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FIXED POINT INDEX THEORY

FOR PERTURBATION OF EXPANSIVE MAPPINGS

BY k-SET CONTRACTIONS

Smäıl Djebali — Karima Mebarki

Abstract. In this work, we develop a fixed point index theory for the sum

of k-set contractions and expansive mappings with constant h > 1 when
0 ≤ k < h−1 as well as in the limit case k = h−1. After computing this new

index, several fixed point theorems and recent results are derived, including

Krasnosel’skii type theorems. Two examples of application illustrate the
theoretical results.

1. Introduction

Starting from the Krasnosel’skĭı fixed point theorem (KFPT for short) [22],

the fixed point theory for sums of operators developed promptly and has been

widely extended to various types of nonlinear mappings (see, e.g. [10], [29], [36])

in theory as well as in applications to many problems in nonlinear sciences.

KFPT (1958) concerns the sum of a contraction and a compact mapping and

turns out to be a generalization of Banach’s contraction mapping principle (1922)

and Schauder’s fixed point theorem (1930) [33]. However, its proof uses both of

these important results. It states that the sum T +F has at least one fixed point

in D whenever the mappings T, F : D → E satisfy the following conditions:

(a) for all x, y ∈ D, T (x) + F (y) ∈ D.

(b) T is a contraction.
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(c) F is compact, continuous.

The proof of this result lies in the fact that if E is a linear vector space, F ⊂ E
a nonempty subset, and g : F → E is a contraction, then the mapping I−g : F →
F is a homeomorphism [34, Lemma 2.9].

Earlier, the concept of measure of noncompactness has been employed by

Darbo [12] and later by Sadovski [32] to introduce the notions of k-set contrac-

tions and condensing mappings, respectively and then to derive some fixed point

theorems for these classes of operators. One of the most important feature of

these results is that the sum of a contraction and a completely continuous map-

ping turned out to be a strict k-set contraction (with respect to some measure

of noncompactness), extending by the way Krasnosel’skĭı’s fixed point theorem.

Later many researchers have been interested in the extension of the above

theorem in various directions by modifying assumptions (a)–(c), or even the

underlying space E; we cite [10], [18], [35], [36].

Another fixed point theorem established by Krasnosel’skĭı in 1964 is the cone

expansion and compression theorem (see, e.g. [20], [24], [23]) for mappings that

need not be the sum of operators but act on some cones of Banach spaces. The

latter theorem has been recently deeply improved too; see [3], [4], [17], [25], [26],

[30] and references therein.

This second existence result plays a key role in the study of positive fixed

points for various classes of nonlinear operators posed in some ordered Banach

spaces. Indeed the positivity of solutions of nonlinear equations, especially or-

dinary, partial differential equations, and integral equations is a very important

issue in applications, where a positive solution may represent a density, temper-

ature, velocity, . . .

The positivity condition can be mathematically described by introducing

a cone P in some Banach space E, that is a closed convex subset such that

αP ⊂ P for all positive real number α and P∩(−P) = {0}. Notice that a cone P
induces a partial ordering ≤ in E defined by x ≤ y if and only if y− x ∈ P. We

will denote by P∗ = P \ {0} and E∗ = E \ {0} the punctured cone and space,

respectively. We say that x < y if y − x ∈ P∗ and x 6≤ y if y − x 6∈ P. A cone P
is called normal if there exists a positive constant N such that, for all x, y ∈ P,

we have

x ≤ y ⇒ ‖x‖ ≤ N‖y‖.

The least positive constant N is called the normal constant of P.

This work is part of generalizations leading to fixed point theory for sums

of operators. More precisely, our aim is to construct a generalized fixed point

index for operators that are sums of the form T + F , where T is an expansive

operator and F is a k-set contraction. For this we will appeal to the fixed point

index theory for strict set contractions (see [1], [27], [28]). Then we derive several
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existence results for the nonlinear equation x = Tx+Fx, where x ∈ P, extend-

ing by the way Krasnosel’skii and Sadovski fixed point theorems for classes of

operators that can be expressed as sums of nonlinear contractions and expansive

mappings. Moreover, using some approximation arguments, we show that the

theory still holds for the limit case concerning the important class of mappings F

that are 1-set contractions. These mappings include, as particular cases, sums

of nonexpansive and compact mappings. Note that the topological degree for

these special mappings was first introduced by Petryshyn in [31] (see also [14]

and [21] for a survey on the fixed point theory for 1-set contractions).

Before proceeding with the theoretical results of this paper, we recall that

as early as in the 70’s, F. Browder [9, Chapter 13] introduced a topological

degree for a class of compact perturbation of strongly accretive mappings. The

construction of the degree was based on the Leray–Schauder degree together

with the perturbation of maximal monotone operators. An interesting fact in

the study of accretive operators is that they may lead to the construction of

contractive mappings (see [7]). In this respect, we also mention Chen, Ha, and

Cho [11] who discussed the fixed point index for operator sums of the form −A+

K, where A : D(A) ⊂ P → 2P is an accretive operator with (I +A)(D(A)) = P
and K is a strict set contraction. As consequences, they have deduced some

solvability results for the operator inclusion x ∈ −Ax+Kx, where x ∈ P.

In this section, we will also collect some notations, definitions, and auxiliary

results we need throughout this paper. Of particular importance for our purpose

is the fixed point index for k-set contractions and its properties. Then we will

present our main contributions in the subsequent sections. We will consider

separately two cases: firstly the case of the sum T + F , where T is expansive

and F is a k-set contraction is treated in Section 2. Then in Section 3, we will

discuss the limit case where F is a (h − 1)-set contraction. Sections 2 and 3

are also concerned with the computation of the fixed point index. Some fixed

point theorems are further derived as consequences in Section 4. The paper ends

with two examples of application to nonlinear integral equations in Section 5

illustrating the abstract results obtained in this work.

Let E be a Banach space. A mapping f : E → E is said to be completely

continuous if it is continuous and maps bounded sets into relatively compact

sets. A subset X ⊂ E is called a retract of E if there exists a continuous map

ρ : E → X such that ρ(x) = x for all x ∈ X. Then ρ is called a retraction. It is

easy to see that, in any topological space, every retract is closed. Conversely,

every closed convex subset of a locally convex topological vector space is a retract

of this space.
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The concept of k-set contraction is related to that of the Kuratowski mea-

sure of noncompactness (MNC for short) (1930) which we recall for the sake of

completeness.

Definition 1.1. Let E be a real Banach space and ΩE be the class of all

bounded subsets of E. The Kuratowski measure of noncompactness α : ΩE →
[0,+∞) is defined by

α(V ) = inf

{
δ > 0

∣∣∣∣ V =

n⋃
i=1

Vi and diam (Vi) ≤ δ, for all i = 1, . . . , n

}
,

where diam (Vi) = sup{‖x− y‖E , x, y ∈ Vi} is the diameter of Vi.

For the main properties of measures of noncompactness, we recommend,

e.g. [5], [6] and [13].

Definition 1.2. Let E be a Banach space and A : D ⊂ E → E a continuous

mapping which maps bounded subsets of E into bounded subsets.

(a) A is said a k-set contraction if there exists a constant k ≥ 0 such that

α(A(V )) ≤ kα(V ), for every bounded V ⊂ D.

(b) A is a strict k-set contraction if k < 1.

The proofs of our results involve the fixed point index for strict k-set con-

tractions whose basic properties are collected in the following lemma. For the

proof we refer the reader to [19, Theorem 1.3.5] or [1], [13], [20].

Lemma 1.3. Let X be a retract of a Banach space E. For every bounded

open subset U ⊂ X and every strict k-set contraction f : U → X without fixed

point on the boundary ∂U , there exists uniquely one integer i (f, U,X) satisfying

the following conditions:

(a) (Normalization) If f : U → U is a constant map, then i(f, U,X) = 1.

(b) (Additivity) For any pair of disjoint open subsets U1, U2 in U such that

f has no fixed point on U\(U1 ∪ U2), we have

i(f, U,X) = i(f, U1, X) + i(f, U2, X),

where i(f, Uj , X) := i(f |Uj
, Uj , X), j = 1, 2.

(c) (Homotopy Invariance) The index i(h(x, t), U,X) does not depend on the

parameter t ∈ [0, 1], where

(i) h : [0, 1]×U → X is continuous and h(t, x) is uniformly continuous

in t with respect to x ∈ U ,

(ii) h(t, · ) : U → X is a strict k-set contraction, where k does not de-

pend on t ∈ [0, 1],

(iii) h(t, x) 6= x, for every t ∈ [0, 1] and x ∈ ∂U .
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(d) (Preservation) If Y is a retract of X and f(U) ⊂ Y , then

i (f, U,X) = i (f, U ∩ Y, Y ),

where i (f, U ∩ Y, Y ) := i(f |U∩Y , U, Y ).

(e) (Excision property). Let V ⊂ U an open subset such that f has no fixed

point in U\V . Then

i(f, U,X) = i(f, V,X).

(f) (Solvability). If i(f, U,X) 6= 0, then f has a fixed point in U .

The following results are direct consequences of this definition.

Proposition 1.4. Let X be a closed convex of a Banach space E and U ⊂ X
a bounded open subset with 0 ∈ U . Assume that A : U → X is a strict k-set

contraction that satisfies the Leray–Schauder boundary condition:

Ax 6= λx, for all x ∈ ∂Uand for all λ ≥ 1.

Then i(A,U,X) = 1.

Corollary 1.5. Let P be a cone of a Banach space E and U ⊂ P a bounded

open subset with 0 ∈ U . Assume that A : U → P is a strict k-set contraction

satisfying ‖Ax‖ ≤ ‖x‖ and Ax 6= x for all x ∈ ∂U . Then the fixed point index

i(A,U,P) = 1.

Proposition 1.6 ([19, Corollary 1.3.1]). Let X be a closed convex of a Ba-

nach space E and U ⊂ X a nonempty bounded open convex subset of X. As-

sume that A : U → X is a strict set contraction such that A(U) ⊂ U . Then

i(A,U,X) = 1.

Proposition 1.7 ([19, Theorem 1.3.8]). Let X be a closed convex of a Ba-

nach space E and U ⊂ X be a bounded open subset. Assume that A : U → X is

a strict k-set contraction. If there exists u0 ∈ X, u0 6= 0, such that λu0 ∈ X, for

all λ ≥ 0 and

x−Ax 6= λu0, for all x ∈ ∂U and for all λ ≥ 0,

then the fixed point index i(A,U,X) = 0.

Remark 1.8.

(a) Proposition 1.4 remains true even if the operator A is a 1-set contraction

(see [21, Theorem 3]).

(b) Proposition 1.7 remains true even if the operator A is a semi-closed (I−A
closed) 1-set contraction and X is a wedge in E (see [21, Theorem 4]).

(c) At least for compact mappings, the properties of the fixed point index

remain valid in the more general setting of a translate of a cone K = P+θ

(θ ∈ E) (see [16]).
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To establish our results, we need the following technical one concerning ex-

pansive mappings.

Definition 1.9. Let (X, d) be a metric space and D be a subset of X. The

mapping T : D → X is said to be expansive if there exists a constant h > 1 such

that

d(Tx, Ty) ≥ h d(x, y), for all x, y ∈ D.

Lemma 1.10 ([35, Lemma 2.1]). Let (X, ‖ · ‖) be a linear normed space and

D ⊂ X. Assume that the mapping T : D → X is expansive with constant h > 1.

Then the inverse of I − T : D → (I − T )(D) exists and∥∥(I − T )−1x− (I − T )−1y
∥∥ ≤ 1

h− 1
‖x− y‖, for all x, y ∈ (I − T )(D).

Proposition 1.11. Let (X, d) be a complete metric space and D be a closed

subset of X. Assume that the mapping T : D → X is expansive and D ⊂ T (D),

then there exists a unique point x∗ ∈ D such that Tx∗ = x∗.

In case of a Banach space, it can be observed that the operator T−1 : T (D)→
D is a surjective 1/h-contraction. Proposition 1.11 then follows from Banach’s

contraction principle.

In all what follows, P will refer to a cone in a Banach space E, Ω is a subset

of P, and U is a bounded open subset of P. For some constant r > 0, we will

denote the conical shell by Pr = P ∩ Br, where Br = {x ∈ E : ‖x‖ < r} is the

open ball centered at the origin with radius r.

Assume that T : Ω → E is an expansive mapping with constant h > 1 and

F : U → E is a k-set contraction. By Lemma 1.10, the operator (I − T )−1 is

1/(h− 1)-Lipschtzian on (I − T )(Ω).

2. The case where F is a k-set contraction with 0 ≤ k < h− 1

2.1. Definition of a fixed point index. Suppose that 0 ≤ k < h− 1,

F (U) ⊂ (I − T )(Ω),(2.1)

x 6= Tx+ Fx, for all x ∈ ∂U ∩ Ω.(2.2)

Then x 6= (I − T )−1Fx, for all x ∈ ∂U and the mapping (I − T )−1F : U → P is

a strict k/(h−1)-set contraction. Indeed, (I−T )−1F is continuous and bounded;

and for any bounded set B in U , we have

α
((

(I − T )−1F
)
(B)

)
≤ 1

h− 1
α(F (B)) ≤ k

h− 1
α(B).

By Lemma 1.3, the fixed point index i((I − T )−1F,U,P) is well defined. Thus

we put

Definition 2.1. i∗(T + F,U ∩ Ω,P) = i((I − T )−1F,U,P).



Fixed Point Index Theory 619

We call this integer the generalized fixed point index of the sum T + F on

U ∩ Ω with respect to the cone P. Notice that, for U ∩ Ω = ∅, the index

i∗(T + F,U ∩ Ω,P) = 0.

Remark 2.2. If T : E → E and F : U → E, then the condition F (U) ⊂
(I − T )(Ω) can be replaced by F (U) ⊂ (I − T )(E) both with

(y = Ty + Fx, x ∈ U) ⇒ y ∈ P.

Indeed, for every x ∈ U , there exists y ∈ E such that (I − T )y = Fx, i.e.

y = Ty + Fx. Hence y = (I − T )−1Fx ∈ P.

Theorem 2.3. The fixed point index defined in Definition 2.1 satisfies the

following properties:

(a) (Normalization) If U = Pr, 0 ∈ Ω and Fx = z0 ∈ B(−T0, (h− 1)r) ∩ P
for all x ∈ Pr, then

i∗(T + F,Pr ∩ Ω,P) = 1.

(b) (Additivity) For any pair of disjoint open subsets U1, U2 in U such that

T + F has no fixed point on (U\(U1 ∪ U2)) ∩ Ω, we have

i∗(T + F,U ∩ Ω,P) = i∗(T + F,U1 ∩ Ω,P) + i∗(T + F,U2 ∩ Ω,P),

where i∗(T + F,Uj ∩ Ω, X) := i∗(T + F |Uj
, Uj ∩ Ω,P), j = 1, 2.

(c) (Homotopy Invariance) The fixed point index i∗(T + H(t, · ), U ∩ Ω,P)

does not depend on the parameter t ∈ [0, 1] whenever

(i) H : [0, 1]×U → E is continuous and H(t, x) is uniformly continuous

in t with respect to x ∈ U ,

(ii) H([0, 1]× U) ⊂ (I − T )(Ω),

(iii) H(t, : ) : U → E is a l-set contraction with 0 ≤ l < h − 1 and l

does not depend on t ∈ [0, 1],

(iv) Tx+H(t, x) 6= x, for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(d) (Solvability) If i∗(T + F,U ∩ Ω,P) 6= 0, then T + F has a fixed point

in U ∩ Ω.

Proof. Properties (b), (c) and (d) follow directly from Definition 2.1 and

the corresponding properties of the fixed point index for strict k-set contractions

(see Lemma 1.3). We only check that if U = Pr then

i((I − T )−1z0, U,P) = 1.

For this, we show that y0 := (I − T )−1z0 ∈ Pr ∩ Ω. We have F (Pr) = {z0} ⊂
(I − T )(Ω), which gives y0 ∈ Ω and since T is an expansive operator with h > 1

and F (Pr) ⊂ B(−T0, (h− 1)r) ∩ P, Lemma 1.10 guarantees that

‖(I − T )y0 + T0‖ = ‖(I − T )y0 − (I − T )0‖ ≥ (h− 1)‖y0‖.
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Hence

(h− 1)‖y0‖ ≤ ‖(I − T )y0 + T0‖ = ‖z0 − (−T0)‖ < (h− 1)r,

that is y0 = (I − T )−1z0 ∈ Pr. By property (a) in Lemma 1.3, we deduce that

i((I − T )−1z0,Pr,P) = 1.

Therefore i∗(T + z0,Pr ∩ Ω,P) = 1, which completes the proof. �

Remark 2.4. Theorem 2.3 still holds if instead of the cone P, we consider

a retract X of E. In this case, the conical shell Pr is replaced by X ∩ Br.

Next, we compute the fixed point index for the class of mappings under

consideration.

2.2. Computation of the fixed point index.

Proposition 2.5. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h − 1,

F (∂Pr ∩ Ω) ⊂ P, and tF (Pr) ⊂ (I − T )(Ω) for all t ∈ [0, 1]. If

0 ∈ Ω, ‖T0‖ < (h− 1)r and Fx 6≥ x− Tx, for all x ∈ ∂Pr ∩ Ω,

then i∗(T + F,Pr ∩ Ω,P) = 1.

Proof. Consider the homotopic deformation H : [0, 1] × Pr → E defined

by H(t, x) = tFx. The operator H is continuous and uniformly continuous in t

for each x. Moreover, H(t, · ) is a k-set contraction for each t and the mapping

T + H(t, · ) has no fixed point on ∂Pr ∩ Ω. Otherwise, there would exist some

x0 ∈ ∂Pr ∩ Ω and t0 ∈ [0, 1] such that x0 = Tx0 + t0Fx0. Consider two cases:

Case 1. If t0 = 0, then Tx0 = x0 and

(h− 1)‖x0‖ ≤ ‖(I − T )x0 + T0‖ = ‖T0‖ < (h− 1)r,

which is a contradiction.

Case 2. If t0 ∈ (0, 1], then Fx0 ≥ t0Fx0 = x0 − Tx0, which contradicts our

assumption.

From the invariance under homotopy and the normalization property of the

index fixed point of the sum T + F , we deduce that

i∗(T + F,Pr ∩ Ω,P) = i∗(T + 0,Pr ∩ Ω,P) = 1,

which completes the proof. �

Remark 2.6. The results of Proposition 2.5 does not hold if F (∂Pr ∩ Ω) 6⊂ P.

Indeed, let P be a cone in a Banach space E with non-empty interior and

r > 0. We choose a point x1 in the interior of P with dist(x1, E \ P) > r
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and Ω = P2‖x1‖. With T = 2I and F : Pr 3 x 7→ −x1 ∈ −P ⊂ E, all assump-

tions of the latter proposition are satisfied. However 0 ∈ −P ⊂ E \ P implies

that i∗(T + F,Pr ∩ Ω,P) = 0.

Corollary 2.7. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h − 1,

F (∂Pr ∩ Ω) ⊂ P, and tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1]. If 0 ∈ Ω,

‖T0‖ < (h− 1)r, and

Tx+ Fx < x, for all x ∈ ∂Pr ∩ Ω,

then T + F has a fixed point in Pr ∩ Ω.

Proof. Since F and T satisfy the assumptions of Proposition 2.5, then

i∗(T + F,Pr ∩ Ω,P) = 1.

Corollary 2.7 then follows from the existence property of the fixed point index

in Theorem 2.3. �

Proposition 2.8. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h − 1 and

tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1]. If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

(2.3) Fx 6= λ(x− Tx), for all x ∈ ∂Pr ∩ Ω and λ ≥ 1,

then the fixed point index i∗(T + F,Pr ∩ Ω,P) = 1.

Proof. Define the homotopic deformation H : [0, 1]×Pr → E by H(t, x) =

tFx. The operator H is continuous and uniformly continuous in t for each x.

Moreover, H(t, · ) is a k-set contradiction for each t and the mapping T +H(t, · )
has no fixed point on ∂Pr ∩Ω. Otherwise, there would exist some x0 ∈ ∂Pr ∩Ω

and t0 ∈ [0, 1] such that x0 = Tx0 + t0Fx0. We may distinguish between two

cases:

Case 1. If t0 = 0, then Tx0 = x0 and

(h− 1)‖x0‖ ≤ ‖(I − T )x0 + T0‖ = ‖T0‖ < (h− 1)r,

which contradicts x0 ∈ ∂Pr.

Case 2. If t0 ∈ (0, 1], then Fx0 = (x0 − Tx0)/t0, where 1/t0 ≥ 1, leading

again to a contradiction with the hypothesis (2.3).

By properties (a) and (d) of the fixed point index in Theorem 2.3, we deduce

that

i∗(T + F,Pr ∩ Ω,P) = i∗(T + 0,Pr ∩ Ω,P) = 1. �

The following result is an immediate consequence of Proposition 2.8:



622 S. Djebali — K. Mebarki

Corollary 2.9. Assume that T : Ω ⊂ P → E is an expansive mapping with

constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h − 1 and

tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1]. If 0 ∈ Ω, ‖T0‖ < (h− 1)r and

‖Fx‖+ ‖Tx‖ < ‖x‖, for all x ∈ ∂Pr ∩ Ω.

Then T + F has a fixed point in Pr ∩ Ω.

Proposition 2.10. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h− 1, and

tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1]. If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

‖Fx‖ ≤ ‖x− Tx‖ and Tx+ Fx 6= x for all x ∈ ∂Pr ∩ Ω,

then the fixed point index i∗(T + F,Pr ∩ Ω,P) = 1.

Proof. It is sufficient to prove that the condition in the proposition implies

the analogous one in Proposition 2.8. For this, assume by contradiction that

some x0 ∈ ∂Pr ∩Ω and λ0 ≥ 0 exist and satisfy Fx0 = λ0(x0 − Tx0). Then two

cases are discussed separately:

Case 1. If λ0 = 1, then Tx0 + Fx0 = x0 and a contradiction is reached.

Case 2. If λ0 > 1, then ‖Fx0‖ = λ0‖x0 − Tx0‖ > ‖x0 − Tx0‖, whence

a contradiction. �

Proposition 2.11. Let U be a bounded open subset of P with 0 ∈ U . Assume

that T : Ω ⊂ P → E is an expansive mapping with constant h > 1, F : U → E is

a k-set contraction with 0 ≤ k < h− 1, and F (U) ⊂ (I − T )(Ω). If

Fx 6= (I − T )(λx), for all x ∈ ∂U ∩ Ω and λ ≥ 1,

then the fixed point index i∗(T + F,U ∩ Ω,P) = 1.

Proof. The mapping (I−T )−1F : U → P is a strict k/(h−1)-set contraction

and it is readily seen that the following condition of Leray–Schauder type is

satisfied

(I − T )−1Fx 6= λx, for all x ∈ ∂U and λ ≥ 1.

In fact, if there exist x0 ∈ ∂U and λ0 ≥ 1 such that (I−T )−1Fx0 = λ0x0. Then

Fx0 = (I−T )(λ0x0), which contradicts our assumption. Our claim then follows

from Definition 2.1 and Proposition 1.4. �

Proposition 2.12. Let U be a bounded open subset of P with 0 ∈ U ∩ Ω.

Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1,

F : U → E is a k-set contraction with 0 ≤ k < h− 1 and F (U) ⊂ (I − T )(Ω). If

(2.4) ‖Fx+ T0‖ ≤ (h− 1)‖x‖ and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω,

then the fixed point index i∗(T + F,U ∩ Ω,P) = 1.
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Proof. According to Lemma 1.10, we can see that (I − T )−1F : U → P
is a strict k/(h − 1)-set contraction. From the inclusion F (U) ⊂ (I − T )(Ω),

for each x ∈ U , we can find some y ∈ Ω such that Fx = y − Ty. In what

follows, we check that the condition of Corollary 1.5 is satisfied. For each x ∈ U ,

(I − T )−1Fx ∈ Ω and

T
(
(I − T )−1Fx

)
+ Fx = (I − T )−1Fx,

which implies that∥∥T ((I − T )−1Fx
)
− T0

∥∥ ≤ ∥∥(I − T )−1Fx
∥∥+ ‖Fx+ T0‖.

T being expansive with constant h, we have∥∥T ((I − T )−1Fx)− T0
∥∥ ≥ h‖(I − T )−1Fx‖.

Therefore

(2.5)
∥∥(I − T )−1Fx

∥∥ ≤ 1

h− 1
‖Fx+ T0‖.

From (2.5) and assumption (2.4), we conclude that for all x ∈ ∂U ,

‖(I − T )−1Fx‖ ≤ 1

h− 1
‖Fx+ T0‖ ≤ ‖x‖.

Our claim then follows from Definition 2.1 and Corollary 1.5. �

The following result is as straightforward consequence of Proposition 1.6.

Proposition 2.13. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h − 1 and

F (Pr) ⊂ (I − T )(Ω). If further (I − T )−1F (Pr) ⊂ Pr, then the fixed point index

i∗(T + F,Pr ∩ Ω,P) = 1.

As a particular case, we get

Corollary 2.14. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1, F : Pr → E is a k-set contraction with 0 ≤ k < h− 1, and

F (Pr) ⊂ (I − T )(Ω). If 0 ∈ Ω and

(2.6) ‖Fx+ T0‖ < (h− 1)r, for all x ∈ Pr,

then the fixed point index i∗(T + F,Pr ∩ Ω,P) = 1.

Proof. From (2.5) and Assumption (2.6), for any x ∈ Pr, we conclude that∥∥(I − T )−1Fx
∥∥ ≤ 1

h− 1
‖Fx+ T0‖ < r,

which implies that (I − T )−1F (Pr) ⊂ Pr. �

A particular situation in Corollary 2.14 is given by
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Corollary 2.15. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 2, F : Pr → E is a k-set contraction with 0 ≤ k < h− 1, r is

sufficiently large and F (Pr) ⊂ (I − T )(Ω). If 0 ∈ Ω and

(2.7) ‖Fx‖ ≤ ‖x‖, for all x ∈ Pr,

then T + F has at least one fixed point in Pr ∩ Ω.

Proof. We have the estimates:

‖Fx+ T0‖ ≤ ‖Fx‖+ ‖T0‖ ≤ ‖x‖+ ‖T0‖ ≤ r + ‖T0‖ ≤ (h− 1)r,

for r > ‖T0‖/(h− 2). By Corollary 2.14, i∗(T + F,Pr ∩ Ω,P) = 1. As a conse-

quence, T + F has a fixed point in Pr ∩ Ω. �

Proposition 2.16. Let U be a bounded open subset of P. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1, F : U → E is

a k-set contraction with 0 ≤ k < h− 1, and F (U) ⊂ (I − T )(Ω). If there exists

u0 ∈ P∗ such that

(2.8) Fx 6= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0),

then the fixed point index i∗(T + F,U ∩ Ω,P) = 0.

Proof. The mapping (I−T )−1F : U → P is a strict k/(h−1)-set contraction

and for some u0 ∈ P∗ this operator satisfies

x− (I − T )−1Fx 6= λu0, for all x ∈ ∂U and for all λ ≥ 0.

By Definition 2.1 and Proposition 1.7, we deduce that

i∗(T + F,U ∩ Ω,P) = i((I − T )−1F,U,P) = 0,

proving our claim. �

Proposition 2.17. Let U be a bounded open subset of P. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1, F : U → E

a k-set contraction with 0 ≤ k < h − 1, and F (U) ⊂ (I − T )(Ω). Suppose

further that there exists u0 ∈ P∗ such that T (x − λu0) ∈ P, for all λ ≥ 0 and

x ∈ ∂U ∩ (Ω + λu0), and one of the following conditions holds:

(a) Fx 6≤ x− λu0, for all x ∈ ∂U and for all λ ≥ 0.

(b) Fx ∈ P, ‖Fx‖ > ‖x− λu0‖, for all x ∈ ∂U , for all λ ≥ 0, and the cone

P is normal with constant N = 1.

Then the fixed point index i∗(T + F,U ∩ Ω,P) = 0.

Remark 2.18. In condition (b), we may replace ‖Fx‖ > ‖x − λu0‖ by

‖Fx‖ > ‖x‖.
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Proof. We show that conditions (a) or (b) imply that

Fx 6= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0).

On the contrary, assume the existence of λ0 ≥ 0 and x0 ∈ ∂U ∩ (Ω + λ0u0) such

that

Fx0 = (I − T )(x0 − λ0u0).

Then x0 − λ0u0 − Fx0 = T (x0 − λ0u0) ∈ P. If condition (a) holds, then a con-

tradiction is achieved. Otherwise, we deduce that

Fx0 ≤ x0 − λ0u0.

Since P is normal with constant N = 1, we deduce that

‖Fx0‖ ≤ ‖x0 − λ0u0‖,

contradicting condition (b) and ending the proof of Proposition 2.17. �

2.3. Fixed point theorems of cone compression and expansion type.

In this section, two fixed point theorems of cone compression and expansion for

an expansive operator perturbed by a k-set contraction are established. Assump-

tion (a) is called the cone compression while (b) is the cone expansion.

Given two constants 0 < r < R, define the open sets:

Pr = {x ∈ P : ‖x‖ < r} and Pr,R = {x ∈ P : r < ‖x‖ < R}.

Theorem 2.19. Let E be a Banach space, P ⊂ E a normal cone with con-

stant N = 1, and U1 and U2 two bounded open subsets of P such that U1 ⊂ U2

and 0 ∈ U1 ∩Ω, where Ω ⊂ P. Assume that T : Ω→ E is an expansive mapping

with constant h > 1, F : U2 → E is a k-set contraction with 0 ≤ k < h − 1 and

F (U2) ⊂ (I − T )(Ω). Let u0 ∈ P∗ be such that T (x − λu0) ∈ P, for all λ ≥ 0

and x ∈ ∂U1 ∩ ∂U2 ∩ (Ω +λu0), and suppose that one of the following conditions

is satisfied :

(a) Fx ∈ P, ‖Fx‖ > ‖x − λu0‖, for all x ∈ ∂U1, for all λ ∈ [0, 1] and

‖Fx+ T0‖ ≤ (h− 1)‖x‖, for all x ∈ ∂U2.

(b) ‖Fx+T0‖ ≤ (h−1)‖x‖, for all x ∈ ∂U1 and Fx ∈ P, ‖Fx‖ > ‖x−λu0‖,
for all x ∈ ∂U2, for all λ ≥ 0.

Then T + F has at least one fixed point in (U2 \ U1) ∩ Ω.

Proof. We only give the proof in case of the cone expansion. Without loss

of generality, assume that Tx+Fx 6= x on ∂U1∩Ω and Tx+Fx 6= x on ∂U2∩Ω,

otherwise we are finished. By Propositions 2.12 and 2.17, we have

i∗(T + F,U1 ∩ Ω,P) = 1 and i∗(T + F,U2 ∩ Ω,P) = 0.

The additivity property of the index yields

i∗(T + F, (U2 \ U1) ∩ Ω,P) = −1.



626 S. Djebali — K. Mebarki

By the existence property of the index, the sum T + F has at least one fixed

point in the closed set (U2 \ U1) ∩ Ω. �

Theorem 2.20. Let E be a Banach space, P ⊂ E a cone, and 0 ∈ Ω ⊂ P. Let

γ, β > 0, γ 6= β, r = min(γ, β) and R = max(γ, β). Assume that T : Ω→ E is an

expansive mapping with constant h > 1 such that ‖T0‖ < (h−1)γ, F : PR → E is

a k-set contraction with 0 ≤ k < h−1, F (∂Pγ∩Ω) ⊂ P and tF (PR) ⊂ (I−T )(Ω),

for all t ∈ [0, 1]. Let u0 ∈ P∗ be such that T (x − λu0) ∈ P, for all λ ≥ 0 and

x ∈ ∂Pβ ∩ (Ω + λu0), and suppose that the following conditions are satisfied :

(a) Fx � x− Tx, for all x ∈ ∂Pγ ∩ Ω,

(b) Fx 
 x− λu0, for all x ∈ ∂Pβ, for all λ ≥ 0.

Then T + F has a fixed point x ∈ Pr,R ∩ Ω.

Remark 2.21. If β < γ, then conditions (a) and (b) represent a compression

property of T+F upon the conical shell Pr,R∩Ω, while if β > γ, these conditions

express an expansion property of the conical shell Pr,R ∩ Ω.

Proof. We only present the proof in case of the cone compression. It is

analogous for the cone expansion. By Propositions 2.5 and 2.17, we have

i∗(T + F,Ω ∩ PR,P) = 1 and i∗(T + F,Ω ∩ Pr,P) = 0.

The additivity property of the fixed point index in Theorem 2.3 yields

i∗(T + F,Ω ∩ Pr,R,P) = 1.

By the existence property, T + F has at least one fixed point in the open set

Pr,R ∩ Ω, proving our claim. �

3. The limit case where F is an (h− 1)-set contraction

3.1. Definition of a fixed point index. Suppose that T : Ω → E is h-

expansive and F : U → E is an (h − 1)-set contraction. Since (I − T )−1 is

1/(h− 1)-Lipschtzian, then (I − T )−1F : U → P is a 1-set contraction. Assume

that

tF (U) ⊂ (I − T )(Ω), for all t ∈ [0, 1](3.1)

0 6∈ (I − T − F )(∂U ∩ Ω).(3.2)

Then there exists γ > 0 such that inf
x∈∂U∩Ω

‖x − Tx − Fx‖ ≥ γ. Thus 0 6∈
(I − T − kF )(∂U ∩ Ω), for all k ∈ (1 − γ/M, 1), where M = γ + sup

x∈U
‖Fx‖.

In fact, for all x ∈ ∂U ∩ Ω, we have

‖0− (x− Tx− kFx)‖ ≥ ‖x− Tx− Fx‖ − (1− k)‖Fx‖ ≥ γ − (1− k)M > 0.

In other words, x 6= (I − T )−1kFx, for all x ∈ ∂U and k ∈ (1 − γ/M, 1).

Clearly, (I − T )−1kF is a strict k-set contraction mapping. As a consequence,
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by Definition 2.1 and Lemma 1.3, the fixed point index i∗(T + kF, U ∩ Ω,P) is

well defined. Thus we set

Definition 3.1. For k ∈ (1− γ/M, 1) we have

i∗(T + F,U ∩ Ω,P) = i∗(T + kF, U ∩ Ω,P) = i((I − T )−1kF, U,P).

However we must check that i∗(T + F,U ∩ Ω,P) does not depend on the

parameter k ∈ (1 − γ/M, 1). For this, let Gj = kjF : U → E be kj(h − 1)-set

contractions with kj ∈ (1− γ/M, 1) (j = 1, 2). Then

‖Gjx− Fx‖ = (1− kj)‖Fx‖ ≤ (1− kj)M < γ, for all x ∈ ∂U .

Define the convex deformation H : [0, 1]× U → E by

H(t, x) = tG1x+ (1− t)G2x.

The operator H is continuous, uniformly continuous in t for each x, and H([0, 1]

×U) ⊂ (I − T )(Ω). In addition H(t, · ) is a k(h − 1)-set contraction for each t,

where k = max(k1, k2) and T + H(t, · ) has no fixed point on ∂U ∩ Ω. In fact,

for all x ∈ ∂U ∩ Ω, we have

‖x− Tx−H(t, x)‖ = ‖x− Tx− tG1x− (1− t)G2x‖

≥ ‖x− Tx− Fx‖ − t‖Fx−G1x‖ − (1− t)‖Fx−G2x‖

> γ − tγ − (1− t)γ = 0.

From the invariance property by homotopy of the index in Theorem 2.3, we

deduce that

i∗(T +G1, U ∩ Ω,P) = i∗(T +G2, U ∩ Ω,P),

which shows that the index i∗(T + F,U ∩ Ω,P) does not depend on k.

The integer defined in Definition 3.1 will be called the generalized fixed point

index of the sum T + F on U ∩Ω with respect to P. It satisfies some properties

grouped in the following theorem.

Theorem 3.2.

(a) (Normalization) If U = Pr = P ∩ Br is a conical shell and Fx = z0 ∈
B(−T0, (h− 1)r) ∩ P, for all x ∈ Pr, then i∗(T + F,Pr ∩ Ω,P) = 1.

(b) (Additivity) For any pair of disjoint open subsets U1, U2 in U such that

0 6∈ (I − T − F )((U\(U1 ∪ U2)) ∩ Ω), we have

i∗(T + F,U ∩ Ω,P) = i∗(T + F,U1 ∩ Ω,P) + i∗(T + F,U2 ∩ Ω,P),

where i∗(T + F,Uj ∩ Ω, X) := i∗(f |Uj
, Uj ∩ Ω,P), j = 1, 2.

(c) (Homotopy Invariance) The fixed point index i∗(T + H(t, · ), U ∩ Ω,P)

does not depend on the parameter t ∈ [0, 1], where

(i) H : [0, 1]×U → E is continuous and H(t, x) is uniformly continuous

in t with respect to x ∈ U ,
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(ii) H(t, · ) : U → E is an (h− 1)-set contraction,

(iii) tH([0, 1]× U) ⊂ (I − T )(Ω), for all t ∈ [0, 1],

(iv) 0 6∈ (I − T −H(t, · ))(∂U ∩ Ω), for all t ∈ [0, 1],

(d) (Solvability) If i∗(T + F,U ∩ Ω,P) 6= 0, then 0 ∈ (I − T − F )(U ∩ Ω).

Proof. (a) Since F is a constant mapping, it is a 0-set contraction (com-

pletely continuous), which implies that (I − T )−1F is a 0-set contraction. As in

the proof of Theorem 2.3, part (a), y0 = (I−T )−1z0 ∈ Pr. By the normalization

property in Lemma 1.3, we deduce that

i((I − T )−1z0,Pr,P) = 1.

Therefore i∗(T + z0,Pr ∩ Ω,P) = 1, proving our claim.

(b) Let

γ = inf
(U\(U1∪U2))∩Ω

‖x− Tx− Fx‖ > 0.

Suppose that G = kF : U → E is a k(h− 1)-set contraction and

(3.3) ‖Gx− Fx‖ < γ, for all x ∈ U \ (U1 ∪ U2) ∩ Ω.

From Definition 3.1, we have

i∗(T + F,U ∩ Ω,P) = i∗(T +G,U ∩ Ω,P),

i∗(T + F,Uj ∩ Ω,P) = i∗(T +G,Uj ∩ Ω,P), j = 1, 2.

Hence T + G has no fixed point in U \ (U1 ∪ U2) ∩ Ω. In fact, if the exists

x0 ∈ U\(U1 ∪ U2) ∩ Ω such that x0 = Tx0 +Gx0, then

γ ≤ ‖x0 − Tx0 − Fx0‖ = ‖x0 − Tx0 −Gx0 +Gx0 − Fx0‖ = ‖Gx0 − Fx0‖,

which contradicts (3.3). The claim follows from Definition 3.1 and property (b)

of the fixed point index in Theorem 2.3.

(c) By the property of the function H, there exist γ > 0 and N > 0 such

that

‖x− Tx−H(t, x)‖ ≥ γ, for all x ∈ ∂U ∩ Ω and t ∈ [0, 1],

as well as ‖H(t, x)‖ ≤ N , for all x ∈ U and t ∈ [0, 1]. Let K(t, x) = kH(t, x),

where k ∈ (1− γ/2N, 1). Then for all x ∈ ∂U ∩ Ω and t ∈ [0, 1], we have

‖x− Tx−K(t, x)‖ = ‖x− Tx−H(t, x)‖+ ‖H(t, x)−K(t, x)‖

≥ γ − (k − 1)N > γ − γ/2 > 0.

Obviously, K(t, · ) : U → E is a k(h − 1)-set contraction, where k does not

depend on t ∈ [0, 1] and K([0, 1]×U) ⊂ (I−T )(Ω). Then our claim follows from

Definition 3.1 and property (c) of the fixed point index in Theorem 2.3.
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(d) Consider a sequence (kn)n ⊂ (0, 1) such that kn → 1, as n → ∞ and

define the function Gn = knF , n = 1, 2, . . . Then Gn : U → E is a k(h − 1)-set

contraction. Since ‖Fx‖ <∞, for all x ∈ U , we obtain that

‖Fx−Gnx‖ = ‖Fx− knFx‖ = (1− kn)‖Fnx‖ → 0, as n→ +∞.

Hence there exists n0 > 0 such that, for every n ≥ n0,

‖Fx−Gnx‖ < γ, where 0 < γ < inf
x∈∂U∩Ω

‖x− Tx− Fx‖.

By assumption and Definition 3.1,

i∗(T + F,U ∩ Ω,∩P ) = i∗(T +Gn, U ∩ Ω,∩P ) 6= 0.

Thus, property (d) in Theorem 2.3 guaranties that for all n = 1, 2, . . ., the

mapping T +Gn has a fixed point xn in U ∩ Ω. Consequently,

‖xn − Txn − Fxn‖ = ‖xn − Txn −Gnxn +Gnxn − Fxn‖

= ‖Gnxn − Fxn‖ → 0, as n→ +∞.

Then xn − Txn − Fxn → 0, as n→ +∞, that is 0 ∈ (I − T − F )(U ∩ Ω). �

Remark 3.3. As for the additivity property in Theorem 3.2, we cannot

replace the condition 0 6∈ (I − T − F )((U\(U1 ∪ U2)) ∩ Ω) by the weaker one

that T + F has no fixed point on (U\(U1 ∪U2))∩Ω. In fact, let us consider the

Banach space c0 of real sequences converging to zero with the sup-norm and the

cone P of sequences (an) with only positive entries an. Let r : P5 → P1 be the

radial retraction, s : P1 3 (a1, a2, . . .) 7→ (1, a1, a2, . . .) ∈ P1 the well-known shift

map, and let F̂ := s ◦ r. For T = 2I, F = −F̂ , and U = Ω = P5, U1 = P3 \ P2,

U2 = P5 \ P4, we get

i∗(T + F,P5,P) = 1 6= 0 + 0 = i∗(T + F,U1,P) + i∗(T + F,U2,P).

Remark 3.4. Notice that a sufficient condition for (3.2) holds is:

∃ δ > 0, ∀x ∈ ∂U ∪ Ω, ‖x− Tx− Fx‖ ≥ δ.

3.2. Computation of the fixed point index. According to Theorem 2.3

and in a way similar to the one used to show Propositions 2.5–2.12, we can show

the following results. The proofs are omitted.

Proposition 3.5. Assume that T : Ω ⊂ P → E is an expansive mapping with

constant h > 1 and F : Pr → E is a (h−1)-set contraction with F (∂Pr∩Ω) ⊂ P
and tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂Pr ∩ Ω). If

0 ∈ Ω, ‖T0‖ < (h− 1)r, and

Fx 6> x− Tx, for all x ∈ ∂Pr ∩ Ω,

then the fixed point index i∗(T + F,Pr ∩ Ω,P) = 1.
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Proposition 3.6. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1 and F : Pr → E is a (h− 1)-set contraction with tF (Pr) ⊂
(I − T )(Ω), for all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂Pr ∩ Ω). If 0 ∈ Ω, ‖T0‖ <
(h− 1)r, and

Fx 6= λ(x− Tx) for all x ∈ ∂Pr ∩ Ω and λ > 1,

then the fixed point index i∗(T + F,Pr ∩ Ω,P) = 1.

Proposition 3.7. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 1 and F : Pr → E is an (h− 1)-set contraction with tF (Pr) ⊂
(I − T )(Ω), for all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂Pr ∩ Ω). If 0 ∈ Ω, ‖T0‖ <
(h− 1)r, and

‖Fx‖ ≤ ‖x− Tx‖ for all x ∈ ∂Pr ∩ Ω,

then the fixed point index i∗(T + F,Pr ∩ Ω,P) = 1.

Proposition 3.8. Let U be a bounded open subset of P such that 0 ∈ U .

Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1

and F : U → E is an (h − 1)-set contraction with F (U) ⊂ (I − T )(Ω) and

0 6∈ (I − T − F )(∂U ∩ Ω). If

Fx 6= (I − T )(λx), for all x ∈ ∂U ∩ Ω and λ > 1,

then the fixed point index i∗(T + F,U ∩ Ω,P) = 1.

Proposition 3.9. Let U be a bounded open subset of P such that 0 ∈ U ∩Ω.

Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1

and F : U → E is an (h − 1)-set contraction with F (U) ⊂ (I − T )(Ω) and

0 6∈ (I − T − F )(∂U ∩ Ω). If

(3.4) ‖Fx+ T0‖ ≤ (h− 1)‖x‖ for all x ∈ ∂U ∩ Ω,

then the fixed point index i∗(T + F,U ∩ Ω,P) = 1.

Proposition 3.10. Let U be a bounded open subset of P. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1 such that F : U →
E is an (h − 1)-set contraction with tF (U) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and

0 6∈ (I − T − F )(∂U ∩ Ω). If there exists u0 ∈ P∗ such that

(3.5) γFx 6= (I − T )(x− λu0),

for all λ ≥ 0, x ∈ ∂U ∩ (Ω + λu0) and γ ∈ (0, 1), then the fixed point index

i∗(T + F,U ∩ Ω,P) = 0.

Proof. The mapping (I − T )−1F : U → P is a 1-set contraction. Suppose

that i∗(T + F,U ∩ Ω,P) 6= 0. Then, from Definition 3.1, for k ∈ (k0, 1) with

some 0 < k0 < 1, we can see that

i((I − T )−1kF, U,P) 6= 0.
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For each k ∈ (k0, 1) and r > 0, define the homotopy:

H(t, x) = (I − T )−1kFx+ tru0, for x ∈ U and t ∈ [0, 1].

The operatorH is continuous and uniformly continuous in t for each x. Moreover,

H(t, · ) is a strict k-set contraction for each t and

H
(
[0, 1]× U

)
= (I − T )−1kF (U) + tru0 ⊂ P.

We check that H(t, x) 6= x, for all (t, x) ∈ [0, 1]× ∂U . If H(t0, x0) = x0 for some

(t0, x0) ∈ [0, 1]× ∂U , then

x0 − t0ru0 = (I − T )−1kFx0,

and so x0 − t0ru0 ∈ Ω. Hence

(I − T )(x0 − t0ru0) = kFx0,

for x0 ∈ ∂U ∩ (Ω + t0ru0), contradicting assumption (3.5). By the property (c)

of the index in Lemma 1.3, for k ∈ (k0, 1), we deduce that

i
(
(I − T )−1kF + ru0, U ∩ Ω,P

)
= i
(
(I − T )−1kF, U,P

)
6= 0.

By property (f) of the index in Lemma 1.3, for each k ∈ (k0, 1) and r > 0, there

exists xr ∈ U such that

(3.6) xr − (I − T )−1kFxr = ru0.

Letting r → +∞ in (3.6), the left-hand side of (3.6) is bounded while the right-

hand side is not, which is a contradiction. Therefore

i∗(T + F,U ∩ Ω,P) = 0,

which completes the proof. �

Proposition 3.11. Let U be a bounded open subset of P. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1 such that F : U →
E is an (h − 1)-set contraction with tF (U) ⊂ (I − T )(Ω), for all t ∈ [0, 1]

and 0 6∈ (I − T − F )(∂U ∩ Ω). Suppose that there exists u0 ∈ P∗ such that

T (x− λu0) ∈ P, for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0), and one of the following

conditions is satisfied :

(a) γFx 6≤ x− λu0, for all x ∈ ∂U , λ ≥ 0, and γ ∈ (0, 1).

(b) Fx ∈ P, γ‖Fx‖ > ‖x− λu0‖, for all x ∈ ∂U , λ ≥ 0, γ ∈ (0, 1), and the

cone P is normal with constant N = 1.

Then the fixed point index i∗(T + F,U ∩ Ω,P) = 0.

The proof is similar to that of Proposition 2.17.
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Proposition 3.12. Let U be a bounded open subset of P. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1, and F : U → E

is an (h − 1)-set contraction with F (∂U) ⊂ P and tF (U) ⊂ (I − T )(Ω), for

all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂U ∩ Ω). Suppose further that there exists

u0 ∈ P∗ such that

(3.7) c0Fx 6≤ x−T (x−λu0), for all λ ≥ 0, x ∈ ∂U∩(Ω+λu0) and c0 ∈ (0, 1).

Then the fixed point index i∗(T + F,U ∩ Ω,P) = 0.

Proof. The mapping (I−T )−1F : U → P is a 1-set contraction. By contra-

diction, suppose that i∗(T +F,U ∩Ω,P) 6= 0. From Definition 3.1, for k ∈ (k0, 1)

with c0 ≤ k0 < 1, we have

i
(
(I − T )−1kF, U,P

)
6= 0.

For each k ∈ (k0, 1) and r > 0, consider the homotopic deformation

H(t, x) = (I − T )−1kF + tru0, for x ∈ U and t ∈ [0, 1].

The operator H is continuous and uniformly continuous in t, for each x. More-

over, H(t, · ) is a strict k-set contraction, for each t and H([0, 1]× U) ⊂ P. We

prove that H(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂U . If H(t0, x0) = x0 for some

(t0, x0) ∈ [0, 1]× ∂U , then

x0 − t0ru0 = (I − T )−1kFx0,

and so x0 − t0ru0 ∈ Ω. Hence

x0 − t0ru0 − T (x0 − t0ru0) = kFx0,

for x0 ∈ ∂U ∩ (Ω + t0ru0), which implies that

x0 − T (x0 − t0ru0) ≥ kFx0 ≥ c0Fx0,

contradicting assumption (3.7). As a consequence, by property (c) of the index

in Lemma 1.3, for k ∈ (k0, 1), we get

i((I − T )−1kF + ru0, U ∩ Ω,P) = i((I − T )−1kF, U,P) 6= 0.

By the existence property of the index in Lemma 1.3, for each k ∈ (k0, 1) and

r > 0, there exists xr ∈ U such that

(3.8) xr − (I − T )−1kFxr = ru0.

Letting r → +∞ in (3.8), the left side of (3.8) is bounded, but the right side is

not, leading to a contradiction. Therefore

i∗(T + F,U ∩ Ω,P) = 0. �
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4. Fixed point theorems

In this section, we present fixed point theorems for some special mappings,

including 1-set contractions. The first two follow from Corollary 2.14 and Corol-

lary 2.15, respectively.

Corollary 4.1. Assume that T : Ω ⊂ P → E is an expansive mapping with

constant h > 1 and F : Pr → E is compact. Assume that F (Pr) ⊂ (I − T )(Ω)

and ‖Fx+ T0‖ < (h− 1)r, for all x ∈ Pr. Then the sum operator T + F has at

least one solution in Pr ∩ Ω.

Corollary 4.2. Assume that T : Ω ⊂ P → E is an expansive mapping

with constant h > 2 and F : Pr → E is a 1-set contraction such that F (Pr) ⊂
(I −T )(Ω) and ‖Fx‖ ≤ ‖x‖, for all x ∈ Pr with r > ‖T0‖/(h− 2). Then T +F

has at least one fixed point in Pr ∩ Ω.

Recall that an operator L is said to be semi-closed if the identity perturbation

I − L is a closed operator.

Corollary 4.3. Let Ω be a closed subset of P. Assume that T : Ω → E

is a 2-expansive mapping and F : Pr → E is a 1-set contraction with tF (Pr) ⊂
(I − T )(Ω), for all t ∈ [0, 1]. Assume further that 0 ∈ Ω, ‖T0‖ < r, and T + F

is semi-closed and satisfies

‖Fx‖+ ‖Tx‖ < ‖x‖, for all x ∈ ∂Pr ∩ Ω.

Then T + F has a fixed point in Pr ∩ Ω.

Proof. Assume that 0 6∈ (I − T − F )(∂Pr ∩ Ω), otherwise we are finished.

Since F and T satisfy the assumptions of Proposition 3.7, then

0 ∈ (I − T − F )(Pr ∩ Ω).

So there exists a sequence (xn)n in Pr ∩ Ω such that xn − Txn − Fxn → 0 as

n→ +∞. Since I − T −F is closed, then 0 ∈ (I − T −F )(Pr ∩Ω). Hence there

exists x ∈ Pr ∩ Ω such that x = Tx + Fx. Because 0 6∈ (I − T − F )(∂Pr ∩ Ω),

we obtain x ∈ Pr ∩ Ω. �

According to Proposition 3.5, the following corollary is proven in the same

way.

Corollary 4.4. Let Ω be a closed subset of P. Assume that T : Ω → E is

a 2-expansive mapping and F : Pr→E is a 1-set contraction with F (∂Pr ∩ Ω)⊂P
and tF (Pr) ⊂ (I−T )(Ω), for all t ∈ [0, 1]. Assume further that 0 ∈ Ω, ‖T0‖ < r,

and T + F is semi-closed and satisfies

Fx+ Tx < x, for all x ∈ ∂Pr ∩ Ω.

Then T + F has a fixed point in in Pr ∩ Ω.
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5. Applications

5.1. Example 1. Consider the nonlinear integral equation:

(5.1) x(t) = x3(t) + p(t)x(t)−
∫ b

a

K(t, s, x(s)) ds, a < t < b,

where p : [a, b]→ R+ is continuous and K : [a, b]× [a, b]×R+ → R+ is continuous

together with its first partial derivatives. We let

(H0) 1 < p1 : = min
a≤t≤b

p(t) ≤ p2 =: max
a≤t≤b

p(t).

(H1) There exists R > 0 such that∫ b

a

K(t, s, u) ds < R3 + (p(t)− 1)R, for all (t, u) ∈ [a, b]× [0, R].

Our main existence result for equation (5.1) is

Theorem 5.1. Under assumptions (H0) and (H1), the integral equation (5.1)

has at least one bounded solution x ∈ C([a, b]) such that 0 ≤ x(t) ≤ R, a ≤ t ≤ b.

Proof. Consider the Banach space E = C([a, b],R) normed by ‖x‖∞ =

max
t∈[a,b]

|x(t)|, the positive cone P = {x ∈ E : x(t) ≥ 0}, and the conical shell

PR := P ∩ BR. Define the operators T, F : PR → E by

(Tx)(t) = x3(t) + p(t)x(t) and (Fx)(t) = −
∫ b

a

K(t, s, x(s)) ds

respectively, for t ∈ [a, b]. Then the integral equation (5.1) is equivalent to the

operational equation x = Tx + Fx. We check that all assumptions of Proposi-

ton 2.8 are satisfied.

(a) Obviously, T and F map PR into E. Moreover

‖Tx− Ty‖∞ ≥ p1‖x− y‖∞, for all x, y ∈ PR,

that is T : PR → P is expansive with constant h = p1 > 1.

(b) If x ∈ PR, then ‖x‖∞ ≤ R and (H1) guarantees that

(5.2) ‖Fx‖∞ ≤ R3 + (p2 − 1)R,

which implies that F (PR) is uniformly bounded. For x ∈ PR, differentiating

(Fx)(t) with respect to t yields

(Fx)′(t) = −
∫ b

a

∂K(t, s, x(s))

∂t
ds.

Hence

(5.3) ∃N > 0, ‖(Fx)′‖∞ ≤ N.

Estimates (5.2)–(5.3) imply that F (PR) is an equicontinuous subset of E. Ap-

pealing to the Arzela–Ascoli compactness criterion, we can show that F maps



Fixed Point Index Theory 635

bounded sets of P into relatively compact sets. In view of the sup-norm and the

continuity of function K, it is easily checked that F is continuous. Therefore,

F : PR → E is completely continuous, i.e., is a 0-set contraction.

(c) Checking (2.3). Assume that there exist x0 ∈ ∂PR and λ0 ≥ 1 such that

Fx0 = λ0(x0 − Tx0).

Let t0 ∈ [a, b] with x0(t0) = R. From (H1), we have

(5.4) −(Fx0)(t0) =

∫ b

a

K(t0, s, x0(s)) ds < R3 + (p(t0)− 1)R.

In addition

−(Fx0)(t0) = −λ0(x0(t0)− (Tx0)(t0))

= λ0

(
R3 + (p(t0)− 1)R

)
≥ R3 +

(
p(t0)− 1

)
R,

contradicting (5.8). Hence (2.3) holds.

(d) It remains to check that µF (PR) ⊂ (I − T )(PR), for every µ ∈ [0, 1].

For this, let z ∈ PR and µ ∈ [0, 1] be fixed and define the nonlinear operator on

PR by Ax = Tx+ µFz. As T is, A : PR → E is p1-expansive mapping.

In order to use Proposition 1.11, we check that PR ⊂ A(PR). Indeed, for

given v ∈ PR, define the operational equation set on PR:

(5.5) Au = v.

On the one hand, v(t) − µFz(t) ≥ 0, for all t ∈ [a, b] and Assumption (H1)

guarantees that

‖v − µFz‖ ≤ ‖v‖+ µ‖Fz‖ ≤ R+R3 + (p2 − 1)R = R3 + p2R.

Hence v − µFz ∈ B
(
0, R3 + p2R

)
∩ P.

On the other hand, from the expression of operator T , we can easily check

that T : PR → T (PR) is a bijection, where T (PR) is a conical shell centered at

origin with radius R3+p2R. Then there exists some u ∈ PR such that (5.5) holds.

By Proposition 1.11, A has a unique fixed point w ∈ PR, that is (I−T )w = µFz.

Since z and µ are arbitrary, we conclude that µF (PR) ⊂ (I − T )(PR), for every

µ ∈ [0, 1]. Therefore Proposition 2.8 applies with Ω = PR and gives the desired

conclusion. �

5.2. Example 2. Let (X, ‖ · ‖) be a Banach space ordered by a cone K.

Consider the nonlinear integral equation:

(5.6) x(t) = a(t)x(t)− b(t)emtx0 −
∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds, t ≥ 0,
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where x0 ∈ K is such that ‖x0‖ = 1, a, b : [0,+∞) → [0,+∞) are bounded

functions, and m is a real number. f ∈ C([0,+∞)×K,K), g ∈ C([0,+∞),R+)

and the kernel G : [0,+∞)× [0,+∞)→ R+ is defined by:

G(t, s) =
1

2m

e−ms(emt − e−mt) if 0 ≤ t ≤ s <∞,
e−mt(ems − e−ms) if 0 ≤ s ≤ t <∞.

Suppose that the following conditions hold:

(H1) There exist p, q ∈ L∞([0,+∞),R+) such that

‖f(t, x)‖ ≤ p(t) + q(t)‖x‖, for all (t, x) ∈ [0,+∞)×K,

where, for some θ ≥ m, the coefficients p and q satisfy:∫ +∞

0

eθtg(t)q(t) dt <∞ and

∫ +∞

0

g(t)p(t) dt <∞.

(H2) For all r > 0 and all subinterval [a, b] ⊂ [0,+∞), the nonlinearity f( · , · )
is uniformly continuous on [a, b]×BX(0, r) and there exists a nonnegative

function l ∈ L1([0,+∞)) with∫ +∞

0

e(θ−m)tg(t)l(t) dt = 2m(a0 − 1),

α(f(t, B)) ≤ l(t)α(B), t ∈ [0,+∞),

for every bounded subset B ⊂ X.

Remark 5.2. (a) According to [15, Lemma 2.3], G is the kernel to the second-

order differential operator −x′′+m2x = 0, 0 < t < +∞ subject to homogeneous

Dirichlet conditions.

(b) Let

M1 :=

∫ +∞

0

e−msG(s, s) g(s) p(s) ds,

M2 :=

∫ +∞

0

e(θ−m)sG(s, s) g(s) q(s) ds.

By (H1), these integrals are convergent. Indeed

M1 =
1

2m

∫ +∞

0

(
e−ms − e−3ms

)
g(s) p(s) ds <

1

2m

∫ +∞

0

g(s)p(s) ds < +∞,

M2 <
1

2m

∫ +∞

0

eθsg(s) q(s) ds < +∞.

We prove an existence result for equation (5.6).

Theorem 5.3. Further to (H1)–(H2), assume that

(H3) a0 := inf
t∈[0,+∞)

a(t) > 1 +M2.
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Then the integral equation (5.6) has a sequence of approximate solutions. If

further X is reflexive and, for each t ∈ J , the mapping

(H4) t 7→
∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds

is weakly sequentially continuous, then (5.6) has at least one positive solution

x ∈ C(J,K).

Proof. Consider the Banach space

E =
{
x ∈ C([0,+∞), X) : lim

t→+∞
e−θt‖x(t)‖ exists

}
equipped with the weighted Bielecki sup-norm ‖x‖θ = sup

t∈[0,+∞)

(
e−θt‖x(t)‖

)
. Let

the positive cone P = {x ∈ E : x(t) ≥ 0, for all t ≥ 0} and the conical shell

PR := {x ∈ P : ‖x‖θ < R}, where R ≥ (M1 + ‖b‖∞)/(a0 −M2 − 1). Define the

operators on E:

(Tx)(t) = a(t)x(t)− x0b(t)e
mtx0,

(Fx)(t) = −
∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds.

Then the integral equation (5.6) is equivalent to the operational equation x =

Tx+ Fx.

We check that all assumptions of Proposition 3.9 are fulfilled. Obviously, T

and F map PR into E. From (H3), we have

‖Tx− Ty‖θ ≥ a0‖x− y‖θ, for all x, y ∈ E,

that is T is expansive mapping with constant a0 > 1. If x ∈ PR, then

‖x‖θ ≤ R and ‖Fx‖θ ≤M1 +M2R,

which implies that F (PR) is uniformly bounded. According to ([15, Lemmas

3.2 and 3.5]), under assumptions (H1) and (H2), F is a k-set-contraction on PR
with

k =
1

2m

∫ +∞

0

e(θ−m)sg(s) l(s) ds.

In addition, by assumption (H1), for all x ∈ ∂PR and t ∈ [0,+∞), we have

e−θt‖Fx(t) + T0(t)‖ = e−θt
∥∥∥∥∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds+ b(t)emt x0

∥∥∥∥
≤
∫ +∞

0

e−msG(s, s)g(s)[p(s) + q(s)eθs‖x‖θ] ds+ ‖b‖∞

≤M1 +M2R+ ‖b‖∞ ≤ (a0 − 1)R.

Passing to the supremum over t guarantees that

‖Fx+ T0‖θ ≤ (a0 − 1)‖x‖θ, for all x ∈ ∂PR.
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It remains to show that F (PR) ⊂ (I − T )(PR). Arguing as in the first example,

it is sufficient to prove that

(5.7) y ∈ F (PR) implies y + T (PR) ⊃ PR.

For any x, u ∈ PR, define

(5.8) v(t) =
1

a(t)

(
u(t) + b(t)emtx0 +

∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds

)
,

for t ≥ 0. Hence v(t) ≥ 0, t ≥ 0 and

e−θt‖v(t)‖ =
1

a(t)

(
e−θtu(t) + b(t)e(m−θ)tx0

+ e−θt
∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds

)
≤ 1

a0

(
‖u‖θ + ‖b‖∞‖x0‖+M1 +M2R

)
≤ 1

a0

(
(M2 + 1)R+M1 + ‖b‖∞

)
≤ R.

Thus v ∈ PR. Consequently, from (5.8) we have

u(t) = −
∫ +∞

0

G(t, s)g(s)f(s, x(s)) ds+a(t)v(t)−b(t)emtx0 = (Fx)(t)+(Tv)(t),

for t ∈ [0,+∞), proving that Fx+ T (PR) ⊃ PR.

Without loss of generality, assume that 0 6∈ (I − T − F )(∂PR), otherwise we

are finished. By Proposition 3.9 with U = PR and Ω = PR, we get

i∗(T + F,PR,P) = 1.

By the existence property of the index, 0 ∈ (I − T − F )(PR), i.e. there exists

a sequence (xn)n in PR such that xn − Txn − Fxn → 0, as n → +∞. Since

the sequence (xn)n is bounded in E, then so is (xn(t))n in X for each t. X

being reflexive, there exists a subsequence still denoted (xn(t))n which converges

weakly in X. By [8, Theorem 5], the sequence (xn)n also converges weakly in

C([0,+∞), X) to some limit x. Assumption (H3) implies that x−Tx−Fx = 0,

that is the mapping T + F has at least one positive fixed point in PR, which is

a solution of the integral equation (5.6). �
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