On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs

Enqiang Zhu*, Chanjuan Liu and Jin Xu

Abstract

The adjacent vertex-distinguishing total chromatic number of a graph G, denoted by $\chi_{a t}(G)$, is the smallest k for which G has a proper total k-coloring such that any two adjacent vertices have distinct sets of colors appearing on the vertex and its incident edges. In regard of this number, there is a famous conjecture (AVDTCC) which states that for any simple graph $G, \chi_{a t}(G) \leq \Delta(G)+3$. In this paper, we study this number for the generalized Mycielski graph $\mu_{m}(G)$ of a graph G. We prove that the satisfiability of the conjecture AVDTCC in G implies its satisfiability in $\mu_{m}(G)$. Particularly we give the exact values of $\chi_{a t}\left(\mu_{m}(G)\right)$ when G is a graph with maximum degree less than 3 or a complete graph. Moreover, we investigate $\chi_{a t}(G)$ for any graph G with only one maximum degree vertex by showing that $\chi_{a t}(G) \leq \Delta(G)+2$ when $\Delta(G) \leq 4$.

1. Introduction

In this paper we confine our attention to graphs that are finite, simple, connected and undirected. For a graph G, we denote by $V(G), E(G), d_{G}(v)$ and $\Delta(G)$ the vertex set, edge set, degree of $v \in V(G)$ and maximum degree of G, respectively. We use $[a, b]$ to denote the set $\{a, a+1, a+2, \ldots, b\}$ for two integers a and b with $a<b$. Notations and terminologies undefined here are followed [1].

Let G be a graph, and $V^{\prime} \subseteq V(G), E^{\prime} \subseteq E(G)$. A partial total k-coloring of G regarding to $V^{\prime} \cup E^{\prime}$ is a coloring $f:\left(V^{\prime} \cup E^{\prime}\right) \rightarrow[1, k]$, such that no incident or adjacent elements in $V^{\prime} \cup E^{\prime}$ receive the same color. When $V^{\prime}=V$ and $E^{\prime}=E$, we refer to f as a total k-coloring of G. Given a partial total k-coloring f of G regarding to $V^{\prime} \cup E^{\prime}$, for a vertex $v \in V$ and a subset $S \subseteq[1, k]$, we name $C_{f}^{S}(v)=\left(\{f(v)\} \cup\left\{f(u v): u v \in E^{\prime}\right\}\right) \cap S$ as the color set restricted to S of v (under f), or simply color set of v when $S=[1, k]$.

[^0]Let $\bar{C}_{f}^{S}(v)=S \backslash C_{f}^{S}(v)$. Note that when $v \notin V^{\prime}, v$ does not receive any color under f. So $\{f(v)\}=\emptyset$ and $C_{f}^{S}(v)=\left\{f(u v): u v \in E^{\prime}\right\} \cap S$ in this case.

Let f be a total k-coloring of G, if $C_{f}^{[1, k]}(u) \neq C_{f}^{[1, k]}(v)$ for any two adjacent vertices u, v, then we call f an adjacent vertex-distinguishing total coloring (AVDTC) of G. The smallest k for which G has a k-AVDTC is called the adjacent vertex-distinguishing total chromatic number of G, denoted by $\chi_{a t}(G)$. Clearly, if f is an AVDTC of G, then for each pair of adjacent vertices $u, v \in V, C_{f}^{[1, k]}(u) \triangle C_{f}^{[1, k]}(v) \neq \emptyset$, where \triangle denotes the symmetric difference of two sets.

As an extension of vertex-distinguishing proper edge coloring of graphs [2], AVDTC was first examined by Zhang et al. [23], where $\chi_{a t}(G)$ for many basic families of graphs were determined and a conjecture called AVDTCC was proposed.

Conjecture 1.1 (AVDTCC). For any simple graph $G, \Delta(G)+1 \leq \chi_{a t}(G) \leq \Delta(G)+3$.
The lower bound in Conjecture 1.1 is easy to see. In addition, when G has two adjacent vertices with maximum degree, $\chi_{a t}(G) \geq \Delta(G)+2$. For the upper bound, there exist graphs G with $\chi_{a t}(G)=\Delta(G)+3$, for example the complete graph K_{n} for $n \equiv 1$ $(\bmod 2)$ 23.

Chen [4], and independently Wang [18], confirmed Conjecture 1.1 for graphs G with $\Delta(G) \leq 3$. Later, Hulgan (9] provided a more concise proof on this result. In [20] and 22], $\chi_{a t}(G)$ for K_{4}-minor free graphs and outerplane graphs were investigated. Wang 21 and Huang [8] considered $\chi_{a t}(G)$ for graphs with smaller maximum average degree and large maximum degree, respectively. A more recent work is Wang [19], which focused on $\chi_{a t}(G)$ for planar graphs.

Graphs considered in this paper are Mycielski graphs, which were first introduced in [15]. Such kind of graphs has gained much attention in the community of graph coloring [3, 6, 11, 13, 14, 16, 17. Also, the Mycielskian of G was generalized to the m-Mycielskian of G, where $m \geq 1$ [12].

Let G be a graph with vertex set $V^{0}=\left\{v_{1}^{0}, v_{2}^{0}, \ldots, v_{n}^{0}\right\}$ and edge set E^{0}. Given an integer $m \geq 1$, the m-Mycielskian of G, denoted by $\mu_{m}(G)$, is the graph with vertex set $V^{0} \cup V^{1} \cup \cdots \cup V^{m} \cup\{u\}$, where $V^{i}=\left\{v_{j}^{i}: v_{j}^{0} \in V^{0}\right\}$ is the i th distinct copy of V^{0} for $i \in[1, m]$, and edge set $E^{0} \cup\left(\bigcup_{i=0}^{m-1}\left\{v_{j}^{i} v_{j^{\prime}}^{i+1}: v_{j}^{0} v_{j^{\prime}}^{0} \in E^{0}\right\}\right) \cup\left\{v_{j}^{m} u: v_{j}^{m} \in V^{m}\right\}$. In what follows, we use $E^{i}, i \in[1, m]$, to denote the set of edges with one end in V^{i-1} and the other in V^{i}, and use G^{i} to denote the subgraph of $\mu_{m}(G)$ induced by E^{i}. Clearly, G^{i}, $i \in[1, m]$, is a bipartite subgraph with maximum degree $\Delta(G)$. For completeness, we also denote G by G^{0}.

In this paper, we investigate the adjacent vertex-distinguishing total chromatic number of generalized Mycielski graphs. We prove that if G satisfies AVDTCC, then $\mu_{m}(G)$ also satisfies AVDTCC. Additionally, when G is a graph with maximum degree less than

3 or a complete graph, we determine the exact values of $\chi_{a t}\left(\mu_{m}(G)\right)$. Moreover, we explore the $\chi_{a t}(G)$ for any graph G with only one maximum degree vertex, and show that $\chi_{a t}(G) \leq \Delta(G)+2$ when $\Delta(G) \leq 4$.

To prove the main results of this paper, we need to quote the following two theorems.
Theorem 1.2. 10 Every bipartite graph G has a $\Delta(G)$-edge-coloring.
An L-edge-coloring of a graph G is a proper edge-coloring f of G such that $f(e) \in L(e)$ for each edge e, where $L(e)$ called the list of e, is a set of colors of e, and $f(e)$ denotes the color assigned to e under f. We say G is L-edge-colorable, if it admits an L-edge-coloring. For an integer k, if G is L-edge-colorable for every list assignment with $|L(e)| \geq k$ for each $e \in E(G)$, then G is k-edge-choosable. The following Theorem 1.3 will be used to prove the main results later in the next section.

Theorem 1.3. 7 Every bipartite multigraph G is $\Delta(G)$-edge-choosable.

2. Generalized Mycielski graphs

In this section, we study the adjacent vertex-distinguishing chromatic number of generalized Mycielski graphs. Observe that when $\Delta(G)=1, G$ is a complete graph on 2 vertices. Then $\mu_{m}(G)$ is a cycle, and $\chi_{a t}\left(\mu_{m}(G)\right)=4$ [23]. In the following we assume $\Delta(G) \geq 2$.

Let G be a graph, and $V^{\prime} \subseteq V(G), E^{\prime} \subseteq E(G)$. For a partial total coloring f of G regarding to $V^{\prime} \cup E^{\prime}$ and a vertex $v \in V^{\prime}$, we define $E_{f}(v)=\left\{u v: u v \in E^{\prime}\right\}$, and $\bar{E}_{f}(v)=\{u v: u v \in E(G)\} \backslash E_{f}(v)$. We first have the following observation for latter use.

Lemma 2.1. Let f be a partial total k-coloring of a graph G regarding to $V^{\prime} \cup E^{\prime}$, where $V^{\prime} \subseteq V(G)$ and $E^{\prime} \subseteq E(G)$. Suppose that V^{\prime} contains two adjacent vertices u and v satisfying $C_{f}^{[1, k]}(u) \neq C_{f}^{[1, k]}(v)$. Let $S \subseteq[1, k]$ be a color set such that $C_{f}^{[1, k]}(u) \triangle C_{f}^{[1, k]}(v) \nsubseteq S$. If there exist two edge colorings, $f_{1}: \bar{E}_{f}(u) \rightarrow S$ and $f_{2}: \bar{E}_{f}(v) \rightarrow S$, then $C_{f \cup f_{1} \cup f_{2}}^{[1, k]}(u) \neq$ $C_{f \cup f_{1} \cup f_{2}}^{[1, k]}(v)$.
Proof. Let c be a color in $C_{f}^{[1, k]}(u) \triangle C_{f}^{[1, k]}(v)$ and not in S. Then we have $c \in C_{f \cup f_{1} \cup f_{2}}^{[1, k]}(u)$ $\triangle C_{f \cup f_{1} \cup f_{2}}^{[1, k]}(v)$. Hence, the result holds.
Lemma 2.2. [5] For a generalized Mycielski graph $\mu_{m}(G)$ of a graph G, there exists a matching in G^{i} for any $i \in[1, m]$, which saturates all of the maximum degree vertices of G^{i}.

Sun et al. 16] studied the adjacent vertex-distinguishing chromatic number of $\mu_{m}(G)$ for $m=1$, i.e., the Mycielskian of G. They proved that if $\chi_{a t}(G) \leq \Delta(G)+k$ and $\Delta(G)+$ $k \geq|V(G)|$, then $\chi_{a t}\left(\mu_{1}(G)\right) \leq 2 \Delta(G)+k$. The theorem below gives a characterization of $\mu_{m}(G)$ for $m=2$, which is followed by cases of $m \geq 3$.

Theorem 2.3. Let G be a graph with $\chi_{a t}(G)=k$ and $\Delta(G)=\Delta(\geq 2)$. Then $\chi_{a t}\left(\mu_{2}(G)\right)$ $\leq \max \{k+\Delta+1, n+1\}$.

Proof. Let $f: V\left(G^{0}\right) \cup E\left(G^{0}\right) \rightarrow[1, k]$, be a k-AVDTC of G^{0}. Based on f, color $u v_{j}^{2}$ with j for $j \in[1, n]$, and by Theorem 1.2 properly color E^{1} by the set $[k+1, k+\Delta]$. Color u and V^{1} by k^{*}, where $k^{*}=\max \{k+\Delta+1, n+1\}$. For any edge $e=v_{j_{1}}^{1} v_{j_{2}}^{2} \in E^{2}$, let $L(e)=[1, k] \backslash\left\{j_{2}\right\}$. Then, $|L(e)| \geq \Delta$. So by Theorem $1.3 E^{2}$ can be properly colored by the set $[1, k]$. In addition, $\Delta \geq 2$ implies $\left[k+1, k^{*}\right] \geq 3$. Therefore, v_{j}^{2} can be colored with an arbitrary color in $\left[k+1, k^{*}\right] \backslash\left\{j, k^{*}\right\}$. Denote by f^{\prime} the resulting coloring. By Lemma 2.1, any two vertices of V^{0} have different color sets under f^{\prime}. Since k^{*} is in the color sets of vertices in $V^{1} \cup\{u\}$, but not in those of vertices in $V^{0} \cup V^{2}$, it follows that $C_{f^{\prime}}^{\left[1, k^{*}\right]}(x) \neq C_{f^{\prime}}^{\left[1, k^{*}\right]}(y)$ for any two vertices $x \in V^{1} \cup\{u\}$ and $y \in V^{0} \cup V^{2}$. Hence, f^{\prime} is a k^{*}-AVDTC of $\mu_{2}(G)$.

Theorem 2.4. Let G be a graph on $n(\geq 3)$ vertices with $\Delta(G)=\Delta(\geq 2)$. When m (≥ 3) is an odd integer, we have

$$
\chi_{a t}\left(\mu_{m}(G)\right) \leq \begin{cases}\max \left\{\chi_{a t}(G)+\Delta, n+1\right\} & \text { if } \chi_{a t}(G) \geq \Delta+2, \\ \max \{2 \Delta+2, n+1\} & \text { if } \chi_{a t}(G)=\Delta+1\end{cases}
$$

Proof. Let $\chi_{a t}(G)=k$, and $g: V(G) \cup E(G) \rightarrow[1, k]$, be a k-AVDTC of G. We first define a partial total $(k+\Delta)$-coloring of $\mu_{m}(G)$ regarding to $\bigcup_{i=0}^{m-1}\left(V^{i} \cup E^{i}\right)$, denoted by f^{*}.
(1) Let $f^{*}\left(v_{j}^{i}\right)=g\left(v_{j}^{0}\right)$ for $i \in[0, m-1], j \in[1, n]$.
(2) Let $f^{*}(e)=g(e)$ for $e \in E^{0}$.
(3) When i is odd, we properly color E^{i} with the set of $[k+1, k+\Delta]$ by Theorem 1.2 (since G^{i} is a bipartite graph with maximum degree Δ for $i \geq 1$). When i is even, for each edge $e=v_{j}^{i-1} v_{j^{\prime}}^{i} \in E^{i}$, let $f^{*}(e)=g\left(v_{j}^{0} v_{j^{\prime}}^{0}\right)$.

Thus, we obtain a partial total $(k+\Delta)$-coloring of $\mu(G)$ with only elements in $V^{m} \cup$ $\{u\} \cup E^{m} \cup\left\{u v_{j}^{m}: j \in[1, n]\right\}$ uncolored. As for f^{*}, since $m \geq 3$ is odd, it follows that $C_{f^{*}}^{[1, k]}\left(v_{j}^{i}\right)=C_{f^{*}}^{[1, k]}\left(v_{j}^{i^{\prime}}\right)$ for $i, i^{\prime} \in[0, m-1]$ and $j \in[1, n]$, and $C_{f^{*}}^{[k+1, k+\Delta]}\left(v_{j}^{m-1}\right)=\emptyset$. Given that g is a k-AVDTC of G, we have $C_{f^{*}}^{[1, k]}(x) \neq C_{f^{*}}^{[1, k]}(y)$ for any $x y \in \bigcup_{i=0}^{m-1} E^{i}$. To complete our proof, we consider the following two cases.

Case 1: $k \geq \Delta+2$. Let $k^{*}=\max \{k+\Delta, n+1\}$. Then, we can modify and extend f^{*} to a k^{*}-AVDTC of $\mu_{m}(G)$ as follows.

Since $k \geq \Delta+2$, it has that $\left|\bar{C}_{f^{*}}^{[1, k]}\left(v_{j}^{m-1}\right)\right| \geq 1$ for any $j \in[1, n]$. By Lemma 2.2, let M be a matching of G^{m} which saturates every maximum degree vertex of G^{m}. Color each edge $e=v_{x}^{m-1} v_{y}^{m} \in M$ with a color $c_{x} \in \bar{C}_{f^{*}}^{[1, k]}\left(v_{x}^{m-1}\right)$, and denote the resulting coloring
by f. We claim that there exists a bijection, from $E_{u}=\left\{u v_{j}^{m}: j \in[1, n]\right\}$ to $[1, n]$, say f^{\prime}, such that any pair of two incident edges in $M \cup E_{u}$ have different colors.

Suppose this is not the case. Choose an f^{\prime} of E_{u} with the fewest pairs of incident edges in $M \cup E_{u}$ receiving the same color under $f \cup f^{\prime}$. Let e_{1} and e_{2} be two edges in $M \cup E_{u}$ with the same color. Obviously, $\left\{e_{1}, e_{2}\right\} \not \subset E_{u}$ and $\left\{e_{1}, e_{2}\right\} \nsubseteq M$. Without loss of generality, assume $e_{1} \in M$ and $e_{2} \in E_{u}$, and let $e_{1}=v_{x}^{m-1} v_{y}^{m}$ and $e_{2}=u v_{y}^{m}$. If there exists a $v_{y^{\prime}}^{m}$ not saturated by M, then we interchange the colors of e_{2} and $u v_{y^{\prime}}^{m}$. Now, e_{1} and e_{2} have distinct colors, a contradiction with the choice of f^{\prime}. If all of vertices in V^{m} are saturated by M, then $|M|=n$ and there exists an edge $v_{x^{\prime}}^{m-1} v_{y^{\prime}}^{m} \in M$ such that $c_{x^{\prime}} \neq c_{x}$. (When G is not regular, let $v_{x^{\prime}}^{0}$ be a vertex with $d_{G}\left(v_{x^{\prime}}^{0}\right)<\Delta(G)$. Evidently, $\left|\bar{C}_{f^{*}}^{[1, k]}\left(v_{x^{\prime}}^{m-1}\right)\right| \geq 2$. So, such a $c_{x^{\prime}}$ can be chosen from $\bar{C}_{f^{*}}^{[1, k]}\left(v_{x^{\prime}}^{m-1}\right)$. When G is a regular graph, such an edge $v_{x^{\prime}}^{m-1} v_{y^{\prime}}^{m}$ also exists because if every $\bar{C}_{f^{*}}^{[1, k]}\left(v_{j}^{m-1}\right)=\left\{c_{x}\right\}$ for $j \in[1, n]$, then there are two adjacent vertices in V^{0} with the same color set under g, and a contradiction with g.) We interchange the colors of e_{2} and $u v_{y^{\prime}}^{m}$. Then e_{1} and e_{2} have distinct colors and $v_{x^{\prime}}^{m-1} v_{y^{\prime}}^{m}$, and $u v_{y^{\prime}}^{m}$ also have distinct colors. This contradicts to the choice of f^{\prime}.

After we have properly colored edges of $M \cup\left\{u v_{j}^{m}: j \in[1, n]\right\}$ by $f \cup f^{\prime}$ defined above, our purpose is to color elements in $V^{m} \cup\{u\} \cup\left(E^{m} \backslash M\right)$. Let $f^{\prime \prime}=f \cup f^{\prime}$. For any $v_{y}^{m} \in V^{m}$, when $f^{\prime \prime}\left(u v_{y}^{m}\right) \leq k$, color v_{y}^{m} with $k+1$, and let $L(e)=\left[k+2, k^{*}\right]$ for each edge $e=v_{x}^{m-1} v_{y}^{m} \in E^{m} \backslash M$. When $f^{\prime \prime}\left(u v_{y}^{m}\right) \geq k+1$, since $k \geq \Delta+2$, we color v_{y}^{m} by one color in $[1, k] \backslash\left(\left\{f^{\prime \prime}\left(v_{x}^{m-1}\right): v_{x}^{m-1} v_{y}^{m} \in E^{m}\right\} \cup\left\{c_{x^{\prime}}: v_{x^{\prime}}^{m-1} v_{y}^{m} \in M\right\}\right)$, and let $L(e)=\left[k+1, k^{*}\right] \backslash\left\{f^{\prime \prime}\left(u v_{y}^{m}\right)\right\}$ for each edge $e=v_{x}^{m-1} v_{y}^{m} \in E^{m} \backslash M$. Clearly, $|L(e)| \geq \Delta-1$, so by Theorem 1.3, we properly color $E^{m} \backslash M$ by the set $\left[k+1, k^{*}\right]$ based on $f^{\prime \prime}$ (since $G^{m}-M$ is a bipartite graph with maximum degree $\Delta-1$). Finally, we color u with one color in $\left[1, k^{*}\right] \backslash\left\{f^{\prime \prime}\left(u v_{j}^{m}\right): j \in[1, n]\right\}$. This gives a total k^{*}-coloring of $\mu_{m}(G)$, denoted by $f^{\prime \prime \prime}$.

We now show that $f^{\prime \prime \prime}$ is a k^{*}-AVDTC of $\mu_{m}(G)$. Since g is a k-AVDTC of G, it follows that $\left|C_{f^{*}}^{[1, k]}(u) \triangle C_{f^{*}}^{[1, k]}(v)\right| \geq 2$ if $u v \in E^{0}$ and $d_{G^{0}}(u)=d_{G^{0}}(v)$. Then, by Lemma 2.1 each pair of adjacent vertices in $V^{m-1} \cup V^{m-2}$ have different color sets under $f^{\prime \prime \prime}$. For two adjacent vertices $v_{x}^{m-1} \in V^{m-1}$ and $v_{y}^{m} \in V^{m}$, since $\left|C_{f^{\prime \prime \prime}}^{[1, k]}\left(v_{j_{2}}^{m}\right)\right| \leq 2$ and $\left|C_{f^{\prime \prime \prime}}^{[1, k]}\left(v_{j_{1}}^{m-1}\right)\right| \geq$ $\ell+1$ when $\left|C_{f^{\prime \prime \prime}}^{[1, k]}\left(v_{j_{2}}^{m}\right)\right|=\ell, \ell=1,2$, we deduce that v_{x}^{m-1} and v_{y}^{m} have distinct color sets under $f^{\prime \prime \prime}$. Additionally, $n \geq 3$ implies that $\left|C_{f^{\prime \prime \prime}}^{[1, k]}(u)\right| \geq 3$. Therefore, $C_{f^{\prime \prime \prime}}^{[1, k]}(u) \neq$ $C_{f^{\prime \prime \prime}}^{[1, k]}\left(v_{j}^{m}\right)$ for any $j \in[1, n]$.

Case $2: k=\Delta+1$. Let $k^{*}=\max \{2 \Delta+2, n+1\}$. We now define a k^{*}-AVDTC of $\mu(G)$ based on f^{*}.

Color u with k^{*}, and $u v_{j}^{m}$ with j for $j \in[1, n]$. Color v_{j}^{m} with $k^{*}-1$ for $j \in$ $[1, k]$, and with one color in $[1, k] \backslash\left\{f^{*}\left(v_{j^{\prime}}^{m-1}\right): v_{j}^{m} v_{j^{\prime}}^{m-1} \in E^{m}\right\}$ for $j \in[k+1, n]$ (note
that $\left.\left|\left\{f^{*}\left(v_{j^{\prime}}^{m-1}\right): v_{j}^{m} v_{j^{\prime}}^{m-1} \in E^{m}\right\}\right| \leq \Delta\right)$. For any edge $v_{j_{1}}^{m-1} v_{j_{2}}^{m} \in E^{m}$, if $j_{2} \leq k$, let $L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)=[\Delta+2,2 \Delta] \cup\left\{k^{*}\right\}$. If $j_{2} \geq k+1$, let $L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)=\left[\Delta+2, k^{*}\right] \backslash\left\{j_{2}\right\}$. Clearly, $\left|L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)\right| \geq \Delta$, and by Theorem 1.3 we can properly color E^{m} by the set $\left[\Delta+2, k^{*}\right]$. This gives a total k^{*}-coloring of $\mu(G)$, denoted by f.

We now show that f is a k^{*}-AVDTC of $\mu(G)$. First, according to Lemma 2.1, any two adjacent vertices in $V^{m-1} \cup V^{m-2}$ have different color sets. In addition, it is easy to see that $\left|C_{f^{*}}^{[1, k]}(v)\right| \geq 2$ for each vertex $v \in V^{m-1} \cup\{u\}$, and $\left|C_{f}^{[1, k]}\left(v_{j}^{m}\right)\right|=1$ for $j \in[1, n]$. Therefore, the color set of $v_{j}^{m} \in V^{m}$ is different from those of its adjacent vertices under f. Hence, f is a k^{*}-AVDTC of $\mu_{m}(G)$ in this case.

Theorem 2.5. Let G be a graph on $n(\geq 3)$ vertices with $\Delta(G)=\Delta(\geq 2)$, and m be an integer. If $m(\geq 4)$ is even, then

$$
\chi_{a t}\left(\mu_{m}(G)\right) \leq \begin{cases}\max \left\{\chi_{a t}(G)+\Delta, n+1\right\} & \text { if } \chi_{a t}(G) \geq \Delta+2 \\ \max \{2 \Delta+2, n+1\} & \text { if } \chi_{a t}(G)=\Delta+1\end{cases}
$$

Proof. Let f^{*} be the partial total $(k+\Delta)$-coloring of $\mu(G)$ regarding to $\bigcup_{i=0}^{m-1}\left(V^{i} \cup E^{i}\right)$, defined in Theorem 2.4. Then, under f^{*}, any two adjacent vertices in G^{i} have different color sets for $i \in[0, m-2]$, and when $m \geq 4$ is even, $E_{f^{*}}(x)$ are colored by the set $[k+1, k+\Delta]$ for any vertex $x \in V^{m-1}$. Based on f^{*}, we consider the following two cases to complete our proof.

Case 1: $k \geq \Delta+2$. Let $k^{*}=\max \{k+\Delta, n+1\}$. In this case, we first erase the colors appearing on $E^{m-1} \cup V^{m-1}$ under f^{*}. According to Lemma 2.2 suppose M is a matching of G^{m-1} which saturates every maximum degree vertex of G^{m-1}. Then for each $v_{x}^{m-2} v_{y}^{m-1} \in M$, color $v_{x}^{m-2} v_{y}^{m-1}$ with one color in $\bar{C}_{f^{*}}^{[1, k]}\left(v_{x}^{m-2}\right)$ (since $k \geq \Delta+2$, $\left.\left|\bar{C}_{f^{*}}^{[1, k]}\left(v_{x}^{m-2}\right)\right| \geq 1\right)$. Given that $G^{m-1}-M$ is a bipartite graph with maximum degree $\Delta-1$, we can properly color edges of $E^{m-1} \backslash M$ by the set $[k+1, k+\Delta-1]$ according to Theorem 1.2, and then color vertices of V^{m-1} by k^{*}. We also denote the resulting coloring by f^{*}. According to Lemma 2.1, it is easy to see that any two adjacent vertices in V^{m-3} and V^{m-2} have different color sets under f^{*}. So, any two adjacent vertices in $\bigcup_{i=0}^{m-2}$ have distinct color sets under f^{*}.

We now based on f^{*} color elements in $E^{m} \cup V^{m} \cup\left\{u v_{j}^{m}: j=1,2, \ldots, n\right\} \cup\{u\}$ as follows. Color u with k^{*} and $u v_{j}^{m}$ with j for $j \in[1, n]$. For any edge $v_{j_{1}}^{m-1} v_{j_{2}}^{m} \in E^{m}$, let $L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)=[1, k] \backslash\left\{j_{2}, f^{*}\left(v_{j_{1}}^{m-1} v_{j^{\prime}}^{m-2}\right)\right\}$, where $v_{j_{1}}^{m-1} v_{j^{\prime}}^{m-2} \in M$. Since $k \geq \Delta+2$, it has that $\left|L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)\right| \geq \Delta$. By Theorem 1.3 , we can properly color E^{m} by the set $[1, k]$. Finally, properly color v_{j}^{m} by one color in $[1, k] \backslash\left(\{j\} \cup\left\{f^{\prime}\left(v_{j}^{m} v_{j^{\prime}}^{m-1}\right): v_{j}^{m} v_{j^{\prime}}^{m-1} \in E^{m}\right\}\right)$ because of $k \geq \Delta+2$. This gives a total k^{*}-coloring of $\mu_{m}(G)$, denoted by f. It is easy to see that $k^{*} \in C_{f}^{\left[1, k^{*}\right]}(x)$ for any $x \in V^{m-1} \cup\{u\}$, and $k^{*} \notin C_{f}^{\left[1, k^{*}\right]}(y)$ for any $y \in V^{m} \cup V^{m-2}$.

This shows that any two adjacent vertices in $V^{m-2} \cup V^{m-1} \cup V^{m} \cup\{u\}$ have different color sets. Therefore, f is a k^{*}-AVDTC of $\mu_{m}(G)$.

Case $2: k=\Delta+1$. Let $k^{*}=\max \{2 \Delta+2, n+1\}$. We now extend and modify f^{*} to a k^{*}-AVDTC.

We first recolor vertices of V^{m-1} with k^{*}. Then, color u with k^{*}. And for any $j \in[1, n]$, color $u v_{j}^{m}$ with j, color v_{j}^{m} with $2 \Delta+1$ if $j \neq 2 \Delta+1$ and with 2Δ if $j=2 \Delta+1$. For each edge $v_{j_{1}}^{m-1} v_{j_{2}}^{m} \in E^{m}$, let $L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)=[1, k] \backslash\left\{f^{*}\left(u v_{j_{2}}^{m}\right)\right\}$. Since $k=\Delta+1$, we have $\left|L\left(v_{j_{1}}^{m-1} v_{j_{2}}^{m}\right)\right| \geq \Delta$. By Theorem $1.3, E^{m}$ can be properly colored by the set $[1, k]$. This gives a total k^{*}-coloring of $\mu_{m}(G)$, denoted by f. Since k^{*} is in the color sets of vertices in $V^{m-1} \cup\{u\}$, but not in the color sets of vertices in V^{m-2} or V^{m}, it follows that f is a k^{*}-AVDTC of $\mu_{m}(G)$.

Let G be a graph with $\Delta(G)=2, n=|V(G)| \geq 4$. Then, $\chi_{a t}(G)=4$ [23], and by Theorems 2.4 and $2.5 \chi_{a t}\left(\mu_{m}(G)\right) \leq \max \{6, n+1\}$ when $m \geq 3$. On the other hand, when $n \geq 4$, it has that $\chi_{a t}\left(\mu_{m}(G)\right) \geq \max \{6, n+1\}$. (When $n=4, \chi_{a t}\left(\mu_{m}(G)\right) \geq 6$ because $\mu_{m}(G)$ has two adjacent vertices with maximum degree 4 . When $n \geq 5, \chi_{a t}\left(\mu_{m}(G)\right) \geq$ $n+1$ since $\Delta\left(\mu_{m}(G)\right)=n$ in this case.) Thus, $\chi_{a t}\left(\mu_{m}(G)\right)=\max \{6, n+1\}$ when $m \geq 3$. Moreover, when $m=1,2$, one can easily give a k^{*}-AVDTC of $\mu_{m}(G)$, where $k^{*}=\max \{6, n+1\}$. So, we have the following result.

Corollary 2.6. Let G be an n vertices graph with $\Delta(G)=2, n \geq 4$. Then $\chi_{a t}\left(\mu_{m}(G)\right)=$ $\max \{6, n+1\}$.

For a graph G, when $\Delta(G)=3$, Hulgan [9] proved that G satisfies the AVDTCC, and showed that G has a 6 -AVDTC with the properties in the following lemma.

Lemma 2.7. [9] Let G be a graph with $\Delta(G)=3$. If $G \neq K_{4}$, then G has a 6-AVDTC with the following properties:
(1) the vertices of G are colored $1,2,3$;
(2) the edges of G are colored $3,4,5,6$.

Corollary 2.8. Let G be an n vertices graph with $\Delta(G)=3, n \geq 8$. Then $\chi_{a t}\left(\mu_{m}(G)\right)=$ $n+1$.

Proof. $n \geq 8$ implies that $\mu_{m}(G)$ contains only one maximum degree vertex u with $d_{\mu_{m}(G)}(u)=\Delta\left(\mu_{m}(G)\right)=n$. So, $\chi_{a t}\left(\mu_{m}(G)\right) \geq n+1$. In order to show $\chi_{a t}\left(\mu_{m}(G)\right)=n+1$, it suffices to give an $(n+1)$-AVDTC of $\mu_{m}(G)$.

When $m \geq 3$, such a coloring does exist by $\chi_{a t}(G) \leq 6$ and Theorems 2.4 and 2.5 . When $m \leq 2$, let f be a 6 -AVDTC of G^{0} with the properties in Lemma 2.7, and let
$V_{i}^{0}=\left\{v_{j}^{0}: f\left(v_{j}^{0}\right)=i\right\}$ for $i=1,2,3$. Then, $2 \in \bar{C}_{f}^{[1,6]}\left(v_{j}^{0}\right)$ for each $v_{j}^{0} \in V_{1}^{0}, 1 \in \bar{C}_{f}^{[1,6]}\left(v_{j}^{0}\right)$ for each $v_{j}^{0} \in V_{2}^{0}$, and $\{1,2\} \subseteq \bar{C}_{f}^{[1,6]}\left(v_{j}^{0}\right)$ for each $v_{j}^{0} \in V_{3}^{0}$. We now extend f to an $(n+1)$-AVDTC of $\mu_{m}(G)$.

Color $u v_{j}^{m}$ with j for $j \in[1, n]$, and color u by $n+1$.
According to Lemma 2.2 suppose that M is a matching of G^{1} which saturates every maximum degree vertex of G^{1}. For each edge $e=v_{x}^{0} v_{y}^{1} \in M$, color e with 2 when $v_{x}^{0} \in V_{1}^{0}$, with one color in $\bar{C}_{f}^{[3,6]}\left(v_{x}^{0}\right)$ when $v_{x}^{0} \in V_{2}^{0}$, and with 1 when $v_{x}^{0} \in V_{3}^{0}$. We now denote the resulting coloring still by f. Since $2 \in C_{f}^{[1,6]}\left(v_{x}^{0}\right)$ for $v_{x}^{0} \in\left(V_{1}^{0} \cup V_{2}^{0}\right)$ but $2 \notin C_{f}^{[1,6]}\left(v_{x}^{0}\right)$ for $v_{x}^{0} \in V_{3}^{0}$, and $1 \in C_{f}^{[1,6]}\left(v_{x}^{0}\right)$ for $v_{x}^{0} \in V_{1}^{0}$ but $1 \notin C_{f}^{[1,6]}\left(v_{x}^{0}\right)$ for $v_{x}^{0} \in V_{2}^{0}$, it has that any two adjacent vertices in V^{0} have different color sets under f.

Consider $G^{1}-M$. It is a bipartite graph with maximum degree 2 . When $m=1$, for any edge $e=v_{j_{1}}^{0} v_{j_{2}}^{1} \in E^{1} \backslash M$, let $L(e)=[8,9]$ when $j_{2} \notin[7,9]$, and $L(e)=[7,9] \backslash\left\{j_{2}\right\}$ when $j_{2} \in[7,9]$. Clearly, $|L(e)|=2$. By Theorem 1.3 , we can properly color $E^{1} \backslash M$ by the set $[7,9]$. For each vertex $v_{j}^{1} \in V^{1}$, color it with 7 when $j \notin[7,9]$ and with one color in $[4,6] \backslash\{c\}$ when $j \in[7,9]$, where c is the color appearing on a possible edge $v_{j}^{1} v_{j^{\prime}}^{0} \in M$. Thus, we obtain a total $(n+1)$-coloring of $\mu_{1}(G)$, say f^{\prime}. By Lemma 2.1, any two vertices of V^{0} have different color sets under f^{\prime}. In addition, that u is the unique maximum degree vertex of $\mu_{1}(G)$ shows that $C_{f^{\prime}}^{[1, n+1]}(u) \neq C_{f^{\prime}}^{[1, n+1]}\left(v_{j}^{1}\right)$ for any $j \in[1, n]$. Finally, for two vertices $v_{x}^{0} \in V^{0}$ and $v_{y}^{1} \in V^{1}$, one can readily check that $\left|C_{f^{\prime}}^{[1,6]}\left(v_{x}^{0}\right)\right| \neq\left|C_{f^{\prime}}^{[1,6]}\left(v_{y}^{1}\right)\right|$. So, v_{x}^{0} and v_{y}^{1} have different color sets under f^{\prime}. This shows that f^{\prime} is an $(n+1)$-AVDTC of $\mu_{1}(G)$.

When $m=2$, we properly color $E^{1} \backslash M$ with colors 7 and 8 by Theorem 1.2, and color V^{1} with $n+1$. For each edge $e=v_{j_{1}}^{1} v_{j_{2}}^{2} \in E^{2}$, let $L(e)=[2,6] \backslash\left\{c, j_{2}\right\}$, where c is the color appearing on a possible edge $v_{j_{1}}^{1} v_{j_{1}^{\prime}}^{0} \in M$. Clearly, $|L(e)| \geq 3$, and by Theorem 1.3 , we can properly color E^{2} by the set $[2,6]$. Additionally, there are at least two colors of $[1,6]$ available for each $v_{j}^{2} \in V^{2}$. Thus, we obtain a total $(n+1)$-coloring of $\mu_{2}(G)$, denoted by f^{\prime}. Obviously, for $j \in[1, n], n+1 \in C_{f^{\prime}}^{[1, n+1]}\left(v_{j}^{1}\right), n+1 \in C_{f^{\prime}}^{[1, n+1]}(u), n+1 \notin C_{f^{\prime}}^{[1, n+1]}\left(v_{j}^{0}\right)$, and $n+1 \notin C_{f^{\prime}}^{[1, n+1]}\left(v_{j}^{2}\right)$. Therefore, f^{\prime} is an $(n+1)$-AVDTC of $\mu_{2}(G)$.

Corollary 2.9. For a graph G on $n(\geq 2)$ vertices, if $n \geq \chi_{a t}(G)+\Delta(G)$, then $\chi_{a t}\left(\mu_{m}(G)\right)$ $=n+1$.

Proof. That G is nontrivial, $\Delta(G) \geq 1$. Since $n \geq \chi_{a t}(G)+\Delta(G)$, it follows that $\mu_{m}(G)$ contains only one maximum degree vertex u with $d_{\mu_{m}(G)}(u)=n$. Obviously, $\chi_{a t}\left(\mu_{m}(G)\right) \geq n+1$. On the other hand, when $m \geq 2$, by Theorems $2.3,2.4$ and 2.5 , we have $\chi_{a t}\left(\mu_{m}(G)\right) \leq n+1$. When $m=1$, let f be a $\chi_{a t}(G)$-AVDTC of G^{0}. Then we can easily extend f to an $(n+1)$-AVDTC as follows. First, color u with $n+1$ and $u v_{j}^{1}$ with j for any $j \in[1, n]$. Then, for each vertex v_{j}^{1}, color it by $\chi_{a t}(G)+1$ when $j \in\left[1, \chi_{a t}(G)\right]$,
and by one color of $\left[1, \chi_{a t}(G)\right] \backslash\left\{f\left(v_{j}^{1} v_{j^{\prime}}^{0}\right): v_{j}^{1} v_{j^{\prime}}^{0} \in E^{1}\right\}$ when $j \in\left[\chi_{a t}(G)+1, n\right]$. Finally, for each edge $v_{x}^{0} v_{y}^{1} \in E^{1}$, let $L\left(v_{x}^{0} v_{y}^{1}\right)=\left[\chi_{a t}(G)+2, n+1\right]$ when $y \leq \chi_{a t}(G)$ and $L\left(v_{x}^{0} v_{y}^{1}\right)=\left[\chi_{a t}(G)+1, n+1\right] \backslash\{y\}$ when $y \geq \chi_{a t}(G)+1$. Since $n \geq \chi_{a t}(G)+\Delta(G)$, it has that $\left|L\left(v_{x}^{0} v_{y}^{1}\right)\right| \geq \Delta(G)$. So by Theorem 1.3 we can properly color E^{1} by the set $\left[\chi_{a t}(G)+1, n+1\right]$. This gives an $(n+1)$-AVDTC of $\mu_{1}(G)$.

Let K_{n} be a complete graph on $n(\geq 3)$ vertices. Then, $\Delta\left(\mu_{m}\left(K_{n}\right)\right)=2 n-2$, and $\mu_{m}\left(K_{n}\right)$ contains two adjacent vertices with maximum degree. Therefore, $\chi_{a t}\left(\mu_{m}\left(K_{n}\right)\right) \geq$ $2 n$. On the other hand, when n is even and $m \geq 3$, it has that $\chi_{a t}\left(K_{n}\right)=n+1$ 23] and $\chi_{a t}\left(\mu_{m}\left(K_{n}\right)\right) \leq 2 n$ by Theorem 2.5. Additionally, when $m \leq 2$, we can easily obtain a $2 n$-AVDTC of $\mu_{m}\left(K_{n}\right)$ based on an $(n+1)$-AVDTC f of K_{n}^{0} as follows: Color vertices v_{j}^{1} (and v_{j}^{2} when $m=2$) with $f\left(v_{j}^{0}\right)$ for $j \in[1, n]$. Color E^{1} by the set $[n+2,2 n]$ according to Theorem 1.2, and color each $v_{x}^{1} v_{y}^{2} \in E^{2}$ with $f\left(v_{x}^{0} v_{y}^{0}\right)$ when $m=2$. For $j \in[1, n]$, color $u v_{j}^{m}$ with $\bar{C}_{f}^{[1, n+1]}\left(v_{j}^{0}\right)$. Color u by $2 n$. It is easy to see that such a coloring is a $2 n$-AVDTC of $\mu_{m}\left(K_{n}\right)$. Hence, $\chi_{a t}\left(\mu_{m}\left(K_{n}\right)\right)=2 n$ when n is even. We now prove that this result also holds when n is odd.
Theorem 2.10. Let K_{n} be a complete graph on n vertices, $n \geq 3$. Then $\chi_{a t}\left(\mu_{m}\left(K_{n}\right)\right)=$ $2 n$.
Proof. It is sufficient to assume n is odd and give a $2 n$-AVDTC of $\mu_{m}\left(K_{n}\right)$. We first give a total $(n+2)$-coloring of K_{n+2}, denoted by f. Let $V\left(K_{n+2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n+2}\right\}$. For $i \in[1, n+2]$, color v_{i} and edges of F_{i} by i, where $F_{i}=\left\{v_{i-j} v_{i+j}: j=1,2, \ldots,(n+1) / 2\right\}$ according to modulo $n+2$ (here we denote 0 by $n+2$). Clearly, such a coloring is a total $(n+2)$-coloring of K_{n+2}. We now construct a $2 n$-AVDTC, denoted by f^{\prime}, of $\mu_{m}\left(K_{n}\right)$ according to f.
(1) For G^{0}, let $f^{\prime}\left(v_{j}^{0}\right)=f\left(v_{j}\right), f^{\prime}\left(v_{j}^{0} v_{j^{\prime}}^{0}\right)=f\left(v_{j} v_{j^{\prime}}\right), j, j^{\prime} \in[1, n], j \neq j^{\prime}$. For any uncolored edges and vertices of $\mu_{m}\left(K_{n}\right)$ yet, we will color them by the order $E^{1}, V^{1}, E^{2}, V^{2}, \ldots$, $E^{m}, V^{m}, u v_{j}^{m}, u,(j=1,2, \ldots, n)$, and denote the resulting coloring always by f^{\prime} at each stage.
(2) For any $i \in[1, m]$, set $M_{i}=\left\{v_{j}^{i-1} v_{j+1}^{i}: j \in[1, n]\right\}$ with $v_{n+1}^{i}=v_{1}^{i}$. Clearly, M_{i} is a perfect matching of G^{i}. Therefore, $G^{i}-M_{i}$ is a bipartite graph with maximum degree $n-2$. For M_{1}, let $f^{\prime}\left(v_{j}^{0} v_{j+1}^{1}\right)=f\left(v_{n+1} v_{j}\right)$ for $j \in[1, n]$. Then we can properly color edges of $E^{1} \backslash M_{1}$ by the set $[n+3,2 n]$ by Theorem 1.2 . Now, it has that $\bar{C}_{f^{\prime}}^{[1,2 n]}\left(v_{j}^{0}\right)=\left\{f\left(v_{n+2} v_{j}\right)\right\}$, and $n+1$ does not appear on any edge in M_{1}. So, we color vertices in V^{1} by $n+1$.

When $m=1$, color $u v_{j}^{1}$ with $f\left(v_{n+2} v_{j}\right)$ for $j=[1, n-1]$ and $u v_{n}^{1}$ with $(n+1) / 2$, and color u with $2 n$. Obviously, such a coloring is a $2 n$-AVDTC of $\mu_{1}\left(K_{n}\right)$.

When $m \geq 2$, we color the remainder elements as follows.
(3) For each edge $e=v_{j}^{1} v_{j^{\prime}}^{2} \in E^{2}$, let $L(e)=[1, n] \backslash\left\{f^{\prime}\left(v_{j}^{1} v_{j-1}^{0}\right)\right\}$. (Here we let $v_{n}^{0}=v_{0}^{0}$. Moreover, consider $f^{\prime}\left(v_{2}^{1} v_{1}^{0}\right)=n+2$. We specially let $L\left(v_{2}^{1} v_{j^{\prime}}^{2}\right)=[1, n] \backslash\{(n+1) / 2\}$.) Then
$|L(e)|=n-1$, so by Theorem 1.3 we can properly color E^{2} by the set $[1, n]$. Now, we can see that for any $v_{j}^{1}, \bar{C}_{f^{\prime}}^{[1,2 n]}\left(v_{j}^{1}\right)=\{n+2\}$ when $j \neq 2$, and $\bar{C}_{f^{\prime}}^{[1,2 n]}\left(v_{2}^{1}\right)=\{(n+1) / 2\}$. Therefore, any two adjacent vertices in $V^{0} \cup V^{1}$ have different color sets under f^{\prime}.
(4) For $i \in[2, m]$, we color the vertices in V^{i} with $n+2$ when i is even, and with $n+1$ when i is odd. And when i is odd, color $v_{j}^{i-1} v_{j+1}^{i}$ with $\bar{C}_{f^{\prime}}^{[1, n]}\left(v_{j}^{i-1}\right)$ for each $v_{j}^{i-1} v_{j+1}^{i} \in M_{i}$, and color $E^{i} \backslash M_{i}$ by the set $[n+3,2 n]$. When i is even, for any $e=v_{j}^{i-1} v_{j^{\prime}}^{i} \in E^{i}$, let $L(e)=[1, n] \backslash\left\{f^{\prime}\left(v_{j}^{i-1} v_{j-1}^{i-2}\right)\right\}$. Then $|L(e)|=n-1$, and by Theorem $1.3 E^{i}$ can be properly colored by the set $[1, n]$.

After the above coloring, we can see that for $i \in[2, m]$, the color sets of vertices in V^{i} do not contain color $n+1$ when i is even and do not contain color $n+2$ when i is odd. Additionally, when i is odd, $\left\{f^{\prime}(e): e \in M_{i}\right\}=[1, n]$, and when i is even, $\left\{\bar{C}_{f^{\prime}}^{[1, n]}\left(v_{j}^{i}\right): j \in[1, n]\right\}=$ $[1, n]$. Therefore, when m is odd, we color $u v_{j}^{m}$ with $f^{\prime}\left(v_{j}^{m} v_{j-1}^{m-1}\right)+1$ for $j \in[1, n]$ (here $v_{0}^{m-1}=v_{n}^{m-1}$) and color u with $n+2$. When m is even, color $u v_{j}^{m}$ with $\bar{C}_{f^{\prime}}^{[1, n]}\left(v_{j}^{m}\right)$ for $j \in[1, n]$ and color u with $n+1$. Since the degrees of vertices in V^{m} are different from those of vertices in V^{m-1}, and $C_{f^{\prime}}^{[1,2 n]}(u)$ does not contain the color $f\left(v_{j}^{m}\right)$, it follows that f^{\prime} is a $2 n$-AVDTC of $\mu_{m}\left(K_{n}\right)$.

3. Graphs with only one maximum degree vertex

In this section, we embark on the study of $\chi_{a t}(G)$ for a graph G with only one maximum degree vertex.

Theorem 3.1. Let G be a graph with only one maximum degree vertex. If $\Delta \leq 3$, then $\chi_{a t}(G)=\Delta+1$.

Proof. $\Delta \leq 2$ are trivial cases. So we assume $\Delta=3$. It suffices to give a 4-AVDTC of G. Let u be the unique vertex of degree 3 in G, and v_{1}, v_{2}, v_{3} be its three neighbors. Then $G-u$, obtained from G by deleting u and its incident edges is disconnected, and v_{1}, v_{2}, v_{3} are not in the same component of $G-u$. Let v_{1} be the one that is not in the same component with v_{2} or v_{3} in $G-u$. Then $G-u v_{1}$, obtained from G by deleting edge $u v_{1}$ has two components, say G_{1} and G_{2}, where $v_{1} \in V\left(G_{1}\right)$. Clearly, $\Delta\left(G_{i}\right) \leq 2$ and G_{1} is a path. Let f be a 4-AVDTC of G_{2} [23]. Without loss of generality, assume $f(u)=1, f\left(u v_{2}\right)=2, f\left(u v_{3}\right)=3$. Then alternately color the vertices of G_{1} with 2 and 1 , and alternately color the edges of $\left\{u v_{1}\right\} \cup E\left(G_{1}\right)$ with 4 and 3 , where v_{1} is colored with 2 and $u v_{1}$ is colored with 4 . Obviously, such a coloring of $\left\{u v_{1}\right\} \cup G_{1}$ together with f is a 4-AVDTC of G.

Theorem 3.2. Let G be a graph with only one maximum degree vertex. If $\Delta=4$, then $\chi_{a t}(G) \leq 6$.

Proof. Let u be the vertex of degree 4 , and v be a neighbor of u. By Lemma $2.7 G-u v$ has a 6-AVDTC f with the properties in Lemma 2.7. We now modify and extend f to a 6-AVDTC of G.

When $d_{G}(v) \leq 2$, color $u v$ with one color in $[1,2] \backslash\{f(u)\}$ and recolor v with one in $[4,6]$ (or $[4,6] \backslash\left\{f\left(v v^{\prime}\right)\right\}$ when $d_{G}(v)=2$, where v^{\prime} is the neighbor of v in $G-u v$). Obviously, v has at least two available colors, so we can obtain a 6 -AVDTC of G in this case. In what follows, we assume $d_{G}(v)=3$. Denote by u_{1}, u_{2}, u_{3} the three neighbors of u in $G-u v$, and v_{1}, v_{2} the two neighbors of v in $G-u v$. Since u is the unique maximum degree vertex in G, the color set of u is different from that of its each neighbor under any 6 -coloring of G.

Case 1: $f(u)=f(v)$. If $f(u) \neq 3$, we without loss of generality assume $f(u)=$ $f(v)=1$. When $[3,6] \nsubseteq\left\{f\left(u u_{1}\right), f\left(u u_{2}\right), f\left(u u_{3}\right), f\left(u_{1}\right), f\left(u_{2}\right), f\left(u_{3}\right)\right\}$, we recolor u with $[3,6] \backslash\left\{f\left(u u_{1}\right), f\left(u u_{2}\right), f\left(u u_{3}\right)\right\}$, and color $u v$ with 2 . Thus, we obtain a total 6 -coloring of G, also denoted by f. Obviously, under f, both 1 and 2 are in the color set of v but at most one of them is in the color set of v_{1} or v_{2}, so f is a 6 -AVDTC of G. When $[3,6] \subseteq$ $\left\{f\left(u u_{1}\right), f\left(u u_{2}\right), f\left(u u_{3}\right), f\left(u_{1}\right), f\left(u_{2}\right), f\left(u_{3}\right)\right\}$, it has that $\left\{f\left(u u_{1}\right), f\left(u u_{2}\right), f\left(u u_{3}\right)\right\}=[4,6]$. Recolor v with $[4,6] \backslash\left\{f\left(v v_{1}\right), f\left(v v_{2}\right)\right\}$ and color $u v$ with 2 . We denote the resulting coloring still by f. If $C_{f}^{[1,6]}(v) \neq C_{f}^{[1,6]}\left(v_{1}\right)$ and $C_{f}^{[1,6]}(v) \neq C_{f}^{[1,6]}\left(v_{2}\right)$, then f is a 6-AVDTC of G. Otherwise, assume $C_{f}^{[1,6]}(v)=C_{f}^{[1,6]}\left(v_{1}\right)$ (which implies $f\left(v_{1}\right)=2$). We then recolor $v v_{1}$ with 1 and v with $[4,6] \backslash\left\{f(v), f\left(v v_{2}\right)\right\}$. This gives a new 6-AVDTC of G, also denoted by f. Clearly, $C_{f}^{[1,6]}(v) \neq C_{f}^{[1,6]}\left(v_{1}\right)$. Moreover, since $C_{f}^{[1,6]}\left(v_{1}\right)$ and $C_{f}^{[1,6]}(v)$ contain both 1 and 2, it follows that v_{1} has different color set with each of its neighbors and $C_{f}^{[1,6]}(v) \neq C_{f}^{[1,6]}\left(v_{2}\right)$. So, f is a 6-AVDTC of G.

If $f(u)=f(v)=3$, then $\left\{f\left(v v_{1}\right), f\left(v v_{2}\right)\right\} \subseteq[4,6]$. Without loss of generality, assume $f\left(v v_{1}\right)=4$ and $f\left(v v_{2}\right)=5$. Recolor v with 6 , and color $u v$ with 1 or 2 . If no matter when $u v$ is colored 1 or 2 , there always exists a vertex in $\left\{v_{1}, v_{2}\right\}$ with the same color set with v under the resulting coloring, then $\left\{C_{f}^{[1,6]}\left(v_{1}\right), C_{f}^{[1,6]}\left(v_{2}\right)\right\}=\{\{1,4,5,6\},\{2,4,5,6\}\}$. Let $C_{f}^{[1,6]}\left(v_{1}\right)=\{1,4,5,6\}$, and then $f\left(v_{1}\right)=1$. Since the color sets (under f) of neighbors of v_{1} do not contain color 1 , we can recolor $v v_{1}$ with 3 and color $u v$ with 2 to gain a 6-AVDTC of G.

Case 2: $f(u) \neq f(v)$. If $f(v) \neq 3$, say 2 , then $f\left(v_{1}\right) \neq 2$ and $f\left(v_{2}\right) \neq 2$ (i.e., $2 \notin C_{f}^{[1,6]}\left(v_{1}\right)$ or $\left.C_{f}^{[1,6]}\left(v_{2}\right)\right)$. Then, color $u v$ with 2 and recolor v with one color in $[4,6] \backslash$ $\left\{f\left(v v_{1}\right), f\left(v v_{2}\right)\right\}$ to gain a 6 -AVDTC of G.

If $f(v)=3$, assume $f\left(v v_{1}\right)=4, f\left(v v_{2}\right)=5$ and $f(u)=1$. Color $u v$ with 2. If $C_{f}^{[1,6]}\left(v_{1}\right) \neq C_{f}^{[1,6]}(v)$ and $C_{f}^{[1,6]}\left(v_{2}\right) \neq C_{f}^{[1,6]}(v)$, then f is a 6-AVDTC of G. Otherwise, assume $C_{f}^{[1,6]}\left(v_{1}\right)=C_{f}^{[1,6]}(v)$. Then $f\left(v_{1}\right)=2$. We recolor $v v_{1}$ with 1 and recolor v with 6 , and also denote the resulting coloring by f. Then, $C_{f}^{[1,6]}\left(v_{2}\right) \neq C_{f}^{[1,6]}(v)$, and
$C_{f}^{[1,6]}\left(v_{1}\right) \neq C_{f}^{[1,6]}(v)$, which implies that v_{1} has different color set with each of its neighbors under f since $C_{f}^{[1,6]}\left(v_{1}\right)$ and $C_{f}^{[1,6]}(v)$ contain both 1 and 2 . Hence, f is a 6 -AVDTC of G.

4. Discussion

Motivated by Corollary 2.9, Theorems 3.1 and 3.2, we propose the following problem.
Problem 4.1. If a graph G has only one vertex of maximum degree, then $\chi_{a t}(G) \leq$ $\Delta(G)+2$.

The correctness of this problem would provide a strong support for AVDTCC, since if we have had a proof of this problem, then we can prove a weaker result of AVDTCC: For any graph $G, \chi_{a t}(G) \leq \Delta(G)+4$. To see this we first add a new vertex and connect it with a maximum degree vertex of G, say v. Denote by G^{\prime} the resulting graph. Clearly, G^{\prime} contains only one vertex v with the maximum degree $\Delta(G)+1$. Hence, $\chi_{a t}\left(G^{\prime}\right) \leq \Delta(G)+3$. Let f be a $(\Delta(G)+3)$-AVDTC of G^{\prime}. Then f is a $(\Delta(G)+4)$-AVDTC of G by recoloring v with $\Delta(G)+4$ in G.

Acknowledgments

We would like to thank the anonymous referees for their valuable comments.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics 244, Springer, New York, 2008. https://doi.org/10.1007/978-1-84628-970-5
[2] A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997), no. 2, 73-82.
https://doi.org/10.1002/(sici)1097-0118(199710)26:2<73: :aid-jgt2>3.0.co;2-c
[3] G. J. Chang, L. Huang and X. Zhu, Circular chromatic numbers of Mycielski's graphs, Discrete Math. 205 (1999), no. 1-3, 23-37. https://doi.org/10.1016/s0012-365x(99)00033-3
[4] X. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta=3$, Discrete Math. 308 (2008), no. 17, 4003-4007.
https://doi.org/10.1016/j.disc.2007.07.091
[5] M. Chen, X. Guo, H. Li and L. Zhang, Total chromatic number of generalized Mycielski graphs, Discrete Math. 334 (2014), 48-51.
https://doi.org/10.1016/j.disc.2014.06.010
[6] G. Fan, Circular chromatic number and Mycielski graphs, Combinatorica 24 (2004), no. 1, 127-135. https://doi.org/10.1007/s00493-004-0008-9
[7] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995), no. 1, 153-158. https://doi.org/10.1006/jctb.1995.1011
[8] D. Huang and W. Wang, Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, Sci. Sin. Math. 42 (2012), no. 2, 151-164. https://doi.org/10.1360/012011-359
[9] J. Hulgan, Concise proofs for adjacent vertex-distinguishing total colorings, Discrete Math. 309 (2009), no. 8, 2548-2550. https://doi.org/10.1016/j.disc.2008.06.002
[10] D. Kőnig, Gráfok és alkalmazásuk a determinnsok és a halmazok elméletére, Matematikai és Természettudom nyi Értesitő 34 (1916), 104-119. [In Hungarian].
[11] Y. S. Kwon, J. Lee and Z. Zhang, Edge-chromatic numbers of Mycielski graphs, Discrete Math. 312 (2012), no. 6, 1222-1225.
https://doi.org/10.1016/j.disc.2011.12.011
[12] P. C. B. Lam, W. Lin, G. Gu and Z. Song, Circular chromatic number and a generalization of the construction of Mycielski, J. Combin. Theory Ser. B 89 (2003), no. 2, 195-205. https://doi.org/10.1016/s0095-8956(03)00070-4
[13] M. Larsen, J. Propp and D. Ullman, The fractional chromatic number of Mycielski's graphs, J. Graph Theory 19 (1995), no. 3, 411-416.
https://doi.org/10.1002/jgt. 3190190313
[14] D. D.-F. Liu, Circular chromatic number for iterated Mycielski graphs, Discrete Math. 285 (2004), no. 1-3, 335-340. https://doi.org/10.1016/j.disc.2004.01.020
[15] J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955), 161-162.
[16] Y. Sun and L. Sun, The (adjacent) vertex-distinguishing total coloring of the Mycielski graphs and the Cartesian product graphs, Lecture Notes in Computer Science 7381 (2007), 200-205. https://doi.org/10.1007/978-3-540-70666-3_21
[17] C. Tardif, Fractional chromatic numbers of cones over graphs, J. Graph Theory 38 (2001), no. 2, 87-94. https://doi.org/10.1002/jgt. 1025
[18] H. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with $\Delta(G)=3$, J. Comb. Optim. 14 (2007), no. 1, 87-109.
https://doi.org/10.1007/s10878-006-9038-0
[19] W. Wang and D. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014), no. 2, 379-396.
https://doi.org/10.1007/s10878-012-9527-2
[20] W. Wang and P. Wang, Adjacent vertex distinguishing total coloring of K_{4}-minor free graphs, Sci. China Ser. A 39 (2009), 1462-1472.
[21] W. Wang and Y. Wang, Adjacent vertex distinguishing total coloring of graphs with lower average degree, Taiwanese J. Math 12 (2008), no. 4, 979-990.
[22] Y. Wang and W. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J. Comb. Optim. 19 (2010), no. 2, 123-133.
https://doi.org/10.1007/s10878-008-9165-x
[23] Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu and J. Wang, On adjacent-vertexdistinguishing total coloring of graphs, Sci. China Ser. A 48 (2005), no. 3, 289-299. https://doi.org/10.1360/03ys0207

Enqiang Zhu
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
E-mail address: zhuenqiang@pku.edu.cn

Chanjuan Liu
School of Computer Science and Technology, Dalian University of Technology
E-mail address: chanjuanliu@dlut.edu.cn

Jin Xu
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
E-mail address: jxu@pku.edu.cn

[^0]: Received June 27, 2015; Accepted October 19, 2016.
 Communicated by Sen-Peng Eu.
 2010 Mathematics Subject Classification. 05C15.
 Key words and phrases. Adjacent vertex-distinguishing total coloring, Adjacent vertex-distinguishing total chromatic number, Generalized Mycielski graphs.
 This research is supported by National Science Foundation of China under Grant (61672051, 60974112, 30970960) and China Postdoctoral Science Foundation under grant 2015M580928.
 *Corresponding author.

