Tunisian Journal of Mathematics

 an international publication organized by the Tunisian Mathematical Society
On the mod-2 cohomology of $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$

Hans-Werner Henn

2019 vol. 1 n no. 4

TMsp

On the mod-2 cohomology of $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$

Hans-Werner Henn

Let $\Gamma=\operatorname{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$, let X be any mod- 2 acyclic Γ - CW complex on which Γ acts with finite stabilizers and let X_{s} be the 2-singular locus of X. We calculate the mod- 2 cohomology of the Borel construction of X_{s} with respect to the action of Γ. This cohomology coincides with the mod- 2 cohomology of Γ in cohomological degrees bigger than 8 and the result is compatible with a conjecture of Quillen which predicts the structure of the cohomology ring $H^{*}\left(\Gamma ; \mathbb{F}_{2}\right)$.

1. Introduction

The main motivation for this paper comes from a conjecture of Quillen [1971, Conjecture 14.7] which concerns the structure of the mod- p cohomology ring of the group $\mathrm{GL}_{n}(\Lambda)$ of invertible matrices of rank n with coefficients in a ring Λ of S-integers in a number field; the assumption on Λ is that p is invertible in Λ and Λ contains a primitive p-th root of unity. The conjecture stipulates that under these assumptions $H^{*}\left(\mathrm{GL}_{n}(\Lambda) ; \mathbb{Z} / p\right)$ is a free module over the polynomial algebra $\mathbb{Z} / p\left[c_{1}, \ldots, c_{n}\right]$ where the c_{i} are the mod- p Chern classes associated to an embedding of Λ into the complex numbers. In the sequel we will denote this conjecture by $C(n, \Lambda, p)$.

For $p=2$ the simplest ring for which the assumptions of Quillen's conjecture hold is the ring $\mathbb{Z}\left[\frac{1}{2}\right]$. Let $\mathbb{Z}\left[\frac{1}{2}, i\right]$ be the ring obtained from the Gaussian integers $\mathbb{Z}[i]$ by inverting 2 .

Conjecture $C\left(n, \mathbb{Z}\left[\frac{1}{2}\right], 2\right)$ is trivially true for $n=1$ and known to be true for $n=2$ by [Mitchell 1992] and $n=3$ by [Henn 1999]; it is known to be false for $n=32$ by [Dwyer 1998] and even for $n \geq 14$ (Henn and Lannes, unpublished). The positive results have been established by direct calculation and while a direct calculation is perhaps still doable for $n=4$, it would be extremely involved. For larger n a complete calculation does not look realistic. In fact, the negative results have been obtained by very indirect methods which depend on étale approximations for the homotopy type of the 2 -completion of $\mathrm{BGL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$. These étale approximations can also be used to show that if $C\left(2 n, \mathbb{Z}\left[\frac{1}{2}\right], 2\right)$ holds then $C\left(n, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ holds

[^0]as well (Henn and Lannes, unpublished). This gives particular motivation to study conjecture $C\left(n, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$.

We will show in Theorem 5.1 that $C\left(n, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ holds if and only if there is an isomorphism

$$
H^{*}\left(\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[c_{1}, \ldots, c_{n}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, \ldots, e_{2 n-1}, e_{2 n-1}^{\prime}\right)
$$

where the classes c_{i} are the Chern classes of the tautological n-dimensional complex representation of $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right), E$ denotes an exterior algebra and the classes $e_{2 i-1}, e_{2 i-1}^{\prime}$ are of cohomological degree $2 i-1$ for $i=1, \ldots, n$. These exterior classes are closely related to Quillen's exterior classes in the mod-2 cohomology of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ if p is a prime such that $p \equiv 1 \bmod 4$ (see (5-1) for more details).

Conjecture $C\left(n, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ is again trivially true for $n=1$ and has been verified by direct calculation for $n=2$ in [Weiss 2006]. Dwyer's method [1998] using étale approximations X_{n} for the homotopy type of the 2-completion of $\mathrm{BGL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ and comparing the set of homotopy classes of $\left[\mathrm{BP}, X_{n}\right]$ with that of $\left[\mathrm{BP}, \mathrm{BGL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)\right]$ for suitable cyclic groups P of order 2^{n} can be adapted to disprove $C\left(16, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$. However, we will not dwell on this in this paper.

This paper embarks on a study of conjecture $C\left(3, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ which is more accessible than conjecture $C\left(4, \mathbb{Z}\left[\frac{1}{2}\right], 2\right)$. In order to calculate $H^{*}\left(\mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ we first try to calculate $H^{*}\left(\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$. For this we propose the same strategy as the one which was used in the case of $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ and which finally led to a verification of conjecture $C\left(3, \mathbb{Z}\left[\frac{1}{2}\right], 2\right)$. In a first step one uses a centralizer spectral sequence introduced in [Henn 1997] in order to calculate the mod-2 Borel cohomology $H_{G}^{*}\left(X_{s} ; \mathbb{F}_{2}\right)$ where X is any mod-2 acyclic G-CW complex on which a given discrete group G acts with finite stabilizers and X_{s} is the 2 -singular locus of X, i.e., the subcomplex consisting of all points for which the isotropy group of the action of G is of even order. For $G=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ this step was carried out in [Henn 1997] and for $G=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ it is carried out in this paper. The precise form of X does not really matter in this step.

The second step involves a very laborious analysis of the relative mod-2 Borel cohomology $H_{G}^{*}\left(X, X_{s} ; \mathbb{F}_{2}\right)$ and of the connecting homomorphism for the Borel cohomology of the pair $\left(X, X_{s}\right)$. In the case of $G=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ this was carried out by hand in [Henn 1999]. A by hand calculation looks forbidding in the case of $G=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and this paper makes no attempt on such a calculation. However, we do make some comments on what is likely to be involved in such an attempt.

Here are the main results of this paper. In these results the elements b_{2} and b_{3} are of degree 4 and 6 , respectively. They are given as Chern classes of the tautological 3-dimensional complex representation of $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$. The indices of the other elements give their cohomological degrees. These elements come from Quillen's exterior cohomology classes in the cohomology of $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)$ for suitable primes p,
for example $p=5$ (see Section 3.2 for more details). Furthermore Σ^{n} denotes n-fold suspension so that $\Sigma^{4} \mathbb{F}_{2}$ is a one dimensional \mathbb{F}_{2}-vector space concentrated in degree 4.

Theorem 1.1. Let $\Gamma=\operatorname{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and let X be any mod -2 acyclic Γ-CW complex such that the isotropy group of each cell is finite. Then the centralizer spectral sequence of [Henn 1997] collapses at E_{2} and gives a short exact sequence

$$
0 \rightarrow \Sigma^{4} \mathbb{F}_{2} \oplus \Sigma^{4} \mathbb{F}_{2} \oplus \Sigma^{7} \mathbb{F}_{2} \rightarrow H_{\Gamma}^{*}\left(X_{s} ; \mathbb{F}_{2}\right) \rightarrow \mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right) \rightarrow 0
$$

in which the epimorphism is a map of graded commutative algebras with unit.
Next let

$$
\psi: H^{*}\left(\Gamma ; \mathbb{F}_{2}\right)=H_{\Gamma}^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{\Gamma}^{*}\left(X_{S} ; \mathbb{F}_{2}\right) \rightarrow \mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)
$$

be the composition of the map induced by the inclusion $X_{s} \subset X$ and the epimorphism of Theorem 1.1.
Theorem 1.2. Let $\Gamma=\operatorname{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and X be as in the previous theorem.
(a) If $\mathrm{SD}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ denotes the subgroup of diagonal matrices of Γ then the target of ψ can be identified with a subalgebra of $H^{*}\left(\mathrm{SD}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ in such a way that ψ is induced by the restriction homomorphism

$$
H^{*}\left(\Gamma ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(\mathrm{SD}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) .
$$

(b) The homomorphism ψ admits a multiplicative section

$$
\varphi: \mathbb{F}_{2}\left[c_{2}, c_{3}\right] \otimes E\left(e_{3}, e_{3}^{\prime}, e_{5}, e_{5}^{\prime}\right) \rightarrow H^{*}\left(\Gamma ; \mathbb{F}_{2}\right)
$$

that sends c_{i} to b_{i} for $i=2,3$ and sends e_{i} and e_{i}^{\prime} respectively to d_{i} and d_{i}^{\prime} for $i=3,5$.
(c) The homomorphism ψ is surjective in all degrees, an isomorphism in degrees $*>8$ and its kernel is finite-dimensional in degrees $* \leq 8$.

Remark 1.3. Conjecture $C\left(3, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ would hold if the maps ψ and φ of part (b) of Theorem 1.2 turned out to be isomorphisms (see Proposition 5.5).

The following result is an immediate consequence of Theorem 1.2.
Corollary 1.4. Let $\Gamma=\operatorname{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and X be as in Theorem 1.1. Then the following conditions are equivalent:
(a) The restriction homomorphism $H^{*}\left(\Gamma ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(\mathrm{SD}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ is injective and $H^{*}\left(\Gamma ; \mathbb{F}_{2}\right)$ is isomorphic as a graded \mathbb{F}_{2}-algebra to $\mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes$ $E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)$.
(b) There is an isomorphism

$$
H_{\Gamma}^{*}\left(X, X_{s} ; \mathbb{F}_{2}\right) \cong \Sigma^{5} \mathbb{F}_{2} \oplus \Sigma^{5} \mathbb{F}_{2} \oplus \Sigma^{8} \mathbb{F}_{2}
$$

and the connecting homomorphism $H_{\Gamma}^{*}\left(X_{s} ; \mathbb{F}_{2}\right) \rightarrow H_{\Gamma}^{*+1}\left(X, X_{s} ; \mathbb{F}_{2}\right)$ is surjective.

The paper is organized as follows. In Section 2 we recall the centralizer spectral sequence and in Section 3 we prove Theorems 1.1 and 1.2 In Section 4 we make some comments on step 2 of the program of a complete calculation of $H^{*}\left(\Gamma ; \mathbb{F}_{2}\right)$. Finally in Section 5 we establish Theorem 5.1 and discuss the relation between Theorem 1.2 and conjecture $C\left(3, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$.

2. The centralizer spectral sequence

We recall the centralizer spectral sequence introduced in [Henn 1997].
Let G be a discrete group and let p be a fixed prime. Let $\mathcal{A}(G)$ be the category whose objects are the elementary abelian p-subgroups E of G, i.e., subgroups which are isomorphic to $(\mathbb{Z} / p)^{k}$ for some integer k; if E_{1} and E_{2} are elementary abelian p-subgroups of G, then the set of morphisms from E_{1} to E_{2} in $\mathcal{A}(G)$ consists precisely of those group homomorphisms $\alpha: E_{1} \rightarrow E_{2}$ for which there exists an element $g \in G$ with $\alpha(e)=\mathrm{geg}^{-1}$ for all $e \in E_{1}$. Let $\mathcal{A}_{*}(G)$ be the full subcategory of $\mathcal{A}(G)$ whose objects are the nontrivial elementary abelian p-subgroups.

For an elementary abelian p-subgroup E we denote its centralizer in G by $C_{G}(E)$. Then the assignment $E \mapsto H^{*}\left(C_{G}(E) ; \mathbb{F}_{p}\right)$ determines a functor from $\mathcal{A}_{*}(G)$ to the category \mathcal{E} of graded \mathbb{F}_{p}-vector spaces. The inverse limit functor is a left exact functor from the functor category $\mathcal{E}^{\mathcal{A}_{*}(G)}$ to \mathcal{E}. Its right derived functors are denoted by $\lim ^{s}$. The p-rank $r_{p}(G)$ of a group G is defined as the supremum of all k such that G contains a subgroup isomorphic to $(\mathbb{Z} / p)^{k}$.

For a G-space X and a fixed prime p we denote by X_{s} the p-singular locus, i.e., the subspace of X consisting of points whose isotropy group contains an element of order p. Let $E G$ be the total space of the universal principal G-bundle. The mod- p cohomology of the Borel construction $E G \times_{G} X$ of a G space X will be denoted $H_{G}^{*}\left(X ; \mathbb{F}_{p}\right)$. The following result is a special case of part (a) of Corollary 0.4 of [Henn 1997].

Theorem 2.1. Let G be a discrete group and assume there exists a finite-dimensional mod-p acyclic G-CW complex X such that the isotropy group of each cell is finite. Then there exists a cohomological second quadrant spectral sequence

$$
E_{2}^{s, t}=\lim _{\mathcal{A}_{*}(G)}^{s} H^{t}\left(C_{G}(E) ; \mathbb{F}_{p}\right) \Rightarrow H_{G}^{s+t}\left(X_{s} ; \mathbb{F}_{p}\right)
$$

with $E_{2}^{s, t}=0$ if $s \geq r_{p}(G)$ and $t \geq 0$.

Remark 2.2. The edge homomorphism in this spectral sequence is a map of algebras

$$
H_{G}^{*}\left(X_{s} ; \mathbb{F}_{p}\right) \rightarrow \lim _{\mathcal{A}_{*}(G)} H^{*}\left(C_{G}(E) ; \mathbb{F}_{p}\right)
$$

which is given as follows.
Let X^{E} be the fixed points for the action of E on X. The G-action on X restricts to an action of the centralizer $C_{G}(E)$ on X^{E} and the G-equivariant maps

$$
G \times_{C_{G}(E)} X^{E} \rightarrow X_{S}, \quad(g, x) \mapsto g x
$$

for $E \in \mathcal{A}_{*}(G)$ induce compatible maps in Borel cohomology

$$
H_{G}^{*}\left(X_{s} ; \mathbb{F}_{2}\right) \rightarrow H_{G}^{*}\left(G \times_{C_{G}(E)} X^{E} ; \mathbb{F}_{2}\right) \cong H_{C_{G}(E)}^{*}\left(X^{E} ; \mathbb{F}_{2}\right) \cong H^{*}\left(C_{G}(E) ; \mathbb{F}_{2}\right)
$$

which assemble to give the map to the inverse limit. Here we have used that by classical Smith theory X^{E} is mod p-acyclic if X is mod- p acyclic and hence we get canonical isomorphisms $H_{C_{G}(E)}^{*}\left(X^{E} ; \mathbb{F}_{2}\right) \cong H_{C_{G}(E)}^{*}\left(* ; \mathbb{F}_{2}\right) \cong H^{*}\left(C_{G}(E) ; \mathbb{F}_{2}\right)$.

Furthermore the composition

$$
\begin{equation*}
H^{*}\left(G ; \mathbb{F}_{p}\right)=H_{G}^{*}\left(X ; \mathbb{F}_{p}\right) \rightarrow H_{G}^{*}\left(X_{s} ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(C_{G}(E) ; \mathbb{F}_{p}\right) \tag{2-1}
\end{equation*}
$$

is induced by the inclusions $C_{G}(E) \rightarrow G$ as E varies through $\mathcal{A}_{*}(G)$.
In [Henn 1997] we have used this spectral sequence in the case $p=2$ and $G=\mathrm{SL}_{3}(\mathbb{Z})$. Here we will use it in the case $p=2$ and $G=\operatorname{SL}\left(3, \mathbb{Z}\left[\frac{1}{2}, i\right]\right)$. In both cases we have $r_{2}(G)=2$ and hence the spectral sequence collapses at E_{2} and degenerates into a short exact sequence

$$
\begin{equation*}
0 \rightarrow \lim _{\mathcal{A}_{*}(G)}^{1} H^{*}\left(C_{G}(E) ; \mathbb{F}_{2}\right) \rightarrow H_{G}^{*+1}\left(X_{s} ; \mathbb{F}_{2}\right) \rightarrow \lim _{\mathcal{A}_{*}(G)} H^{*+1}\left(C_{G}(E) ; \mathbb{F}_{2}\right) \rightarrow 0 \tag{2-2}
\end{equation*}
$$

3. The centralizer spectral sequence for $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$

3.1. The Quillen category. Let K be any number field, let \mathcal{O}_{K} be its ring of integers and consider the ring of S-integers $\mathcal{O}_{K}\left[\frac{1}{2}\right]$. Then, up to equivalence, the Quillen category of $G:=\mathrm{SL}_{3}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$ for the prime 2 is independent of K. In fact, because 2 is invertible every elementary abelian 2-subgroup is conjugate to a diagonal subgroup, and hence $\mathcal{A}_{*}(G)$ has a skeleton, say \mathcal{A}, with exactly two objects, say E_{1} and E_{2} of rank 1 and 2 , respectively. We take E_{1} to be the subgroup generated by the diagonal matrix whose first two diagonal entries are -1 and whose third diagonal entry is 1 , and E_{2} to be the subgroup of all diagonal matrices with diagonal entries 1 or -1 and determinant 1 .

The automorphism group of E_{1} is trivial, of course, while $\operatorname{Aut}_{\mathcal{A}}\left(E_{2}\right)$ is isomorphic to the group of all abstract automorphisms of E_{2} which we can identify
with \mathfrak{S}_{3}, the symmetric group on three elements. There are three morphisms from E_{1} to E_{2} and $\operatorname{Aut}_{\mathcal{A}}\left(E_{2}\right)$ acts transitively on them.
3.2. The centralizers and their cohomology. For centralizers in $H:=\operatorname{GL}_{3}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$ we find $C_{H}\left(E_{1}\right)=\mathrm{GL}_{2}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right) \times \mathrm{GL}_{1}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$ and $C_{H}\left(E_{2}\right)=D_{3}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$ if $D_{n}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$ denotes the subgroup of diagonal matrices in $\operatorname{GL}_{n}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$. This implies

$$
\begin{aligned}
& C_{G}\left(E_{1}\right) \cong \mathrm{GL}_{2}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right), \\
& C_{G}\left(E_{2}\right)=\mathrm{SD}_{3}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right) \cong D_{2}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right) \cong \mathcal{O}_{K}\left[\frac{1}{2}\right]^{\times} \times \mathcal{O}_{K}\left[\frac{1}{2}\right]^{\times}
\end{aligned}
$$

where as before $\mathrm{SD}_{3}\left(\mathcal{O}_{K}\left[\frac{1}{2}\right]\right)$ denotes special diagonal matrices with coefficients in $\mathcal{O}_{K}\left[\frac{1}{2}\right]$.

From now on we specialize to the case $K=\mathbb{Q}[i]$ where we have $\mathcal{O}_{K}\left[\frac{1}{2}\right]=$ $\mathbb{Z}\left[\frac{1}{2}, i\right]$. In this case the cohomology of the centralizers is explicitly known. In the sequel we abbreviate $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ by Γ.
3.2.1. The cohomology of $C_{\Gamma}\left(E_{2}\right)$. There is an isomorphism of groups

$$
\mathbb{Z} / 4 \times \mathbb{Z} \cong \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}, \quad(n, m) \mapsto i^{n}(1+i)^{m}
$$

and therefore we get an isomorphism

$$
\begin{equation*}
H^{*}\left(C_{\Gamma}\left(E_{2}\right) ; \mathbb{F}_{2}\right) \cong H^{*}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} \times \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right) \tag{3-1}
\end{equation*}
$$

with y_{1} and y_{2} in degree 2 and the other generators in degree 1 . We agree to choose the generators so that y_{1}, x_{1} and x_{1}^{\prime} come from the first factor with x_{1} and x_{1}^{\prime} being the dual basis to the basis of

$$
H_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} ; \mathbb{F}_{2}\right) \cong \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} /\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}\right)^{2} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

given by the image of i and $(1+i)$ in the mod- 2 reduction of the abelian group $\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}$and y_{1} coming from $H^{2}\left(\mathbb{Z} / 4 ; \mathbb{F}_{2}\right)$; likewise with y_{2}, x_{2} and x_{2}^{\prime} coming from the second factor.
3.2.2. The cohomology of $C_{\Gamma}\left(E_{1}\right)$. This cohomology has been calculated in [Weiss 2006]. In fact, from Theorem 1 of [Weiss 2006] we know

$$
\begin{equation*}
H^{*}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right) \cong H^{*}\left(\mathrm{GL}_{2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[c_{1}, c_{2}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, e_{3}, e_{3}^{\prime}\right) \tag{3-2}
\end{equation*}
$$

Here we give a short summary of this calculation. The classes $e_{1}, e_{1}^{\prime}, e_{3}$ and e_{3}^{\prime} are pulled back from Quillen's exterior classes q_{1} and q_{3} [1972] in

$$
\begin{equation*}
H^{*}\left(\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[c_{1}, c_{2}\right] \otimes E\left(q_{1}, q_{3}\right) \tag{3-3}
\end{equation*}
$$

via two ring homomorphisms

$$
\begin{equation*}
\pi: \mathbb{Z}\left[\frac{1}{2}, i\right] \rightarrow \mathbb{F}_{5}, \quad \pi^{\prime}: \mathbb{Z}\left[\frac{1}{2}, i\right] \rightarrow \mathbb{F}_{5} \tag{3-4}
\end{equation*}
$$

We choose π such that i is sent to 3 and π^{\prime} such that i is sent to 2 .
Now consider the two commutative diagrams (with horizontal arrows induced by inclusion and vertical arrows induced by π and, respectively, π^{\prime})

By abuse of notation we can write

$$
\begin{equation*}
H^{*}\left(D_{2}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right) \cong H^{*}\left(\mathbb{F}_{5}^{\times} \times \mathbb{F}_{5}^{\times} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(x_{1}, x_{2}\right) \tag{3-6}
\end{equation*}
$$

with $y_{1} \in H^{2}\left(\mathbb{F}_{5}^{\times} ; \mathbb{F}_{2}\right)$ and $x_{1} \in H^{2}\left(\mathbb{F}_{5}^{\times} ; \mathbb{F}_{2}\right)$ coming from the first factor and likewise with y_{2} and x_{2} coming from the second factor. Then π and π^{\prime} induce two homomorphisms

$$
\pi^{*}, \pi^{*}: H^{*}\left(D_{2}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(D_{2}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right) ; \mathbb{F}_{2}\right)
$$

which in terms of the isomorphisms (3-6) and (3-1) are explicitly given by

$$
\pi^{*}\left(y_{i}\right)=y_{i}=\pi^{* *}\left(y_{i}\right), \quad \pi^{*}\left(x_{i}\right)=x_{i}, \quad \pi^{* *}\left(x_{i}\right)=x_{i}+x_{i}^{\prime} \quad \text { for } i=1,2
$$

The cohomology of $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ is detected by restriction to the cohomology of diagonal matrices and restriction is given explicitly as follows:

$$
\begin{equation*}
c_{1} \mapsto y_{1}+y_{2}, \quad c_{2} \mapsto y_{1} y_{2}, \quad q_{1} \mapsto x_{1}+x_{2}, \quad q_{3} \mapsto y_{1} x_{2}+y_{2} x_{1} \tag{3-8}
\end{equation*}
$$

Then $e_{1}, e_{1}^{\prime}, e_{3}, e_{3}^{\prime}$ are defined via

$$
\begin{equation*}
e_{1}=\pi^{*}\left(q_{1}\right), \quad e_{3}=\pi^{*}\left(q_{3}\right), \quad e_{1}^{\prime}=\pi^{\prime *}\left(q_{1}\right), \quad e_{3}^{\prime}=\pi^{\prime *}\left(q_{3}\right) \tag{3-9}
\end{equation*}
$$

If c_{1} and c_{2} are the Chern classes of the tautological 2-dimensional complex representation of $\mathrm{GL}_{2}\left(\mathbb{Z}\left[\frac{1}{2}\right], i\right)$, then the restriction homomorphism which sends $H^{*}\left(\mathrm{GL}_{2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ to the cohomology of the subgroup of diagonal matrices is injective and by using (3-5) and (3-8) we see that it is explicitly given by

$$
\begin{array}{ll}
c_{1} \mapsto y_{1}+y_{2}, & c_{2} \mapsto y_{1} y_{2}, \\
e_{1} \mapsto x_{1}+x_{2}, & e_{3} \mapsto y_{1} x_{2}+y_{2} x_{1} \tag{3-10}\\
e_{1}^{\prime} \mapsto x_{1}+x_{1}^{\prime}+x_{2}+x_{2}^{\prime}, & e_{3}^{\prime} \mapsto y_{1}\left(x_{2}+x_{2}^{\prime}\right)+y_{2}\left(x_{1}+x_{1}^{\prime}\right)
\end{array}
$$

3.2.3. Functoriality. We note that together with the isomorphisms (3-1) and (3-2) the restriction (3-10) also describes the map

$$
\alpha_{*}: H^{*}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(C_{\Gamma}\left(E_{2}\right) ; \mathbb{F}_{2}\right)
$$

induced from the standard inclusion of E_{1} into E_{2}.

To finish the description of $H^{*}\left(C_{\Gamma}(-) ; \mathbb{F}_{2}\right)$ as a functor on \mathcal{A} it remains to describe the action of the symmetric group $\operatorname{Aut}_{\mathcal{A}}\left(E_{2}\right) \cong \mathfrak{S}_{3}$ of rank 3 on

$$
H^{*}\left(C_{\Gamma}\left(E_{2}\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes \Lambda\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right) .
$$

Because of the multiplicative structure we need it only on the generators.
If $\tau \in \operatorname{Aut}_{\mathcal{A}}\left(E_{2}\right)$ corresponds to permuting the factors in $C_{\Gamma}\left(E_{2}\right) \cong \mathrm{GL}_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times$ $\mathrm{GL}_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ then

$$
\begin{array}{lll}
\tau_{*}\left(y_{1}\right)=y_{2}, & \tau_{*}\left(x_{1}\right)=x_{2}, & \tau_{*}\left(x_{1}^{\prime}\right)=x_{2}^{\prime} \\
\tau_{*}\left(y_{2}\right)=y_{1}, & \tau_{*}\left(x_{2}\right)=x_{1}, & \tau_{*}\left(x_{2}^{\prime}\right)=x_{1}^{\prime} \tag{3-11}
\end{array}
$$

and if $\sigma \in \operatorname{Aut}_{\mathcal{A}}\left(E_{2}\right)$ corresponds to the cyclic permutation of the diagonal entries (in suitable order) then

$$
\begin{array}{lll}
\sigma_{*}\left(y_{1}\right)=y_{2}, & \sigma_{*}\left(x_{1}\right)=x_{2}, & \sigma_{*}\left(x_{1}^{\prime}\right)=x_{2}^{\prime}, \\
\sigma_{*}\left(y_{2}\right)=y_{1}+y_{2}, & \sigma_{*}\left(x_{2}\right)=x_{1}+x_{2}, & \sigma_{*}\left(x_{2}^{\prime}\right)=x_{1}^{\prime}+x_{2}^{\prime} . \tag{3-12}
\end{array}
$$

3.3. Calculating the limit and its derived functors. In Proposition 4.3 of [Henn 1997] we showed that for any functor F from \mathcal{A} to $\mathbb{Z}_{(2)}$-modules there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \lim _{\mathcal{A}} F \rightarrow F\left(E_{1}\right) \xrightarrow{\varphi} \operatorname{Hom}_{\mathbb{Z}\left[\mathfrak{G}_{3}\right]}\left(\mathrm{St}_{\mathbb{Z}}, F\left(E_{2}\right)\right) \rightarrow \lim _{\mathcal{A}}^{1} F \rightarrow 0 \tag{3-13}
\end{equation*}
$$

where $\mathrm{St}_{\mathbb{Z}}$ is the $\mathbb{Z}\left[\mathfrak{S}_{3}\right]$-module given by the kernel of the augmentation map $\mathbb{Z}\left[\mathfrak{S}_{3} / \mathfrak{S}_{2}\right] \rightarrow \mathbb{Z}$, and if a and b are chosen to give an integral basis of $\mathrm{St}_{\mathbb{Z}}$ on which τ and σ act via

$$
\begin{array}{ll}
\tau_{*}(a)=b, & \tau_{*}(b)=a \\
\sigma_{*}(a)=-b, & \sigma_{*}(b)=a-b, \tag{3-14}
\end{array}
$$

then $\varphi(x)(a)=\alpha_{*}(x)-\left(\sigma_{*}\right)^{2} \alpha_{*}(x)$ and $\varphi(x)(b)=\alpha_{*}(x)-\sigma_{*} \alpha_{*}(x)$ if $x \in F\left(E_{1}\right)$.
Because in our case the functor takes values in \mathbb{F}_{2}-vector spaces we can replace $\operatorname{Hom}_{\mathbb{Z}\left[\mathfrak{G}_{3}\right]}$ by $\operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{G}_{3}\right]}$ and $\mathrm{St}_{\mathbb{Z}}$ by its mod-2 reduction. The following elementary lemma is needed in the analysis of the third term in the exact sequence (3-13).

Lemma 3.1. (a) Let St be the $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module given as the kernel of the augmentation $\mathbb{F}_{2}\left[\mathfrak{S}_{3} / \mathfrak{S}_{2}\right] \rightarrow \mathbb{F}_{2}$. The tensor product $\mathrm{St} \otimes \operatorname{St}$ decomposes as $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module canonically as

$$
\mathrm{St} \otimes \mathrm{St} \cong \mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \oplus \mathrm{St}
$$

where A_{3} denotes the alternating group on three letters. In fact, the decomposition is given by

$$
\mathrm{St} \otimes \mathrm{St} \cong \operatorname{Im}\left(\mathrm{id}+\sigma_{*}+\sigma_{*}^{2}\right) \oplus \operatorname{Ker}\left(\mathrm{id}+\sigma_{*}+\sigma_{*}^{2}\right)
$$

and the first summand is isomorphic to $\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right]$ while the second summand is isomorphic to St .
(b) The tensor product $\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \otimes$ St is isomorphic to $\mathrm{St} \oplus \mathrm{St}$.

Proof.
(a) It is well-known that $S t$ is a projective $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module, hence $S t \otimes S t$ is also projective. It is also well-known that every projective indecomposable $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module is isomorphic to either St or $\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right]$. The two modules can be distinguished by the fact that $e:=i d+\sigma_{*}+\sigma_{*}$ acts trivially on St and as the identity on $\mathbb{F}_{2}\left[\mathbb{S}_{3} / A_{3}\right]$.

Furthermore e is a central idempotent in $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$ and hence each $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module M decomposes as direct sum of $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-modules

$$
M \cong \operatorname{Im}(e: M \rightarrow M) \oplus \operatorname{Ker}(e: M \rightarrow M)
$$

An easy calculation shows that in the case of $S t \otimes S t$ both submodules are nontrivial and this together with the fact these submodules must be projective proves the claim.
(b) Again each of the factors in the tensor product is a projective $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module, hence the tensor product is a projective $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module. Because σ acts as the identity on $\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right]$ we see that the idempotent e acts trivially on the tensor product and this forces the tensor product to be isomorphic to $\mathrm{St} \oplus \mathrm{St}$.

Lemma 3.2. The Poincaré series χ_{2} of $\operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]}\left(\operatorname{St}, \mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right)\right)$ is given by

$$
\chi_{2}=\frac{2 t^{2}\left(1+3 t^{2}+3 t^{4}+t^{6}\right)+2 t\left(1+2 t^{2}+2 t^{4}+2 t^{6}+t^{8}\right)}{\left(1-t^{4}\right)\left(1-t^{6}\right)}
$$

Proof. The isomorphism of (3-1) is an isomorphism of $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-modules where the action of \mathfrak{S}_{3} is given by equations (3-11) and (3-12). In particular we see that $H^{1}\left(\mathrm{GL}_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times \mathrm{GL}_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ is isomorphic to $\mathrm{St} \oplus$ St generated by $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}$. The exterior powers of H^{1} are given as

$$
E^{k}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \cong E^{k}(\mathrm{St} \oplus \mathrm{St}) \cong \bigoplus_{j=0}^{k} E^{j} \mathrm{St} \otimes E^{k-j} \mathrm{St}
$$

and, because $E^{k}(\mathrm{St})$ is isomorphic to $\Sigma^{k} \mathbb{F}_{2}$ if $k=0,2$, isomorphic to $\Sigma \mathrm{St}$ if $k=1$, and trivially otherwise, we obtain

$$
E^{k}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \cong \begin{cases}\Sigma^{k} \mathbb{F}_{2} & \text { if } k=0,4 \\ \Sigma^{k}(\mathrm{St} \oplus \mathrm{St}) & \text { if } k=1,3 \\ \Sigma^{2} \mathbb{F}_{2} \oplus \Sigma^{2}(\mathrm{St} \otimes \mathrm{St}) \oplus \Sigma^{2} \mathbb{F}_{2} & \text { if } k=2 \\ 0 & \text { if } k \neq 0,1,2,3,4\end{cases}
$$

where \mathbb{F}_{2} denotes the trivial $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-module whose additive structure is that of \mathbb{F}_{2}.
Therefore the Poincaré series χ_{2} of $\operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{F}_{3}\right]}\left(\mathrm{St}, H^{*}\left(C_{\Gamma}\left(E_{2}\right) ; \mathbb{F}_{2}\right)\right)$ decomposes according to the decomposition of $\Lambda\left(x_{1}, x_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)$ as the sum

$$
\begin{equation*}
\chi_{2}:=\left(1+2 t^{2}+t^{4}\right) \chi_{2,0}+t^{2} \chi_{2,1}+2\left(t+t^{3}\right) \chi_{2,2} \tag{3-15}
\end{equation*}
$$

where here we denote by $\chi_{2,0}$ the Poincaré series of $\operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{G}_{3}\right]}\left(\operatorname{St}, \mathbb{F}_{2}\left[y_{1}, y_{2}\right]\right)$, by $\chi_{2,1}$ the Poincaré series of $\operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]}\left(\mathrm{St}, \mathrm{St} \otimes \mathrm{St} \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right]\right)$ and by $\chi_{2,2}$ that of $\operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{G}_{3}\right]}\left(\operatorname{St}, \operatorname{St} \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right]\right)$.

It is well-known (and elementary to verify) that there is an isomorphism of $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$-modules $\operatorname{St} \oplus \operatorname{St} \oplus \mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \cong \mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$ and therefore an isomorphism

$$
\begin{aligned}
\mathbb{F}_{2}\left[y_{1}, y_{2}\right] & \left.\cong \operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{G}_{3}\right]} \operatorname{St} \oplus \operatorname{St} \oplus \mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right], \mathbb{F}_{2}\left[y_{1}, y_{2}\right]\right) \\
& \cong \operatorname{Hom}_{\mathbb{F}_{2}\left[\mathfrak{G}_{3}\right]}\left(\operatorname{St}, \mathbb{F}_{2}\left[y_{1}, y_{2}\right]\right)^{\oplus 2} \oplus \mathbb{F}_{2}\left[y_{1}, y_{2}\right]^{A_{3}} .
\end{aligned}
$$

Together with the elementary fact that the A_{3}-invariants $\mathbb{F}_{2}\left[y_{1}, y_{2}\right]^{A_{3}}$ form a free module over $\mathbb{F}_{2}\left[y_{1}, y_{2}\right]^{\mathfrak{J}_{3}} \cong \mathbb{F}_{2}\left[c_{2}, c_{3}\right]$ on the two generators 1 and $y_{1}^{3}+y_{1} y_{2}^{2}+y_{2}^{3}$ of degree 0 and 6 , respectively, this implies

$$
2 \chi_{2,0}+\frac{1+t^{6}}{\left(1-t^{4}\right)\left(1-t^{6}\right)}=\frac{1}{\left(1-t^{2}\right)^{2}}
$$

and hence

$$
\begin{equation*}
\chi_{2,0}=\frac{t^{2}}{\left(1-t^{2}\right)\left(1-t^{6}\right)} \tag{3-16}
\end{equation*}
$$

It is elementary to check that St and $\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right]$ are both self-dual $\mathbb{F}_{2}\left[\mathfrak{S}_{3}\right]$ modules and hence Lemma 3.1 gives

$$
\mathrm{St} \otimes \mathrm{St}^{*} \cong \mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \oplus \mathrm{St}
$$

and

$$
\begin{aligned}
\mathrm{St} \otimes \mathrm{St}^{*} \otimes \mathrm{St}^{*} & \cong\left(\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \oplus \mathrm{St}\right) \otimes \mathrm{St} \\
& \cong\left(\mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \otimes \mathrm{St}\right) \oplus(\mathrm{St} \otimes \mathrm{St}) \\
& \cong \mathbb{F}_{2}\left[\mathfrak{S}_{3} / A_{3}\right] \oplus \mathrm{St} \oplus \mathrm{St} \oplus \mathrm{St}
\end{aligned}
$$

Therefore, if $\chi_{\mathbb{F}_{2}\left[y_{1}, y_{2}\right]^{A_{3}}}$ denotes the Poincaré series of the A_{3}-invariants then

$$
\begin{align*}
\chi_{2,1} & =\chi_{\mathbb{F}_{2}\left[y_{1}, y_{2}\right]^{A_{3}}}+3 \chi_{2,0} \\
& =\frac{1+t^{6}}{\left(1-t^{4}\right)\left(1-t^{6}\right)}+\frac{3 t^{2}}{\left(1-t^{2}\right)\left(1-t^{6}\right)}=\frac{1+3 t^{2}+3 t^{4}+t^{6}}{\left(1-t^{4}\right)\left(1-t^{6}\right)}, \tag{3-17}\\
\chi_{2,2} & =\chi_{2,0}+\chi_{\mathbb{F}_{2}\left[y_{1}, y_{2}\right]^{A_{3}}} \\
& =\frac{t^{2}}{\left(1-t^{2}\right)\left(1-t^{6}\right)}+\frac{1+t^{6}}{\left(1-t^{4}\right)\left(1-t^{6}\right)}=\frac{1+t^{2}+t^{4}+t^{6}}{\left(1-t^{4}\right)\left(1-t^{6}\right)} . \tag{3-18}
\end{align*}
$$

Finally (3-15), (3-16), (3-17) and (3-18) give

$$
\begin{aligned}
\chi_{2} & =\frac{\left(1+2 t^{2}+t^{4}\right) t^{2}\left(1+t^{2}\right)+t^{2}\left(1+3 t^{2}+3 t^{4}+t^{6}\right)+2\left(t+t^{3}\right)\left(1+t^{2}+t^{4}+t^{6}\right)}{\left(1-t^{4}\right)\left(1-t^{6}\right)} \\
& =\frac{2 t^{2}\left(1+3 t^{2}+3 t^{4}+t^{6}\right)+2 t\left(1+2 t^{2}+2 t^{4}+2 t^{6}+t^{8}\right)}{\left(1-t^{4}\right)\left(1-t^{6}\right)}
\end{aligned}
$$

and this finishes the proof.
Theorem 1.1 is now an immediate consequence of Theorem 2.1 and the following result.
Proposition 3.3. Let $p=2$ and $\Gamma=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$.
(a) There is an isomorphism of graded \mathbb{F}_{2}-algebras

$$
\lim _{\mathcal{A}} H^{*}\left(C_{\Gamma}(E) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)
$$

Furthermore, if we identify this limit with a subalgebra of $H^{*}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right) \cong$ $\mathbb{F}_{2}\left[c_{1}, c_{2}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, e_{3}, e_{3}^{\prime}\right)$ then

$$
\begin{array}{ll}
b_{2}=c_{1}^{2}+c_{2}, & b_{3}=c_{1} c_{2}, \\
d_{3}=e_{3}, & d_{5}=c_{1} e_{3}+c_{2} e_{1}, \\
d_{3}^{\prime}=e_{3}^{\prime}, & d_{5}^{\prime}=c_{1} e_{3}^{\prime}+c_{2} e_{1}^{\prime} .
\end{array}
$$

(b) There is an isomorphism of graded \mathbb{F}_{2}-vector spaces

$$
\lim _{\mathcal{A}}^{1} H^{*}\left(C_{\Gamma}(E) ; \mathbb{F}_{2}\right) \cong \Sigma^{3} \mathbb{F}_{2} \oplus \Sigma^{3} \mathbb{F}_{2} \oplus \Sigma^{6} \mathbb{F}_{2} .
$$

(c) For any $s>1$

$$
\lim _{\mathcal{A}}^{s} H^{*}\left(C_{\Gamma}(E) ; \mathbb{F}_{2}\right)=0 .
$$

Proof. (a) It is easy to check that the subalgebra of $\mathbb{F}_{2}\left[c_{1}, c_{2}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, e_{3}, e_{3}^{\prime}\right)$ generated by the elements $c_{1}^{2}+c_{2}, c_{1} c_{2}, e_{3}, e_{3}^{\prime}, c_{1} e_{3}+c_{2} e_{1}$, and $c_{1} e_{3}^{\prime}+c_{2} e_{1}^{\prime}$ is isomorphic to the tensor product of a polynomial algebra on two generators b_{2} and b_{3} of degrees 4 and 6 and an exterior algebra on 4 generators $d_{3}, d_{3}^{\prime}, d_{5}$ and d_{5}^{\prime} of degrees $3,3,5$ and 5 . In fact, it is clear that $c_{1}^{2}+c_{2}$ and $c_{1} c_{2}$ are algebraically independent and the elements $e_{3}, e_{3}^{\prime}, c_{1} e_{3}+c_{2} e_{1}$, and $c_{1} e_{3}^{\prime}+c_{2} e_{1}^{\prime}$ are exterior classes; their product is given as $c_{2}^{2} e_{3} e_{3}^{\prime} e_{1} e_{1}^{\prime} \neq 0$, and this implies easily that the exterior monomials in these elements are linearly independent over the polynomial algebra generated by $c_{1}^{2}+c_{2}$ and $c_{1} c_{2}$. From now on we identify $b_{2}, b_{3}, d_{3}, d_{3}^{\prime}, d_{5}$ and d_{5}^{\prime} with $c_{1}^{2}+c_{2}, c_{1} c_{2}, e_{3}, e_{3}^{\prime}, c_{1} e_{3}+c_{2} e_{1}$ and $c_{1} e_{3}^{\prime}+c_{2} e_{1}^{\prime}$.

Now we use the exact sequence (3-13) and the description of φ to determine the inverse limit. Because α_{*} is injective, we see that if we identify $H^{*}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right)$ with its image in $H^{*}\left(C_{\Gamma}\left(E_{2}\right) ; \mathbb{F}_{2}\right)$ then the inverse limit can be identified with the intersection of the image of α_{*} with the invariants in $\mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right)$
with respect to the action of the cyclic group of order 3 of $\operatorname{Aut}_{\mathcal{A}}\left(E_{2}\right) \cong \mathfrak{S}_{3}$ generated by σ. This action has been described in (3-12) and with these formulas it is straightforward to check that the elements

$$
\begin{align*}
b_{2} & =y_{1}^{2}+y_{1} y_{2}+y_{2}^{2} \\
b_{3} & =y_{1} y_{2}\left(y_{1}+y_{2}\right) \\
d_{3} & =y_{1} x_{2}+y_{2} x_{1} \\
d_{5} & =\left(y_{1}+y_{2}\right)\left(y_{1} x_{2}+y_{2} x_{1}\right)+y_{1} y_{2}\left(x_{1}+x_{2}\right)=y_{1}^{2} x_{2}+y_{2}^{2} x_{1} \tag{3-19}\\
d_{3}^{\prime} & =y_{1}\left(x_{2}+x_{2}^{\prime}\right)+y_{2}\left(x_{1}+x_{1}^{\prime}\right) \\
d_{5}^{\prime} & =\left(y_{1}+y_{2}\right)\left(y_{1}\left(x_{2}+x_{2}^{\prime}\right)+y_{2}\left(x_{1}+x_{1}^{\prime}\right)\right)+y_{1} y_{2}\left(x_{1}+x_{1}^{\prime}+x_{2}+x_{2}^{\prime}\right) \\
& =y_{1}^{2}\left(x_{2}+x_{2}^{\prime}\right)+y_{2}^{2}\left(x_{1}+x_{1}^{\prime}\right)
\end{align*}
$$

all belong to the inverse limit.
Now consider the Poincaré series

$$
\begin{aligned}
& \chi_{0}:=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{F}_{2}}\left(\mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(e_{3}, e_{3}^{\prime}, e_{5}, e_{5}^{\prime}\right)^{n}\right) t^{n}=\frac{\left(1+t^{3}\right)^{2}\left(1+t^{5}\right)^{2}}{\left(1-t^{4}\right)\left(1-t^{6}\right)} \\
& \chi_{1}:=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{F}_{2}} H^{n}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right) t^{n}=\frac{(1+t)^{2}\left(1+t^{3}\right)^{2}}{\left(1-t^{2}\right)\left(1-t^{4}\right)} \\
& \chi_{2}:=\frac{2 t^{2}\left(1+3 t^{2}+3 t^{4}+t^{6}\right)+2 t\left(1+2 t^{2}+2 t^{4}+2 t^{6}+t^{8}\right)}{\left(1-t^{4}\right)\left(1-t^{6}\right)}
\end{aligned}
$$

Then we have the identity

$$
\chi_{0}+\chi_{2}-\chi_{1}=\frac{p}{\left(1-t^{4}\right)\left(1-t^{6}\right)}
$$

with

$$
\begin{aligned}
p= & \left(1+t^{3}\right)^{2}\left(1+t^{5}\right)^{2}+2 t^{2}\left(1+3 t^{2}+3 t^{4}+t^{6}\right) \\
& \quad+2 t\left(1+2 t^{2}+2 t^{4}+2 t^{6}+t^{8}\right)-(1+t)^{2}\left(1+t^{3}\right)^{2}\left(1+t^{2}+t^{4}\right) \\
= & 2 t^{3}+t^{6}-2 t^{7}-2 t^{9}-t^{10}-t^{12}+2 t^{13}+t^{16} \\
= & \left(2 t^{3}+t^{6}\right)\left(1-t^{4}\right)\left(1-t^{6}\right)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\chi_{0}+\chi_{2}=\chi_{1}+\left(2 t^{3}+t^{6}\right) \tag{3-20}
\end{equation*}
$$

This, together with the fact that $\lim _{\mathcal{A}} H^{*}\left(C_{\Gamma}(E) ; \mathbb{F}_{2}\right)$ contains a subalgebra isomorphic to $\mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes \Lambda\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)$, already implies that the sequence $0 \rightarrow \mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right) \rightarrow H^{*}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right)$
in which the left-hand arrow is given by inclusion is exact except possibly in dimensions 3 and 6 .

In order to complete the proof of (a) it is now enough to verify that in degrees 3 and 6 the inverse limit is not bigger than $\mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)$. We leave this straightforward verification to the reader.

Then (b) follows immediately from (a) together with (3-20) and the exact sequence (3-13), and (c) follows from Theorem 2.1 and the fact that $r_{2}(G)=2$.

We can now give the proof of Theorem 1.2.

Proof.

(a) The exact sequence of Theorem 1.1 is obtained from the exact sequence (2-2) via Proposition 3.3. Therefore the epimorphism of Theorem 1.1 is the edge homomorphism of the centralizer spectral sequence. The result then follows from (2-1) by observing that we have identified the target of the edge homomorphism with the subalgebra $\mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)$ of $H^{*}\left(C_{\Gamma}\left(E_{1}\right) ; \mathbb{F}_{2}\right)$ and by recalling that $C_{\Gamma}\left(E_{1}\right)$ is equal to the subgroup of special diagonal matrices $\mathrm{SD}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$.
(b) The two ring homomorphisms $\pi, \pi^{\prime}: \mathbb{Z}\left[\frac{1}{2}, i\right] \rightarrow \mathbb{F}_{5}$ of (3-4) determine homomorphisms $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \subset \mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \rightarrow \mathrm{GL}_{3}\left(\mathbb{F}_{5}\right)$. By [Quillen 1972] we have

$$
\left.H^{*} \mathrm{GL}_{3}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{3}\left[c_{1}, c_{2}, c_{3}\right] \otimes E\left(q_{1}, q_{3}, q_{5}\right) .
$$

We get a well-defined homomorphism of \mathbb{F}_{2}-graded algebras

$$
\varphi: \mathbb{F}_{2}\left[c_{2}, c_{3}\right] \otimes E\left(e_{3}, e_{3}^{\prime}, e_{5}, e_{5}^{\prime}\right) \rightarrow H^{*}\left(\Gamma ; \mathbb{F}_{2}\right)
$$

by sending c_{i} to the i-th Chern class of the tautological 3-dimensional representation of Γ and by declaring $\varphi\left(e_{i}\right)=\pi^{*}\left(q_{i}\right)$ and $\varphi\left(e_{i}^{\prime}\right)=\pi^{\prime *}\left(q_{i}^{\prime}\right)$ for $i=3,5$. The classes q_{1}, q_{3} and q_{5} are the symmetrizations of $x_{1}, y_{1} x_{2}$ and $y_{1} y_{2} x_{3}$, respectively, with respect to the natural action of \mathfrak{S}_{3} on

$$
H^{*}\left(\mathrm{GL}_{3}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, y_{2}, y_{3}\right] \otimes E\left(x_{1}, x_{2}, x_{3}\right) .
$$

Compare (5-1) below.
Next we determine the composition $\psi \varphi$. The universal Chern classes c_{i} are the elementary symmetric polynomials in variables, say y_{i}, and the inclusion $\mathrm{GL}_{2}(\mathbb{C}) \subset$ $\mathrm{SL}_{3}(\mathbb{C}) \subset \mathrm{GL}_{3}(\mathbb{C})$ imposes the relation $y_{1}+y_{2}+y_{3}=0$. This implies that the behavior of ψ on Chern classes is given by
$c_{1} \mapsto 0, \quad c_{2} \mapsto c_{1}^{2}+c_{2}=y_{1}^{2}+y_{1} y_{2}+y_{2}^{2}=b_{2}, \quad c_{3} \mapsto c_{1} c_{2}=y_{1} y_{2}\left(y_{1}+y_{2}\right)=b_{3}$.
In these equations we have identified $H^{*}\left(\mathrm{GL}_{2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$, as in the proof of Proposition 3.3, via restriction with a subalgebra of $\mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(x_{1}, x_{1}^{\prime}, x_{3}, x_{3}^{\prime}\right)$.

In order to determine the composition $\psi \varphi$ on the classes $e_{3}, e_{3}^{\prime}, e_{5}$ and e_{5}^{\prime} we calculate at the level of \mathbb{F}_{5} and use naturality with respect to the homomorphisms induced by π and π^{\prime}, i.e., we consider the maps induced in cohomology by the following commutative diagram in which the horizontal maps are induced by inclusion and the vertical maps are induced by π and, respectively, π^{\prime} :

On the level of \mathbb{F}_{5} the composition induces in cohomology a map

$$
\mathbb{F}_{3}\left[c_{1}, c_{2}, c_{3}\right] \otimes E\left(q_{1}, q_{3}, q_{5}\right) \rightarrow \mathbb{F}_{2}\left[c_{1}, c_{2}\right] \otimes E\left(e_{1}, e_{3}\right) \subset \mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(q_{1}, q_{3}\right)
$$

which is easily determined from (5-1) below by imposing the relations $y_{1}+y_{2}+y_{3}=$ 0 and $x_{1}+x_{2}+x_{3}=0$ on the symmetrization of the classes $y_{1} x_{2}$ and $y_{1} y_{2} x_{3}$ with respect to the natural action of \mathfrak{S}_{3} on the cohomology of diagonal matrices $H^{*}\left(D_{3}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, y_{2}, y_{3}\right] \otimes E\left(x_{1}, x_{2}, x_{3}\right)$. Explicitly we get

$$
\begin{array}{lll}
c_{1} \mapsto 0, & c_{2} \mapsto y_{1}^{2}+y_{1} y_{2}+y_{2}^{2}, & c_{3} \mapsto y_{1} y_{2}\left(y_{1}+y_{2}\right), \\
q_{1} \mapsto 0, & q_{3} \mapsto y_{1} x_{2}+y_{2} x_{1}, & q_{5} \mapsto y_{1}^{2} x_{2}+y_{2}^{2} x_{1}
\end{array}
$$

and by using (3-7) and (3-19) we see that the composition $\psi \phi$ maps the elements $e_{3}, e_{5}, e_{3}^{\prime}$, and e_{5}^{\prime} as follows:

$$
\begin{aligned}
& e_{3} \mapsto \pi^{*}\left(y_{1} x_{2}+y_{2} x_{1}\right)=d_{3}, \\
& e_{5} \mapsto \pi^{*}\left(y_{1}^{2} x_{2}+y_{2}^{2} x_{1}\right)=d_{5}, \\
& e_{3}^{\prime} \mapsto \pi^{\prime *}\left(y_{1} x_{2}+y_{2} x_{1}\right)=d_{3}^{\prime}, \\
& e_{5}^{\prime} \mapsto \pi^{\prime *}\left(y_{1}^{2} x_{2}+y_{2}^{2} x_{1}\right)=d_{5}^{\prime} .
\end{aligned}
$$

Here we have identified the target of ψ with a subalgebra of $H^{*}\left(\mathrm{GL}_{2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ and the latter via restriction with a subalgebra of $\mathbb{F}_{2}\left[y_{1}, y_{2}\right] \otimes E\left(x_{1}, x_{1}^{\prime}, x_{3}, x_{3}^{\prime}\right)$.
(c) The space X can be taken to be the product of symmetric space

$$
X_{\infty}:=\mathrm{SL}_{3}(\mathbb{C}) / \mathrm{SU}(3)
$$

and the Bruhat-Tits building X_{2} for $\mathrm{SL}_{3}\left(\mathbb{Q}_{2}[i]\right)$. Now $\mathrm{SL}_{3}\left(\mathbb{Q}_{2}[i]\right) \backslash X_{2}$ is a 2simplex [Brown 1989] and the projection map $X \rightarrow X_{2}$ induces a map

$$
\mathrm{SL}_{3}\left(\mathbb{Q}_{2}[i]\right) \backslash X \rightarrow \mathrm{SL}_{3}\left(\mathbb{Q}_{2}[i]\right) \backslash X_{2}
$$

whose fibers have the homotopy type of a 6 -dimensional $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$-invariant deformation retract (see Section 4). Therefore we get $H_{G}^{n}\left(X, X_{s} ; \mathbb{F}_{2}\right)=0$ if $n>8$
and the inclusion $X_{s} \subset X$ induces an isomorphism $H_{G}^{n}\left(X ; \mathbb{F}_{2}\right) \cong H_{G}^{n}\left(X_{s} ; \mathbb{F}_{2}\right)$ if $n>8$. Then part (c) simply follows from (a) except for the finiteness statement for the kernel for which we refer to (4-1) and (4-2) below.

4. Comments on step 2

The situation for $p=2$ and $G=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ is analogous to the situation for $p=2$ and $G=\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ for which step 2 was carried out in [Henn 1999] via a detailed study of the relative cohomology $H_{G}^{*}\left(X, X_{s} ; \mathbb{F}_{2}\right)$ for X equal to the product of the symmetric space $X_{\infty}:=\mathrm{SL}_{3}(\mathbb{R}) / \mathrm{SO}(3)$ with the Bruhat-Tits building X_{2} for $\mathrm{SL}_{3}\left(\mathbb{Q}_{2}\right)$; the spaces involved had a few hundred cells and the calculation was painful. In the case of $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ with X the product of $\mathrm{SL}_{3}(\mathbb{C}) / \mathrm{SU}(3)$ with the Bruhat-Tits building for $\mathrm{SL}_{3}\left(\mathbb{Q}_{2}[i]\right)$ the calculational complexity of the second step is much more involved and an explicit calculation by hand does not look feasible. However, in recent years there have been a lot of machine aided calculations of the cohomology of various arithmetic groups (for example [Dutour Sikirić et al. 2016; Bui et al. 2016]) and a machine aided calculation seems to be within reach.

The natural strategy for undertaking this second step is to follow the same path as in [Henn 1999]. The equivariant cohomology $H_{\Gamma}^{*}\left(X, X_{s} ; \mathbb{F}_{2}\right)$ can be studied via the spectral sequence of the projection map

$$
p: X=X_{\infty} \times X_{2} \rightarrow X_{2} .
$$

This gives a spectral sequence with

$$
\begin{equation*}
E_{1}^{p, q} \cong \bigoplus_{\sigma \in \Lambda_{p}} H_{\Gamma_{\sigma}}^{q}\left(X_{\infty}, X_{\infty, s} ; \mathbb{F}_{2}\right) \Rightarrow H_{\Gamma}^{p+q}\left(X, X_{s} ; \mathbb{F}_{2}\right) \tag{4-1}
\end{equation*}
$$

Here Λ_{p} indexes the p-dimensional cells in the orbit space of X_{2} with respect to the action of Γ. The orbit space is a 2 -simplex, i.e., Λ_{0} and Λ_{1} contain 3 elements and Λ_{2} is a singleton. Furthermore Γ_{σ} is the isotropy group of a chosen representative in X_{2} of the cell σ in the quotient space. For fixed p all p-dimensional cells have isomorphic isotropy groups because the Γ-action on the Bruhat-Tits building is the restriction of a natural action of $\mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ on X_{2} and this action is transitive on the set of p-dimensional cells [Brown 1989].

Therefore all isotropy subgroups for the action on X_{2} are, up to isomorphism, subgroups of $\mathrm{SL}_{3}(\mathbb{Z}[i])$ which itself appears as isotropy group of a 0 -dimensional cell in X_{2}. The isotropy groups of 1-dimensional and 2-dimensional cells are isomorphic to well-known congruence subgroups of $\mathrm{SL}_{3}(\mathbb{Z}[i])$. By the SouléLannes method the fiber X_{∞} of the projection map p admits a 6 -dimensional $\mathrm{SL}_{3}(\mathbb{Z}[i])$-equivariant deformation retract (the space of "well-rounded hermitian forms" modulo arithmetic equivalence) with compact quotient [Ash 1984] and
therefore we have

$$
E_{1}^{s, t}=0 \text { unless } s=0,1,2,0 \leq t \leq 6, \quad \text { and } \quad \operatorname{dim}_{F_{2}} E_{1}^{s, t}<\infty \text { for all }(s, t) .(4-2)
$$

The E_{1}-term of this spectral sequence should be accessible to machine calculation. The spectral sequence will necessarily degenerate at E_{3} and the calculation of the differentials is likely to need human intervention, as in the case of $\operatorname{SL}\left(3, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ (compare Section 3.4 of [Henn 1999]). Likewise the calculation of the connecting homomorphism for the mod-2 Borel cohomology of the pair (X, X_{s}) is likely to require human intervention.

5. On Quillen's conjecture for $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$

The next result gives two reformulations of the conjecture of Quillen briefly discussed in the introduction. The classes $e_{2 k-1}$ and $e_{2 k-1}^{\prime}$ in part (c) will be introduced in (5-1) below.

Theorem 5.1. Suppose $n \geq 2$. The following statements are equivalent:
(a) Conjecture $C\left(n, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ holds, i.e., $H^{*}\left(\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ is a free module over $\mathbb{Z} / 2\left[c_{1}, \ldots, c_{n}\right]$ where the c_{i} are the mod- 2 Chern classes of the tautological n-dimensional complex representation of $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$.
(b) The restriction homomorphism

$$
H^{*}\left(\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)
$$

is injective, where $D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ is the subgroup of diagonal matrices in $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$.
(c) There are isomorphisms

$$
H^{*}\left(\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[c_{1}, \ldots, c_{n}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, \ldots, e_{2 n-1}, e_{2 n-1}^{\prime}\right)
$$

where the classes c_{k} are the Chern classes of the tautological n-dimensional complex representation of $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and the classes $e_{2 k-1}, e_{2 k-1}^{\prime}$ are of cohomological degree $2 k-1$ for $k=1, \ldots, n$.

Proof. It is trivial that (c) implies (a).
In order to show that (a) implies (b) we observe that $D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ is the centralizer of the unique, up to conjugacy, maximal elementary abelian 2-subgroup E_{n} of $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ given by the subgroup of diagonal matrices of order 2 . Now consider the top Dickson invariant ω in $H^{*}\left(\mathrm{BGL}_{n}(\mathbb{C}) ; \mathbb{F}_{2}\right)$, i.e., the class whose restriction to $\left.H^{*} B\left(\prod_{i=1}^{n} \mathrm{GL}_{1}(\mathbb{C})\right) ; \mathbb{F}_{2}\right)$ is the product of all nontrivial classes of degree 2 . The image of ω in $H^{*}\left(\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ restricts trivially to the cohomology of all elementary abelian 2 -subgroups E of $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ of rank less than n. If (a) holds then the image of ω is not a zero divisor in $H^{*}\left(\operatorname{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ and hence

Corollary I.5.8 of [Henn et al. 1995] implies that the restriction to the centralizer of E_{n} is injective.

The implication (b) \Rightarrow (c) follows from Proposition 5.3 below.
Before we go on we introduce the classes $e_{2 k-1}$ and $e_{2 k-1}^{\prime}$. As in the case of GL_{2} they are obtained from Quillen's classes [1972] $q_{2 k-1} \in H^{2 k-1}\left(\mathrm{GL}_{n}\left(\mathbb{F}_{5}\right) ; \mathbb{F}_{2}\right)$ which restrict in the cohomology of diagonal matrices in \mathbb{F}_{5} to the symmetrization of the classes $y_{1} \cdots y_{k-1} x_{k}$ where y_{k} is of cohomological degree 2 corresponding to the k-th factor in the product $\prod_{k=1}^{n} \mathbb{F}_{5}^{\times}$and x_{k} is of cohomological degree 1 of the same factor. We define

$$
\begin{equation*}
e_{2 k-1}:=\pi^{*}\left(q_{2 k-1}\right), \quad e_{2 k-1}^{\prime}:=\pi^{* *}\left(q_{2 k-1}\right) \tag{5-1}
\end{equation*}
$$

where π and π^{\prime} are the two ring homomorphisms $\mathbb{Z}\left[\frac{1}{2}, i\right] \rightarrow \mathbb{F}_{5}$ with π sending i to 3 and π^{\prime} sending i to 2 which we considered earlier in Section 3. We identify the mod2 cohomology $H^{*}\left(D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ with $\mathbb{F}_{2}\left[y_{1}, \ldots y_{n}\right] \otimes E\left(x_{1}, x_{1}^{\prime} \ldots, x_{n}, x_{n}^{\prime}\right)$ with $y_{k}, k=1, \ldots, n$ of degree 2 and $x_{k}, x_{k}^{\prime}, k=1, \ldots, n$ of degree 1 where as before we choose x_{k} and x_{k}^{\prime} to be the basis which is dual to the basis of the k-th factor in

$$
D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) / D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)^{2} \cong\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} /\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}\right)^{2}\right)^{n}
$$

given by the classes of i and $1+i$. Then we get the following lemma which generalizes (3-10) and whose straightforward proof we leave to the reader.

Lemm 5.2. The class e $e_{2 k-1}$ restricts in the cohomology of the subgroup of diagonal matrices $H^{*}\left(D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right] ; \mathbb{F}_{2}\right)\right)$ to the symmetrization of $y_{1} \cdots y_{k-1} x_{k}$ and the class $e_{2 k-1}^{\prime}$ restricts to the symmetrization of $y_{1} \cdots y_{k-1}\left(x_{k}+x_{k}^{\prime}\right)$.

The following result determines the image of the restriction homomorphism and shows that (b) implies (c) in Theorem 5.1. It resembles results of Mitchell [1992] for $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ for $p=2$ and of Anton [1999] for $\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{3}, \zeta_{3}\right]\right)$ for $p=3$. Its proof uses crucially condition (5-3) below, which also plays a central role in [Anton 2003].

Proposition 5.3. Let $n \geq 1$ be an integer. The image of the restriction map

$$
\begin{aligned}
i^{*}: H^{*}\left(\operatorname{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \\
\quad \rightarrow H^{*}\left(D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, \ldots y_{n}\right] \otimes E\left(x_{1}, x_{1}^{\prime} \ldots, x_{n}, x_{n}^{\prime}\right)
\end{aligned}
$$

is isomorphic to

$$
\mathbb{F}_{2}\left[c_{1}, \ldots c_{n}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, \ldots, e_{2 n-1}, e_{2 n-1}^{\prime}\right)
$$

Here we have identified the Chern classes c_{i} and the classes $e_{2 i-1}$ and $e_{2 i-1}^{\prime}$ with their image via i^{*}. The images of the elements c_{i} are, of course, the elementary symmetric polynomials in the y_{i} and the images of the classes $e_{2 i-1}$ and $e_{2 i-1}^{\prime}$ have been determined in Lemma 5.2. We remark that even though i^{*} need not be injective, it is injective on the subalgebra of $H^{*}\left(\mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ generated by the classes $c_{i}, e_{2 i-1}$ and $e_{2 i-1}^{\prime}, 1 \leq i \leq n$.

Proof. In this proof we denote the subalgebra

$$
\mathbb{F}_{2}\left[c_{1}, \ldots c_{n}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, \ldots, e_{2 n-1}, e_{2 n-1}^{\prime}\right) .
$$

of $H^{*}\left(D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right)$ by C_{n} and the image of the restriction map by B_{n}. We need to show that $B_{n}=C_{n}$. This is trivial if $n=1$ and for $n=2$ this follows from Theorem 1 of [Weiss 2006] (compare (3-2), (3-10) and Lemma 5.2).

The classes c_{1}, \ldots, c_{n} are in B_{n} as images of the Chern classes with the same name and the classes $e_{1}, \ldots e_{2 n-1}, e_{1}^{\prime}, \ldots e_{2 n-1}^{\prime}$ are in B_{n} by Lemma 5.2. Therefore we have $C_{n} \subset B_{n}$. We will show $B_{n} \subset C_{n}$ for $n \geq 2$ by induction on n. This will be done in three steps:

1. From the inclusions

$$
\begin{aligned}
& \mathrm{GL}_{n-2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times \mathrm{GL}_{2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \subset \mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \\
& \mathrm{GL}_{n-1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times \mathrm{GL}_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \subset \mathrm{GL}_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)
\end{aligned}
$$

given by matrix block sum and the identifications of $D_{n-2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times D_{2}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and of $D_{n-1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times D_{1}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ with $D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ we see that

$$
B_{n} \subset B_{n-1} \otimes B_{1} \cap B_{n-2} \otimes B_{2}
$$

and by the induction hypothesis the latter subalgebra is equal to

$$
C_{n-1} \otimes C_{1} \cap C_{n-2} \otimes C_{2},
$$

in particular we have

$$
\begin{equation*}
B_{n} \subset C_{n-1} \otimes C_{1} \cap C_{n-2} \otimes C_{2} . \tag{5-2}
\end{equation*}
$$

2. The monomial basis in

$$
H^{*}\left(D_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y_{1}, \ldots, y_{n}\right] \otimes E\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

is in bijection with the set $S(n)$ of sequences

$$
I=\left(a_{1}, \varepsilon_{1,1}, \varepsilon_{2,1}, \ldots, a_{n}, \varepsilon_{1, n}, \varepsilon_{2, n}\right)
$$

where the a_{i} are integers ≥ 0 and $\varepsilon_{i, j} \in\{0,1\}$ for $i=1,2$ and $1 \leq j \leq n$. More precisely to I we associate the monomial

$$
y^{I}:=y_{1}^{a_{1}} \cdots y_{n}^{a_{n}} x_{1}^{\varepsilon_{1,1}} \cdots x_{n}^{\varepsilon_{1, n}} x_{1}^{\prime \varepsilon_{2,1}} \cdots x_{n}^{\prime \varepsilon_{2, n}} .
$$

We equip $S(n)$ with the lexicographical order and denote it by $<_{n}$. This order has the property that for each $1 \leq k<n$ it agrees with the lexicographical order on $S(k) \times S(n-k)$ if $S(k)$ and $S(n-k)$ are equipped with the orders $<_{k}$ and $<_{n-k}$ and $S(n)$ is identified with $S(k) \times S(n-k)$ via concatenation of sequences.

In what follows we replace the symmetrizations of the elements $y_{1} \cdots y_{i-1}\left(x_{i}+x_{i}^{\prime}\right)$, $i=1, \ldots, n$, by the symmetrization of $y_{1} \cdots y_{i-1} x_{i}^{\prime}$ and by abuse of notation we continue to denote them by $e_{2 i-1}^{\prime}$. This does not change the subalgebra C_{n}. This subalgebra
$\mathbb{F}_{2}\left[c_{1}, \ldots c_{n}\right] \otimes E\left(e_{1}, e_{1}^{\prime}, \ldots, e_{2 n-1}, e_{2 n-1}^{\prime}\right)$

$$
\subset \mathbb{F}_{2}\left[y_{1}, \ldots, y_{n}\right] \otimes E\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

has a monomial basis which is in bijection with the set $T(n)$ of sequences

$$
K=\left(k_{1}, \ldots, k_{n} ; \phi_{1,1}, \ldots, \phi_{1, n} ; \phi_{2,1} \ldots, \phi_{2, n}\right)
$$

where the k_{i} are integers ≥ 0 and $\phi_{i, j} \in\{0,1\}$ for $i=1,2$ and $1 \leq j \leq n$. More precisely to K we associate the monomial

$$
c^{K}:=c_{1}^{k_{1}} \cdots c_{n}^{k_{n}} e_{1}^{\phi_{1,1}} \cdots e_{n}^{\phi_{1, n}} e_{1}^{\prime \phi_{2,1}} \cdots e_{n}^{\prime \phi_{2, n}} .
$$

We define a map

$$
\alpha: T(n) \rightarrow S(n)
$$

by associating to $K \in T(n)$ the largest monomial in $S(n)$ which occurs in the decomposition of c^{K} as linear combination of elements x^{I} with $I \in S(n)$. The proof of the following result is elementary and is left to the reader.

Lemma 5.4. The map α is explicitly given by

$$
\alpha\left(\left(k_{1}, \ldots, k_{n} ; \phi_{1,1}, \ldots, \phi_{1, n} ; \phi_{2,1} \ldots, \phi_{2, n}\right)\right)=\left(a_{1}, \varepsilon_{1,1}, \varepsilon_{2,1}, \ldots, a_{n}, \varepsilon_{1, n}, \varepsilon_{2, n}\right)
$$

with

$$
\begin{aligned}
a_{j} & =k_{j}+\sum_{i=j+1}^{n}\left(k_{i}+\phi_{1, i}+\phi_{2, i}\right), \quad 1 \leq j<n \\
a_{n} & =k_{n} \\
\varepsilon_{i, j} & =\phi_{i, j}, \quad 1 \leq j \leq n, i=1,2
\end{aligned}
$$

From this lemma it is obvious that α is injective and a sequence

$$
I=\left(a_{1}, \varepsilon_{1,1}, \varepsilon_{2,1}, \ldots, a_{n}, \varepsilon_{1, n}, \varepsilon_{2, n}\right) \in S(n)
$$

is in the image of α if and only if we have

$$
\begin{equation*}
a_{j}-a_{j+1} \geq \varepsilon_{1, j+1}+\varepsilon_{2, j+1} \quad \text { for all } 1 \leq j<n \tag{5-3}
\end{equation*}
$$

In particular, if an element x is in C_{n} then the maximal sequence which appears in the decomposition of x as a linear combination of the monomials x^{I} with $I \in S(n)$ satisfies (5-3) for all $1 \leq j<n$. Likewise, if x is in $C_{i} \otimes C_{n-i}$ then this maximal sequence is equal to the maximal sequence which appears in the decomposition of x as a linear combination of the monomials x^{I} with $I \in S(k) \times S(n-k)$ and hence it satisfies (5-3) for all $1 \leq j<i$ and $i+1 \leq j<n$.
3. Now let x be a homogeneous element of B_{n} and let I_{0} be the maximal sequence in $S(n)$ appearing in the decomposition of x as a linear combination of the monomials x^{I} with $I \in S(n)$. By (5-2) we have $x \in C_{n-1} \otimes C_{1}$ and $x \in C_{n-2} \otimes C_{2}$, and I_{0} remains the maximal sequence in $S(n-1) \times S(1)$ and $S(n-2) \times S(2)$, respectively, appearing in the decomposition of x as a linear combination of the monomials x^{I} with, respectively, $I \in S(n-1) \times S(1)$ and $I \in S(n-2) \times S(2)$. Hence I_{0} satisfies conditions (5-3) for $1 \leq j<n-1$ and, respectively, $1 \leq j<n-2$ and $j=n-1$. In particular condition (5-3) holds for all $1 \leq j<n$ and therefore there exists $K_{0} \in T(n)$ such that $\alpha\left(K_{0}\right)=I_{0}$. Then $x-c^{K_{0}}$ is still in B_{n} and the maximal sequence appearing in the decomposition of $x-c^{K_{0}}$ is smaller than that of x. By iterating this procedure we see that x belongs to C_{n}.

Finally we relate $C\left(3, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ to the behavior of the restriction homomorphism

$$
H^{*}\left(\Gamma ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(C_{\Gamma}\left(E_{2}\right) ; \mathbb{F}_{2}\right)
$$

For this we observe that the subgroups $\Gamma=\operatorname{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ and the center $Z \cong$ $\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}$of $\mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ have trivial intersection and their product is the kernel of the homomorphism

$$
\mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \rightarrow \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} \rightarrow \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} /\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}\right)^{3} \cong \mathbb{Z} / 3
$$

given as the composition of the determinant with the natural quotient map. Therefore the spectral sequence of the extension

$$
1 \rightarrow \mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \times \mathbb{Z} \rightarrow \mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) \rightarrow \mathbb{Z} / 3 \rightarrow 1
$$

gives an isomorphism

$$
\begin{equation*}
H^{*}\left(\mathrm{GL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong\left(H^{*}\left(\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \otimes H^{*}\left(Z ; \mathbb{F}_{2}\right)\right)^{\mathbb{Z} / 3} \tag{5-4}
\end{equation*}
$$

Proposition 5.5. Conjecture $C\left(3, \mathbb{Z}\left[\frac{1}{2}, i\right], 2\right)$ holds if and only if either
(a) $H^{*}\left(\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[b_{2}, b_{3}\right] \otimes E\left(d_{3}, d_{3}^{\prime}, d_{5}, d_{5}^{\prime}\right)$ or
(b) the kernel of the map ψ of Theorem 1.2 is a finite-dimensional vector space for which the action of $\mathbb{Z} / 3 \cong \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} /\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}\right)^{3}$ has trivial invariants.
Proof. Clearly $\mathbb{Z} / 3 \cong \mathbb{Z}\left[\frac{1}{2}, i\right]^{\times} /\left(\mathbb{Z}\left[\frac{1}{2}, i\right]^{\times}\right)^{3}$ acts trivially on $H^{*}\left(Z ; \mathbb{F}_{2}\right)$ and on the image of the homomorphism φ of Theorem 1.2. Hence, the corollary follows immediately from (5-4) and Theorem 1.2.

Acknowledgement

The author is happy to acknowledge numerous enlightening conversations with Jean Lannes over many years on the topics discussed in this paper.

References

[Anton 1999] M. F. Anton, "On a conjecture of Quillen at the prime 3", J. Pure Appl. Algebra 144:1 (1999), 1-20. MR Zbl
[Anton 2003] M. F. Anton, "An elementary invariant problem and general linear group cohomology restricted to the diagonal subgroup", Trans. Amer. Math. Soc. 355:6 (2003), 2327-2340. MR Zbl
[Ash 1984] A. Ash, "Small-dimensional classifying spaces for arithmetic subgroups of general linear groups", Duke Math. J. 51:2 (1984), 459-468. MR Zbl
[Brown 1989] K. S. Brown, Buildings, Springer, 1989. MR Zbl
[Bui et al. 2016] A. T. Bui, A. Rahm, and M. Wendt, "The Farrell-Tate and Bredon homology for $\mathrm{PSL}_{4}(\mathbb{Z})$ and other arithmetic groups", preprint, 2016. arXiv
[Dutour Sikirić et al. 2016] M. Dutour Sikirić, H. Gangl, P. E. Gunnells, J. Hanke, A. Schürmann, and D. Yasaki, "On the cohomology of linear groups over imaginary quadratic fields", J. Pure Appl. Algebra 220:7 (2016), 2564-2589. MR Zbl
[Dwyer 1998] W. G. Dwyer, "Exotic cohomology for $\mathrm{GL}_{n}(\mathbf{Z}[1 / 2])$ ", Proc. Amer. Math. Soc. 126:7 (1998), 2159-2167. MR Zbl
[Henn 1997] H.-W. Henn, "Centralizers of elementary abelian p-subgroups, the Borel construction of the singular locus and applications to the cohomology of discrete groups", Topology 36:1 (1997), 271-286. MR Zbl
[Henn 1999] H.-W. Henn, "The cohomology of SL(3, Z[1/2])", K-Theory 16:4 (1999), 299-359. MR Zbl
[Henn et al. 1995] H.-W. Henn, J. Lannes, and L. Schwartz, "Localizations of unstable A-modules and equivariant mod p cohomology", Math. Ann. 301:1 (1995), 23-68. MR Zbl
[Mitchell 1992] S. A. Mitchell, "On the plus construction for BGL $\mathbb{Z}\left[\frac{1}{2}\right]$ at the prime 2", Math. Z. 209:2 (1992), 205-222. MR Zbl
[Quillen 1971] D. Quillen, "The spectrum of an equivariant cohomology ring, I, II", Ann. of Math.
(2) 94 (1971), 549-572; ibid. (2) 94, 573-602. MR Zbl
[Quillen 1972] D. Quillen, "On the cohomology and K-theory of the general linear groups over a finite field", Ann. of Math. (2) 96 (1972), 552-586. MR Zbl
[Weiss 2006] N. Weiss, Cohomologie de $\mathrm{GL}_{2}(\mathbb{Z}[i, 1 / 2])$ à coefficients dans \mathbb{F}_{2}, thèse, Université Louis Pasteur, Strasbourg, 2006, https://hal.archives-ouvertes.fr/tel-00174888.

Received 29 Jan 2018. Revised 6 Aug 2018.

Hans-Werner Henn:
henn@math.unistra.fr
Institut de Recherche Mathématique Avancée, C.N.R.S., Université de Strasbourg, France

Tunisian Journal of Mathematics
 msp.org/tunis

EDITORS-IN-CHIEF	
Ahmed Abbes	CNRS \& IHES, France abbes@ihes.fr
Ali Baklouti	Faculté des Sciences de Sfax, Tunisia ali.baklouti@fss.usf.tn
EDITORIAL BOARD	
Hajer Bahouri	CNRS \& LAMA, Université Paris-Est Créteil, France hajer.bahouri@u-pec.fr
Arnaud Beauville	Laboratoire J. A. Dieudonné, Université Côte d'Azur, France beauville@unice.fr
Bassam Fayad	CNRS \& Institut de Mathématiques de Jussieu-Paris Rive Gauche, Paris, France bassam.fayad@imj-prg.fr
Benoit Fresse	Université Lille 1, France benoit.fresse@math.univ-lille1.fr
Dennis Gaitsgory	Harvard University, United States gaitsgde@gmail.com
Emmanuel Hebey	Université de Cergy-Pontoise, France emmanuel.hebey@math.u-cergy.fr
Mohamed Ali Jendoubi	Université de Carthage, Tunisia ma.jendoubi@gmail.com
Sadok Kallel	Université de Lille 1, France \& American University of Sharjah, UAE sadok.kallel@math.univ-lille1.fr
Minhyong Kim	Oxford University, UK \& Korea Institute for Advanced Study, Seoul, Korea minhyong.kim@maths.ox.ac.uk
Toshiyuki Kobayashi	The University of Tokyo \& Kavlli IPMU, Japan toshi@kurims.kyoto-u.ac.jp
Yanyan Li	Rutgers University, United States yyli@math.rutgers.edu
Nader Masmoudi	Courant Institute, New York University, United States masmoudi@cims.nyu.edu
Haynes R. Miller	Massachusetts Institute of Technology, Unites States hrm@math.mit.edu
Nordine Mir	Texas A\&M University at Qatar \& Université de Rouen Normandie, France nordine.mir@qatar.tamu.edu
Detlef Müller	Christian-Albrechts-Universität zu Kiel, Germany mueller@math.uni-kiel.de
Mohamed Sifi	Université Tunis El Manar, Tunisia mohamed.sifi@fst.utm.tn
Daniel Tataru	University of California, Berkeley, United States tataru@math.berkeley.edu
Sundaram Thangavelu	Indian Institute of Science, Bangalore, India veluma@math.iisc.ernet.in
Saïd Zarati	Université Tunis El Manar, Tunisia said.zarati@fst.utm.tn
PRODUCTION	
Silvio Levy	(Scientific Editor) production@msp.org

The Tunisian Journal of Mathematics is an international publication organized by the Tunisian Mathematical Society (http://www.tms.rnu.tn) and published in electronic and print formats by MSP in Berkeley.

See inside back cover or msp.org/tunis for submission instructions.
The subscription price for 2019 is US $\$ 315 /$ year for the electronic version, and $\$ 370 /$ year $(+\$ 20$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Tunisian Journal of Mathematics (ISSN 2576-7666 electronic, 2576-7658 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

TJM peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2019 Mathematical Sciences Publishers
Tunisian Journal of Mathematics
2019 vol. 1
no. 4
Grothendieck-Messing deformation theory for varieties for K3 type 455
ANDREAS LANGER and THOMAS ZINK
Purity of crystalline strata 519Jinghao Li and Adrian Vasiu
On the mod-2 cohomology of $\mathrm{SL}_{3}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ 539
Hans-Werner Henn
Geometric origin and some properties of the arctangential heat 561
equation
YANN BRENIER
Horn's problem and Fourier analysis 585JACQUES FARAUT

[^0]: MSC2010: primary 20G10; secondary 55R40.
 Keywords: cohomology of special and general linear groups, Quillen conjecture.

