(t)

t− t0
dt+ πiφ(t0),

where Pr denotes the principal value, t0 is a point on the real axis and φ(t) is a continuous

function of t. Applying the Plemelj formula (4.10) to (4.9) we have the dispersion relation

(4.11) 1 = −ω2
e

∫ ∞
−∞

∂f̂0(v1)/∂v1

kω − k2v1
dv1 =

−ω2
e

kω

[
Pr

∫ ∞
−∞

∂f̂0(v1)/∂v1

1− kv1/ω
dv1 + πi

∂f̂0(ω/k)

∂v1

]
and the dielectric function is given by

(4.12) E(ω,k) = 1 + ω2
e

∫ ∞
−∞

∂f̂0(v1)/∂v1
kω − k2v1

dv1 =
−ω2

e

kω

[
Pr

∫ ∞
−∞

∂f̂0(v1)/∂v1
1− kv1/ω

dv1 + πi
∂f̂0(ω/k)

∂v1

]
where

f̂0(v1) =

∫
R2
v2,v3

f0(v1, v2, v3) dv2dv3.
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We note that the complex part of the equation (4.12) is the dielectric loss due to the

polarization delay. The result is in virtue of the particle and wave interaction, when the

velocity v1 is closed to ω/k.

Another important result can be immediately obtained from the dispersion relation

(4.11), for the limiting case in which the wave phase velocity ω/k is very large compared to

the velocity of almost all of the electrons. In this high phase velocity limit with kv/ω � 1,

that is the finite frequency and long wavelength (small k) limit, it is reasonable to expand

by power series. The principle value can be approximated by

(4.13) Pr

∫ ∞
−∞

∂f̂0(v1)/∂v1

1− kv1/ω
dv1 =

∫ ∞
−∞

∂f̂0(v1)

∂v1

(
1 +

kv1

ω
+

(
kv1

ω

)2
)
dv1 = − k

ω
.

Therefore, the dispersion relation of the equation (4.11) alters to

1 = −ω2
e

[
−1

ω2
+ i

π

kω

∂f̂0

∂v1

(ω
k

)]
=
ω2
e

ω2
− iπω

2
e

kω

∂f̂0

∂v1

(ω
k

)
,

here we assume f0(v) = 1
(
√

2π)3
e−v

2/2. By (4.13), the dielectric function of the equa-

tion (4.12) can be written as

E = 1− ω2
e

ω2
+ i

πω2
e

kω

∂f̂0

∂v1

(ω
k

)
.

Integrating by parts, the right-hand side of (4.9) becomes

(4.14) 1 = ω2
e

∫ ∞
−∞

f̂0(v1)

(ω − kv1)2
dv1.

Expanding the denominator of the integrand up to and including second order terms in

v1k/ω, the equation (4.14) leads to the approximation

1 =
ω2
e

ω2

∫ ∞
−∞

f̂0(v1)

(
1 +

2kv1

ω
+

3k2v2
1

ω2

)
dv1 =

ω2
e

ω2
+

3k2ω2
e

ω4
.

For the the long wavelength limit (k → 0), the dielectric function becomes

E = 1− ω2
e

ω2

which means that we have the real-valued dispersion relation ω and ω ∼ ωe. This result is

also called the cold plasma approximation. Using the approximation ω2 ∼ ω2
e , we derived

the so-called Langmuir wave dispersion relation

ω2(k) = ω2
e + 3k2.
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