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Quantum mean-field asymptotics and multiscale analysis
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We study, via multiscale analysis, a defect-of-compactness phenomenon which
occurs in bosonic and fermionic quantum mean-field problems. The approach
relies on a combination of mean-field asymptotics and second microlocalized
semiclassical measures. The phase space geometric description is illustrated by
various examples.
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1. Introduction

Motivations. Over the past three decades, microlocal and semiclassical analysis
has provided interesting mathematical techniques for the study of quantum field
theory and quantum many-body theory; see for instance [Ammari and Nier 2008;
Brunetti and Fredenhagen 2000; Fournais et al. 2015; Fröhlich et al. 2007; Gérard
and Wrochna 2014; Ivrii and Sigal 1993; Lieb and Yau 1987; Amour et al. 2001].
In the present article we follow this fruitful stream of ideas and study the mathe-
matical problem of defect of compactness for density matrices in the bosonic or
fermionic Fock spaces. Previously, in a series of papers [Ammari and Nier 2008;
2009; 2011; 2015], the authors have introduced Wigner (or semiclassical) measures
of density matrices in the bosonic Fock space and showed that it is a very useful
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tool to study the mean-field approximation of Bose gases. Moreover, it was noticed
that a certain defect of compactness of density matrices is one of the difficulties that
occurs in this context. So towards a better understanding of these concentration
and defect-of-compactness phenomena we introduced here a multiscale analysis
inspired by second microlocalization. We believe that this approach will be of
interest to the study of the mean-field theory of Fermi and Bose gases; see, e.g.,
[Bach et al. 2016; Benedikter et al. 2014; Fournais et al. 2015]. We indeed provide
here some simple applications to the Bose and Fermi free gases and leave more
involved applications to further investigations.

Let us briefly describe the main question we consider here. As mentioned before,
in the analysis of general bosonic mean-field problems the following defect-of-
compactness problem arises. In fact, if %" are density matrices in the (fermionic or
bosonic) Fock space and  .p/" are its p-particle reduced density matrices, one may
have

lim
"!0

TrŒ .p/"
Qb�D TrŒ .p/0

Qb� (1)

for any p-particle compact observable Qb, while it is not true for a general bounded Qb;
e.g.,

lim
"!0

TrŒ .p/" � > TrŒ .p/0 �:

This reflects the difference between the weak� convergence of trace-class opera-
tors and convergence with respect to the trace norm. In the fermionic case, it
is even worse, because mean-field asymptotics cannot be described in terms of
finitely many quantum states and the right-hand side of (1) is usually 0, while
lim"!0 TrŒ .p/" � > 0 (see Proposition 4.6). From the analysis of finite-dimensional
partial differential equations, it is known that such a defect of compactness can
be localized geometrically with accurate quantitative information by introducing
scales and small parameters within semiclassical techniques; see, e.g., [Gérard
1991; Gérard et al. 1997; Tartar 1990]. We are thus led to introduce two small
parameters " > 0 for the mean-field asymptotics and h > 0 for the semiclassical
quantization of finite-dimensional p-particle phase space. The small parameter "
stands for 1

n
, where n!1 is the typical number of particles, while h is the rescaled

Planck constant measuring the proximity of quantum mechanics to classical me-
chanics. Such scaling appears already in the mathematical physics literature with
a specific relation between h and " depending on the considered problem; see, e.g.,
[Fournais et al. 2015; Narnhofer and Sewell 1981; Lieb and Yau 1987]. The com-
bined analysis of this article is concerned with the general situation when "D ".h/
with limh!0 ".h/ D 0. In order to keep track of the information at the quantum
level, especially in the bosonic case, we also introduce finite-dimensional multi-
scale observables in the spirit of [Bony 1986; Fermanian-Kammerer and Gérard
2002; Fermanian Kammerer 2005; Nier 1996].
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Framework. The 1-particle space Z is a separable complex Hilbert space endowed
with the scalar product h ; i (antilinear in the left-hand side). For a Hilbert space h

the set of bounded operators is denoted by L.h/, while the Schatten classes are
denoted by Lp.h/, 1 � p � 1, the case p D 1 corresponding to the space of
compact operators. Let �˙.Z / be the bosonic (C) or fermionic (�) Fock space
built on the separable Hilbert space Z :

�˙.Z /D

?M
n2N

Sn˙Z ˝n;

where tensor products and direct sums are Hilbert completed. The operator Sn
˙

is
the orthogonal projection given by

Sn˙.f1˝ � � �˝fn/D
1

nŠ

X
�2Sn

s˙.�/f�.1/˝ � � �˝f�.n/; (2)

where sC.�/ equals 1, while s�.�/ denotes the signature of the permutation � and
Sn is the n-symmetric group.

The dense set of many-body state vectors with a finite number of particles is

�fin
˙ .Z /D

?;algM
n2N

Sn˙Z ˝n;

where the ?; alg superscript stands for the algebraic orthogonal direct sum. We
shall also use the notation ŒA; B�C D ŒA; B�D adAB D AB �BA for the commu-
tator of two operators and the notation ŒA; B��DABCBA for the anticommutator.

One way to investigate the mean-field asymptotics relies on parameter-dependent
canonical .anti-/commutation relations (CCR or CAR). The small parameter " > 0
has to be thought of as the inverse of the typical number of particles and the CCR
(resp. CAR) relations are given by

Œa˙.g/; a˙.f /�˙ D Œa
�
˙.g/; a

�
˙.f /�˙ D 0; Œa˙.g/; a

�
˙.f /�˙ D "hg; f i:

Let .%"/">0 be a family of normal states (i.e., nonnegative and normalized trace-
class operators) on the Fock space �˙.Z /, depending on " > 0; we want to in-
vestigate the asymptotic behavior of reduced density matrices, defined below, as
"! 0, by possibly introducing another scale h > 0 on the p-particle phase space,
with "D ".h/ and limh!0 ".h/D 0.

Outline. In Section 2, we recall how Wick observables are used to define the re-
duced density matrices  .p/" . Note that it is much more convenient here, in the
general grand canonical framework, to work with nonnormalized reduced density
matrices. Some symmetrization formulas are also recalled in this section. In
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Section 3, we present the geometry of the classical p-particle phase space and
introduce the formalism of double scale semiclassical measures, after [Fermanian
Kammerer 2005; Fermanian-Kammerer and Gérard 2002]. In Section 4, we com-
bine the mean-field asymptotics with semiclassical analysis, the two parameters "
and h being related through "D ".h/ with limh!0 ".h/D 0. Instead of studying
the collection of nonnormalized reduced density matrices . .p/

".h/
/p2N, it is more

convenient to associate generating functions

z 7! TrŒ%".h/ e
z d�˙.a

Q;h/�;

and to use holomorphy arguments presented there. In Section 5, some classical ex-
amples with various asymptotics illustrate the general framework: coherent states
in the bosonic setting; simple Gibbs states in the fermionic case; more involved
Gibbs states in the bosonic case, which make explicit the separation of condensate
and noncondensate phases for rather general noninteracting steady Bose gases. The
appendices collect or revisit known things about multiscale semiclassical measures,
the (PI)-condition of bosonic mean-field problems, Wick composition formulas,
and traces of non-self-adjoint second quantized contractions.

2. Wick observables and reduced density matrices

2A. Wick observables.

Notation. For n 2 N, the operator Sn
˙

given in (2) is an orthogonal projection in
Z ˝n so that .Sn

˙
/� D Sn

˙
. However, we consider Sn

˙
as a bounded operator from

Z ˝n onto Sn
˙

Z ˝n, and its adjoint, denoted by Sn;�
˙
W Sn
˙

Z ˝n!Z ˝n, is nothing
but the natural embedding.

Let Qb 2 L.Sp
˙

Z ˝pISq
˙

Z ˝q/. The Wick quantization of Qb is the operator on
�fin
˙
.Z / defined by

QbWick
jSnCp
˙

Z˝.nCp/
D "

pCq
2

p
.nCp/Š .nC q/Š

nŠ
SnCq
˙

. Qb˝ IdZ˝n/S
nCp;�
˙

:

In the bosonic case, an element Qb 2L.Sp
C

Z ˝pISq
C

Z ˝q/ is determined by a related
“symbol” Z 3 z 7! b.z/D hz˝q; Qbz˝pi which is a homogeneous polynomial. So
b admits Gâteaux differentials

@kNz@
k0

z b.w/Œu1; : : : ; uk; v1; : : : ; vk0 �D
N@u1 � � �

N@uk@v1 � � � @vk0b.w/;

where N@u; @v are the complex directional derivatives relative to u; v 2 Z at the
point w 2Z . In particular, we have the relation

Qb D
1

qŠ pŠ
@
q
Nz@
p
z b:
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Observe that b.w/ admits higher Gâteaux derivatives with the natural identification
of @k

0

z b.w/ as a continuous form on Sk0
C

Z ˝k and @k
Nzb.w/ as a vector in Sk

C
Z ˝k.

With the above form-vector identification we define, for any symbols b1; b2,

@kzb1.w/ � @
k
Nzb2.w/D @

k
zb.w/Œ@

k
Nzb.w/� 2 C:

We shall also use the notation bWick D QbWick.

Examples.

(a) The annihilation operator a˙.f /, f 2 Z , is the Wick quantization of Qb D
hf j WZ ˝1 DZ 3 ' 7! hf; 'i 2Z ˝0 D C.

(b) The creation operator a�
˙
.f /, f 2Z , is the Wick quantization of Qb D jf i W

Z ˝0 D C 3 � 7! �f 2Z ˝1 DZ .

(c) For Qb 2 L.Z / its Wick quantization QbWick is nothing but

d�˙. Qb/jSn
˙

Z˝n D "Œ
Qb˝ IdZ ˝ � � �˝ IdZ C � � �C IdZ ˝ � � �˝ IdZ ˝

Qb�:

A particular case is QbD IdZ associated with the scaled number operator (N˙;"D1
stands for the usual "-independent number operator):

QbWick
D d�˙.IdZ /DN˙ D "N˙;"D1:

When Qb is self-adjoint one has

d�˙. Qb/D i@te
�it d�˙.

Qb/
jtD0 D i@t�˙.e

�i"t Qb/jtD0;

while for a contraction C 2 L.Z IZ /,

�˙.C /jSn
˙

Z˝n D C ˝ � � �˝C:

From the definition of the Wick quantization one easily checks the following prop-
erties; see [Ammari 2004].

Proposition 2.1. For Qb 2 L.Sp
˙

Z ˝pISq
˙

Z ˝q/ :

� Œ QbWick�� D Œ Qb��Wick.

� The operator .1CN˙/
�m
2 QbWick .1CN˙/

�m
0

2 extends to a bounded operator
on �˙.Z / if mCm0 � pC q with.1CN˙/

�m
2 QbWick .1CN˙/

�m
0

2


L.�˙.Z //

� Cm;m0k QbkL.Sp
˙

Z ISq
˙

Z /; (3)

with Cm;m0 independent of Qb and of " 2 .0; "0/.

� . Qb � 0/() . QbWick � 0/, while this makes sense only for q D p.
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Wick quantized operators are generally unbounded operators on�˙.Z / (e.g., N˙)
but they are well-defined on the dense set �fin

˙
.Z /, which is preserved by their

action. Hence QbWick
1 ı QbWick

2 makes sense at least on �fin
˙
.Z / and the following

composition law holds true.

Proposition 2.2 (composition of Wick operators). Let Qbj 2L.S
pj
˙

Z ˝pjISqj
˙

Z ˝qj/,
j D 1; 2. Then

QbWick
1 ı QbWick

2 D

minfp1;q2gX
kD0

.˙1/.p1�k/.p2Cq2/
"k

kŠ
. Qb1]

k Qb2/
Wick; (4)

where

Qb1]
k Qb2 WD

p1Š

.p1�k/Š

q2Š

.q2�k/Š
Sq1Cq2�k
˙

. Qb1˝Id˝q2�k/.Id˝p1�k˝Qb2/S
p1Cp2�k;�
˙

:

For the reader’s convenience, the proof of Proposition 2.2 is provided in Appen-
dix C.

In the bosonic case the symbols b.z/D hz˝q; Qbz˝pi are convenient for writing
the composition of Wick quantized operators. If b1]Wickb2 denotes the symbol of
QbWick
1 ı QbWick

2 , the composition law is summarized below; see [Ammari and Nier
2008, Proposition 2.7].

Proposition 2.3 (composition of Wick symbols in the bosonic case). We have

b1]
Wickb2.z/D e

"@z1 �@Nz2b1.z1/b2.z2/jz1Dz2Dz D

minfp1;q2gX
kD0

"k

kŠ
@kzb1.z/ � @

k
Nzb2.z/:

The commutator of Wick operators in the bosonic case is given by

ŒbWick
1 ; bWick

2 �D

�maxfminfp1;q2g;minfp2;q1ggX
kD1

"k

kŠ
fb1; b2g

.k/

�Wick

;

where the k-th order Poisson bracket is given by

fb1; b2g
.k/.w/D @kzb1.w/ � @

k
Nzb2.w/� @

k
zb2.w/ � @

k
Nzb1.w/:

Proposition 2.4. Let p, m, m0 2 N such that mCm0 � 2p � 2. Then, there exist
coefficients Cj1;:::;jk � 0 such that, for any Qb 2 L.ZIZ/,

d�˙. Qb/
p
� . Qb˝p/Wick

D

p�1X
kD1

"p�k
X

0�j1�����jk
j1C���CjkDp

Cj1;:::;jk .S
k
˙
Qbj1 ˝ � � �˝ Qbjk Sk;�

˙
/Wick (5)

and the estimate.1CN˙/
�m
2 .d�˙. Qb/

p
� . Qb˝p/Wick/.1CN˙/

�m
0

2


L.�˙.Z//

� "Bp k Qbk
p

L.Z/

holds in both the bosonic and fermionic cases, with Bp the p-th Bell number.
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Remark 2.5. The p-th Bell number Bp can be defined as the number of partitions
of a set with p elements and satisfies Bp < .0:792p=ln.pC 1//p , see [Berend and
Tassa 2010], and hence it grows much slower than pŠ .

Proof. We first prove formula (5) by induction on p 2 N�.
For p D 1, formula (5) holds because d�˙. Qb/D . Qb/Wick.
We then set rp. Qb/ WD d�˙. Qb/p�. Qb˝p/Wick. Assuming the result holds for some

p 2 N�, one can compute

d�˙. Qb/
pC1
D . Qb˝p/Wick. Qb/Wick

C rp. Qb/
Wick. Qb/Wick

using the composition formula (4) for

. Qb˝p/Wick. Qb/Wick
D . Qb˝pC1/Wick

Cp" .Sp
˙
Qb˝p�1˝ Qb2 Sp;�

˙
/Wick

and for

"p�k.Sk˙ Qb
j1 ˝ � � �˝ Qbjk Sk;�

˙
/Wick. Qb/Wick

D "pC1�.kC1/.SkC1
˙
Qb˝ Qbj1 ˝ � � �˝ Qbjk SkC1;�

˙
/Wick

C k"pC1�k
�
Sk˙. Qb

j1 ˝ � � �˝ Qbjk /Sk;�
˙

Sk˙ . Qb˝ Id˝j1C���Cjk�1Z /Sk;�
˙

�Wick
;

which yields the expected form for rpC1. Qb/, and achieves the induction.
We then remark that the sum of coefficients of order k,

S2.p; k/D
X

0�j1�����jk
j1C���CjkDp

Cj1;:::;jk ;

satisfies the recurrence relation S2.p; k/D kS2.p� 1; k/CS2.p� 1; k� 1/, with
S2.p; 1/ D 1 D S2.1; k/ for all p; k 2 N�, where the S2.p; k/ are the Stirling
numbers of the second kind. Observe that, for M

2
� k, and for any Qc 2 L.Sk

˙
Z˝k/,

k QcWick.1CN˙/
�M
2 kL.�˙.Z// � kQckL.Sk

˙
Z˝k ISk

˙
Z˝k/:

We thus get,.1CN˙/
�m
2 .d�˙. Qb/

p
� . Qb˝p/Wick/.1CN˙/

�m
0

2


L.�˙.Z//

�

p�1X
kD1

"p�kS2.p; k/ k Qbk
p

L.Z/

and the estimate then follows from
Pp�1

kD1
"p�kS2.p;k/�"

Pp

kD1
S2.p;k/D"Bp ,

with Bp the p-th Bell number. �

2B. Reduced density matrices. Reduced density matrices emerge naturally in the
study of correlation functions of quantum gases [Spohn 1980]. In particular, in
quantum mean-field theory they are the main quantities to be analyzed; see, e.g.,
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[Bardos et al. 2000; Knowles and Pickl 2010; Lewin et al. 2016]. However, we shall
work with nonnormalized reduced density matrices, which are easier to handle.
Going back to the more natural reduced density matrices with trace equal to 1
requires attention when normalizing and taking the limits.

Definition 2.6. Let %" 2 L1.�˙.Z // (" > 0 is fixed here) be such that %" � 0,
TrŒ%"�D 1 and Tr.%"ecN˙/ <1 for some c > 0. The nonnormalized reduced den-
sity matrix of order p 2N,  .p/" 2L1.Sp

˙
Z ˝p/, is defined by duality according to,

for all Qb 2 L.Sp
˙

Z ˝pISp
˙

Z ˝p/; TrŒ .p/"
Qb�D TrŒ%" QbWick�:

The definition makes sense owing to the number estimate (3) and to

.1CN˙/
ke�cN˙ 2 L.�˙.Z //:

When TrŒ .p/" � ¤ 0, the normalized density matrix N .p/" is defined by N .p/" D


.p/
" =TrŒ .p/" �; that is, for all Qb 2 L.Sp

˙
Z ˝p/,

TrŒ N .p/"
Qb�D

TrŒ%" QbWick�

TrŒ%".IdSp
˙

Z˝p /
Wick�

D
TrŒ%" QbWick�

TrŒ%"N˙.N˙� "/ � � � .N˙� ".p� 1//�
:

These normalized reduced density matrices N .p/" are commonly used, especially
when %" 2 L1.S˙Z ˝n/, with n" � 1, for the following reason: when %" 2
L1.Sn

˙
Z ˝n/ lies in the n-particle sector in the mean-field regime n"! 1, one has

TrŒ N .p/"
Qb�DTrŒ%". Qb˝IdZ˝.n�p//� and lim

n"�1
"!0

TrŒ N .p/"
Qb�D lim

n"�1
"!0

TrŒ .p/"
Qb�; (6)

since for n > p,

QbWickˇ̌
Sn
˙

Z˝n
D "p

nŠ

.n�p/Š
Sn˙. Qb˝ IdZ˝.n�p//S

n;�
˙

and "p n.n� 1/ � � � .n�pC 1/! 1 when n"! 1.
Moreover, one often works with kernels of (normalized) reduced density ma-

trices N .p/" when Z D L2.M I dv/ with the following relation deduced from the
left-hand side of (6):

N .p/" .x1; : : : ;xpIx
0
1; : : : ;x

0
p/D

Z
Mn�p

%".x1; : : : ;xp;xIx
0
1; : : : ;x

0
p;x/dv

˝.n�p/.x/:

But, if the states %" are not localized on the n-particles then  .p/" and N .p/" do
not coincide even asymptotically in the mean-field regime (i.e., the right-hand
side of (6) may not hold true). As well there is no simple relation between the
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nonnormalized density matrices  .pC1/" and  .p/" . Actually, we have

.SpC1
˙

. Qb˝ IdZ /S
pC1;�
˙

/Wickˇ̌
SnCpC1
˙

Z˝.nCpC1/

D "pC1
.nCpC 1/Š

nŠ
SnCpC1
˙

. Qb˝ IdZ˝nC1/S
nCpC1;�
˙

D ".nC 1/ QbWickˇ̌
SnCpC1
˙

Z˝.nCpC1/
;

from which we deduce

TrŒ .pC1/" . Qb˝ IdZ /�D TrŒ%".N˙� "p/ QbWick�;

while
TrŒ .p/"

Qb�D TrŒ%" QbWick�;

where we have again identified  .pC1/" as an element of L1.Z ˝.pC1//. We thus
conclude with the following important remark.

Remark 2.7. Assume %"D%"1Œ��ı."/;�Cı."/�.N˙/with �>0 and lim"!0 ı."/D0.
Then the following simple asymptotic relations between  .p/" and  .p

0/
" (or the

normalized versions N .p/" and N .p
0/

" ) hold true for any p0 > p and any Qb 2
L.Sp
˙

Z ˝pISp
˙

Z ˝p/,

lim
"!0

TrŒ .p
0/

" . Qb˝ IdZ˝.p
0�p//�D �

p0�p lim
"!0

TrŒ .p/"
Qb�;

lim
"!0

TrŒ N .p
0/

" . Qb˝ IdZ˝.p
0�p//�D lim

"!0
TrŒ N .p/"

Qb�:

We shall use recurrently with variations the following lemma, with the notation

Qb1ˇ � � �ˇ Qbp D
1

pŠ

X
�2Sp

Qb�.1/˝ � � �˝ Qb�.p/

for Qb1; : : : ; Qbp 2 L.Z /.
We also abbreviate .Sp

˙
. Qb1 ˇ � � � ˇ Qbp/S

p;�
˙
/Wick by . Qb1 ˇ � � � ˇ Qbp/Wick and

.Sp
˙
. Qb˝p/Sp;�

˙
/Wick by. Qb˝p/Wick.

Lemma 2.8 (quantum symmetrization lemma). In the bosonic and fermionic cases
for any p 2 N, the equality

Sp
˙
. Qb1˝ � � �˝ Qbp/S

p;�
˙
D Sp
˙
. Qb1ˇ � � �ˇ Qb�.p//S

p;�
˙

(7)

holds in L.Sp
˙

Z ˝pISp
˙

Z ˝p/ for all Qb1; : : : ; Qbp 2 L.Z IZ /.
As a consequence, under the assumptions of Definition 2.6, the nonnormalized

(resp. normalized if possible) reduced density matrix  .p/" (resp. N .p/" ), p 2 N, is
completely determined by the set of quantities fTrŒ%". Qb˝p/Wick�; Qb 2 Bg when B is
any dense subset of L1.Z IZ /.
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Remark 2.9. While computing TrŒ .p/" � or studying N .p/" one can simply add to
B the element IdZ owing to Sp

˙
Id˝pZ Sp;�

˙
D IdSp

˙
Z˝p . For " > 0 fixed it is not

necessary because compact observables are sufficient to determine the total trace
owing to

TrŒ .p/" �D sup
B2L1.Sp

˙
Z˝p/

0�B�Id

TrŒ .p/" B�:

However, while considering weak�-limits as "! 0, adding the identity operator
IdSp
˙

Z˝p to the set of compact observables, or possibly replacing B by the Calkin
algebra CId.Z /˚L1.Z /, is useful in order to control the asymptotic total mass.

Proof. For Qb1; : : : ; Qbp 2 L.Z /, we decompose

Sp
˙
. Qb1˝ � � �˝ Qbp/S

p;�
˙

Sp
˙
. 1˝ � � �˝ p/

as

Sp
˙

�
1

pŠ

X
� 02Sp

s˙.�
0/. Qb1 � 0.1//˝ � � �˝ . Qbp � 0.p//

�

D
1

pŠ pŠ

� X
�2Sp

X
� 02Sp

s˙.�/s˙.�
0/. Qb�.1/ �ı� 0.1//˝ � � �˝ . Qb�.p/ �ı� 0.p//

�
:

Setting � 00 D � ı � 0, with s˙.� 00/ D s˙.�/s˙.�
0/ yields (7), after noting that

Qb1 ˇ � � � ˇ Qbp D
1
pŠ

P
�2Sp

Qb�.1/ ˝ � � � ˝ Qb�.p/ commutes with Sp
˙

in both the
bosonic and fermionic cases.

Now the nonnormalized reduced density matrix is determined by

TrŒ .p/"
zB�D TrŒ%" zBWick�

for zB 2 L1.Sp
˙

Z ˝p/ as L1.Sp
˙

Z ˝p/ is the dual of L1.Sp
˙

Z ˝p/. But zB 2
L1.Sp

˙
Z ˝p/means zBDSp

˙
zB 0Sp;�
˙

with zB 02L1.Z ˝p/, while the algebraic ten-
sor product L1.Z /˝

algp is dense in L1.Z ˝p/.
With the estimateˇ̌

TrŒ%" zBWick�
ˇ̌
D
ˇ̌
TrŒe

c
2

N%"e
c
2

N e�
c
2

N zBWicke�
c
2

N �
ˇ̌

� C TrŒ%"ecN �k zBkL.Sp
˙

Z˝pISp
˙

Z˝p/;

it suffices to consider zB D Sp
˙
zB 0Sp;�
˙

with zB 0 2 L1.Z /˝
algp. By linearity and

density,  .p/" is determined by the quantities TrŒ%" zBWick� with zB 0 D Qb1˝ � � �˝ Qbp ,
Qbi 2 B. We conclude with

Sp
˙
. Qb1˝ � � �˝ Qbp/S

p;�
˙
D Sp
˙
. Qb1ˇ � � �ˇ Qbp/S

p;�
˙
;
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and the polarization identity

Qb1ˇ � � �ˇ Qbp D
1

2ppŠ

X
"iD˙1

"1 � � � "p

� pX
iD1

"i Qbi

�̋ p

: �

Remark 2.10. In the bosonic case, the nonnormalized reduced density matrices  .p/"

are also characterized by the values of TrŒ .p/" B� for B in

B D
˚
j ˝pih ˝pj W  2Z

	
[fId˝pZ g:

This does not hold in the fermionic case.

The rest of the article is devoted to the asymptotic analysis of  .p/" as "! 0.
In particular we shall study their concentration at the quantum level while testing
with fixed observable Qb (with Qb compact) and their semiclassical behavior after
taking semiclassically quantized observables, e.g., a.x; hDx/ with some relation
"D ".h/ between " and h.

3. Classical phase-space and h-quantizations

When Z D L2.M 1; dx/, with M 1 D M a smooth manifold with volume mea-
sure dx, the classical 1-particle phase space is X 1DX D T �M 1 and we will focus
on the h-dependent quantization which associates with a symbol a.x; �/D a.X/,
X 2 X 1 an operator aQ;h D a.x; hDx/ with the standard semiclassical quantiza-
tion or when M 1 D Rd , aQ;h D aW;h D aW .htx; h1�tDx/, by using the Weyl
quantization, t 2 R being fixed.

Note that in later sections the parameters " and h will be linked through "D ".h/
with limh!0 ".h/ D 0. In relation with the symmetrization result, Lemma 2.8,
we introduce the adapted p-particle phase space which was also considered in
[Dereziński 1998], and the corresponding semiclassical observables.

3A. Classical p-particle phase space. A fundamental principle of quantum me-
chanics is that identical particles are indistinguishable. The classical description is
thus concerned with indistinguishable classical particles. If one classical particle
is characterized by its position-momentum .x; �/ 2 X 1 D T �M 1, x 2M being
the position coordinate and � the momentum coordinates, p indistinguishable par-
ticles will be described by their position-momentum coordinates .X1; : : : ; Xp/D
.x1; �1; : : : ; xp; �p/2Xp=SpD .T �M/p=SpDT

�.Mp/=Sp , where the quotient
by Sp simply implements the identification,

for all � 2Sp; .X�.1/; : : : ; X�.p//� .X1; : : : ; Xp/:

The grand canonical description of a classical particles system then takes place in
the disjoint union G

p2N

Xp=Sp D
G
p2N

.T �M/p=Sp:
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A p-particle classical observable will be a function on Xp=Sp and, when the
number of particles is not fixed, a collection of functions .a.p//p2N, each a.p/

being a function on Xp=Sp . The situation is presented in this way in [Dereziński
1998]. A p-particle observable is a function a.p/ on Xp=Sp and a p-particle
classical state is a probability measure (and when the normalization is forgotten, a
nonnegative measure) on Xp=Sp.

However while quantizing a classical observable, it is better to work in Xp,
which equals T �.Mp/, a function a.p/ on Xp=Sp being nothing but a function
on Xp which satisfies,

for all � 2Sp; ��a.p/ D a.p/;

where,

for all .X1; : : : ; Xp/ 2 Xp; ��a.p/.X1; : : : ; Xp/D a
.p/.X�.1/; : : : ; X�.p//;

and
a.p/ D

1

pŠ

X
�2Sp

��a.p/:

In the same way, we define for a Borel measure � on Xp and � 2Sp , the measure
��� by

R
Xp �

�a.p/ d� D
R
Xp a

.p/ d.���/ for all a.p/ 2 C0c .Xp/, or alternatively
���.E/D �.�

�1.E// for all Borel subsets E of Xp. A nonnegative measure on
Xp=Sp is identified with a nonnegative measure � on Xp such that,

for all � 2Sp; ��� D � D
1

pŠ

X
Q�2Sp

Q���: (8)

Lemma 3.1 (classical symmetrization lemma). Any Borel measure�.p/ on Xp=Sp
is characterized by the quantities

˚R
Xp a

˝p d�.p/ W a 2 C
	

where the tensor power
a˝p means a˝p.X1; : : : ; Xp/D

Qp
iD1 a.Xi / and C is any dense set in C01.X 1/D

ff 2 C0.X 1/ W limX!1 f .X/D 0g.

Proof. By the Stone–Weierstrass theorem the subalgebra generated by the algebraic
tensor product C˝algp is dense in C01.Xp/. Hence it suffices to consider

a1ˇ � � �ˇ ap D
1

pŠ

X
�2Sp

a�.1/˝ � � �˝ a�.p/; ai 2 C:

We conclude again with the polarization identity

a1ˇ � � �ˇ ap D
1

2ppŠ

X
"iD˙1

"1 � � � "p

� pX
iD1

"iai

�̋ p

: �

We will work essentially with M D Rd and X D T �Rd and therefore on
Xp D T �Rdp � R2dp and recall the invariance properties, if possible, by a change
of variable in order to extend it to the general case. Remember that on Rdp,
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the standard and Weyl semiclassical quantization are asymptotically equivalent:
a.x; hDx/�a

W .x; hDx/DO.h/ when a 2 S.1; dX2/ (supX2T �Rdp j@
˛
Xa.X/j<

1 for all ˛ 2 N2d ). Moreover on Rdp, aW .x; hDx/ is unitary equivalent to
aW .htx; h1�tDx/ for any fixed t 2 R so that result can be adapted to different
scalings.

3B. Semiclassical and multiscale measures. We recall the notions of semiclassi-
cal (or Wigner) measures and multiscale measures in the finite-dimensional case.
We start with the results on M D RD (think of D D dp) and review the invariance
properties for applications to some more general manifolds M.

3B1. In the Euclidean space. On RD the semiclassical Weyl quantization of a
symbol a 2 S 0.R2D/ will be written aW;h D aW .htx; h1�tDx/, with t > 0 fixed,
while cW .x;Dx/ is given by its kernel:

ŒcW .x;Dx/�.x; y/D

Z
Rd
ei��.x�y/c

�
xCy

2
; �

�
d�

.2�/d
:

Definition 3.2. Let .h/h2E with 0 2 E , E � .0;C1/, be a family of trace-class
nonnegative operators on L2.RD/ such that limh!0 TrŒh� <C1. The semiclassi-
cal quantization a 7! aW;hD aW .htx; h1�tDx/ is said to be adapted to the family
.h/h2E if

lim
ı!0C

lim sup
h2E
h!0

Re TrŒ.1��.ı � /W;h/h�D 0

for some � 2 C10 .T
�RD/ such that �� 1 in a neighborhood of 0.

The set of Wigner measures M.h; h 2 E/ is the set of nonnegative measures �
on T �RD such that there exists E 0 � E , 0 2 E 0, such that,

for all a 2 C10 .T
�RD/; lim

h2E 0
h!0

TrŒha
W;h�D

Z
T �RD

a.X/ d�.X/:

The following well-known statement, see [Colin de Verdière 1985; Helffer et al.
1987; Gérard 1991; Gérard et al. 1997; Lions and Paul 1993; Shnirel’man 1974],
results from the asymptotic positivity of the semiclassical quantization and it is ac-
tually the finite-dimensional version of bosonic mean-field Wigner measures (with
the change of parameter "D 2h); see [Ammari and Nier 2008, Section 3.1].

Proposition 3.3. Let .h/h2E with 0 2 E , E � .0;C1/, such that h � 0 and
limh!0 TrŒh� <C1. The set of semiclassical measures M.h; h2 E/ is nonempty.
The semiclassical quantization aW;h is adapted to the family .h/h2E if and only if
any � 2M.h; h 2 E/ satisfies �.R2D/D limh!0 TrŒh�.

Remark 3.4. (1) The manifold version, with aQ;h D a.x; hDx/ instead of aW;h

results from the semiclassical Egorov theorem.
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(2) By reducing E to some subset E 0 (think of subsequence extraction), one can
always assume that there is a unique semiclassical measure.

(3) While considering a time evolution problem, or adding another uncountable
parameter, .t;h/h2E;t2R, finding simultaneously the subset E 0 for all t 2 R

requires some compactness argument with respect to the parameter t 2 R,
usually obtained by equicontinuity properties.

We now review the multiscale measures introduced in [Fermanian-Kammerer
and Gérard 2002; Fermanian Kammerer 2005]. For the reader’s convenience, de-
tails are given in Appendix A, concerning the relationship between Proposition 3.5
below and the more general statement of [Fermanian Kammerer 2005].

The class of symbols S .2/ is defined as the set of a 2 C1.R2D �R2D/ such that

� there exists C > 0 such that for all Y 2 R2D, a. � ; Y / 2 C10 .B.0; C //;

� there exists a function a1 2 C10 .R
2D � S2D�1/ such that a.X;R!/ !

a1.X; !/, as R!1, in C1.R2D �S2D�1/.

Those symbols are quantized according to

a.2/;h D a
W;h
h

; ah.X/D a

�
X;

X

h
1
2

�
:

A geometrical interpretation of those double scale symbols can be given by match-
ing the compactified quantum phase space with the blow-up at r D 0 of the macro-
scopic phase space; see Figure 1.

quantum
quantum

macro macro

� �

1

1

1

x x
0

0

Figure 1. On the left-hand side, the macroscopic phase space with
its sphere at infinity. On the right-hand side, the matched quantum
and macroscopic phase spaces for which the quantum sphere at
infinity and the r D 0 macroscopic sphere coincide.
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Proposition 3.5. Let .h/h2E be a bounded family of nonnegative trace-class op-
erators on L2.RD/ with limh!0 TrŒh� <C1. There exist E 0 � E , 0 2 E 0, nonneg-
ative measures � and �.I / on R2D and S2D�1, and a 0 2 L1.L2.RD// such that
M.h; h 2 E 0/D f�g and, for all a 2 S .2/,

lim
h2E 0
h!0

TrŒha
.2/;h�D

Z
R2Dnf0g

a1

�
X;

X

jX j

�
d�.X/

C

Z
S2D�1

a1.0; !/ d�.I /.!/CTrŒa.0; x;Dx/0�:

Definition 3.6. M.2/.h; h 2 E/ denotes the set of all triples .�; �.I /; 0/ which
can be obtained in Proposition 3.5 for suitable choices of E 0 � E , 0 2 E 0.

Remark 3.7. Actually when aW;h D aW .
p
hx;
p
hDx/, this trace class operator

0 is nothing but the weak�-limit of h. Take simply Qa.X; Y /D �.X/˛.Y / with
�; ˛ 2 C10 .R

2D/, �� 1 in a neighborhood of 0 for which

lim
h!0
k Qa.2/;h�˛W .x;Dx/kL.L2/ D 0:

The above results says limh!0 TrŒh˛W .x;Dx/�D TrŒ0˛W .x;Dx/� for all ˛ 2
C10 .R

2D/ � L2.R2D; dX/, and by the density of the embeddings C10 .R
2D/ �

L2.R2D; dx/ � L2.L2.RD// � L1.L2.RD//, the test observable ˛W .x;Dx/
can be replaced by any compact operator K 2 L1.L2.RD; dx//. Moreover the
relationship between � and the triple .1.0;C1/.jX j/�; �.I /; 0/ can be completed
in this case by

�.f0g/D

Z
S2D�1

d�.I /.!/CTrŒ0�; (9)

and �.I / � 0 is equivalent to �.f0g/D TrŒ0�.

Because products of spheres are not spheres, handling the part �.I / in the p-
particle space, D D dp, is not straightforward within a tensorization procedure;
see Figure 2.

Actually we expect in the applications that a well chosen quantization will lead
to �.I / D 0. This leads to the following definition.

Definition 3.8. Assume that the quantization aW;hD aW .
p
hx;
p
hDx/ is adapted

to the family .h/h2E , h � 0, TrŒh�D 1. We say that the quantization aW;h D
aW .
p
hx;
p
hDx/ is separating for the family .h/h2E if one of the three following

(equivalent) conditions is satisfied:

(1) For any triple .�; �.I /; 0/ 2M.2/.h; h 2 E/, we have �.I / D 0.

(2)
M.h; h 2 E 0/D f�g;

w�-lim
h2E 0;h!0

h D 0 in L1.L2.RD//

�
D) �.f0g/D TrŒ0�:

(3) For any triple .�; �.I /; 0/ 2M.2/.h; h 2 E/, we have �.f0g/D TrŒ0�.
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X2

X1

quantum scale
in X2

qu
an

tu
m

sc
al

e
in
X
1

quantum scale in X2

Figure 2. Tensor product of two blow-ups. The product of the two
matching spheres is not a sphere: the corners of the gray square
correspond to the case when the quantum variables jX1j and jX2j
go to infinity without any proportionality rule.

Remark 3.9. This terminology expresses the fact that the mass localized at any
intermediate scale vanishes asymptotically when �.I / � 0. Accordingly, the micro-
scopic quantum scale and the macroscopic scale are well-identified and separated.

Hence we can get all the information by computing the weak�-limit of h
and the semiclassical measure � and then by checking a posteriori the equality
�.f0g/D TrŒ0�.

This will suffice when the quantum part corresponds, within a macroscopic scale,
to a point in the phase space. When M D Rd, we have enough flexibility by
choosing the small parameter h > 0 and using some dilation in RD in order to
reduce many problems to such a case. On a manifold M if we can first localize
the analysis around a point x0 2M, the problem can be transferred to RD and then
analyzed with the suitable scaling.

3B2. On a compact manifold. We now consider another interesting case of a smooth
compact manifold M with the semiclassical calculus aQ;h D a.x; hDx/. This
case is not completely treated in [Fermanian Kammerer 2005] because the geo-
metric invariance properties do not follow only from the microlocal equivariance
of semiclassical calculus. We assume Z D L2.M; dx/ to be defined globally on
the compact manifold M (e.g., by introducing a metric, dx being the associated
volume measure).

Remark 3.10. When M is a general manifold, replace aW;h in Definition 3.2
by aQ;h D a.x; hDx/, and �.ı � / with ı ! 0 by some increasing sequence of
compactly supported cut-off functions .�n/n2N such that

S
n2N �

�1
n .f1g/D T �M.

To adapt Proposition 3.5 to the case of a compact manifold, we consider another
notion instead of the symbols S .2/. For the observables we shall consider the pair
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.K; a/, where K 2 L1.L2.M; dx// and a 2 C10 .S
�M t .T �M nM//, with

S�M t .T �M nM/ being described in local coordinates through the identification

M � Œ0;1/�SD�1 3 .x; r; !/ 7!

�
.x; !/ 2 S�M if r D 0;
.x; �Dr!/ 2 T �M nM otherwise:

We have identified the 0-section of the cotangent bundle T �M with M. After
introducing an additional parameter ı > 0, ı � h, and a C1 partition of unity
.1��/C�� 1 on T �M with 1�� 2 C10 .T

�M/, 1��� 1 in a neighborhood
of M, we can quantize a as

a.2/Q;ı;h D Œ�.x; �/a.x; hı�1�/�Q;ı :

Note that K and the quantization of a are geometrically defined modulo O.ı/
when h� ı in L.L2.M; dx//: use local charts for the semiclassical calculus with
parameter ı, while L1.L2.M; dx// is globally defined like all natural spaces asso-
ciated with L2.M; dx/. Actually in local coordinates the seminorms of the symbol
�.x; �/a.x; hı�1�/ in S.1; dx2 C d�2/ are uniformly bounded with respect to
h 2 .0; ı� by seminorms of a in C10 ..T

�M nM/t S�M/. Moreover, when the
symbol a is nonnegative one has.�a. � ; hı�1 � //Q;ı �ReŒ.�a. � ; hı�1 � //Q;ı �

� Caı; (10)

kakL1 CCaı � ReŒ.�a. � ; hı�1 � //Q;ı �� �Caı; (11)

uniformly with respect to h 2 .0; ı�.

Proposition 3.11. Let .h/h2E be a family of nonnegative trace class operators on
L2.M; dx/ such that limh!0 TrŒh� <C1. Then there exist E 0 � E , 0 2 E 0, with
M.h; h 2 E 0/ D f�g, a nonnegative measure �.I / on S�M and a nonnegative
0 2 L1.L2.M; dx// such that, for any K 2 L1.L2.M; dx//,

lim
h2E 0
h!0

TrŒhK�D TrŒ0K�;

and, for any a2C10 .S
�Mt.T �M nM//, and any partition of unity .1��/C��1

with 1�� 2 C10 .T
�M/, 1��� 1 in a neighborhood of M,

lim
ı!0

lim
h2E 0
h!0

TrŒh a
.2/Q;ı;h�D

Z
T �MnM

a.X/ d�.X/C

Z
S�M

a.X/ d�.I /.X/:

Additionally .�.I /; 0/ is related to � by

�.E/D �.I /.�
�1.E//C �0.E/

for any Borel setE �M identified withE�f0g, when � WS�M!M is the natural
projection and �0 is defined by

R
M '.x/ d�0.x/D TrŒ0'�, where ' 2 C1.M/ is

identified with the multiplication operator by the function '.
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Proof. When h is bounded in L1.L2.M; dx//, after extraction of a sequence
hn! 0 from E , we have M..hn/n2N/ D f�g, and the weak�-limit 0 of .hn/,
and the associated measure �0 are well-defined objects on the manifold M.

Let us construct a measure Q� on

.T �M nM/tS�M D f.x; r!/ W x 2M; ! 2 Sd�1; r 2 Œ0;1/g

and a subset E 0 � E , 0 2 E 0, such that

lim
ı!0

lim
h2E 0
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �D

Z
.T �MnM/tS�M

a d Q� (12)

holds for all a 2 C10 ..T
�M nM/tS�M/.

Fix first the partition of unity .1��/C�� 1, 1�� 2 C10 .T
�M/, 1��� 1 in

a neighborhood of M, and ı D ı0 > 0. For a given a 2 C10 ..T
�M nM/tS�M/,

the inequalities (10) and (11) imply that one can find a subsequence .hk;�;ı0;a/k2N

of .hn/n2N such that

lim
k!1

TrŒhk;�;ı0;a.�a. � ; hk;�;ı0;aı
�1
0 � //

Q;ı0 �D `�;ı0;a 2 C: (13)

For a different partition of unity .1� Q�/C Q�� 1 the symbol Œ�� Q��a.x; hı�10 �/ is
supported in C�1

�; Q�;ı0
� j�j � C�; Q�;ı0 and equals

Œ�� Q��a.x; hı�10 �/D Œ�� Q��a0

�
x;

�

j�j

�
C hr�; Q�;ı0;h.x; �/;

where a0 D ajS�M and with r�; Q�;ı0;h uniformly bounded in S.1; dx2Cd�2/. For
ı0 > 0 fixed, the operator Œ.�� Q�/a0�Q;ı0 is a compact operator and we obtain

lim
h!0

TrŒh.�a. � ;hı
�1
0 �//

Q;ı0 ��TrŒh. Q�a. � ;hı
�1
0 �//

Q;ı0 �DTrŒ0..�� Q�/a0/Q;ı0 �:

Therefore the subsequence extraction, which ensures the convergence (13), can
be done independently of the choice of Q� and by taking Q�.x; �/ D �.x; ıı�10 �/

independently of ı > 0. For Ea D .hk;a/k2N such a sequence of parameters, the
limits can be compared by

` Q�;ı;a � `�;ı0;a D lim
h2Ea
h!0

TrŒh. Q�a. � ; hı
�1
� //Q;ı ��TrŒh.�a. � ; hı

�1
0 � //

Q;ı0 �

D TrŒ.. Q�.ıı�10 /��/a0/
Q;ı00�: (14)

By choosing Q�D � above, the inequality 0 � .���.ıı�10 //a0 � �a0 for a0 � 0
and ı � ı0, and the ı0-Gårding inequality impliesˇ̌

TrŒ.. Q�.ıı�10 /��/a0/
Q;ı00�

ˇ̌
� TrŒ.�a0/Q;ı00�CO.ı0/
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uniformly with respect to ı � ı0. Thus the quantity `�;ı;a satisfies the Cauchy crite-
rion as ı! 0 because s-limı0!0 .�a0/

Q;ı0 D 0 and 0 is fixed in L1.L2.M; dx//.
Hence the limit

`�;a D lim
ı!0

`�;ı;a D lim
ı!0

lim
h2Ea
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �

exists for any fixed a 2 C10 ..T
�M nM/tS�M/. Using (14) with ı D ı0, but a

general pair .�; Q�/, and taking the limit as ı! 0 shows ` Q�;a D `�;a D `a. The
inequalities (10) and (11) give 0� `a � kakL1 . By the usual diagonal extraction
process according to a countable set N � C10 ..T

�M nM/tS�M/ dense in the
set of continuous functions with limit 0 at infinity, we have found a subset E 0 � E ,
0 2 E 0, and a nonnegative measure Q� such that (12) holds. Note that we have also
provedZ

.T �MnM/tS�M

a d Q� D lim
ı!0

lim
h2E 0
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �

D lim
ı!0

lim
h2E 0
h!0

TrŒ.h� 0/.�a. � ; hı
�1
� //Q;ı �;

where neither limit depends on the partition of unity .1��/C�� 1 with 1�� 2
C10 .T

�M/ equal to 1 in a neighborhood of M.
We still have to compare Q� and �. For this take a2C10 .T

�M/ and set a0.x; !/D
'.x/D a.x; 0/. The symbol identity

a.x; hı�1�/D a.x; hı�1�/.1��/C a.x; hı�1�/�

D '.x/.1��/C a.x; hı�1�/�C hra;�;ı;h;

with ra;ı;�;h uniformly bounded in S.1; dx2C d�2/ with respect to h, leads after
ı-quantization toZ

T �M

a d� D lim
h2E 0
h!0

TrŒha
Q;h�

D lim
h2E 0
h!0

TrŒh.'.x/.1��//
Q;ı �C lim

h2E 0
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �:

For ı > 0 fixed, .'.x/.1��//Q;ı is a fixed compact operator so that the first limit is

lim
h2E 0
h!0

TrŒh.'.x/.1��//
Q;ı �D TrŒ0.'.x/.1��//Q;ı �;

while the second one is exactly the quantity occurring in the definition of Q�. Taking
the limit as ı ! 0 with s-limı!0.'.x/.1� �//Q;ı D '.x/, yields �jT �MnM D
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Q�jT �MnM . Finally setting �.I / D Q�jS�M yields, for any a 2 C10 .T
�M/,Z

T �M

a d� D

Z
T �MnM

a d�C

Z
S�M

a0 d�.I /C

Z
M

' d�0;

which implies the relation for the measures. �

Definition 3.12. M.2/.h; h 2 E/ denotes the set of all triples .�; �.I /; 0/ which
can be obtained in Proposition 3.11 for suitable choices of E 0 � E , 0 2 E 0.

We note that the equality �.M/D TrŒ0� implies �.I / � 0 and this leads, as in
the previous case, to the following definition.

Definition 3.13. On a compact manifold M, assume that the quantization aQ;h D
a.x; hDx/ is adapted to the family .h/h2E , with h 2 L1.L2.M//, h � 0 and
limh!0 TrŒh� <1. We say that the quantization is separating if for any E 0 � E ,
0 2 E 0,

M.h; h 2 E 0/D f�g;
w�-lim
h2E 0;h!0

h D 0 in L1.L2.M//

�
D) �.f� D 0g/D TrŒ0�:

While doing the double scale analysis of the nonnormalized reduced density
matrices N .p/

h
, especially with the help of tensorization arguments, we will simply

study their weak�-limit in L1 and their semiclassical measures. The equality of
Definition 3.8 or 3.13 will be checked a posteriori in order to ensure �.I / � 0.

4. Mean-field asymptotics with h-dependent observables

We now combine the mean-field asymptotics with semiclassically quantized observ-
ables. This means that the parameter " appearing in CCR (resp. CAR) relations
in Section 2 is bound to the semiclassical parameter h of Section 3 parametrizing
observables aW;h (or aQ;h):

"D ".h/ > 0 with lim
h!0

".h/D 0:

So, from now on we consider families of density matrices on the fermionic or
bosonic Fock space �˙.Z / labeled as .%".h//h2E with their reduced density ma-
trices denoted by . .p/

".h/
/h2E . Firstly, we give a sufficient condition in terms of

semiclassical 1-particle observables and of the family .%".h//h2E so that a quan-
tization aW;h defined on the p-particle phase space Xp is adapted to the nonnor-
malized reduced density matrix  .p/

".h/
for all p 2 N. After this, the quantum and

classical symmetrization results, Lemmas 2.8 and 3.1, then provide simple ways
to identify the weak�-limits  .p/0 or the semiclassical measures associated with the
family . .p/

".h/
/h2E for all p 2 N. According to the discussion in Section 2 about

Definitions 3.8 and 3.13, a simple mass argument allows one to check that all the
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multiscale information has been classified. Recall that if

lim
h!0

TrŒ .p/
".h/

�D lim
h!0

TrŒ%".h/N
p
˙
�D T .p/

then the semiclassical measures �.p/ 2M.
.p/

".h/
; h 2 E/ (or multiscale asymptotic

triples .�.p/; �.p/
.I/
; 
.p/
0 /) have a total mass equal to T .p/.

Remember that the nonnormalized reduced density matrices  .p/
".h/

are defined
for h > 0 by,

for all Qb 2 L.Sp
˙

Z ˝p/; TrŒ .p/
".h/
Qb�D TrŒ%".h/ Qb

Wick�:

They are well-defined and uniformly bounded trace-class operators with respect
to h 2 E , as soon as TrŒ%".h/N

p
˙
� is bounded uniformly with respect to h 2 E for

every p 2N. Actually, it is more convenient in many cases, and not so restrictive,
to work with exponential weights in terms of the number operator N˙.

Hypothesis 4.1. The family .%".h//h2E in L1.�˙.Z // satisfies:

(i) For all h 2 E , we have %".h/ � 0 and TrŒ%".h/�D 1.

(ii) There exist c; C > 0 such that TrŒ%".h/ecN˙ �� C for all h 2 E .

When the 1-particle phase space is X 1 D T �Rd we use the Weyl quantization
on Xp D T �Rdp , aQ;h D aW;h D aW .htx; h1�tDx/, x 2 Rdp , and when M 1 is
a compact manifold, Xp D T �Mp, we use aQ;h D a.x; hDx/, x 2Mp.

Proposition 4.2. Assume Hypothesis 4.1. Let � 2 C10 .T
�M 1/ satisfy 0 � � � 1

and � � 1 in a neighborhood of 0 (resp. in a neighborhood of the null section
f.x; �/ 2 T �M W � D 0g DM ) when M D Rd (resp. M is a compact manifold)
and let �ı.X/D �.ıX/ (resp. �ı.x; �/D �.x; ı�/). For c0 < c, where c is given
by Hypothesis 4.1.ii/, if

sc0;�.ı/D lim sup
h!0

Re TrŒ%".h/.e
c0N˙ � ec

0d�˙.�
Q;h

ı
//�! 0 as ı! 0; (15)

then for all p 2 N, the quantization aQ;h is adapted to the family  .p/
".h/

.

Lemma 4.3. Let A2L.Z / and ˛�kAk. For z in the open discD.0; ˛=kAk/�C,
the operator ezd�˙.A/e�˛N˙ D ed�˙.zA�˛IdZ / is a contraction in �˙.Z / and
the function z 7! ed�˙.zA�˛IdZ / is holomorphic in D.0; ˛=kAk/ with

1

pŠ
d�˙.A/

pe�˛N˙ D e�˛N˙
1

pŠ
d�˙.A/

p

D
1

2i�

Z
jzjDr

ed�˙.zA�˛IdZ /
dz

zpC1
; (16)

which holds true in L.�˙.Z // for all p 2 N and all r 2 .0; ˛=kAk/.
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Assume moreover that A;B 2 L.Z /, and ˛ > ˛0 DmaxfkAk; kBkg. Then:

(1) For all z 2D.0; ˛=˛0/,

k.ezd�˙.B/� ezd�˙.A//e�˛N˙kL.�˙.Z // �
˛kB �AkL.Z /

˛0.˛�˛0/e
:

(2) For all p 2 N and r 2 .0; ˛=˛0/,

k.d�˙.B/
p
� d�˙.A/

p/e�˛N˙kL.�˙.Z // �
˛pŠ kB �AkL.Z /

˛0.˛�˛0/erp
:

Proof of Lemma 4.3. After setting A0 D zA with jzj < ˛=kAk so that kA0k < ˛,
notice that ke".A

0�˛/k � e"kA
0ke�"˛ < 1. Hence, the operators �˙.e�".A

0�˛//D

e�˛N˙ed�˙.A
0/ D ed�˙.A

0/e�˛N˙ are contractions on �˙.Z /. The holomorphy
and the Cauchy formula are then standard.

For the second statement, set B 0 D zB and A0 D zA, jzj < ˛=˛0, and use
Duhamel’s formula:

e�d�˙.˛�B
0/
� e�d�˙.˛�A

0/

D

Z 1

0

e�.1�t/d�˙.˛0�A
0/ d�˙.B

0
�A0/e�.˛�˛0/N˙e�td�˙.˛0�B

0/ dt:

Since e�.1�t/d�˙.˛0�A
0/ and e�td�˙.˛0�A

0/ are contractions, the inequality

kd�˙.B
0
�A0/e�.˛�˛0/N˙k �

˛

˛0
kB �Ak sup

n2N

"ne�.˛�˛0/"n �
˛kB �Ak

˛0.˛�˛0/e

yields part (1).
Part (2) follows from (16) and part (1). �

Proof of Proposition 4.2. Fix p 2N. We want to find Q� 2 C10 .T
�Mp/, 0� Q�� 1,

and Q� � 1 in a neighborhood of fX 2 R2dp W X D 0g (resp. f.x; �/ 2 T �Mp W

� D 0g DMp) when Mp D Rdp (resp. when M is a compact manifold), such that

lim
ı!0

lim sup
h!0

T .ı; h/D 0;

with
T .ı; h/ WD Re TrŒ .p/

".h/
.IdSp

˙
Z˝p � Q�

Q;h

ı
/�

D Re TrŒ%".h/.IdSp
˙

Z˝p � Q�
Q;h

ı
/Wick�:

We know that �˝p 2C10 .T
�Mp/, with 0��˝p�1. Take Q� such that �˝p� Q��1.

For a constant �ı > 0 to be fixed, the inequalities of symbols

0� �
˝p

ı
� Q�ı � 1;

0� �ı C �ıh� 1C �ıh
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and the semiclassical calculus imply

k.1� Q�ı/
Q;h
�ReŒ.1� Q�ı/

Q;h�kL.Z˝p/ � Cıh;

k�
Q;h

ı
�ReŒ�Q;h

ı
�k � Cıh;

0� ReŒ.1��˝p
ı
/Q;h�CC 0ıhD 1� .ReŒ�Q;h

ı
�/˝pCC 0ıh

� .1C 2�ıh/
p
� .ReŒ.�ı C �ıh/

Q;h�/˝pCC 00ı h in L.Z ˝p/

for some constants Cı ; C 0ı ; C
00
ı
> 0, chosen according to p 2 N, ı > 0 and �ı > 0.

Moreover for ı > 0 fixed, the constant �ı can be chosen so that

0� ReŒ.�ı C �ıh/
Q;h�� 1C 2�ıh:

With
k.1CN˙/

pe�
c0

2
N˙kL.�˙.Z // � Cp;c0 ;

the number estimate (3) and the positivity property . Qb � 0/) . QbWick � 0/, writing

%".h/ D e
� c
2

N˙e
c
2

N˙%".h/e
c
2

N˙e�
c
2

N˙ ;

leads to

T .ı; h/ WD Re TrŒ%".h/.IdSp
˙

Z˝p � Q�
Q;h

ı
/Wick�

D TrŒ%".h/.IdSp
˙

Z˝p �ReŒ Q�Q;h
ı

�/Wick�COı.h/

� TrŒ%".h/..1C 2�ıh/
p
� .ReŒ.�ı C �ıh/

Q;h�/˝p/Wick�COı.h/:

We now use Proposition 2.4 for

T .ı; h/�Tr
�
%".h/

�
d�˙.1C2�ıh/

p
�d�˙.ReŒ.�ıC�ıh/

Q;h�/p
��
COı.hC".h//:

The two operators A D d�˙.1C 2�ıh/ and B D d�˙.ReŒ.�ı C �ıh/Q;h�/ are
commuting self-adjoint operators such that 0 � B � A, so that 0 � Ap � Bp �
Cp;c0 Œe

c0A� ec
0B�. We deduce

T .ı;h/�Cp;c0 TrŒ%".h/e
cN˙e�cN˙.ed�˙.c

0.1C2�ıh//�ed�˙.c
0ReŒ.�ıC�ıh/Q;h�//�

COı.hC".h//:

We apply Lemma 4.3 with zD 1, AD c0.1C2�ıh/ and BD c0, or AD c0 ReŒ.�ıC
�ıh/

Q;h� and B D c0�Q;h
ı

, and finally

˛Dc>˛0D
cC c0

2
�c0maxf1C2�ıh; k.�ıC�ıh/

Q;h
k; k�

Q;h

ı
kg for h�hı;c;c0

and we get

T .ı; h/� Re TrŒ%".h/.e
c0N˙ � ec

0d�˙.�
Q;h

ı
//�COı.hC ".h//:
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We thus obtain
lim sup
h!0

T .ı; h/� sc0;�.ı/

and our assumption limı!0 sc0;�.ı/D 0 gives the desired conclusion. �

Notation. For any open set��C the Hardy spaceH1.�/ is the space of bounded
holomorphic functions on �.

Proposition 4.4. Assume Hypothesis 4.1. Then:

(i) The set E can be reduced to E 0 so that M.
.p/

".h/
; h 2 E 0/D f�.p/g for all p 2N,

where �.p/ is a nonnegative measure on T �Mp=Sp , i.e., a measure on .T �M/p

with the invariance (8).

(ii) When (15) is satisfied, this implies

lim
h2E 0
h!0

TrŒ .p/
".h/

�D

Z
T �Mp

d�.p/.X/ for all p 2 N:

(iii) For any a 2 C10 .R
2d / there exists ra > 0 such that the function ˆa;h W s 7!

TrŒ%".h/esd�˙.a
W;h/� is uniformly bounded in H1.D.0; ra// and, locally uni-

formly in s,

lim
h2E 0
h!0

ˆa;h.s/Dˆa;0.s/ WD

1X
pD0

sp

pŠ

Z
T �Mp

a˝p.X/ d�.p/.X/: (17)

Conversely, if we know that ˆa;h converges, pointwise on the interval .�ra; ra/
or in D0..�ra; ra//, to some functionˆa;0 as h! 0, h2 E , then M.

.p/

".h/
; h2 E/D

f�.p/g for all p 2 N and ˆa;0 is equal to (17) with E 0 D E .

Proof. The uniform bound

TrŒ .p/
".h/

�� TrŒ%".h/hN˙i
p�� Cp;c TrŒ%".h/e

cN˙ �

and Hypothesis 4.1 ensure for each p 2 N the existence of E.p/ � E.p�1/ � E ,
02E.p/, such that M.

.p/

".h/
; h2E.p//Df�.p/g (see Proposition 3.3 and Remark 3.4).

A diagonal extraction with respect to p determines E 0 � E , 0 2 E 0, such that
M.

.p/

".h/
; h 2 E 0/D f�.p/g for all p 2 N.

The second statement (ii) is a straightforward application of Proposition 4.2 and
Proposition 3.3.

In the statement (iii), the holomorphy of the function ˆa;h on the domain
D.0; c=kaW;hk/ follows by Lemma 4.3. Hypothesis 4.1 now combined with

ke�cN˙ezd�˙.˛
W;h/
k D k�.e".z˛

W;h�c//k � 1 and kaW;hk � Ca
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provides the uniform boundedness with respect to h 2 E of ˆa;h in H1.D.0; ra//
with ra D c=Ca. Moreover, Lemma 4.3(2) shows that ˆa;h is given by the entire
function

ˆa;h.s/D

1X
pD0

sp

pŠ
TrŒ%".h/d�˙.a

W;h/p�;

which is absolutely convergent on s 2D.0; ra/ uniformly in h2 E since the estimate

kd�˙.a
W;h/pe�cN˙kL.�˙.Z // .

pŠ

r
p
a

(18)

holds true uniformly for all p 2 N and h 2 E . According to (i) and Proposition 2.4,

lim
h2E 0
h!0

TrŒ%".h/d�˙.a
W;h/p�D lim

h2E 0
h!0

TrŒ%".h/..a
W;h

/˝p/Wick�

D lim
h2E 0
h!0

TrŒ .p/
".h/

.a
W;h

/˝p�D

Z
T �Mp

a˝p d�.p/:

Hence, by dominated convergence, ˆa;h converges locally uniformly in D.0; ra/
to ˆa;0 given by (17) and consequently ˆa;0 belongs to H1.D.0; ra// as well.

Moreover, assume for any a 2 C10 .R
2d / the convergence of ˆa;h to ˆa;0 in

a weak topology on the interval .�ra; ra/ as h 2 E , h ! 0. Let �.p/1 ; �
.p/
2 2

M.
.p/

h
; h 2 E/, for p 2N. Then according to (i) and the first part of (iii), one has,

for any s 2 .�ra; ra/,

ˆa;0.s/D

1X
pD0

sp

pŠ

Z
T �Mp

a˝p.X/d�
.p/
1 .X/D

1X
pD0

sp

pŠ

Z
T �Mp

a˝p.X/d�
.p/
2 .X/:

The uniform estimate (18) shows that ˆa;0 admits a holomorphic extension on
D.0; ra/ and consequentlyZ

T �Mp

a˝p.X/ d�
.p/
1 .X/D

Z
T �Mp

a˝p.X/ d�
.p/
2 .X/

for all p 2N. Thanks to Lemma 3.1, the measures �.p/1 and �.p/2 are determined by
integrating with all the test functions a˝p , a 2 C10 .T

�M/. So �.p/1 D �
.p/
2 , which

ends the proof. �

Replacing the semiclassical symmetrization Lemma 3.1 by the quantum ones,
Lemma 2.8 in the above proof leads to the following similar result for the quantum
part.

Proposition 4.5. Assume Hypothesis 4.1. For all K 2 L1.Z / there exists rK > 0
such that the set f‰K;h; h 2 Eg of functions ‰K;h.s/ WD TrŒ%".h/esd�˙.K/� is
bounded in H1.D.0; rK//.
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The pointwise or D0..�rK ; rK//-convergence limh2E; h!0‰K;hD‰K;0 is equiv-
alent to w�-limh2E; h!0 

.p/

h
D 

.p/
0 (remember L1 D .L1/�) with

‰K;0.s/D

1X
pD0

TrŒ .p/0 K˝p�
sp

pŠ
:

Let us consider a specific feature of the fermionic case:

Proposition 4.6. Let .%"/"2E be a family of nonnegative, trace-1 operators in
L1.��.Z//. Let  .p/" denote the corresponding nonnormalized reduced density
matrices of order p. If  .p/0 2 L1.Sp�Z˝p/ is such that,

for all K 2 L1.Sp�Z
˝p/; lim

"2E
"!0

TrŒ .p/" K�D TrŒ .p/0 K�;

then  .p/0 D 0.
As a consequence, the weak�-limits  .p/0 always vanish in the fermionic case.

Proof. First consider K a nonnegative finite-rank operator. Then

lim
"2E
"!0

TrŒ%"KWick�D TrŒ .p/0 K�:

For fermions, KWick � "p TrŒK�, and hence TrŒ%"KWick� � ".h/p ! 0 as "! 0.
Since any finite-rank operator is of the form K DK1�K2C i.K3�K4/ for some
nonnegative finite-rank operators Kj , j 2 f1; 2; 3; 4g, the limit TrŒ%"KWick�! 0D

TrŒ .p/0 K� holds for any finite-rank operator K. Hence, by density of the finite-rank
operators in the compact operators for the operator norm, TrŒ .p/0 K�D 0 for any
K 2 L1.Sp�Z˝p/, i.e.,  .p/0 D 0. �

5. Examples

5A. h-dependent coherent states in the bosonic case. We first recall our nor-
malization for a coherent state. If we use the identification S0

˙
Z � C, then the

vacuum-state vector is defined as �D .1; 0; 0; : : : / 2 �˙.Z/. We then introduce
the usual field operators ˆ.f / D .1=

p
2/.a�.f /C a.f //, with f 2 Z, and the

Weyl operators are W.f / D exp..i=
p
2/ˆ.f //. A coherent state is a pure state

Ez DW.
p
2z=.i"//�, with z 2 Z . One then can also speak of a coherent state

for the corresponding density matrix jEzihEzj. One of the useful properties of
coherent states is that

b.z/D hE.z/; bWickE.z/i: (19)

See, e.g., [Ammari and Nier 2008, Proposition 2.10]. The case of coherent states
is simple:
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Proposition 5.1. Let .z"/"2.0;1� be a bounded family of Z , choose the semiclassi-
cal quantization a 7!aW;hDaW .

p
hx;
p
hDx/, and fix a function "D ".h/! 0 as

h! 0. Up to an extraction, z".h/*z0 2Z weakly, and M.jz".h/ihz".h/j; h2 E/D
f�g. Assume that the semiclassical quantization aW;h D aW .

p
hx;
p
hDx/ is

adapted to .jz".h/ihz".h/j/h and separating for .jz".h/ihz".h/j/h. Then the family
.%".h/ D jEz".h/ihEz".h/ j/h2E has


.p/

".h/
D jz

˝p

".h/
ihz
˝p

".h/
j

as (nonnormalized) reduced density matrices of order p, for which the quantiza-
tion is adapted and separating, and

M.2/.
.p/

".h/
; h 2 E/D f.�˝p; 0; jz˝p0 ihz

˝p
0 j/g:

Proof. Formula (19) yields, for B 2 L.Sp
C
Z˝p/,

hz
˝p

".h/
; Bz

˝p

".h/
i D hEz".h/ jB

Wick
jEz".h/i D TrŒ%".h/B

Wick�D TrŒ .p/
".h/

B�;

which implies the result. �

The case of coherent states, although simple, can already exhibit interesting
behaviors for some families .z"/"2.0;1�. Indeed,

Remark 5.2. Let .zj;".h//h2.0;1�, j 2 f1; 2g, be families of Z such that

� z1;".h/! z1;0 2 Z as h! 0, and

� .z2;".h//h2.0;1� converges weakly to 0,

lim
R!1

lim sup
h!0

k.1��.R�1 � //W;hz2;".h/k D 0

for some � 2 C10 .R
2d /, �� 1 around 0 (no mass escaping at infinity in the

phase space), and M.jz2;".h/ihz2;".h/j; h 2 E/D f�2g, with �2.f0g/D 0.

Then .jz1;".h/ C z2;".h/ihz1;".h/ C z2;".h/j/h2.0;1� satisfies the assumptions of
Proposition 5.1, and z0 D z1;0, � D kz1;0k2ı0C �2.

5B. Gibbs states. For a given nonnegative self-adjoint hamiltonianH defined in Z

with domainD.H/, the Gibbs state at positive temperature 1
ˇ

and with the chemical
potential � < 0 is given by

!".A/D
TrŒ�˙.e�ˇ.H��//A�
TrŒ�˙.e�ˇ.H��//�

D TrŒ%"A�:

In general %" 2 L1.�˙.Z // as soon as e�ˇ.H��/ 2 L1.Z / (in the bosonic case
H �0 and �<0 imply ke�ˇ.H��/kL.Z/<1, see Lemma D.1). Moreover the quasi-
free state formula, see [Bratteli and Robinson 1981], with "-dependent quantization
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gives

TrŒ%"N˙�D "TrŒe�ˇ.H��/.1� e�ˇ.H��//�1�

and additionally, in the case of bosons,

TrŒ%"W.f /�D exp
�
�
1
4
"hf; .1C e�ˇ.H��//.1� e�ˇ.H��//�1f i

�
:

5B1. The fermionic case. This case is simpler than the bosonic case for two rea-
sons: first because the quantum part vanishes (see Proposition 4.6), and second
because there is no singularity to handle. To fix the ideas we consider the sim-
ple case when H is the harmonic oscillator. Actually one can treat more general
pseudodifferential operators, and we do that below in the more interesting case of
bosons and Bose–Einstein condensation.

Proposition 5.3. Let ˇ > 0, H D 1
2
jX j2W;h, �."/ be such that �."/ � C" for

some constant C > 0, and assume that "D ".h/D hd. Let

%".h/ D
��.e

�ˇ.H��."///

TrŒ��.e�ˇ.H��."///�

and  .p/
".h/

be its nonnormalized reduced density matrix of order p � 1. Then

M.2/.
.p/

".h/
; h 2 .0; 1�/D f.�.p/; 0; 0/g;

where

d�.p/ D

�
e�

ˇ
2
jX j2

1C e�
ˇ
2
jX j2

dX

.2�/d

�̋ p

:

Proof. From Remark 3.7 and Proposition 4.6, any

.�.p/; �
.p/
I ; 

.p/
0 / 2M.2/.

.p/

".h/
; h 2 .0; 1�/

satisfies  .p/0 D 0.
Since we are considering a Gibbs state, the Wick formula yields


.p/

".h/
D pŠSp

˙

.1/˝p

".h/
Sp;�
˙
:

Moreover, in the fermionic case,


.1/

".h/
D ".h/

C

1CC
for %".h/ D

��.C /

TrŒ��.C /�
I

that is to say, with ".h/D hd,


.1/

".h/
D hd

e�ˇ.H��/

1C e�ˇ.H��/
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in our case. The semiclassical calculus combined with the Helffer–Sjöstrand func-
tional calculus formula yields

e�ˇ.
1
2
jX j2W;h��/

1C e�ˇ.
1
2
jX j2W;h��/

D

�
e�

ˇ
2
jX j2

1C e�
ˇ
2
jX j2

�W;h
CO.h/ in L.Z/:

For details we refer the reader to, e.g., [Dimassi and Sjöstrand 1999; Helffer and
Nier 2005] or to the proof of Proposition 5.6. Again by the semiclassical calculus
we know hdaW;h is uniformly bounded in L1.L2.Rd // for a 2 C10 .R

2d /. This
leads to

TrŒ.aW;h/˝p .p/
".h/

�D TrŒaW;h .1/
".h/

�pCO.h/

D Tr
��

e�
ˇ
2
jX j2

1C e�
ˇ
2
jX j2

�W;h
hdaW;h

�p
CO.h/:

We finally use

hd TrŒaW;hbW;h�D
Z

R2d
a.X/b.X/

dX

.2�/d
;

which implies

lim
h!0

TrŒ.aW;h/˝p  .p/
".h/

�D

�Z
R2d

e�
ˇ
2
jX j2

1C e�
ˇ
2
jX j2

a.X/
dX

.2�/d

�p
:

Hence

d�.p/.X/D

�
e�

ˇ
2
jX j2

1C e�
ˇ
2
jX j2

dX

.2�/d

�˝p
: �

5B2. Parameter-dependent Gibbs states and Bose–Einstein condensation in the
bosonic case. The Bose–Einstein condensation phenomenon occurs when H has
a ground state kerH D C 0 and the chemical potential is scaled according to

�ˇ�D
"

�C
for some fixed �C > 0:

An especially interesting case is when H is a semiclassically quantized symbol
with semiclassical parameter h related to ", or "D ".h/ according to our previous
notations. The quantum and semiclassical parts arise simultaneously when "D hd.
Two cases will be considered: the first one concerns Z DL2.Rd / with a nondegen-
erate bottom-well hamiltonian; the second one Z D L2.M/ with the semiclassical
Laplace–Beltrami operator on the compact Riemannian manifold M.

In the first case, let S.hXim; dX2=hXi2/ denote the Hörmander class of sym-
bols satisfying j@ˇXa.X/j �Cˇ hXi

m�ˇ, and let ˛ 2S.hXi2; dX2=hXi2/ be elliptic
in this class with a unique nondegenerate minimum at X D 0 (e.g., the symbol of
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the harmonic oscillator hamiltonian). We can even consider small perturbations of
this situation after setting

H D ˛W;hCBh��0.˛
W;h
CBh/; ˛W;h D ˛.

p
hx;
p
hDx/; "D hd ;

where

BhDBh� 2L.L2.Rd //; kBhkD o.h/; �0.˛
W;h
CBh/D inf �.˛W;hCBh/:

It is convenient in this case to introduce the linear symplectic transformation
T 2 Sp2d .R/ such that tX tT �1 Hess˛.0/T �1X D

Pd
jD1 ǰX

2
j and to introduce

some unitary quantization UT of T, i.e., a unitary operator on L2.Rd / such that
U �T b

WUT D b.T
�1 � /W.

Proposition 5.4. Under the above assumptions with dimension d � 2, for any
p 2N, we have M.2/.

.p/

".h/
; h 2 E/D f.�.p/; 0;  .p/0 /g (see Definition 3.12), where


.p/
0 D pŠ �

p
C j 

˝p
0 ih 

˝p
0 j with  0.x/D UT

e�
1
2
x2

�
d
4

and

�.p/ D
X
�2Sp

��

� pX
kD0

1

.p� k/Š
�kC ı

˝k
0 ˝ �.ˇ; � /

˝p�k

�
;

with

d�.ˇ;X/D
e�ˇ˛.X/

1� e�ˇ˛.X/

dX

.2�/d
:

The proof is given in Section 5B4 and needs some preliminaries, which are given
in Proposition 5.6 and Lemma 5.7.

Another even simpler case, related to the example M D Td presented in [Am-
mari and Nier 2008], is Z D L2.M; dvg.x// when .M; g/ is a compact Riemann-
ian manifold with volume dvg.x/ and

H D�h2�g CBh��0.�h
2�g CBh/;

where �g is the Laplace Beltrami operator on .M; g/ and Bh D B�h 2 L.L
2.M//,

kBhk D o.h
2/.

Proposition 5.5. Under the above assumptions with d � 3, for any p 2 N, we
have M.2/.

.p/

".h/
; h 2 E/D f.�.p/; 0;  .p/0 /g, where


.p/
0 D pŠ �

p
C j 

˝p
0 ih 

˝p
0 j;  0 D

1

vg.M/
1
2

;

�.p/ D
X
�2Sp

��

� pX
kD0

1

.p� k/Š
�kC

�
1

vg.M/
dvg.x/˝ ı0.�/

�̋ k

˝ �.ˇ/˝.p�k/
�
;
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with

d�.ˇ;X/D
e�ˇ j�j

2
g.x/

1� e�ˇ j�j
2
g.x/

dx d�

.2�/d
;

and

j�j2g.x/ D
X
i;j�d

gij .x/�i�j when g D
X
i;j�d

gij .x/ dx
i dxj; .gij /

�1
D .gij /:

We shall focus on the first case, which requires a more careful analysis, while
�.�h2�g/D h

2�.��g/ reduces the problem even more easily to the integrabil-
ity of e�ˇ j�j

2
g.x/=.1� e�ˇ j�j

2
g.x//, valid when d � 3. The proof of Proposition 5.5

is left as an exercise, which requires the adaptation of the following arguments in
the case of Proposition 3.11 with the associated Definitions 3.13 and 3.12.

5B3. Semiclassical asymptotics with a singularity at X D 0. We give here a gen-
eral semiclassical result in T �Rd, which involves traces and symbols with a singu-
larity at X D 0.

Proposition 5.6. Consider the hamiltonian H D ˛W;h C Bh � �0.˛W;h C Bh/,
with ˛W;h D ˛.

p
hx;
p
hDx/, ˛ 2 S.hXi2; dX2=hXi2/ elliptic and real such that

˛.0/D 0 is the unique nondegenerate minimum, Bh D B�h 2 L.L
2.Rd //, kBhk D

o.h/, and �0.˛W;hCBh/D inf �.˛W;hCBh/. Assume that f 2 C1..0;C1/IR/
is decreasing and satisfies

0� f .u/� Cu��1 ; lim
u!0C

u�0f .u/D f0 2 R; 0 < �0 < d < �1:

For c > 0, the operator f .H C ch
d
�0 / is trace class with

lim sup
h!0C

hdkf .H C ch
d
�0 /kL1.L2.Rd // <C1:

Moreover the convergence

lim
h!0

hd TrŒf .H C ch
d
�0 /aW;h�D

f0

c�0
a.0/C

Z
R2d

f .˛.X//a.X/
dX

.2�/d

holds for all a 2 S.1; dX2/. Finally, all the above estimates and convergences hold
uniformly with respect to c 2 .1=A;A/ for any fixed A > 1.

The following lemma gives, in a simple way, useful inequalities for our purpose,
which are deduced with elementary arguments, and in a robust way with respect to
the perturbation Bh, from more accurate and sophisticated results on the spectrum
of ˛W;h; see [Charles and Vũ Ngo. c 2008; Dimassi and Sjöstrand 1999].

Lemma 5.7. Let ˛ 2 S.hXi2; dX2=hXi2/ be real-valued, elliptic, which means
1C ˛.X/ � C�1hXi2, with a unique nondegenerate minimum at X D 0 and set
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˛0.X/ D
1
2
jX j2. Let Bh D B�

h
2 L.L2.Rd // be such that kBhk D o.h/. The

ordered eigenvalues are denoted by �j .˛W;hCBh/ and �j .˛
W;h
0 / for j 2 N:

� For j D 0, we have �0.˛W;hCBh/D TrŒHess˛.0/�hC o.h/ and the associated
spectral projection satisfies

lim
h!0

1f�0.˛W;hCBh/g.˛
W;h
CBh/D .�

�de�jTX j
2

/W .x;Dx/ in L1.L2.Rd //;

where T 2 Sp2d .R/ is such that tX tT �1 Hess˛.0/T �1X D
Pd
jD1 ǰX

2
j .

� There exist h0 > 0 and C 0 � 1 such that, for all j > 0 and h 2 .0; h0/,

1
2
C 0�1hd � C 0�1�j .˛

W;h
0 /

� �j .˛
W;h
CBh/��0.˛

W;h
CBh/� C

0�j .˛
W;h
0 /: (20)

Remark 5.8. Of course �.˛W;h0 / D
˚
h
�
d
2
C jnj

�
W n 2 Nd

	
and the bounds (20)

are actually written in order to use this later. But for an easy use of the min-max
principle it is better to write the eigenvalues �j .˛

W;h
0 / in increasing order, with

repetition according to their multiplicity.

Proof of Lemma 5.7. We start by noting that 1C˛ 2 S.hXi2; dX2=hXi2/ is fully
elliptic in the sense that .1C˛/�1 2 S.hXi�2; dX2=hXi2/. Therefore

.1C˛/]W;h
1

1C˛
D 1C h2RC.h/;

1

1C˛
]W;h.1C˛/D 1C h2R�.h/

with R˙.h/ uniformly bounded in S.hXi�2; dX2=hXi2/. The semiclassical cal-
culus with the metric dX2=hXi2 then says

.1C˛W;h/�1 D Œ.1C˛/�1�W;hCO.h2/ in S
�
hXi�2;

dX2

hXi2

�
: (21)

The same of course also holds for �˛0.X/ D 1
2
� jX j2 with � 2 .0;C1/ fixed.

Therefore ˛W;hCBh and ˛W;h0 are self-adjoint with the same domain D.˛W;h/D
D.˛

W;h
0 /DD.˛

W;1
0 /, and they have a compact resolvent. We shall collect all the

necessary information by comparing the eigenvalues of ˛W;hCBh and ˛W;h0 in
the intervals .�1; 2jˇjh�, Œ0; 2� and Œ1;C1Œ, with jˇj D

Pd
jD1 ǰ . For the first

part, we refer to the ready-made simple statement of [Charles and Vũ Ngo. c 2008,
Theorem 4.5] and complete the other parts with simple pseudodifferential calculus
and the min-max principle.

Interval .�1; 2jˇjh�: By Theorem 4.5 of [Charles and Vũ Ngo. c 2008], there exist
a family of real numbers .!hn/h>0;n2Nd and, for any t > 0, a constant Ct > 0 such
that

�.˛W;h/\ .�1; th�D f!hn ; n 2 Nd g\
�
1
2
jˇjh; th

�
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and ˇ̌̌̌
!hn �

dX
jD1

h ǰ

�
1
2
Cnj

�ˇ̌̌̌
� Cth

3
2 :

As kBhk D o.h/, the min-max principle with ˛W;h and ˛W;hCBh then gives,

�.˛W;hCBh/\ .�1; th�D f!
h
n C o.h/; n 2 Ng\ Œ0; th�:

By choosing tD2jˇj, the operator ˛W;hCBh is nonnegative with �0.˛W;hCBh/D
1
2
jˇjhC o.h/ and the spectral gap is bounded from below by, for all j 2 N n f0g,

�j .˛
W;h
CBh/��0.˛

W;h
CBh/� �1.˛

W;h
CBh/��0.˛

W;h
CBh/

� ˇmhC o.h/�
1
2
ˇmh;

(22)

with ˇm Dminfˇ1; : : : ; ˇd g.
Let T 2 Sp2d .R

d / be such that tX tT �1 Hess˛.0/T �1X D
Pd
jD1 ǰX

2
j , let

UT be a unitary operator such that U �T b
WUT D b.T �1 � /W and set 'T .x/ D

.�/�
d
4 UT e

� 1
2
x2 . We compute

h'T ; .˛
W;h
CBh/'T i D TrŒU �T ˛

W;hUT j'Idih'Idj�C o.h/

D

Z
R2d

˛.
p
hT �1X/e�jX j

2 dX

�d
C o.h/:

But since ˛.T �1X/D
Pd
jD1

1
2 ǰ jXj j

2CP3.X/CO.jX j4/, with P3 a homoge-
neous polynomial of degree 3, we obtain

h'T ; .˛
W;h
CBh/'T i D

1
2
hjˇjC o.h/D �0.˛

W;h
CBh/C o.h/:

With the spectral gap (22) this implies that the ground state  h0 of ˛W;h C Bh
satisfies limh!0 k h0 �'T kL2 D 0 and

lim
h!0
k1f�0.˛W;hCBh/g.˛

W;h
CBh/��

�d .e�jTX j
2

/W;1kL1 D 0:

Interval Œ0; 2�: Our assumptions on ˛ provide a constant C2� 1 such that C�12 ˛0�

˛ � C2˛0 and therefore

C�12 ˛0

1CC�12 ˛0
�

˛

1C˛
�

C2˛0

1CC2˛0
;

as x 7! x
1Cx

is increasing on R�. Since all those symbols belong to S.1; dX2/,
the semiclassical Fefferman–Phong inequality for the constant metric dX2, see
[Hörmander 1985, Lemma 18.6.1], says

C�12 ˛
W;h
0

1CC�12 ˛
W;h
0

�O.h2/�
˛W;h

1C˛W;h
�

C2˛
W;h
0

1CC2˛
W;h
0

CO.h2/;
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after using �
˛:

1C˛:

�W;h
D

˛W;h:

1C˛W;h:

CO.h2/:

With k.1C˛W;h/�1�.1C˛W;hCBh/�1kDO.kBhk/D o.h/ and x
1Cx
D 1� 1

1Cx
,

we deduce

C�12 ˛
W;h
0

1CC�12 ˛
W;h
0

� o.h/�
˛W;hCBh

1C˛W;hCBh
�

C2˛
W;h
0

1CC2˛
W;h
0

C o.h/:

For r D 2.1CC2/ and h0 > 0 small enough, the above operators have a discrete
spectrum in

�
0; r
1Cr

�
with eigenvalues in this interval, while the function x 7! x

1Cx

increases on Œ0;C1/. Hence the min-max principle implies that there exists C 02� 1
such that�
�j .˛

W;h
CBh/� 2

�
D)

�
C 0�12 �j .˛

W;h
0 /� o.h/� �j .˛

W;h
CBh/� C

0
2�j .˛

W;h
0 /C o.h/

�
(23)

holds for all j 2N. With the spectral gap (22) and �0.˛W;hCBh/D 1
2
jˇjhCo.h/

we conclude that (20) holds when �j .˛W;hCBh/� 2.

Interval Œ1;C1/: Our assumptions on ˛ provide a constant C1 � 1 such that

C�21 �

�
1C˛0

1C˛

�2
� C 21 :

With (21), the semiclassical Gårding inequality then gives for h0 small enough

max
˚
k.1C˛

W;h
0 /.1C˛W;h/�1k; k.1C˛W;h/.1C˛

W;h
0 /�1k

	
� 2C1:

Owing to kBhk D o.h/, this is also true when ˛W;h is replaced by ˛W;hCBh. We
obtain for all  2D.˛W;10 /,

.2C1/
�2
h ; .1C˛

W;h
0 /2 i�h ;.1C˛W;hCBh/

2 i�.2C1/
2
h ; .1C˛

W;h
0 /2 i;

and the min-max principle gives, for all j 2 N,

.2C1/
�2�j ..1C˛

W;h
0 /2/� �j ..1C˛

W;h
CBh/

2/� .2C1/
2�j ..1C˛

W;h
0 /2/:

By taking the square roots, for all j 2 N,

.2C1/
�1.1C�j .˛

W;h
0 //� 1C�j .˛

W;h
CBh/� 2C1.1C�j .˛

W;h
0 //;

which yields (20) for �j .˛W;hCBh/� 1. �

Proof of Proposition 5.6. With H D ˛W;hCBh � �0.˛W;hCBh/, Lemma 5.7
provides a constant C 0 > 0 such that,

for all j 2 N n f0g; C 0�1�j .˛
W;h
0 /� �j .H/� C

0�j .˛
W;h
0 /;
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while �0.H/D 0 and the ground state of H is the same as the one of ˛W;hCBh.
When the function f is nonnegative and decaying, we deduce

T rŒf .H C ch
d
�0 /�D f .ch

d
�0 /C

1X
jD1

f .�j .H/C ch
d
�0 /

� f .ch
d
�0 /C

1X
jD1

f .�j .H//

� f .ch
d
�0 /C

X
n2Nd

n¤0

f .C�14 hjnj/; (24)

with C4 D C3.1C 4jˇj=ˇm/, and for R > 0,

TrŒf .H C ch
d
�0 /1ŒR;C1/.H/�D

X
�j .H/�R

f .�j .H/C ch
d
�0 /

�

X
n2Nd

hjnj� R
2C3

f .C�14 hjnj/:

Apply (24) first, with f D s��0hsi��1C�0 :

hd TrŒf .H C ch
d
�0 /�� c��0 CChd

X
n2Nd

n¤0

.hjnj/��0hhjnji��1C�0 :

After splitting the sum into
P
hjnj�1 and

P
hjnj�1 and with #fn 2Nd W jnj Dmg D

C d�1
mCd�1

DO.md�1/, it becomes

hd TrŒf .H C ch
d
�0 /�

� c��0 CC 0hd
dh�1eX
mD1

h��0md�1��0 CC 0hd
1X

mDbh�1c

h��1md�1��1 :

� c��0 CC 00hd��0dh�1ed��0 CC 00hd��1bh�1cd��1 � c��0 CC 000;

owing to �1>d and �02 .0; d/. With a function f .s/D s��0�.s=ı/with 0���1
compactly supported and decaying on Œ0;C1/ we get similarly

lim
ı!0C

lim sup
h!0

hd TrŒf .H C ch
d
�0 /�� c��0 D 0;

while with f .s/ D hsi��1 , the truncated trace TrŒf .H C ch
d
�0 /1Œı�1;C1/.H/�

satisfies
lim
ı!0C

lim sup
h!0

hd TrŒf .H C ch
d
�0 /1Œı�1;C1/.H/�D 0:
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The comparison of �j .H/ with �j .˛
W;h
0 /, j 2 N, stated in Lemma 5.7 does not

depend on the parameter c. Neither do the constants C3, C4, C , C 0, C 00 and C 000

(f is nonnegative and decaying) depend on c. Therefore the previous asymptotic
trace estimates are uniform with respect to c 2

�
1
A
; A
�

for any fixed A > 1.
Thus if � 2 C10 .R/ is a cut-off function such that 0 � � � 1, �� 1 in .�1; 1/

and if a general f 2 C1..0;C1// fulfills all the assumptions of Proposition 5.6,
then

lim
ı!0C

lim sup
h!0C

hd
Œf .H C ch d�0 /1.0;C1/.H/Œ�.ı�1H/C .1��.ıH//�L1 D 0:

(25)
For g2 C10 .R/, with an almost analytic extension Qg2 C10 .C/, the Helffer–Sjöstrand
formula

g.˛W;h/D
1

2i�

Z
C

@ Nz Qg.z/.z�˛
W;h/ dz ^ d Nz;

combined with the semiclassical Beals criterion [Dimassi and Sjöstrand 1999; Helf-
fer and Nier 2005; Nataf and Nier 1998] with the constant metric dX2 implies

g.˛W;h/�g.˛/W;h D h r.h/W;h;

with r.h/ uniformly bounded (with respect to h) in S.1; dX2/. Since .1C ˛/ 2
S.hXi2; dX2=hXi2/ is an invertible elliptic symbol,

.1C˛W;h/�N � Œ.1C˛/�N �W;h D h2r 0.h/W;h;

with r 0.h/ uniformly bounded in S.hXi�2N�2; dX2=hXi2/ � S.hXi�2N; dX2/.
For a function fı 2 C10 ..0;C1//, we take g.s/D .1C s/Nfı.s/ and write

fı.˛
W;h/D g.˛W;h/.1C˛W;h/�N;

so that

fı.˛
W;h/�fı.˛/

W;h

D Œg.˛W;h/�g.˛/W;h�.1C˛W;h/�N Cg.˛/W;h.1C˛W;h/�N �fı.˛/
W;h

D h r 00.h/W;h;

with r 00.h/ uniformly bounded in S.hXi�2N; dX2/. In particular, hd r 00.h/W;h is
uniformly bounded in L1.L2.Rd // if we choose N > d .

Similarly, the Helffer–Sjöstrand formula can be used to prove g.H C ch
d
�0 /�

g.˛W;h/D o.h/ in L.L2.Rd //. With hd Œ.1CH C ch
d
�0 /�N � .1C˛W;h/�N �D

o.h/ in L1.L2.Rd // due to

.1CH C ch
d
�0 /�1 D Œ1C .1C˛W;h/�1.BhC ch

d
�0 /��1.1C˛W;h/�1;
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the same trick as above transforms the L.L2.Rd // estimate into

hd Œfı.H C ch
d
�0 /�fı.˛

W;h/�D o.h/ in L1.L2.Rd // (26)

Note again that this holds uniformly with respect to c 2
�
1
A
; A
�

for any fixed A> 1.
Now take fı.s/D.1��.ı�2s//�.ı2s/f .s/ for which we note that the inequality,

for all s � 0; 1� .1��.ı�2s//�.ı2s/� �.ı�1s/C .1��.ıs//

as soon as ı < ı� implies,

for all s � 0; 0� f .s/�fı.s/� f .s/Œ�.ı
�1s/C .1��.ıs//�: (27)

In the expression hd TrŒf .H C ch
d
�0 aW;h�, we decompose f .H C ch

d
�0 / into

.I /C .II /C .III /, where

.I /D fı.H C ch
d
�0 /;

.II /D .f .H C ch
d
�0 /�fı.H C ch

d
�0 //1.0;C1/.H/;

.III /D 1f0g.H/f .ch
d
�0 /:

We now conclude with the following steps:

� The estimate (26) yields

lim
h!0

hd TrŒfı.H C ch
d
�0 /aW;h�D lim

h!0
hd TrŒfı.˛/

W;haW;h�

D

Z
R2d

fı.˛.X//a.X/
dX

.2�/d
;

which provides the contribution of .I /.

� The upper bound (27) combined with (25) leads to

lim
ı!0C

lim sup
h!0

ˇ̌
hd Tr

�
Œf .H C chd=�0/�fı.H C ch

d
�0 /�1.0;C1/.H/a

W;h
�ˇ̌
D 0;

which says that .II / has a null contribution in the limit ı! 0.

� The contribution of .III / is simply computed as

hd TrŒf .H C ch
d
�0 /1f0g.H/a

W;h�D
f0

c�0
h h0 ; a

W;h h0 i;

where  h0 is the ground state of H Cch
d
�0 with k h���

d
4 e�

1
2
x2
k! 0 as h! 0.

This implies limh!0h h; aW;h hi D a.0/.

� Finally, the assumptions on f ensure f .˛/ 2 L1.R2d / and

lim
ı!0

Z
R2d

fı.˛.X//a.X/ dX D

Z
R2d

f .˛.X//a.X/ dX: �
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5B4. Semiclassical analysis of the reduced density matrices in the bosonic case.

Proof of Proposition 5.4. This will be made in two parts: we first compute the
semiclassical measures �.p/ and then identify the weak�-limit  .p/0 .

For the first part Proposition 4.4 says that it suffices to find the limit ˆa;0.s/ of
ˆa;h.s/ for a2C10 .T

�Rd /, real-valued, and s2 .�ra; ra/. Actually Proposition 5.6
allows to consider more generally a 2 S.1; dX2/. For a 2 S.1; dX2/, real-valued,
take s 2 R, jsj< ra D 1=.�CCa/, 4kaW;hk � Ca and set

DTa;h.s/D log TrŒ%"�.e"sa/�D�TrŒlog.1�CBs/�CTrŒlog.1�C/�;

ˆa;h.s/D TrŒ%"�.e"sa
W;h

/�D expDTa;h.s/; "D hd ;

with C D e�ˇ.HC
"

ˇ�C
/ and Bs D e"sa

W;h

.
Assume s 2 .�ra; ra/ and compute

DTa;h.s/D

Z 1

0

Tr
�

Cts zBts

1�Cts zBts
"saW;h

�
dt

D

Z 1

0

Tr
�
"sf

�
H C

"

ˇ
.��1C � tsa.0//

�
aW;h

�
dt

C

Z 1

0

Tr
�
"sŒ�.1�Cts/

�1
C .1�Cts zBts/

�1�aW;h
�
dt;

with

Cts D e
�ˇ.HC "

ˇ
.��1C �tsa.0///; zBts D e

"ts.a�a.0//W;h; f .u/D
e�ˇu

1� e�ˇu
:

Note that for t 2 Œ0; 1� the parameter 1
ˇ
.��1C � tsa.0// remains in a compact subset

of .0;C1/. Proposition 5.6 implies for all t 2 Œ0; 1�

lim
h!0

Tr
�
"sf

�
H C

"

ˇ
.��1C � tsa.0//

�
aW;h

�
D

�C sa.0/

1� t�C sa.0/
C s

Z
R2d

e�ˇ˛.X/

1� e�ˇ˛.X/
a.X/

dX

.2�/d
:

With the uniform control with respect to 1
ˇ
.��1C �tsa.0//Dc2

�
1
A
; A
�

in Proposition
5.6, we obtain for the first term

lim
h!0

Z 1

0

Tr
�
"sf

�
H C

"

ˇ
.��1C � tsa.0//

�
aW;h

�
dt

D� log.1� s�Ca.0//C s
Z

R2d

e�ˇ˛.X/

1� e�ˇ˛.X/
a.X/

dX

.2�/d
:



QUANTUM MEAN-FIELD ASYMPTOTICS AND MULTISCALE ANALYSIS 259

For the remainder term, define…h0Dj 
h
0 ih 

h
0 j, where h0DUT .�

�d
4 e�

x2

2 /Co.h0/

is the ground state of H , and write

.1�Cts zBts/

D 1�Cts�Cts. zBts�1/D .1�Cts/

�
1C

Cts

1�Cts
.1� zBts/

�
D .1�Cts/

�
1C

Cts

1�Cts
…h0.1�

zBts/C
Cts

1�Cts
.1�…h0/.1�

zBts/

�
D .1�Cts/

�
1Cf

�
"

ˇ
.��1C �tsa.0//

�
…h0.1�

zBts/„ ƒ‚ …
I

C
Cts

1�Cts
.1�…h0/.1�

zBts/„ ƒ‚ …
II

�
:

We know

"�f

�
"

ˇ
.��1C � tsa.0//

�
D

1

��1C � tsa.0/
CO."/D

1

��1C � tsa.0/
C o.h/:

We write

"�1.1� zBts/ 
h
0 D�

Z 1

0

e"uts.a�a.0//
W;h

ts.a� a.0//W;h h0 du;

where  h0 D �
�d
4 UT e

�x
2

2 C o.h0/, and a.X/� a.0/ � C minf1; jX jg for some
C > 0 implies limh!0 k.a�a.0//W;h h0 kL2.Rd / D 0. Therefore the term I in the
above brackets satisfies

I D f

�
"

ˇ
.��1C � tsa.0//

�
…h0.1�

zBts/D o.h
0/ in L1.L2.Rd //:

Note that we have also proved

.1� zBts/…
h
0 �…

h
0.1�

zBts/D o."/ in L.L2.Rd //:
By using

k1� zBtsk DO."/;
 Cts

1�Cts
.1�…h0/

DO
�
1

h

�
;

and

lim
h!0
k"

Cts

1�Cts
kL1 D lim

h!0
Tr
�
"f

�
H C

"

ˇ
.��1C � tsa.0//

��
D

�C

1� t�C sa.0/
C s

Z
R2d

e�ˇ˛.X/

1� e�ˇ˛.X/

dX

.2�/d
;

the term II in the above brackets satisfies

kIIkL1 DO.1/; kIIk DO."h�1/D o.h0/;II � Cts

1�Cts
.1�…h0/.1�

zBts/.1�…
h
0/


L1
D o.h0/:
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Again all these estimates are uniform with respect to t 2 Œ0; 1�, owing to the uni-
formity of the estimates in Proposition 5.6 with respect to c D 1

ˇ
.��1C � tsa.0//.

By expanding the Neumann series .1C I C II /�1 D
P1
kD0.�1/

k.I C II /k we
deduce�

1C
Cts

1�Cts
.1� zBts/

��1
D 1�

Cts

1�Cts
.1�…h0/.1�

zBts/.1�…
h
0/CRh;

with kRhkL1 D o.h
0/. With k".1�Cts/�1k DO.1/ we finally obtain

"sŒ.1�Cts/
�1
� .1�Cts zBts/

�1�

D
s"Cts

1�Cts
.1�…h0/.1�

zBts/.1�…
h
0/.1�Cts/

�1
CR0h; kR

0
hkL1 D o.h

0/;

while k"Cts.1�Cts/�1kL1DO.1/, k1� zBkDO."/ and k.1�…h0/.1�Cts/
�1kD

O.h�1/.
With 4kaW;hk�Ca, the remainder term tends to 0 as h! 0 and we have proved,

for all s 2 .�ra; ra/,

lim
h!0

ˆa;h.s/Dˆa;0.s/D
1

1� s�Ca.0/
exp

�
s

Z
R2d

e�ˇ˛.X/

1� e�ˇ˛.X/
a.X/

dX

.2�/d

�
:

By expanding the generating function according to Proposition 4.4, we obtain

lim
h!0

TrŒ%"..aW;h/˝p/Wick�D

pX
kD0

1

.p�k/Š
�kCa.0/

k

Z
R2d.p�k/

a˝.p�k/d�.ˇ/˝p�k :

with

d�.ˇ/D
e�ˇ˛.X/

1� e�ˇ˛.X/

dX

.2�/d
:

The possibility to take a 2 S.1; dX2/ means that our quantization is adapted to all
the  .p/

h
.

Now in order to identify the weak�-limits of the  .p/
h

we compute the Wigner
measure associated with %".h/. Remember, see (28) and (29),

TrŒ%"W.
p
2�f /�D exp

�
�
"�2

2

�
f;
1C e

�ˇ.HC "
ˇ�C

/

1� e
�ˇ.HC "

ˇ�C
/
f

��
:

By using the orthonormal basis of eigenvectors . hj /j2N of H with associated
eigenvalues �hj , �h0 D 0, �hj � ch for j > 0, we obtain

log.TrŒ%".h/W.
p
2�f /�/D��2�C jhf; 

h
0 ij

2
CO."h�1/:
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With k h0 � 0kL2 D o.h/,  0.x/D �
�d
4 UT e

�x
2

2 , we obtain, after decomposing
f D f0 0˚

? f 0,Z
L2
e2i� Rehf;zi d�.z/D lim

h!0
TrŒ%".h/W.

p
2�f /�D e��

2�C jf0j
2

:

We deduce, as in [Ammari and Nier 2008, Section 7.5; 2011, Section 4.4],

M.%".h/; h 2 E/D
��

e
�
jz0j

2

�C

��C
L.dz0/

�
˝ ı0.z

0/

�
.z D z0 0˚

? z0/;

and

.p/
0 D pŠ�

p
C j 

˝p
0 ih 

˝p
0 j for all p 2 N:

The fact that �.p/
.I/
� 0 for all p 2 N, now comes from

TrŒ .p/0 �D pŠ �
p
C D �

.p/.f0g/: �

Appendix A. Multiscale measures

We now recall facts about multiscale measures, introduced in [Fermanian-Kammerer
and Gérard 2002; Fermanian Kammerer 2005]. For this we need a new class of
symbols. Let D0;D00;D000 2 N be such that D0CD00CD000 DD and set

F D
˚
XD.x0; x00; x000; � 0; � 00; � 000/ 2 R2D W x0D0; x00D� 00D0

	
:

The class of symbols S .2/F is defined as the set of

.X; Y /! a.X; Y / 2 C1.R2D �RD
0C2D00/

(note that RD
0C2D00 Š F?, hence the notation S .2/F ) such that

� there exists C >0 such that for all Y 2RD
0C2D00, we have a. � ; Y /2C10 .B.0; C //;

� there exists a function a1 2 C10 .R
2D � SD

0C2D00�1/ such that a.X;R!/!
a1.X; !/ as R!1 in C1.R2D �SD

0C2D00�1/.

Those symbols are quantized according to

a.2/;h D a
W;h
h

; ah.X/D a

�
X;

x0

h
1
2

;
X 00

h
1
2

�
X D .x0; x00; x000; � 0; � 00; � 000/:

Theorem 0.1 in [Fermanian Kammerer 2005], which also considers the case when
.x0=h

1
2 ; X 00=h

1
2 / is replaced by .x0=hs; X 00=hs/, s < 1

2
, says the following.

Proposition A.1. Let .h/h2E be a bounded family of nonnegative trace-class op-
erators on L2.R2D/ with limh!0 TrŒh� <C1. There exist E 0 � E , 0 2 E 0, with
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M.h; h 2 E 0/ D f�g, a nonnegative measure �.I / on F � SD
0C2D00�1 and a

L1.L2.R2D00//-measure m on F �RD
0

such that the convergence

lim
h2E 0
h!0

TrŒha
.2/;h�D

Z
R2DnF

a1.X;
.x0; X 00/

j.x0; X 00/j
/ d�.X/

C

Z
F�SD

0C2D00�1

a1.X; !/ d�.I /.X; !/

CTr
�Z
F�RD

0
a.X; x0; z;Dz/ dm.X; x

0/

�
holds for all a 2 S .2/F .

Remark A.2. With this scaling and when aW;hDaW .x;hDx/Da.x;hDx/CO.h/,
t D 0, Fermanian Kammerer [2005] checked the equivariance by the semiclassical
Egorov theorem. Hence, this construction is naturally extended to the case when
T �RD is replaced by T �M and F is replaced by a submanifold of T �RD on
which the symplectic form has constant rank.

In Proposition 3.5 we use the simple case of the above result whenD0DD000D 0
and D00 D D. Note that in this case F � RD

0

D f0g and the trace-class-valued
measure is nothing but a trace-class operator 0.

Appendix B. Wigner measures in the bosonic case and condition (PI)

Bosonic mean-field analysis is like semiclassical analysis in infinite dimension.
Let Z be a separable complex Hilbert space and �C.Z / be the associated bosonic
Fock space. With the scaled CCR relations

ŒaC.g/; a
�
C.f /�D "hg; f i; ŒaC.g/; aC.f /�D Œa

�
C.g/; a

�
C.f /�D 0

and after setting

ˆ.f /D
aC.f /C a

�
C
.f /

p
2

; W.f /D eiˆ.h/; (28)

mean-field Wigner measures were introduced in [Ammari and Nier 2008]. Actually
the parameter "�1 represents the typical number of particles. Let .%"/"2E , 02 E , be
a family of normal states (normalized nonnegative trace-class operators) in �C.Z /.
Under the sole uniform estimate TrŒ%".1CN /ı � � Cı for some ı > 0, Wigner
measures are defined as Borel probability measures on Z and characterized by
their characteristic function as follows: � 2M.%"; " 2 E/ if and only if there exists
E 0 � E , 0 2 E 0, such that,

for all f 2Z ; lim
"2E 0
"!0

TrŒ%"W.
p
2�f /�D

Z
Z

e2i� Rehf;zi d�.z/: (29)
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Assuming TrŒ%"N k
C
��C k for all k 2N (or as in Hypothesis 4.1, TrŒ%"ecNC ��C ),

M.%"; " 2 E/D f�g implies

lim
"!0

TrŒ%" QbWick�D

Z
Z

hz˝p; Qbz˝pi d�.z/ (30)

holds for all compact Qb 2 L1.Sp
C

Z ˝p/. In particular with the definition of non-
normalized reduced density matrices we obtain,

for all p 2 N; w�- lim
"!0

 .p/" D 
.p/
0 D

Z
Z

jz˝pihz˝pj d�.z/:

This w�-limit can be transformed to a k kL1 if and only if the restriction to compact
Qb in (30) can be removed. It actually suffices to check that (30) holds for Qb 2
L1.Sp

C
Z ˝p/ and Qb D IdSp

C
Z˝p , as shows the following result.

Proposition B.1. For a family .%"/"2E in L1.H/, 02E , such that %"�0, TrŒ%"�D1,
M.%"; " 2 E/D f�g, the conditions (PI) and (P) are equivalent:�
.PI/ W for all ˛ 2 N; lim

"!0
TrŒ%"N ˛�D

Z
Z

jzj2˛ d�.z/ <1

�
()

�
.P/ W for all b 2 Palg.Z /; lim

"!0
TrŒ%"bWick�D

Z
Z

b d�

�
;

where

Pp;q.Z /D fb WZ 3 z 7! b.z/D hz˝q; Qbz˝pi 2 C W Qb 2 L.Sp
C

Z ˝pISq
C

Z ˝q/g;

and Palg.Z /D˚
alg
p;q2NPp;q.Z /.

We give below the proof, which rectifies a minor mistake in [Ammari and Nier
2011].

Proof. For ˛ 2N�, we have .jzj2˛/Wick DN .N � "/ � � � .N � .˛� 1/"/. Hence the
condition (PI) is equivalent to

.PI/0 W for all ˛ 2 N; lim
"!0

TrŒ%".jzj2˛/Wick�D

Z
Z

jzj2˛ d�.z/ <1:

Hence the condition (PI) is a particular case of (P) and it is sufficient to prove
.PI/0) .P/. From now, assume (PI)0.

We want to prove (P) for a general b 2Palg.Z /D
Lalg
p;q2N Pp;q.Z /. Let us first

consider the “diagonal” case b 2 Pp;p.Z /, p 2 N�. Using the decomposition Qb D
QbR;C� QbR;�C i QbI;C� i QbI;� with all the Qb� � 0 we can assume Qb� 0. For such a Qb,
there exists a nondecreasing sequence . Qbn/n�0 of nonnegative compact operators
in L1.Sp

C
Z /˝p such that limn!1 Qbn D Qb in the weak operator topology. Recall
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from [Ammari and Nier 2011, Proposition 2.9] that the convergence in the (P)
condition always holds when the kernel Qb is compact; thus,

for all n 2 N;

Z
Z

bn d�D lim
"!0

TrŒ%" bWick
n �� lim inf

"!0
TrŒ%" bWick�:

Using bn.z/Dhz˝p; Qbnz˝pi!hz˝p; Qbz˝piD b.z/ as n!1 and Fatou’s lemma
yield Z

Z

b d�� lim inf
"!0

TrŒ%"bWick�: (31)

The same arguments with Qb replaced by jbjPp;p IdSp
C

Z˝p �
Qb � 0 provide

lim inf
"!0

TrŒ%".j QbjSp
C
Z˝p jzj

2p
� b.z//Wick��

Z
.j QbjSp

C
Z˝p jzj

2p
� b.z// d�.z/:

With (PI)0 condition, the jzj2p terms can be removed on both sides and thus

lim sup
"!0

TrŒ%"bWick��

Z
Z

b d�: (32)

The inequalities (31) and (32) show that the convergence in the (P) condition holds
for all b 2 Pp;p.Z / such that Qb � 0, and hence for all b 2 Pp;p.Z /.

We now consider the general case b 2 Pp;q.Z /. There exists a sequence of
compact operators Qbn 2 L1.S

p
C

Z ˝p;Sq
C

Z ˝q/ such that,

for all n2N; jbnjPp;q D j
QbnjL.Sp

C
Z˝p;Sq

C
Z˝q/� j

QbjL.Sp
C

Z˝p;Sq
C

Z˝q/D jbjPp;q

and,

for all z 2Z ; lim
n!1

bn.z/D lim
n!1

hz˝q; Qbnz
˝p
i D hz˝q; Qbz˝pi D b.z/:

For any fixed n 2 N,

lim sup
"!0

ˇ̌̌̌
TrŒ%"bWick��

Z
Z

b.z/ d�.z/

ˇ̌̌̌
� lim sup

"!0

ˇ̌
TrŒ%".bWick

� bWick
n /�

ˇ̌
C lim sup

"!0

ˇ̌̌̌
TrŒ%"bWick

n ��

Z
Z

bn d�

ˇ̌̌̌
C

Z
Z

jbn� bj d�; (33)

where the second term of the right-hand side vanishes because Qbn is a fixed compact
operator. Using the Cauchy–Schwarz inequality with TrŒ%"�D 1 givesˇ̌

TrŒ%".bWick
� bWick

n /�
ˇ̌
� TrŒ%".bWick

� bWick
n /.bWick;�

� bWick;�
n /�

1
2 :

From the proved result when p D q, we deduce

lim sup
"!0

ˇ̌
TrŒ%".bWick

� bWick
n /�

ˇ̌
�

�Z
Z

jb� bnj
2 d�.z/

� 1
2

: (34)
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With
R

Z jzj
r.pCq/ d�.z/ <1 and,

for all n 2 N; for all z 2Z ; jb.z/� bn.z/j
r
� .2jbjPp;q /

r
jzjr.pCq/;

Lebesgue’s convergence theorem yields

lim
n!1

Z
Z

jb� bnj
r d�D 0 (35)

for r 2 f1; 2g. Combining (33), (34) and (35) proves (P) for any b 2 Pp;q.Z /. �

Appendix C. The composition formula of Wick quantized operators

We give an algebraic proof for the composition formula (4) of two Wick quantized
operators on a finite- or infinite-dimensional separable complex Hilbert space Z .
This proof holds in both the bosonic and fermionic cases. It uses only the definition
of the Wick quantization, and it involves neither creation and annihilation operators,
nor the canonical commutation or anticommutation relations.

We define ŒŒm; n�� WD fm; : : : ; ng for m � n 2 N. The action of the symmetric
group SŒŒ1;n�� on product vectors in Z ˝n, � � .z1˝ � � � ˝ zn/ D z�1 ˝ � � � ˝ z�n ,
zj 2Z , is extended to Z ˝n by linearity and density. With this notation,

Sn˙ D
1

nŠ

X
SŒŒ1;n��

s˙.�/ � � :

We begin with a preliminary lemma on a special set of permutations.

Lemma C.1. Let k; p; q;K 2 N such that k 2 ŒŒmaxf0; pC q �Kg;minfp; qg��,
and

S.k/ WD
˚
� 2SŒŒ1;K��

ˇ̌
card

�
�.ŒŒp� kC 1; p� kC q��/\ ŒŒ1; p��

�
D k

	
:

(1) The cardinal of S.k/ is

cardS.k/D
�q
k

��p
k

�
kŠ
.K � q/Š .K �p/Š

.K � .qCp� k//Š
:

(2) Any permutation � 2S.k/ can be factorized as � D � .1/� .2/� .3/� .4/, where

� .1/ 2SŒŒ1;p��; � .3/ 2SŒŒp�kC1;p�kCq��;

� .2/ 2SŒŒpC1;K��; � .4/ 2SŒŒ1;K��nŒŒp�kC1;p�kCq��:

Note that:

� There is no uniqueness of such a decomposition.

� For A� B an element of SA is identified with the corresponding element of
SB which is the identity on B nA.

� The permutations � .1/ and � .2/ commute, and so do � .3/ and � .4/.
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Proof. (1) We count the number of permutations in S.k/. We first choose k in-
tegers out of ŒŒp � k C 1; p � k C q�� and k integers out of ŒŒ1; p��. There are�q
k

��p
k

�
such possible choices and kŠ possible permutations for each of these choices.

Then the remaining q � k integers of ŒŒp � kC 1; p � kC q�� have to be sent in
ŒŒpC 1;K��. There are .q � k/Š

�K�p
q�k

�
possibilities for that. In the same way we

have .p � k/Š
�K�q
p�k

�
possibilities for the remaining integers of ŒŒ1; p�� that come

from ŒŒ1;K�� n ŒŒp � k C 1; p � k C q��. Finally the K � k � .q � k/ � .p � k/
remaining integers on both sides can be permuted in .K � q � pC k/Š different
ways, so that

cardS.k/D
�q
k

��p
k

�
kŠ .q� k/Š

�K�p
q�k

�
.p� k/Š

�K�q
p�k

�
.K � q�pC k/Š

and this gives the result.

(2) LetAD��1.ŒŒ1;p��/\ŒŒp�kC1;p�kCq��. There exists � .3/2SŒŒp�kC1;p�kCq��
such that � .3/.A/D ŒŒp� kC 1; p��. Then

� � .3/�1.ŒŒp� kC 1; p��/D �.A/� ŒŒ1; p��:

Hence there exists � .1/ 2SŒŒ1;p�� such that � .1/.j /D� � .3/�1.j / on ŒŒp�kC1; p��.
Similarly, there exists � .2/ 2 SŒŒpC1;K�� such that � .2/.j / D � � .3/�1.j / on
ŒŒp C 1; p � k C q��. Note that � .1/ and � .2/ commute. Finally, we set � .4/ D
� .2/�1� .1/�1�� .3/�1. By construction, � .4/.j /D j for j 2 ŒŒp�kC1; p�kCq��,
hence � .4/ 2SŒŒ1;K��nŒŒp�kC1;p�kCq�� and � D � .1/� .2/� .3/� .4/ (as � .4/ and � .3/

commute). �

Notation 1. On L.Z ˝pIZ ˝q/, the equivalence relation Š is defined by

AŠ B () Sq
˙
ASp;�
˙
D Sq
˙
B Sp;�
˙
:

Lemma C.2. Let Qbj 2 L.S
pj
˙

Z ˝pj ISqj
˙

Z ˝qj / and nj such that n1Cp1 D n2C
q2 DWK. Then

. Qb1˝ Id˝n1/SK;�
˙

SK˙ . Qb2˝ Id˝n2/

Š

X
k

.˙1/.p2Cq2/.k�p1/
n2Š n1Š

K 0Š KŠ kŠ
. Qb1]

k Qb2/˝ Id˝K
0

;

where k 2 ŒŒmaxf0; p1C q2�Kg;minfp1; q2g��, and K 0 DK � q2�p1C k.

Proof. Using the partition SŒŒ1;K�� D
F
k
zS.k/ into subsets

zS.k/ WD
˚
� 2SŒŒ1;K��

ˇ̌
card

�
�.ŒŒ1; q2��/\ ŒŒ1; p1��

�
D k

	
for k 2 ŒŒmaxf0; p1C q2�Kg;minfp1; q2g�� yields

. Qb1˝Id˝n1/SK;�
˙

SK˙ . Qb2˝Id˝n2/D
1

KŠ

X
k

X
Q�2zS.k/

. Qb1˝Id˝n1/s˙. Q�/ Q� �. Qb2˝Id˝n2/:
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We fix k and Q� 2 zS.k/. A cyclic permutation �r WD .1 2 3 � � � r/ acting on Z˝r

defines the shift operator �r � D .1 2 3 � � � r/ � and then � WD Q� �k�p1K is in S.k/

(with p D p1 and q D q2) and

. Qb1˝Id˝n1/s˙. Q�/ Q��
k�p1
K �

p1�k
K �. Qb2˝Id˝n2/�k�p1p2Cn2

�
p1�k
p2Cn2

�

Š . Qb1˝Id˝n1/s˙.�/� �.˙1/K.k�p1/.Id˝p1�k˝Qb2˝Id˝K
0

/.˙1/.p2Cn2/.k�p1/

Š .˙1/.KCp2Cn2/.k�p1/. Qb1˝Id˝n1/s˙.�/� �.Id˝p1�k˝Qb2˝Id˝K
0

/

holds for operators in L.Z ˝q1Cn1 IZ ˝p2Cn2/. We used

s˙.�/D s˙. Q�/s˙.�
k�p1
K /D s˙. Q�/.˙1/

K.k�p1/

and

.�
p1�k
p2Cn2

� / ıSp2Cn2
˙

D .˙1/.p2Cn2/.p1�k/Sp2Cn2
˙

:

Owing to the factorization � D � .1/� .2/� .3/� .4/ of Lemma C.1 with � .i/� .iC1/D
� .iC1/� .i/ for i 2 f1; 3g, we get

. Qb1˝Id˝n1/s˙.�/� � .Id˝p1�k˝ Qb2˝Id˝K
0

/

Š . Qb1˝Id˝n1/s˙.�/.� .1/� .2/� .3/� .4//� .Id˝p1�k˝ Qb2˝Id˝K
0

/

Š s˙.�/..b1 �
.1/
� /˝Id˝n1� .2/� / � .4/ � .Id˝p1�k˝.� .3/ � Qb2/˝Id˝K

0

/

Š s˙.�/. Qb1s˙.�
.1//˝s˙.�

.2//Id˝n1/s˙.� .4//.Id˝p1�k˝s˙.� .3// Qb2˝Id˝K
0

/

Š . Qb1˝Id˝n1/ .Id˝p1�k˝ Qb2˝Id˝K
0

/

Š Œ. Qb1˝Id˝q2�k/.Id˝p1�k˝ Qb2/�˝Id˝K
0

Š

�
p1Š

.p1�k/Š

q2Š

.q2�k/Š

��1
. Qb1]

k Qb2/˝Id˝K
0

:

We conclude with the first statement of Lemma C.1 which counts the terms inP
Q�2zS.k/ because card. zS.k//D card.S.k//. �

Proof of Proposition 2.2. For n1; n2 such that n1 C p1 D n2 C q2 DW K, using
Lemma C.2,

"�
p1Cq1Cp2Cq2

2 � QbWick
1
QbWick
2

ˇ̌
Sn2Cp2
˙

Z˝n2Cp2

D

p
KŠ .n1C q1/Š

n1Š

p
.n2Cp2/ŠKŠ

n2Š

�Sq1Cn1
˙

. Qb1˝ Id˝n1/Sp1Cn1;�
˙

Sp2Cq2
˙

. Qb2˝ Id˝n2/Sp2Cn2;�
˙
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D

X
k

.˙1/.p2Cq2/.k�p1/
p
.n1C q1/Š .n2Cp2/Š

n1Š n2Š
KŠ

n2Š n1Š

K 0Š KŠ kŠ

�Sq1Cn1
˙

.. Qb1]
k Qb2/˝ Id˝K

0

/Sp2Cn2;�
˙

D

X
k

.˙1/.p2Cq2/.k�p1/
p
.q2C q1� kCK 0/Š .p2Cp1� kCK 0/Š

K 0Š kŠ

�Sq1Cn1
˙

.. Qb1]
k Qb2/˝ Id˝K

0

/Sp2Cn2;�
˙

;

where K 0 WDK � q2�p1C k.
With p2C n2 D p2Cp1 � kCK 0 and q1C n1 D q2C q1 � kCK 0, we thus

obtain the equality of operators

QbWick
1
QbWick
2 D

X
k

.˙1/.p2Cq2/.k�p1/
"k

kŠ
. Qb1]

k Qb2/
Wick

restricted to Sn2Cp2
˙

Z ˝n2Cp2 . �

Appendix D. A general formula for TrŒ�˙.C /�

The following result about traces of the second quantized operator �˙.C / is often
presented for self-adjoint trace-class operators, although it is valid without self-
adjointness. We recall here the general version for the sake of completeness. It
relies on a simple holomorphy argument and can be compared with Lidskii’s theo-
rem, which says that for any trace-class operator T, we have TrŒT �D

P
�2�.T / �.

Lemma D.1. For any trace-class operator C 2 L1.Z / (which is assumed to be a
strict contraction in the bosonic case,˙DC), its second quantized version �˙.C /
is trace-class in �˙.Z / and

TrŒ�˙.C /�D exp.�TrŒlog.1�C/�/:

Proof. When C DC � 2L1.Z / using an orthonormal basis of eigenvectors .en/n2N

in Z with the corresponding eigenvalues .�n/n2N, and

�˙.Z /Š
O
n2N

�˙.Cen/;

(the infinite tensor product of Hilbert spaces with a stabilizing sequence un D�n
with �n 2 �˙.Cen/ the vacuum vector), we obtain

� in the bosonic case with kCk< 1,

TrŒ�C.C /�D
Y
n2N

TrŒ�C.�nIdC/�D
Y
n2N

1

1��n
D exp

�
�

X
n2N

log.1��n/
�

D exp.�TrŒlog.1�C/�/;
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� in the fermionic case,

TrŒ��.C /�D
Y
n2N

TrŒ��.�nIdC/�D
Y
n2N

.1C�n/D exp
�
C

X
n2N

log.1C�n/
�

D exp.TrŒlog.1CC/�/:

The functoriality of �˙ for the polar decompositionC DU jC j is given by �˙.C /D
�˙.U /�˙.jC j/, while kCk< 1,kjC jk< 1 in the bosonic case. Hence �˙.C /
is trace-class when C 2 L1.Z / (and kCk< 1 in the bosonic case).

Set CDL1.Z / in the fermionic case and CDL1.Z /\fC 2L.Z / W kCk<1g in
the bosonic case. In both cases C is an open convex set on which the two sides of
the equality are holomorphic functions. Actually the holomorphy of the left-hand
side comes from series expansion

TrŒ�˙.C /�D
1X
nD0

TrŒSn˙C
˝nSn;�

˙
�;

which converges uniformly in

B.C0; ıC0/D fC 2 L
1.Z / W kC �C0kL1.Z / < ıC0g

for ıC0 > 0 small enough, for any C0 2L1.Z / (satisfying additionally kC0k< 1 in
the bosonic case). Actually the estimate kCkL1.Z / � A (and kCk � % with % < 1
in the bosonic case) implies kjC jkL1.Z / � A (and kjC jk � % in the bosonic case).
Now the inequality ˇ̌

TrŒSn˙C
˝nSn;�

˙
�
ˇ̌
� TrŒSn˙jC j

˝nSn;�
˙
�;

and the formula in the self-adjoint case with
1X
nD0

TrŒSn�jC j
˝nSn;�� �� exp.A/ (fermions)

or
1X
nD0

TrŒSnCjC j
˝nSn;�

C
�� exp

�
A

1� %

�
(bosons);

ensures the uniform convergence of the series.
For any C 2 C, we know C and ReC D 1

2
.C CC �/ belong to C so that C.s/D

ReC C is ImC belongs to C when s 2 !0 D .�ı; ı/C i.�ı; ı/ and when s 2
!1 D .1� ı; 1C ı/C i.�ı; ı/ for ı > 0 small enough. By the convexity of C, we
have C.s/ 2 C for all s 2 ! D .�ı; 1C ı/C i.�ı; ı/. When s 2 i.�ı; ı/, C.s/ is
self-adjoint and the equality holds. The holomorphy of both sides with respect to
s 2 ! implies that the equality holds true for all s 2 !, in particular when sD 1. �
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[Charles and Vũ Ngo. c 2008] L. Charles and S. Vũ Ngo. c, “Spectral asymptotics via the semiclassical
Birkhoff normal form”, Duke Math. J. 143:3 (2008), 463–511. MR Zbl

[Colin de Verdière 1985] Y. Colin de Verdière, “Ergodicité et fonctions propres du laplacien”, Comm.
Math. Phys. 102:3 (1985), 497–502. MR Zbl
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