
Topological Methods in Nonlinear Analysis
Volume 54, No. 2A, 2019, 833–862

DOI: 10.12775/TMNA.2019.076

c© 2019 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

TOPOLOGY OF TWISTS, EXTREMISING TWIST PATHS

AND MULTIPLE SOLUTIONS TO THE NONLINEAR SYSTEM

IN VARIATION L [u] = ∇P

George Morrison — Ali Taheri

Abstract. In this paper we address questions on the existence and mul-

tiplicity of a class of geometrically motivated mappings with certain sym-

metries that serve as solutions to the nonlinear system in variation:

ELS[(u,P),Ω] =


[∇u]tdiv[Fξ∇u]− Fs[∇u]tu = ∇P in Ω,

det∇u = 1 in Ω,

u ≡ x on ∂Ω.

Here Ω ⊂ Rn is a bounded domain, F = F (r, s, ξ) is a sufficiently smooth
Lagrangian, Fs = Fs(|x|, |u|2, |∇u|2) and Fξ = Fξ(|x|, |u|2, |∇u|2) with Fs
and Fξ denoting the derivatives of F with respect to the second and third
variables respectively while P is an a priori unknown hydrostatic pressure

resulting from the incompressibility constraint det∇u = 1. Among other

things, by considering twist mappings u with an SO(n)-valued twist path,
we prove the existence of multiple and topologically distinct solutions to

ELS for n ≥ 2 even versus the only (non) twisting solution u ≡ x for n ≥ 3

odd. An extremality analysis for twist paths and those of Lie exponential
types and a suitable formulation of a differential operator action on twists

relating to ELS are the key ingredients in the proof.
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1. Introduction

The space of continuous self-mappings of a bounded smooth domain Ω ⊂ Rn

(n ≥ 2) agreeing with the identity on the boundary ∂Ω has a complex structure

and often rich topology. In this paper we consider a nonlinear system in diver-

gence and variational form in a not so non-typical domain geometry that admits

a multitude of solutions in the form of such self-mappings. These solutions are

rotationally symmetric, whilst the number and form of them exhibit a sharp and

stark contrast depending on the parity of the spatial dimension n, specifically, in

being even versus odd. Towards this end consider the variational energy integral

(1.1) F[u,Ω] =

∫
Ω

F (x, u,∇u) dx

where F = F (x, u, ζ) with (x, u, ζ) ∈ Ω × Rn ×Mn×n is a sufficiently regular

Lagrangian and the competing mappings u = (u1, . . . , un) are confined to the

space Ap = Ap(Ω) of admissible weakly differentiable incompressible Sobolev

mappings defined by

(1.2) Ap(Ω) := {u ∈W 1,p(Ω,Rn) : det∇u = 1 a.e. in Ω, u = ϕ on ∂Ω},

for a suitable choice of Sobolev exponent 1 ≤ p <∞. A good motivating source

for considering such energies and classes of mappings comes from the nonlinear

theory of elasticity where the pair (1.1)–(1.2) together describe a mathematical

model for an incompressible hyperelastic material subject to pure displacement

boundary conditions with the resulting extremisers, equivalently critical points

or solutions to the associated Euler–Lagrange system, and minimisers serving as

the equilibrium states and physically stable displacement fields. (For more see

[1], [3], [8], [9] and for other motivations see [2], [15], [16], [24], [26].)

The mapping ϕ ∈ C (∂Ω,Rn) describing the boundary displacement in (1.2)

is taken throughout to be ϕ ≡ x where the last condition in (1.2) then asserts

that u agrees with the identity on ∂Ω in the sense of traces. Furthermore ∇u
here denotes the gradient of u, an n×n matrix-field in Ω, with det∇u denoting

its Jacobian determinant. The Euler–Lagrange system (ELS) associated with

the variational energy integral (1.1) over the space Ap(Ω) is given by (1)

(1.3) ELS[(u,P),Ω] =


L [u; F ] = ∇P in Ω,

det∇u = 1 in Ω,

u ≡ ϕ on ∂Ω,

where P = P(x) is an unknown hydrostatic pressure field corresponding to

the pointwise constraint det∇u = 1 and the differential operator L = L [u; F ]

(1) See the last section for a brief derivation of this system.
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takes the explicit form

(1.4) L [u; F ] =
1

2
[∇u]t{div [Fζ(x, u,∇u)]−Fu(x, u,∇u)}.

Referring to (1.4) we also point out that the divergence operator “div” in the

first term on the right acts row-wise on the matrix field Fζ(x, u,∇u) and [∇u]t

denotes the transpose of the matrix [∇u]. For the sake of clarity let us also note

that by a (classical) solution we hereafter mean a pair (u,P) with u of class

C (Ω,Rn) ∩ C 2(Ω,Rn) and P of class C (Ω) ∩ C 1(Ω) such that (1.3) holds in

a pointwise sense in Ω.

It is known that when F = F (∇u) and Ω ⊂ Rn is star-shaped, then subject

to the natural convexity requirements for the application of the direct methods

of the calculus of variations, i.e., quasiconvexity of F everywhere (see [22] or

[3], [9]) any solution u to (1.3) is globally minimising: F[u,Ω] = F[x,Ω] and so

subject to the strict quasiconvexity of F at ζ = I the only solution to (1.3)

is u ≡ x (see [20], [29]). The latter uniqueness raises the question as to how

different the situation would be for non star-shaped domains or more generally

domains with a non-trivial topology? Are there multiple solutions in such cases?

Now, in order to address this question more profoundly and highlight the

role of domain topology, let us proceed by introducing

Cϕ(Ω) = {v ∈ C (Ω,Ω) : v = ϕ on ∂Ω},

the space of continuous self-mappings of Ω onto itself agreeing with the identity

on ∂Ω. The significance of this space for us comes from the embedding Ap(Ω) ⊂
Cϕ(Ω) when p ≥ n: every u in Ap(Ω) has a (precise) representative u? in Cϕ(Ω).

Now depending on the topology of the domain Ω the space Cϕ(Ω) can have

a fairly complex and rich topology itself (see below). Indeed let

π0 = {[f ] : f ∈ Cϕ(Ω)}

denote the set of all homotopy classes (or equivalently path-connected compo-

nents) of the space Cϕ(Ω) taken in the uniform metric. Then considering inverse

images gives the decomposition

(1.5) Ap(Ω) =
⋃
γ∈π0

Aγp , Aγp = {u ∈ Ap(Ω) : γ = [u?]}.

When Ω is homeomorphic to an n-ball then Cϕ(Ω) is easily seen to be connected

and so π0 here is a singleton. On the other hand when Ω is homeomorphic to

the product Bl × Sm (with integers l,m ≥ 1 and n = m+ l) then (cf. [31], [33])

(1.6) π0 = {[u] : u ∈ Cϕ(Ω)} ∼= πl[C (Sm,Sm; deg = +1)],

where for each d ∈ Z, C (Sm,Sm; deg = d) represents the component of the space

C (Sm,Sm) containing mappings with Hopf degree d. Although a description

of the homotopy groups on the right in (1.6) and the homotopy types of the
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components C (Sm,Sm; deg = d) is an outstanding and highly technical problem

in topology, one can obtain a good collection of results (for l,m ≥ 1) that suitably

relate to the problem at hand here (see [13], [21], [37], [38] and [31], [33], [39] for

more). Indeed, for m = 1, 3 and 7, due to Sm being a Lie or H group (here Sm

can be identified with the group of unit vectors in C,H and O, respectively) it

follows that the components C (Sm,Sm; deg = d) have the same homotopy type

and so in particular with d = 0 and d = 1 we get the isomorphisms (2)

πl[C (Sm,Sm; deg = +1)] ∼= πl[C (Sm,Sm; deg = 0)](1.7)

∼= πl(Sm)⊕ πl+m(Sm).

Interestingly (1.7) remains true for 1 ≤ l < m−1 (the so-called stable range)

as can be seen by considering the long exact sequence of the evaluation fibration

and taking note of the vanishing of certain homotopy groups along the sequence

(see [31], [33]). In particular for the given range πl(Sm) ∼= 0 and therefore (1.7)

gives πl[C (Sm,Sm; deg = +1)] ∼= πl+m(Sm).

As an important case, if Ω is an n-annulus, then with l = 1, m = n− 1, the

above in conjunction with π1[C (S2,S2; deg = +1)] ∼= π1[SO(3)] give (3)

π0 = {[u] : u ∈ Cϕ(Ω)} ∼= π1[C (Sm,Sm); deg = +1](1.8)

∼= π1[SO(m+ 1)] ∼=

Z if m = 1,

Z2 if m ≥ 2.

Returning to (1.5) it follows that when F is bounded from below, sequentially

weakly lower semicontinuous and coercive on W 1,p (with p ≥ n) then it admits

a minimiser in each Aγp with γ ∈ π0. These minimisers are strong local minimisers

of F in that for each such u there exists δ = δ[u] > 0 such that F[u] ≤ F[v] for

all v ∈ Ap(Ω) satisfying ||u − v||L1 ≤ δ (see [31]–[33]). In the case of an n-

annulus, by recalling (1.8), this gives the existence of an infinitude of strong

local minimisers when n = 2 and at least two when n ≥ 3.

For the purpose of this paper we confine to F (x, u, ζ) = F (r, |u|2, |ζ|2) where

F = F (r, s, ξ) is a twice continuously differentiable Lagrangian. In this case the

variational integral (1.1) (with |∇u|2 = tr{[∇u]t[∇u]} = tr{[∇u][∇u]t}) is

(1.9) F[u,Ω] :=

∫
Ω

F
(
|x|, |u|2, |∇u|2

)
dx.

Here Fζ(x, u,∇u) = 2Fξ
(
r, |u|2, |∇u|2

)
∇u, Fu(x, u,∇u) = 2Fs

(
r, |u|2, |∇u|2

)
u

where Fs and Fξ denote the derivatives of the Lagrangian F with respect to

(2) The second equivalence in (1.7) is a consequence of the existence of a cross section for

the Serre fibration resulting from evaluation at base point: p : C (Sm, Sm; deg = 0)→ Sm with

p[f ] = f(e). Here e ∈ Sm is the base point and f ∈ C (Sm, Sm; deg = 0).

(3) Note incidentally that the latter shows that the first isomorphism in (1.7) does not hold

for l = 1, m = 2 as here π1[C (S2, S2; deg = 0)] ∼= π3(S2) ∼= Z. (See also [14], [38], [40].)
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the second and third variables respectively. As a result with L [u] = L [u;F ]

the Euler–Lagrange operator (1.4) becomes (4)

(1.10) L [u] := [∇u]t
{

div
[
Fξ(|x|, |u|2, |∇u|2)∇u

]
− Fs(|x|, |u|2, |∇u|2)u

}
.

We consider the geometric setup in which the domain Ω is a finite n-annulus,

for definiteness, Ω = Xn[a, b] := {x ∈ Rn : a < |x| < b} with 0 < a < b < ∞,

and seek multiple solutions for the nonlinear system (1.3)–(1.10) amongst certain

classes of self-mappings of the n-annulus onto itself in the form u = Q(|x|)v(x) for

suitable v ∈ C
(
Xn,Xn

)
and Q ∈ C ([a, b],SO(n)). By a twist mapping (or a twist

for brevity) we understand a mapping u of the latter form with v ≡ x. Thus

a twist in spherical-polar coordinates is represented as u : (r, θ) 7→ (r,Q(r)θ)

with a ≤ r = |x| ≤ b, θ = x|x|−1. The matrix-valued curve Q ∈ C ([a, b],SO(n))

here is called the twist path (or when Q(a) = Q(b) the twist loop) associated

with the twist u. As can be seen a twist is a homeomorphism whose inverse is

again a twist, specifically, if u = rQ(r)θ then u−1 = rQ−1(r)θ. Furthermore,

subject to the differentiability of the twist path, a twist is incompressible as well

as measure-preserving.

In surface topology the significance of twists (also known as Dehn twists) and

their role as generators of the mapping class group of Riemannan surfaces has

a long and rich history ([6]). More recently in geometric analysis and PDEs these

two dimensional twists and their higher dimensional counterparts (as above)

have proven highly useful in establishing the existence of multiple solutions and

multiple equilibria of different topological types (see [17], [18], [25], [31]–[34] as

well as [10], [11], [23], [24], [28], [27]).

One of the main conclusions of the paper is that subject to suitable convexity

and monotonicity assumptions on F the pair (1.3)–(1.10) has an infinite family of

twist solutions in all even dimensions whilst in odd dimensions this is generally

only one, specifically, the non-twisting trivial identity mapping. An example

that nicely illustrates this contrast in the behaviour of (1.3)–(1.10) and its twist

solutions is F = h(r, s)ξ where h of class C 2 is strictly positive and

L [u] = [∇u]t
{

div
[
h(r, |u|2)∇u

]
− hs(r, |u|2)|∇u|2u}(1.11)

= [∇u]t
{
∇u∇

[
h(r, |u|2)

]
+ h(r, |u|2)∆u− hs(r, |u|2)|∇u|2u

}
.

In Section 4 it is shown that any twist u = rQ(r)θ satisfying the PDE L [u] =

∇P must have its twist path satisfying the ODE: EL[Q] = 0, namely,

d

dr

{∫
Sn−1

rn+1h(r, r2)
[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
dHn−1(θ)

}
= 0.(1.12)

(4) Note that the identity mapping u ≡ x is always a solution to this system in view of the

vector field L [u ≡ x] = ∇[Fξ]− Fsx with Fξ = Fξ(r, r
2, n), Fs = Fs(r, r2, n) being a gradient

field in Ω.
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A resolution of this ODE subject to Q(a) = Q(b) = In and a refined analysis of

(1.11) then has the interesting implication that depending on n being even or

odd and with a structural condition on h the twist solutions to (1.3)–(1.11) are:

• n even: There exists m ∈ Z and P ∈ O(n) such that u = u(x;m) =

P diag(R[G ](r;m), . . . ,R[G ](r;m))Ptx, that is,

u = P


R[G ](r;m) 0 · · · 0 0

0 R[G ](r;m) · · · 0 0
...

...
. . .

...
...

0 0 · · · R[G ](r;m) 0

0 0 · · · 0 R[G ](r;m)

Ptx.(1.13)

Here

G (r;m) =
2πm

‖H‖L1(a,b)

[ ∫ r

a

H(s) ds

]
where H(s) =

1

[sn+1h(s, s2)]

and each block R[G ] is an SO(2) matrix of rotation by angle G (see (4.7)).

• n odd: u ≡ x.

Moving on to the system (1.3)–(1.10) a similar conclusion can be established

under suitable convexity and monotonicity assumptions on F (see Section 2)

with G = G (r) in (1.13) now being the unique solution to a two point boundary

value problem relating to F (see Theorem 6.7 and Sections 5 and 6 for details).

A surprising outcome, among other things, is that the strong local minimisers

resulting from the earlier topological argument cannot be twist mappings here

and possess the symmetries one naturally expects – at least in odd dimensions!

It would thus be interesting to see what form and symmetries would such strong

local minimisers and more generally extremals have if they are not among twist

mappings? In another direction the results here can be seen to give a curious

characterisation of those twist paths Q for which u = Q(|x|)v(x) with v ≡ x is

a solution to (1.3)–(1.10). It would be interesting to give a similar characteri-

sation for other pairs (Q, v) with v a solution to (1.3)–(1.10) or more generally

(1.3)–(1.4) so that the resulting u is a solution to the same system.

2. Preliminaries and formulation of the operator L ’s action on twists

Our goal is to seek and classify solutions to the nonlinear system (1.3)–(1.10)

in the twist form u : (r, θ) 7→ (r,Q(r)θ). Here we compute and gather together

some key identities that will assist us in the subsequent analysis of the system.

For the sake of future reference and clarity we assume throughout that F =

F (r, s, ξ) is a twice continuously differentiable Lagrangian, that is, F ∈ C 2(U)

where U = U(Xn[a, b]) = [a, b]× ]0,∞[× ]0,∞[ ⊂ R3. Moreover, we assume that

F is bounded from below, i.e. F (r, s, ξ) ≥ c0 for some c0 ∈ R and all (r, s, ξ) ∈ U
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and that for every compact set K ⊂]0,∞[ there are c1 = c1(K), c2 = c2(K) > 0

such that (5) ∣∣Fξ(r, s, ζ2
)
ζ
∣∣ ≤ c2|ζ|p−1, for all

(
r, s, ζ2

)
∈ U, with s ∈ K,(2.1)

c0 + c1|ζ|p ≤ F
(
r, s, ζ2

)
≤ c2|ζ|p, for all

(
r, s, ζ2

)
∈ U, with s ∈ K.(2.2)

In particular F is well-defined and bounded below (yet not necessarily finite

everywhere) on Ap(Xn). As for convexity all we assume is that Fξ > 0, Fξξ ≥ 0

and that the twice continuously differentiable function ζ 7→ F
(
r, r2, n+ r2ζ2

)
is

uniformly convex in ζ for all a ≤ r ≤ b and ζ ∈ R. Note that below we write Fr,

Fs, Fξ, Frξ, Fsξ, Fξξ etc. for the derivatives of F in its respective arguments.

Proposition 2.1. Let

Q ∈ C ([a, b],SO(n)) ∩ C 2(]a, b[,SO(n)), v ∈ C 2
(
Xn,Xn

)
, u = Q(|x|)v(x).

Then with Q̇ = dQ/dr, Q̈ = d2Q/dr2 the following hold :

(a) ∇u = Q∇v + Q̇v ⊗ θ,

(b) |∇u|2 = |∇v|2 + |Q̇v|2 + 2
〈
QtQ̇v,∇v θ

〉
,

(c) ∆u = 2Q̇∇v θ + Q∆v + Q̈v + (n− 1)Q̇v/r,

(d) det∇u = det∇v +
〈
QtQ̇v, [cof∇v]θ

〉
, whenever det∇v(x) 6= 0.

Furthermore, with the Lagrangian F = F (r, s, ξ) as described earlier we have

div
[
Fξ
(
r, |u|2,|∇u|2

)
∇u
]

= Fξξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)

×
[
∇
(
|∇v|2

)
+∇

(
|Q̇v|2

)
+ 2∇

〈
QtQ̇v,∇v θ

〉]
+ Fsξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)∇(|v|2)

+ Frξ
(
r, |u|2, |∇u|2

)(
Q∇v + Q̇v ⊗ θ

)
θ

+ Fξ
(
r, |u|2, |∇u|2

)[
2Q̇∇v θ + Q∆v + Q̈v +

n− 1

r
Q̇v

]
.

Proof. The first identity follows by a straightforward differentiation. Indeed

proceeding directly we can write

∇u = Q∇v +∇Q(|x|)v = Q∇v + Q̇v ⊗ θ = Q
(
∇v + QtQ̇v ⊗ θ

)
.

Proceeding immediately from this on to (d), using the assumed invertibility of

∇v together with the fact that determinant is a quasiaffine function on Mn×n

(cf. e.g. [22]), as a result of which det(In + ζ ⊗ ξ) = 1 + 〈ζ, ξ〉 for any ζ, ξ ∈ Rn,

it follows at once that

det∇u = det Q× det
(
∇v + QtQ̇v ⊗ θ

)
(2.3)

= det∇v
[
1 +

〈
[∇v]−1QtQ̇v, θ

〉]
= det∇v +

〈
QtQ̇v,

[
cof∇v

]
θ
〉
.

(5) The particular example F (r, s, ξ) = (ξ/s)n/2 (n ≥ 2) gives the classical distortion

energy and is of great interest (see [2], [15], [24]).
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Next for (b), using the description of the Hilbert–Schmidt norm of the matrix

field ∇u we can write

|∇u|2 = tr
{

[∇u]t[∇u]
}

= tr
{

([∇v]tQt + θ ⊗ Q̇v)(Q[∇v] + Q̇v ⊗ θ)
}

= tr
{

[∇v]t[∇v] + [∇v]tQtQ̇v ⊗ θ + θ ⊗ [∇v]tQtQ̇v + (θ ⊗ Q̇v)(Q̇v ⊗ θ)
}

= |∇v|2 + 2
〈
QtQ̇v,∇v θ

〉
+ |Q̇v|2.

Likewise for (c) by taking the divergence of ∇u as given by (a), we compute the

Laplacian ∆u = div(Q∇v + Q̇v ⊗ θ) = 2Q̇∇vθ + Q∆v + Q̈v + (n− 1)/rQ̇v.

The final identity then follows by direct differentiation and use of the chain

rule

(2.4) div
[
Fξ(r, |u|2, |∇u|2)∇u

]
= Fξξ

(
r, |u|2, |∇u|2

)
∇u∇

(
|∇u|2

)
+ Fsξ

(
r, |u|2, |∇u|2

)
∇u∇

(
|u|2
)

+ Frξ
(
r, |u|2, |∇u|2

)
∇uθ

+ Fξ
(
r, |u|2, |∇u|2

)
∆u.

Noting that |v|2 = |u|2 we now have all the identities to complete the expression

(2.4) and the result follows. �

Proposition 2.2. Let

Q ∈ C ([a, b],SO(n)) ∩ C 2]a, b[,SO(n)), v ∈ C 2(Xn,Xn), u = Q(|x|)v(x).

Then, referring to the Euler–Lagrange operator L as given by (1.10), we have

L [u] =
[
(∇v)tQt + θ ⊗ Q̇v

]{
Fξξ
(
r, |u|2, |∇u|2

)(
Q∇v + Q̇v ⊗

)
×
[
∇
(
|∇v|2

)
+∇

(
|Q̇v|2

)
+ 2∇

〈
QtQ̇v,∇v θ

〉]
+ Fsξ

(
r, |u|2, |∇u|2

)(
Q∇v + Q̇v ⊗ θ)∇(|v|2

)
+ Frξ

(
r, |u|2, |∇u|2

)(
Q∇v + Q̇v ⊗ θ

)
θ

+ Fξ
(
r, |u|2, |∇u|2

)[
2Q̇∇v θ + Q∆v + Q̈v +

n− 1

r
Q̇v

]
− Fs

(
r, |u|2, |∇u|2

)
Q(r)v

}
.

Proof. The result is a direct consequence of the definition of L [u] (1.10)

and the relevant identities in Proposition 2.1. �

Corollary 2.3. Let u be a twist with a twice continuously differentiable

twist path Q, specifically, Q ∈ C ([a, b],SO(n)) ∩ C 2(]a, b[,SO(n)). Then the

following hold :

(a) ∇u = Q + rQ̇θ ⊗ θ,

(b) |∇u|2 = n+ r2
∣∣Q̇θ∣∣2,

(c) ∆u =
[
(n+ 1)Q̇ + rQ̈

]
θ,
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(d) det∇u = det
(
Q + rQ̇θ ⊗ θ

)
= 1.

As a result, if F = F (r, s, ξ) is a Lagrangian as described earlier, then

div[Fξ(r, |u|2,|∇u|2)∇u]

=Fξξ(r, r
2, |∇u|2)(Q + rQ̇θ ⊗ θ)(2r|Q̇θ|2θ + r2∇|Q̇θ|2)

+ [2rFsξ(r, r
2, |∇u|2) + Frξ(r, r

2, |∇u|2)](Qθ + rQ̇θ)

+ Fξ(r, r
2, |∇u|2)[(n+ 1)Q̇ + rQ̈]θ.

Consequently, the action of L as defined by (1.10) on u can be written as

L [u] = [∇u]t
{

div
[
Fξ
(
|x|, |u|2, |∇u|2

)
∇u
]
− Fs

(
|x|, |u|2, |∇u|2

)
u
}

(2.5)

= (Qt + rθ ⊗ Q̇θ)

×
[
Fξξ
(
r, r2, |∇u|2

)(
Q + rQ̇θ ⊗ θ

)(
2r|Q̇θ|2θ + r2∇|Q̇θ|2

)
+ 2rFsξ

(
r, r2, |∇u|2

)(
Qθ + rQ̇θ

)
+ Frξ

(
r, r2, |∇u|2

)(
Qθ + rQ̇θ

)
+ Fξ

(
r, r2, |∇u|2

)[
(n+ 1)Q̇ + rQ̈

]
θ − rFs

(
r, r2, |∇u|2

)
Qθ
]
.

Proof. The proof is a direct consequence of Propositions 2.1 and 2.2 upon

setting v ≡ x and noting
〈
QtQ̇θ, θ

〉
= 0 and |u|2 = |rQ(r)θ|2 = r2. �

3. Analysis of extremality:

Twist paths and Lie exponentials Q = exp{G (r)H}

In this section we look at extremality conditions for general classes of curves

on SO(n), initially disregarding any connection with the variational energy inte-

gral (1.9) and its twist extremals (see (3.2) below) before specialising the results

and conclusions to the case of twist paths and loops at hand. For the sake of fu-

ture reference we introduce the Sobolev class of weakly differentiable admissible

loops at identity (with p ≥ 1 fixed) by setting

(3.1) Bp = Bp(a, b) :=
{

Q ∈W 1,p(a, b; SO(n)) : Q(a) = Q(b) = In
}
.

We denote by exp{ · } the Lie exponential on G = SO(n) whose domain is the Lie

algebra g = so(n) of skew-symmetric matrices. Any Lie group is parallelisable

with a trivial tangent bundle G × g. In case of SO(n) for left invariant vector

fields X,Y, Z ∈ so(n) the Lie bracket is given by [X,Y ] = XY − Y X and the

bi-invariant metric is induced by the Killing form B(X,Y ) = (n− 2)tr(XY ).

Proposition 3.1. Suppose L = L(r, η, ζ) is a twice continuously differen-

tiable Lagrangian and Q ∈ C 2([a, b]; SO(n)) with Q(a) = Q(b) = In is an ex-

tremal of the integral

(3.2) L[Q, (a, b)] :=

∫ b

a

L
(
r,Q, Q̇

)
dr, Q̇ =

dQ

dr
,
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considered over Bp(a, b). Then EL[Q; (a, b)] = 0 on ]a, b[ where EL is the second-

order Euler–Lagrange operator

EL[Q; (a, b)] = − d

dr

[
LζQ

t −QLtζ
]

+ LηQt −QLtη + LζQ̇
t − Q̇Ltζ .(3.3)

Here Lη = Lη
(
r,Q, Q̇

)
and Lζ = Lζ

(
r,Q, Q̇

)
with the subscripts denoting the

derivatives of L with respect to the second and third arguments, respectively.

Proof. Let Q be as described and pick a compactly supported skew-sym-

metric matrix field H ∈ C∞0 (]a, b[,Mn×n). Let Qε = Qε(r) in C 1([a, b] ×
[−`, `],SO(n)) with |ε| ≤ ` and ` > 0 sufficiently small denote the one parameter

family of variations of the extremal Q verifying

(3.4)


Q0(r) = Q(r) for all r ∈ [a, b],

dQε/dε|ε=0 = HQ for all r ∈ [a, b],

Qε(a) = In, Qε(b) = In for all ε ∈ [−`, `].

The pull-back QtHQ takes values in so(n) and so HQ is a [tangent] vector field.

Taking “d/dr” from the second line in (3.4) gives dQ̇ε/dε|ε=0 = HQ̇ + ḢQ (with

dots denoting d/dr). Now proceeding forward and on to the first variation of

the L-energy (3.2), by definition we have that Q is an extremal if and only if we

have:

(3.5) δL[Q](H) =
d

dε
L[Qε, (a, b)]

∣∣∣∣
ε=0

=
d

dε

{∫ b

a

L
(
r,Qε, Q̇ε

)
dr

}∣∣∣∣
ε=0

=

∫ b

a

{〈
Lη
(
r,Q, Q̇

)
,
dQε

dε

∣∣∣∣
ε=0

〉
+

〈
Lζ
(
r,Q, Q̇

)
,
dQ̇ε

dε

∣∣∣∣
ε=0

〉}
dr = 0.

Focusing on the integral on the second line and writing Lη = Lη(r,Q, Q̇) and

Lζ = Lζ(r,Q, Q̇) for brevity respectively we have

δ L[Q](H) =

∫ b

a

{
〈Lη,HQ〉+

〈
Lζ ,

(
HQ̇ + ḢQ

)〉}
dr(3.6)

=

∫ b

a

{〈
LηQt + LζQ̇

t,H
〉

+
〈
LζQ

t, Ḣ
〉}
dr

=

∫ b

a

〈
− d

dr

(
LζQ

t
)

+ LηQt + LζQ̇
t,H

〉
dr = 0,

where in deducing the third line we have used the integration by parts formula.

The conclusion now follows by noting the arbitrariness of the skew-symmetric

matrix field H ∈ C∞0 (]a, b[,Mn×n) and upon invoking the fundamental lemma of

the calculus of variations. �

Remark 3.2. If instead of dQε/dε|ε=0 = HQ in the second line in (3.4) we

set dQε/dε|ε=0 = QH (note that QH is clearly a (tangent) vector field) then
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a similar argument gives the Euler–Lagrange FL[Q; (a, b)] = 0 where

(3.7) FL[Q; (a, b)] = − d

dr

[
QtLζ − LtζQ

]
+ QtLη − LtηQ + Q̇tLζ − LtζQ̇.

In view of the identity established in Lemma 3.3 below the two Euler–Lagrange

equations are easily seen to be equivalent.

Lemma 3.3. FL[Q; (a, b)] = QtEL[Q; (a, b)]Q.

Proof. Below for brevity we write EL = EL[Q; (a, b)], FL = FL[Q; (a, b)]

and suppress the arguments in Lη, Lζ . Starting from

(3.8) FL = − d

dr

[
QtLζ − LtζQ

]
+ QtLη − LtηQ + Q̇tLζ − LtζQ̇

= Qt

{
−Q

d

dr

[
QtLζ − LtζQ

]
Qt + LηQt −QLtη + QQ̇tLζQ

t −QLtζQ̇Qt

}
Q.

Now, focusing on the first term in the brackets on the right on the second line,

using orthogonality, we can write

d

dr

[
QtLζ − LtζQ

]
=

d

dr

[
Qt(LζQ

t −QLtζ)Q
]

= Q̇t
(
LζQ

t −QLtζ
)
Q + Qt d

dr

[
LζQ

t −QLtζ
]
Q + Qt(LζQ

t −QLtζ)Q̇.

Hence substituting this expansion back in (3.8) gives

FL = − d

dr

[
QtLζ − LtζQ

]
+ QtLη − LtηQ + Q̇tLζ − LtζQ̇

= Qt

{
−QQ̇t(LζQ

t −QLtζ)QQt −QQt d

dr

[
LζQ

t −QLtζ
]
QQt

−QQt
(
LζQ

t −QLtζ
)
Q̇Qt + LηQt −QLtη + QQ̇tLζQ

t −QLtζQ̇Qt

}
Q.

Upon noting the identities QQ̇tQLtζ = −Q̇Ltζ and −LζQtQ̇Qt = LζQ̇
t, both

resulting from skew-symmetry, this after cancellations simplifies to

FL = Qt

{
−QQ̇t(LζQ

t −QLtζ)−
d

dr

[
LζQ

t −QLtζ
]

−
(
LζQ

t −QLtζ
)
Q̇Qt + LηQt −QLtη + QQ̇tLζQ

t −QLtζQ̇Qt

}
Q

= Qt

{
− d

dr

[
LζQ

t −QLtζ
]

+ LηQt −QLtη + LζQ̇
t − Q̇Ltζ

}
Q = QtELQ,

which is the desired conclusion. �

An important class of twist paths that arise as solutions to the above Euler–

Lagrange equations are those in the Lie exponential form Q(r) = exp{G (r)H}
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for suitable choices of profile curves G ∈ C 2[a, b] and matrices H ∈ so(n) (cf. Sec-

tions 4–6 below). In this event a basic calculation shows that the extremality

condition in Proposition 3.1 leads to the nonlinear ODE for the pair (G ,H):

(3.9) EL[exp{G H}; (a, b)] = − d

dr

[
Lζexp{−G H} − exp{G H}Ltζ

]
+ Lηexp{−G H} − exp{G H}Ltη + Ġ

(
Lζexp{−G H}Ht −Hexp{G H}Ltζ

)
= 0.

Now aiming to establish the existence of multiple solutions to this ODE, one

possible approach is to use variational methods and proceed by extremising the

restriction of the L-energy (3.2) to the subclass of Lie exponential twist paths

over the space of profile curves satisfying suitable Dirichlet boundary conditions

in line with Q(a) = Q(b) = In, i.e. in line with Q ∈ Bp(a, b). An advantage

here is that, whilst π1[SO(n)] ∼= Z2 (for n ≥ 3) and so the minimisation of L can

lead to the existence of at most two minimisers – one in each homotopy class

of closed curves based at In in SO(n) – by considering the restricted energy,

one obtains an infinitude of distinct minimisers by considering an infinitude of

distinct boundary conditions on (G ,H), that is, G (a)H,G (b)H ∈ exp−1{In},
thanks to the pre-image exp−1{In} ⊂ so(n) being an infinite set! The task is

then to discuss the relation these minimisers bear to the ODE (3.9). Towards

this end the restriction of the L-energy to the space of profiles G = G (r) (with

H fixed), that is, IH[G ] = L [exp{G H}, (a, b)] is seen to be

IH[G ] =

∫ b

a

L
(
r, exp{G (r)H}, Ġ (r)Hexp{G (r)H}

)
dr.(3.10)

Proposition 3.4. Suppose L = L(r, η, ζ) is a twice continuously differen-

tiable Lagrangian and that G ∈ C 2[a, b] is an extremal of the integral IH as

in (3.10). Then IL[G ] = 0 on ]a, b[ where

(3.11) IL[G ] = − d

dr
〈Lζ ,H exp{G H}〉+

〈
Lη − Ġ HLζ ,Hexp{G H}

〉
.

Proof. Towards this end pick H ∈ C∞c (a, b) and for ε sufficiently small

consider the one parameter family of Lie exponentials Qε(r) = exp{(G (r) +

εH (r))H}. Then Q0(r) = exp{G (r)H} = Q(r) and a straightforward differen-

tiation gives Q̇ε(r) =
(
Ġ (r) + ε ˙H (r)

)
H exp{(G (r) + εH (r))H}. With these

assumptions in place the vanishing of the first variation of energy at Q amounts

to δIH[G ](H ) = d/dεL[Qε]|ε=0 = 0 and so

d

dε

∫ b

a

L
(
r,Qε, Q̇ε

)∣∣∣∣
ε=0

=

∫ b

a

〈Lη,H HQ〉+
〈
Lζ , ˙H HQ + Ġ HH HQ

〉
=

∫ b

a

{
− d

dr
〈Lζ ,HQ〉+ 〈Lη + Ġ HtLζ ,HQ〉

}
H = 0.

The conclusion now follows from the arbitrariness of H . �
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Remark 3.5. To see that the profile curve G of an extremising twist path of

the L-energy (3.2) given in the Lie exponential form Q(r) = exp{G (r)H} satisfies

the ODE (3.11) it suffices to take the matrix inner product of (3.9) with H. Then

by virtue of Q̇ = Ġ HQ, a basic calculation gives,

〈EL[Q = exp{G H}],H〉(3.12)

= − d

dr

〈[
LζQ

t −QLtζ
]
,H
〉

+
〈
LηQt −QLtη,H

〉
+
〈
LζQ̇

t − Q̇Ltζ ,H
〉

= − 2
d

dr
〈Lζ ,HQ〉+ 2〈Lη,HQ〉+ 2Ġ

〈
HtLζ ,HQ

〉
,

from which the claim follows at once. Note however that the reverse implication

is not in general true due to the more restrictive type of variations taken to arrive

at (3.11) compared to those used to get (3.3). Interestingly, however, we discuss

a number of cases where the two ODEs are equivalent. (See below for more.)

The connection between the ongoing discussion on extremality of twist paths

on the one hand and the question of multiple solutions to the nonlinear system

(1.3) on the other becomes more transparent when we consider restricting the

variational energy integral (1.9) to the class of twist mappings. Towards this end

let us set L[Q, (a, b)] = F[u = rQθ,Xn]. Then is it plain that

L[Q, (a, b)] =

∫ b

a

L
(
r,Q, Q̇

)
dr(3.13)

=

∫ b

a

∫
Sn−1

F
(
r, r2|Qθ|2, n+ r2|Q̇θ|2

)
rn−1 dHn−1(θ) dr,

where upon comparing with (3.2), and noting 〈Qθ,Qθ〉 = 1, the Lagrangian

L = L(r, η, ζ) here is given by the spherical integral

(3.14) L(r, η, ζ) =

∫
Sn−1

F
(
r, r2, n+ r2|ζθ|2

)
rn−1 dHn−1(θ).

Naturally in view of L being independent of the η variable here we have Lη ≡ 0

and so referring to the Euler–Lagrange operator EL in (3.3) it follows that

(3.15) EL[Q; (a, b)] = − d

dr

[
LζQ

t −QLtζ
]

+ LζQ̇
t − Q̇Ltζ .

Now a further reference to the description of the Lagrangian L in (3.14) gives

(3.16) Lζ(r, Q̇) = 2

∫
Sn−1

rn+1Fξ
(
r, r2, n+ r2|Q̇θ|2

)
Q̇θ ⊗ θ dHn−1(θ),

and so in particular we have LζQ̇
t − Q̇Ltζ ≡ 0. In summary, returning to (3.15)

and substituting for Lζ using (3.16), after a basic manipulation and taking into

account the necessary cancellations we obtain the following.
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Corollary 3.6. The Euler–Lagrange equation associated with the L-energy

(3.13) over the space of admissible twist loops Bp(a, b) is given by

(3.17)

∫
Sn−1

d

dr

{
rn+1Fξ

(
r, r2, n+r2|Q̇θ|2

)[
Q̇θ⊗Qθ−Qθ⊗Q̇θ

]}
dHn−1(θ) = 0.

Next referring to the energy integral IH in (3.10) and the formulation of its

associated Euler–Lagrange operator IL in Proposition 3.4, it is seen by virtue

of (3.13), that firstly, IH[G ] = L[exp{G H}, (a, b)] = F[r exp{G H}θ,Xn], that is,

(3.18) IH[G ] =

∫ b

a

∫
Sn−1

F
(
r, r2, n+ r2Ġ 2|H exp{G H}θ|2

)
rn−1 dHn−1(θ) dr,

which precisely describes the restriction of the variational energy integral (1.9)

to the subclass of twist mapping with a Lie exponential twist path, and secondly

and as a result that we have the following.

Corollary 3.7. The Euler–Lagrange equation associated with the integral

IH in (3.18) is given by

(3.19)

∫
Sn−1

d

dr

{
rn+1Fξ(r, r

2, n+ r2Ġ 2|Hθ|2)Ġ
}
|Hθ|2dHn−1(θ) = 0.

Proof. Here we have

(3.11) = − d

dr
〈Lζ ,H exp{G H}〉−

〈
Ġ HLζ ,H exp{G H}

〉
=

〈
− d

dr
Lζ ,H exp{G H}

〉
and so (3.19) follows by substituting for Lζ using (3.16). �

4. Analysis of extremality: A totally integrable case

and the ODE (3.17) vs. the PDE (1.3)

Before proceeding on to the system (1.3) and dealing with the implications

of the Euler–Lagrange equations (3.17) and (3.19) we pause briefly to discuss an

important special case. Here we take the integrand F (r, s, ξ) = h(r, s)ξ for some

positive h ∈ C 2([a, b]× [0,∞[) with the resulting variational integral (1.9) being

a weighted form of the classical Dirichlet energy and compute among other things

the two Euler-Lagrange operators EL and IL as formulated in Corollaries 3.6

and 3.7. We then proceed on to solving the ODEs (3.17) and (3.19) by taking

advantage of their totally integrable structures before moving on to the system

(1.3) and characetrising all its twisting solutions. To this end, referring to (3.14),

it is first seen that the Lagrangian L of the L-energy (3.13) here becomes

L(r,Q, Q̇) =

∫
Sn−1

F
(
r, r2|Qθ|2, n+ r2|Q̇θ|2

)
rn−1 dHn−1(θ)(4.1)

=

∫
Sn−1

h
(
r, r2

)(
n+ r2|Q̇θ|2

)
rn−1 dHn−1(θ)

= ωnr
n−1h

(
r, r2

)(
n2 + r2|Q̇|2

)
.
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Thus upon noting Fξ = h(r, s) and using (3.16) or proceeding directly from the

last equation in (4.1) we obtain

(4.2) L
(
r, Q̇

)
= 2

∫
Sn−1

rn+1h
(
r, r2

)
Q̇θ ⊗ θ dHn−1(θ) = 2ωnr

n+1h
(
r, r2

)
Q̇.

Now as regards to the Euler–Lagrange operator EL in (3.3), by substituting for

Lζ from (4.2) and recalling the identity Q̇Qt + QQ̇t = 0, we have that

EL[Q] = − d

dr

[
LζQ

t −QLtζ
]

+ LζQ̇
t − Q̇Ltζ(4.3)

= − d

dr

{
2ωnr

n+1h
(
r, r2

)[
Q̇Qt −QQ̇t

]}
= − d

dr

{
4ωnr

n+1h
(
r, r2

)
Q̇Qt

}
= −Q

d

dr

{
4ωnr

n+1h
(
r, r2

)
QtQ̇

}
Qt.

The last equation here is the product QFL[Q]Qt with the operator FL as in (3.7)

(see Remark 3.2). Likewise for the Euler–Lagrange operator IL in (3.11), writing

Q = exp{G H}, Q̇ = Ġ HQ and noting
〈
H2Q,HQ

〉
= 0 we obtain

IL[G ] = − d

dr
〈Lζ ,H exp{G H}〉+

〈
Lη − Ġ HLζ ,Hexp{G H}

〉
(4.4)

= −2ωn

{
d

dr

〈
rn+1h

(
r, r2

)
Ġ HQ,HQ

〉
+
〈
rn+1h(r, r2)Ġ 2H2Q,HQ

〉}
= −2ωn

d

dr

{
rn+1h(r, r2)Ġ

}
|H|2,

agreeing with (3.19) in this context. An interesting outcome here is that unlike

the operator EL = EL[Q] in (4.3), the operator IL = IL[G ] in (4.4) is linear.

Moreover, by direct verification it is seen that any solution to IL[G ] = 0 (for H

fixed) corresponds to a solution Q = exp{G H} to EL[Q] = 0 which is a reverse

to the implication discussed in Remark 3.5.

Now as our first task we aim at resolving the ODE (3.17) subject to identity

boundary conditions, hence obtaining all the extremising twist paths associated

with the energy integral (3.13) in B2(a, b) with the choice F = h(r, s)ξ. This,

upon referring to (4.3) amounts to solving

EL[Q] = 0⇔ d

dr

{∫
Sn−1

rn+1h
(
r, r2

)[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0,(4.5)

⇔ d

dr

{
rn+1h

(
r, r2

)
Q̇Qt

}
= 0.

Integrating (4.5) once gives rn+1h(r, r2)Q̇Qt = H where H is a constant n × n
skew-symmetric matrix. This by noting the boundary condition Q(a) = In on

twist paths as required by Q ∈ B2(a, b) [see (3.1) with p = 2] has the general
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solution Q = Q(r) given by the Lie exponential

(4.6)

Q(r) = exp{G (r)H}, a ≤ r ≤ b,

G (r) =

{∫ r

a

s−(n+1) ds

h(s, s2)

}{∫ b

a

s−(n+1) ds

h(s, s2)

}−1

.

We see from the above that G (a) = 0 and G (b) = 1 so the boundary condition

Q(a) = In for the twist path is immediately seen to be satisfied. Depending

on whether the dimension n is even or odd, the skew-symmetric matrix H can

be orthogonally diagonalised and written as H = P diag(c1J, . . . , ckJ)Pt when

n = 2k, and H = P diag(c1J, . . . , ck−1J, 0)Pt when n = 2k − 1. Here P ∈ O(n)

and the scalars c1, . . . , ck are all real – in fact, the eigenvalues of H are seen to

be ±icj with 1 ≤ j ≤ k when n = 2k, and 0,±icj with 1 ≤ j ≤ k − 1 when

n = 2k− 1. Furthermore, here and for future reference, the 2× 2 matrices J and

R are given respectively by

(4.7) J =

(
0 −1

1 0

)
= R[π/2], R[t] = {tJ} = exp

(
cos t − sin t

sin t cos t

)
,

both lying in the special orthogonal group SO(2). It is thus seen that

(4.8) Q(b) = In ⇔ exp{G (b)H} = In ⇔ exp{H} = In

and plainly this last identity holds if and only if cj ∈ 2πZ for all 1 ≤ j ≤ k.

This therefore characterises all solutions to EL[Q] = 0 in B2(a, b) as Q(r) =

exp{G (r)H} with G as in (4.6) and H satisfying (4.8) as just described.

Now, moving forward onto evaluating the action of the differential operator

L on the twist map u with twist path Q = Q(r) we first note that here

L [u] = [∇u]t
{

div
[
h
(
r, |u|2

)
∇u
]
− hs

(
r, |u|2

)
|∇u|2u

}
(4.9)

= [∇u]t
{
∇u∇

[
h(r, |u|2)

]
+ h
(
r, |u|2

)
∆u− hs

(
r, |u|2

)
|∇u|2u

}
,

and so upon differentiation, substitution for u and noting |u|2 = r2 we can write

L [u] =
(
Qt + rθ ⊗ Q̇θ

){[
hr
(
r, r2

)
+ 2rhs

(
r, r2

)]
(Q + rQ̇)(4.10)

+ h(r, r2)
[
(n+ 1)Q̇ + rQ̈

]
− rhs

(
r, r2

)(
n+ r2|Q̇θ|2

)
Q
}
θ.

Expanding (4.5) by direct differentiation and using FL[Q] = QtEL[Q]Q = 0 the

above simplifies to

L [u] =
[
hr
(
r, r2

)
+ 2rhs

(
r, r2

)]
θ(4.11)

+
[
r2hr

(
r, r2

)
+ r3hs

(
r, r2

)
+ (n+ 1)rh

(
r, r2

)]
|Q̇θ|2θ

+
[
r2h(r, r2)

〈
Q̇θ, Q̈θ

〉
− nrhs(r, r2)

]
θ − rh(r, r2)Qt Q̇ Q̇t Qθ.

Referring to (1.3) we next need to verify L [u] = ∇P. Clearly the first two

terms in (4.11) form ∇h(|x|, |x|2) whilst upon substituting Q(r) = exp{G (r)H}
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from the solution to EL[Q] = 0 with Q̇ = ĠHQ and Q̈ =
(
G̈ H + Ġ 2H2

)
Q it is

plain that
〈
Q̇θ, Q̈θ

〉
= Ġ G̈ |Hθ|2 and QtQ̇Q̇tQ = −Ġ 2H2. Therefore

L [u = r exp{G (r)H}θ] = ∇h
(
|x|, |x|2

)
(4.12)

+
[
r2hr

(
r, r2

)
+ r3hs

(
r, r2

)
+ (n+ 1)rh

(
r, r2

)]
Ġ 2|Hθ|2θ

+ [r2h(r, r2)Ġ G̈ |Hθ|2 − nrhs(r, r2)]θ + rh(r, r2)Ġ 2H2θ.

Now an application of Lemma 4.1 (see below) to the vector field L [u] as given

above and noting Ḃ/r − 2A 6≡ 0 if and only if rhr(r, r
2) + 2(n + 1)h(r, r2) +

4r2hs(r, r
2) 6≡ 0 on ]a, b[ (cf. Lemma 4.1 for notation) leads to

(4.13) curl (L [u = rexp{G (r)H}θ]−∇h) = 0 ⇔ H2 = −c2 In.

This therefore leads to the conclusion |c1|2 = . . . = |ck|2 = c2 when n = 2k,

and |c1| = . . . = |ck−1| = 0 when n = 2k − 1. Finally, setting c = 2mπ with

m ∈ Z (m = 0 when n odd) the boundary condition Q(b) = In is also seen

to be satisfied. In conclusion, and summarising, we see that here the reduced

Euler–Lagrange equation (the ODE) versus the full Euler–Lagrange equation

(the PDE) associated with the choice F = h(r, s)ξ have the following contrasting

consequences:

(ODE I) From the formulation of the Euler–Lagrange operator EL in (4.3)

and the resulting ODE (4.5) it follows that here all extremising twist paths are

of Lie exponential form, specifically,

(4.14) EL[Q] = 0 ⇔ Q(r) = exp{G (r)H}Qa Ht = −H.

Here Qa = Q(a) and the profile curve G = G (r) is as described by (4.6). If

additionally Q is to lie in B2(a, b) then Qa = In and the skew-symmetric matrix

H must be further restricted to (4.8).

(PDE) Here a twist solution u = rQ(r)θ to the system L [u] = ∇P in

Xn with u = x on ∂Xn (cf. (1.3)) must have an extremising twist path of Lie

exponential form Q(r) = exp{G (r)H} satisfying Q(a) = Q(b) = In. Now L [u]

simplifies to (4.12) and so subject to rhr(r, r
2)+2(n+1)h(r, r2)+4r2hs(r, r

2) 6≡ 0

on ]a, b[ we have

curl (L [u]−∇h) = 0 ⇔ H = 2πm×

PJnPt for n even,

0 for n odd.
(4.15)

Hence u ≡ x (for n odd) and u = rP exp{2πmG (r)Jn}Ptθ (for n even). Here

Jn = diag(J, . . . , J) with J as in (4.7). (6)

(6) When n = 2k, (4.13) gives c1, . . . , ck ∈ {±c}. Adjusting P ∈ O(n) in an obvious way

if necessary we can arrange and assume that indeed c1 = . . . = ck = c.
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(ODE II) As a further remark note that by considering the strengthened form

of the ODE (3.17)–(4.3) that is obtained by discarding the spherical integral and

instead assuming (for all a < r < b, θ ∈ Sn−1):

(4.16)
d

dr

{
rn+1h

(
r, r2

)[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0,

we have from (4.14) that any solution here has the form Q(r) = exp{G (r)H}
and upon noting QH = HQ and invoking Proposition 7.1 in [27] that

(4.16) ⇔ d

dr

{
rn+1h(r, r2)Ġ (r)[HQθ ⊗Qθ −Qθ ⊗HQθ]

}
= 0

⇔ d

dr

{
rn+1h(r, r2)Ġ (r)

}
[HQθ ⊗Qθ −Qθ ⊗HQθ]

+
{
rn+1h(r, r2)Ġ (r)2

}
[H2Qθ ⊗Qθ −Qθ ⊗H2Qθ] = 0.

In conclusion (4.16) ⇔ Q[H2θ⊗ θ− θ⊗H2θ]Qt = 0 ⇔ H2 = −c2In. It is thus

seen that this strengthened version of (3.17) imposes the same restriction on the

twist paths Q as does the curl-free condition in the PDE. (Note however that

here rhr(r, r
2) + 2(n+ 1)h(r, r2) + 4r2hs(r, r

2) 6≡ 0 is not needed.) This stronger

form of (3.17) and its curious implications will be discussed further in the next

section.

Lemma 4.1. Let A = A (r), B = B(r) ∈ C 1(]a, b[) and let F ∈ Mn×n be

a constant symmetric matrix. Consider the vector field U ∈ C 1(Xn,Rn) given by

(4.17) UF(x) = A (|x|)〈Fx, x〉x+ B(|x|)Fx.

Then curlUF =
(
Ḃ/r − 2A

)
[Fx⊗ x− x⊗ Fx]. Furthermore, if Ḃ/r − 2A 6≡ 0

in ]a, b[ then

(4.18) UF is curl-free in Xn ⇔ ∃α ∈ R : F = αIn.

In this event UF = ∇P where P = P(|x|) satisfies dP/dr = αr(r2A + B).

Proof. Fix F as described and write U = UF. Then, for indices 1 ≤ i, j ≤ n,

and with “dot” denoting d/dr as before, a straightforward differentiation gives

Ui,j =

(
˙A (r)〈Fx, x〉 xixj

r
+ 2A (r)xi[Fx]j + A (r)〈Fx, x〉δij

)
+

˙B(r)

r
[Fx]ixj + B(r)Fij ,

and in a similar way

Uj,i =

(
˙A (r)〈Fx, x〉 xjxi

r
+ 2A (r)[Fx]ixj + A (r)〈Fx, x〉 δji

)
+

˙B(r)

r
xi[Fx]j + B(r)Fji.
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Thus curlU = [∇U ]− [∇U ]t = 2A (x⊗Fx−Fx⊗ x) + Ḃ/r(Fx⊗ x− x⊗Fx) =

(Ḃ/r − 2A )(Fx ⊗ x − x ⊗ Fx) as claimed. Now, if (Ḃ/r − 2A ) 6≡ 0, then it

follows from UF being curl-free in Xn that Fθ⊗θ−θ⊗Fθ ≡ 0 for all unit vectors

θ. This immediately gives F = αIn for some α ∈ R. Conversely, if F = αIn, then

UF = α(r2A (r) + B(r))x is clearly a gradient field in Xn with the choice of P

as given in the lemma and thus curl free. �

5. Extremising twist paths as scaled geodesics

on the Lie group SO(n)

One of the main features of the Euler–Lagrange equation (3.17) is the pres-

ence of the spherical integral which, unlike the case with the weighted Dirichlet

energy considered in the last section [see (4.5)], prevents one from reducing the

equation to a directly integrable ODE in the radial variable and thus obtaining

an explicit representation of the solutions as in (4.6). Motivated by the discus-

sion in the previous section we start here by first considering solutions to (3.17)

in the form Q(r) = exp{G (r)H} where G = G (r) is a suitable function in C 2[a, b]

and H is the constant n× n skew-symmetric matrix with H = PJnPt. Here and

below Jn = diag(J, . . . , J) when n is even and Jn = diag(J, . . . , J, 0) when n is

odd. Then starting with the n even case where
∣∣Q̇θ∣∣2 = Ġ 2|Hθ|2 = Ġ 2 and

writing Fξ = Fξ
(
r, r2, n+ r2Ġ 2

)
for short it is readily seen that

LHS (3.17) =
d

dr

{
rn+1FξĠ

∫
Sn−1

[HQθ ⊗Qθ −Qθ ⊗HQθ]

}
dHn−1(θ)

=
d

dr

{
rn+1FξĠωn

[
HQQt −Q(HQ)t

]}
=

d

dr

{
rn+1FξĠ

}
(2ωnH).

As such in even dimensions a twist path Q(r) = exp{G (r)H} is a solution to the

Euler–Lagrange equation (3.17) provided that the angle of rotation function G

satisfies the second order ODE

(5.1)
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]

= 0, a < r < b.

In odd dimensions and by contrast it is a trivial matter to see that G (r) ≡ 0 and

hence Q ≡ In is a solution to (3.17).

Now rather than following the route leading to (4.15) based on an analysis

and verification of the PDE (1.3)–(1.10) and the curl-free condition on the vector

field L [u = rQ(r)θ], in what follows we focus instead on the the ODE (3.17)

and show that by a natural strengthening of (3.17) and invoking an interesting

observation regarding geodesics on SO(n), the twist paths Q = Q(r) serving as

solutions here, must have exactly the form and structure alluded to above. It is

readily seen that a stronger condition implying (3.17) is the strengthened ODE:

(5.2)
d

dr

{
rn+1Fξ

(
r, r2, n+ r2|Q̇θ|2

)[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0, a < r < b,
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for all θ ∈ Sn−1. That Q = exp{G H} with G satisfying (5.1) is still a solution to

this stronger form of (3.17) follows by noting that here Q̇θ ⊗Qθ = Ġ HQθ ⊗Qθ

and Q̈θ ⊗ Qθ = G̈ HQθ ⊗ Qθ − Ġ 2Qθ ⊗ Qθ. Hence, for n even, by substitution

and a straightforward differentiation starting from (3.17) we have

LHS (5.2) =
d

dr

{
rn+1Fξ

(
r, r2, n+ r2|Q̇θ|2

)[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
(5.3)

=

{
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)]
Ġ + rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
G̈

}
× (HQθ ⊗Qθ −Qθ ⊗HQθ)

=
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]
(HQθ ⊗Qθ −Qθ ⊗HQθ) = 0,

as claimed. Now moving forward note that for a twist path Q ∈ C 1([a, b],SO(n))

the integral I(Q, θ) = ||Q̇θ||L1(a,b) represents the Euclidean length of the curve

γθ ∈ C 1([a, b],Sn−1) given by γθ(r) = Q(r)θ. Evidently for n even and Q =

exp{G H} with H = PJnPt these lengths are independent of θ. We are now in

a position to prove a structure theorem for such Q.

Theorem 5.1. Assume that Q ∈ C 1([a, b],SO(n))∩C 2(]a, b[,SO(n)) verify-

ing Q(a) = In and Q(b) = In satisfies (5.2). Assume that the lengths I(Q, θ) of

the family of curves γθ(r) = Q(r)θ are independent of θ ∈ Sn−1. Then:

(a) n even: There exists m ∈ Z and P ∈ O(n) so that Q admits the repre-

sentation Q(r) = Q(r;m) = exp{G (r;m)PJnPt}, that is

Q(r) = P


R[G ](r;m) 0 . . . 0 0

0 R[G ](r;m) . . . 0 0
...

...
. . .

...
...

0 0 . . . R[G ](r;m) 0

0 0 . . . 0 R[G ](r;m)

Pt.(5.4)

Here Jn = diag(J, . . . , J) and G = G (r;m) ∈ C 2[a, b] is the unique

solution to the two point boundary value problem (7)

BVP[G ;m] :=


d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]

= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ.

(5.5)

(b) n odd: Q ≡ In corresponding to m = 0 and G ≡ 0 in (5.5).

Proof. Since I(Q, θ) = 0 implies |Q̇θ| = 0 and hence Q ≡ In, in the rest

of the proof we assume I(Q, θ) > 0. Now we start by observing that, if Q is

(7) Note that for even n any matrix H = PJnPt is a skew-symmetric square root of −In.

For odd n there is no such root.
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a solution to (5.2) for every θ, then it also satisfies the equation

(5.6)
d

dr

[
rn+1Fξ(r, r

2, n+r2|Q̇θ|2)Q̇θ
]
+rn+1Fξ

(
r, r2, n+r2|Q̇θ|2

)∣∣Q̇θ∣∣2Qθ = 0.

Indeed starting from the left and writing Fξ = Fξ
(
r, r2, n+ r2|Q̇θ|2

)
we have by

virtue of
[
Q̇θ ⊗Qθ

]
Qθ = Q̇θ and

〈
Q̇θ,Qθ

〉
= 0,

d

dr

{
rn+1FξQ̇θ

}
=

d

dr

{
rn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
Qθ
}

(5.7)

=
d

dr

{
rn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
Qθ

+
{
rn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
Q̇θ = −rn+1Fξ

∣∣Q̇θ∣∣2Qθ,

where in deducing the last equality we have used (5.2). Let us now introduce

the integral F (r, θ) :=
∫ r
a
|Q̇(s)θ| ds with a ≤ r ≤ b and θ ∈ Sn−1. Then, testing

(5.5) against F and using (5.6) by way of differentiating and then taking the

inner product with Q̇θ, we can write with Fξ = Fξ
(
r, r2, n+ r2

∣∣Q̇θ∣∣2) and upon

noting Ḟ 2 = |Q̇θ|2,

d

dr

{
rn+1Fξ|Q̇θ|

}
=

d

dr

{
rn+1Fξ

}∣∣Q̇θ∣∣+ rn+1Fξ

〈
Q̈θ, Q̇θ

〉∣∣Q̇θ∣∣
= −rn+1Fξ

〈
Q̇θ,Qθ

〉∣∣Q̇θ∣∣ = 0,

where the last identity uses the skew-symmetry of Q̇Qt. Note that this argument

shows that, as a function of r, rn+1Fξ|Q̇θ| is a positive constant on any interval

on which |Q̇θ| is non-zero and so a basic continuity argument implies that either∣∣Q̇θ∣∣ ≡ 0 on [a, b] or
∣∣Q̇θ∣∣ > 0 on [a, b]. Furthermore, it also shows that F (r, θ)

is a [non-zero] solution to the ODE in (5.5) for every fixed θ ∈ Sn−1.

Now this solution satisfies the end-point conditions F (a) = 0 and F (b) =

I(Q, θ) > 0 where the latter by assumption is independent of θ. We next aim

to show that these together imply that F (r, θ) is independent of θ. To this end

we first note that solutions to (5.5) are extremisers in their Dirichlet class of the

energy integral

Γ[G ] =

∫ b

a

F
(
r, r2, n+ r2Ġ 2(r)

)
rn−1 dr.(5.8)

It is straightforward to verify that the functional Γ is strictly convex (due to

the assumptions on F : Fξ > 0 and F being uniformly convex in ξ). Therefore,

using standard results, solutions to (5.5) are the unique minimisers of this energy

functional with respect to their own boundary conditions. This implies that as

F (r, θ) solves the ODE in (5.5) for all θ and the end-point conditions on F , i.e.

at r = a and r = b are independent of θ, by the stated uniqueness of minimisers,

the function F (r, θ) must also be independent of θ. Now returning to the ODE
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in (5.5) it follows after integrating once that any solution G = G (r) satisfies

(5.9) rn+1Fξ
(
r, r2, n+ r2Ġ 2

)
Ġ ≡ c, a < r < b,

for a suitable constant c ∈ R. Thus as Fξ > 0, all non-zero solutions to (5.5), in

particular F , are (strictly) monotone and hence invertible. Let F−1(s) = r(s)

and Q(r(s)) = L(s) for L ∈ C 2(]0, l[,SO(n)) ∩ C ([0, l],SO(n)) where l = F (b).

Then writing Q(r) = L(F (r)) we have Q̇ = L′Ḟ (where prime denotes d/ds).

Hence starting from (5.6) we can write, with Fξ = Fξ
(
r, r2, n+ r2Ḟ 2

)
for short,

d

dr

[
rn+1FξQ̇θ

]
+ rn+1Fξ

∣∣Q̇θ∣∣2Qθ = 0.(5.10)

This upon substitution and a change of variables with d/dr = Ḟd/ds gives

d

ds

[
rn+1FξḞ

dL

ds
θ
]

+ rn+1FξḞ

∣∣∣∣dL

ds
θ

∣∣∣∣2L θ = c
[
L′′ + |L′θ|2L

]
θ = 0,(5.11)

that is the geodesic equation on the unit sphere for γ(s) = L(s)θ. We need to

solve this for L = L(s) subject to |L′θ|2 =
∣∣Q̇θ∣∣2/Ḟ 2 = 1.

Indeed by taking the exponential L(s) = exp{sA} for a constant n×n skew-

symmetric matrix A we have [A2 + In]L = 0. For n odd this has no solution

(with I(Q, θ) > 0) whilst for n even it gives A = PJnPt. It now follows at once

that Q has the form described in the theorem, that is, for n odd Q(r) ≡ In and

for n even firstly L(s) = P diag(R[s], . . . ,R[s])Pt for 0 ≤ s ≤ l with l = 2mπ so

that L(0) = L(l) = In and then Q(r) = L(F (r)) where F is a solution to (5.5)

with F (a) = 0, F (b) = 2mπ. �

6. The nonlinear system (1.3)–(1.10) as a system in variation

and the multiple twist solutions

Let us begin this section by illustrating as to why the system (1.3) is in

variational form and how it arises as the Euler–Lagrange system (ELS) associated

with the energy F over the space Ap(Ω). Towards this end we use the method of

Lagrange multipliers and consider the unconstrained energy functional (see [3],

[5], [8])

(6.1) E[u,Ω] :=

∫
Ω

F (x, u,∇u) dx−
∫

Ω

2P(x)[det∇u− 1] dx,

where P is a suitable Lagrange multiplier. Note in particular that here E[u,Ω] =

F[u,Ω] when u ∈ Ap(Ω). Now fix u ∈ Ap(Ω) of class C 2 and for φ ∈ C∞c (Ω,Rn)

and ε ∈ R put uε = u+εφ. We proceed on to examining the first-order condition

d/dε(E[uε,Ω])|ε=0 = 0 where

(6.2)
d

dε
E[uε,Ω]

∣∣∣∣
ε=0

=
d

dε

∫
Ω

{
F (x, uε,∇uε

)
− 2P(x)

[
det∇uε − 1

]}
dx

∣∣∣∣
ε=0

.
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Now as

d

dε
[det(E + εF)]ε=0 =

d

dε

[
det E + ε〈cof E,F〉+O(ε2)

]
ε=0

= 〈cof E,F〉,

evaluating the derivative, using the divergence theorem and writing for brevity

Fu = Fu(x, u,∇u), Fζ = Fζ(x, u,∇u) where Fu, Fζ denote the derivatives of

F with respect to the second and third arguments respectively, leads to

d

dε
E[uε,Ω]

∣∣∣∣
ε=0

=

∫
Ω

{〈Fu, φ〉+ 〈Fζ ,∇φ〉 − 2P〈cof∇u,∇φ〉} dx(6.3)

=

∫
Ω

〈Fu − div Fζ + 2 cof∇u∇P + 2Pdiv cof∇u, φ〉 dx

=

∫
Ω

〈Fu − divFζ + 2 cof∇u∇P, φ〉 dx = 0.

Note that the last line here uses the Piola identity (see, e.g. [22], [35]) whilst

the divergence operator as before acts row-wise on the matrix field Fζ(x, u,∇u).

Now the arbitrariness of φ ∈ C∞c (Ω,Rn) gives Fu − divFζ + 2 cof∇u∇P = 0

or alternatively upon using [cof∇u]−1 = [∇u]t (recall that det∇u ≡ 1) that

L [u; F ] = [2 cof∇u]−1{div Fζ −Fu} = [∇u]t{div Fζ −Fu}/2 = ∇P.(6.4)

Remark 6.1. For F as in (1.9) with Lagrangian F satisfying the assumptions

set at the start of Section 2 (cf. also (2.1)) the above derivation should be slightly

adjusted. Here we take u ∈ Ap(Ω) of class C 2 with
(
|x|, |u|2, |∇u|2

)
∈ U = U(Ω)

for all x ∈ Ω and for φ ∈ C∞c (Ω,Rn) and ε ∈ R put uε = u + εφ. Then, by

a basic compactness argument for ε sufficiently small,
(
|x|, |uε|2, |∇uε|2

)
∈ U for

all x ∈ Ω and therefore d/dε(E[uε,Ω])|ε=0 = 0 which then leads to (1.10). Note

that for a twist u = rQ(r)θ we have
(
|x|, |u|2, |∇u|2

)
=
(
r, r2, n+ r2|Q̇θ|2

)
∈ U .

We proceed by re-working Corollary 2.3 for twist paths Q(r) = exp{G (r)A}
with G = G (r) a sufficiently regular profile curve and A ∈ so(n) fixed.

Proposition 6.2. Let u = r exp{G (r)A}θ be a twist of class C 2
(
Xn,Xn

)
with G ∈ C 2[a, b] and A ∈ so(n). Then with θ? = Aθ, θ?? = Aθ? we have

(a) [∇u] = exp{G A}
(
In + r Ġ θ? ⊗ θ

)
,

(b) [∇u]t =
(
In + r Ġ θ ⊗ θ?

)
exp{−G A},

(c) |∇u|2 = tr[∇u][∇u]t = tr[∇u]t[∇u] = n+ r2Ġ 2|θ?|2,

(d) ∆u = exp{G A}
[
(n+ 1)Ġ θ? + r G̈ θ? + Ġ 2θ??

]
,

Proof. These follow from Corollary 2.3 upon noting that for Q = exp{G A}
we have Q̇ = Ġ AQ, Q̈ = (G̈ A + Ġ 2A2)Q and |Q̇θ|2 = Ġ 2〈Aθ,Aθ〉 = Ġ 2|θ?|2. We

also recall that here A, Q commute while 〈θ, θ?〉 = 0 by virtue of A being skew-

symmetric. On passing we point out that det∇u = det(In + rĠ θ? ⊗ θ) = 1. �
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Note that restricting the variational integral (6.1) to the subclass of twists

u = r exp{G (r)A}θ leads to the energy integral IA[G ] as in (3.18) with the Euler–

Lagrange equation (3.19) for G . The ODE (3.19) here is certainly implied by

the PDE (6.4) (see below) but in general not vice versa! Remarkably the diffe-

rential operator action L [u] here admits the following convenient formulation.

Theorem 6.3. With the Lagrangian F = F (r, s, ξ) as before, u, G , A as in

the previous proposition and θ? = Aθ, θ?? = Aθ? we have

L [u]−∇Fξ =
1

rn−1

d

dr

[
rn+1Fξ(r, r

2, n+ r2Ġ 2|θ?|2)Ġ 2
]
|θ?|2θ(6.5)

− r2Ġ G̈Fξ
(
r, r2, n+ r2Ġ 2|θ?|2

)
|θ?|2θ

− rFs
(
r, r2, n+ r2Ġ 2|θ?|2

)
θ

+
1

rn
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2|θ?|2

)
Ġ
]
θ?

+ rĠ 2Fξ
(
r, r2, n+ r2Ġ 2|θ?|2

)
θ??.

Here ∇Fξ = ∇
[
Fξ
(
|x|, |x|2, n+ Ġ 2(|x|

)
|Ax|2)

]
.

Proof. Starting from the description of L [u] in Proposition 2.2 and Corol-

lary 2.3 it follows upon invoking the identities formulated in Proposition 6.2

that

L [u] = (In + rĠ θ ⊗ θ?)
{
Fξξ(r, r

2, n+ r2Ġ 2|θ?|2)(6.6)

×
(
In + rĠ θ? ⊗ θ

)(
2rĠ 2|θ?|2θ + r2∇[Ġ 2|θ?|2]

)
+
[
2rFsξ

(
r, r2, n+ r2Ġ 2|θ?|2

)
+ Frξ

(
r, r2, n+ r2Ġ 2|θ?|2

)](
θ + rĠ θ?

)
+ Fξ

(
r, r2, n+ r2Ġ 2|θ?|2

)[
(n+ 1)Ġ θ? + rG̈ θ? + rĠ 2θ??

]
− rFs(r, r2, n+ r2Ġ 2|θ?|2)θ

}
.

We now proceed on to evaluating the individual terms in this expansion.

Indeed(
In + rĠ θ ⊗ θ?

)(
In + rĠ θ? ⊗ θ

)
= In + rĠ

(
θ? ⊗ θ + θ ⊗ θ?

)
+ r2Ġ 2|θ?|2θ ⊗ θ

and, by direct differentiation,

(6.7) r2∇
[
Ġ 2|θ?|2

]
= 2
(
r2Ġ G̈ − rĠ 2

)
|θ?|2θ − 2r Ġ 2θ??.

Therefore, by noting the identities 〈θ??, θ〉 = −|θ?|2, 〈θ??, θ?〉 = 〈θ?, θ〉 = 0,

it follows after substitution and taking into account the necessary and relevant

cancellations that(
In + rĠ θ ⊗ θ?

)(
In + rĠ θ? ⊗ θ

)(
2rĠ 2|θ?|2θ + r2∇

[
Ġ 2|θ?|2

])
=
[
2r2Ġ G̈ |θ?|2 + 2r3Ġ 3

(
Ġ + rG̈

)
|θ?|4

]
θ + 2r2Ġ 2

(
Ġ + rG̈

)
|θ?|2θ? − 2rĠ 2θ??.
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Likewise (
In + rĠ θ ⊗ θ?

)(
θ + rĠ θ?

)
= θ + rĠ θ? + r2Ġ 2|θ?|2θ

and again from the above identities(
In + rĠ θ ⊗ θ?

)[
(n+ 1)Ġ θ? + rG̈ θ? + rĠ 2θ??

]
= (n+ 1)Ġ θ? + r

(
G̈ θ? + Ġ 2θ??

)
+ r(n+ 1)Ġ 2|θ?|2θ + r2Ġ G̈ |θ?|2θ.

Now, returning to (6.6), by multiplying through and making the relevant substi-

tutions, we have

L [u] =Fξξ
[
[2r2Ġ G̈ |θ?|2 + 2r3Ġ 3

(
Ġ + rG̈

)
|θ?|4]θ + 2r2Ġ 2

(
Ġ + rG̈

)
|θ?|2θ?

]
− 2rFξξĠ

2θ?? + [2rFsξ + Frξ]
(
θ + rĠ θ? + r2Ġ 2|θ?|2θ

)
− rFsθ

+ Fξ
[
(n+ 1)Ġ θ? + r

(
G̈ θ? + Ġ 2θ??

)
+ r(n+ 1)Ġ 2|θ?|2θ + r2Ġ G̈ |θ?|2θ

]
.

Note that here, for the sake of convenience, we have abbreviated the arguments

in Fs, Fξ, Frξ, Fsξ, Fξξ by writing Fξξ = Fξξ
(
r, r2, n+ r2Ġ 2|θ?|2

)
and similarly

for the other derivatives. This last equation, upon regrouping and rearranging

terms in θ, θ? and θ?? respectively gives

L [u] = (Frξ + 2rFsξ)θ + 2Fξξ
[
r2Ġ G̈ |θ?|2θ − rĠ 2θ??

]
+
{

2Fξξr
3Ġ 3

(
Ġ + rG̈

)
|θ?|4 + Fξ

[
r(n+ 1)Ġ 2|θ?|2 + r2Ġ G̈ |θ?|2

]
+ [2rFsξ + Frξ]r

2Ġ 2|θ?|2
}
θ − rFsθ

+
{

2Fξξr
2Ġ 2

(
Ġ + rG̈

)
|θ?|2 + [2rFsξ + Frξ]rĠ

+ Fξ
[
(n+ 1)Ġ + rG̈

]}
θ? + rFξĠ

2θ??.

The conclusion now follows by rearranging terms, forming the differentials in

line with (6.5) and noting

∇Fξ = (Frξ + 2rFsξ)θ + 2Fξξ
[
r2Ġ G̈ |θ?|2θ − rĠ 2θ??

]
. �

Remark 6.4. Returning now to the discussion preceding the theorem, by

taking the dot product of (6.6) with θ? and using 〈θ, θ?〉 = 〈θ??, θ?〉 = 0, |θ?|2 =

|Hθ|2, from L [u] = ∇P we have

0 =

∫
Sn−1

〈∇P −∇Fξ, θ?〉 =

∫
Sn−1

〈L [u]−∇Fξ, θ?〉(6.8)

=
1

rn
d

dr

∫
Sn−1

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2|θ?|2

)
Ġ
]
|θ?|2,

which is precisely the Euler–Lagrange equation IL[G ] ≡ 0 with the Lagrangian

L as in (3.14) (see (3.19) in Corollary 3.7). Note that the first identity in (6.8)

follows from an application of Lemma 6.5 below.

Lemma 6.5. Let f ∈ C 1(V ) for some open neighbourhood V ⊃ Sn−1 and let

H ∈ so(n). Then 〈∇f, θ?〉 with θ? = Hθ has a zero mean over the unit sphere.
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If V ⊃⊃ B (with B the unit n-ball) and f where of class C 2 then a straight-

forward application of the divergence theorem would give

(6.9)

∫
Sn−1

〈∇f, θ?〉 dHn−1(θ) =

∫
B
−div(H∇f) dx =

∫
B
〈H,∇2f〉 dx = 0

in view of 〈H,∇2f〉 ≡ 0. For the general case one can take a cut-off function

ψ ∈ C∞0 (V ) such that ψ ≡ 1 in a small neighbourhood of Sn−1 in V . Then,

using a standard mollifier (ρε) and applying the above to ρε ? fψ, gives∫
Sn−1

〈∇f, θ?〉 =

∫
Sn−1

〈∇[fψ], θ?〉 = lim
ε↘0

∫
Sn−1

〈∇[ρε ? fψ], θ?〉 = 0(6.10)

by virtue of the local uniform convergence ∇[ρε ? fψ] → ∇[fψ] as ε ↘ 0 in V .

Below we give a different argument purely restricting to the sphere.

Proof. Write ∇f = ∇T f +∇Nf = (In − θ ⊗ θ)∇f + 〈∇f, θ〉θ where ∇T f ,

∇Nf stand for the tangential and normal components of ∇f . Then clearly

〈∇Nf, θ?〉 = 〈∇f, θ〉〈θ, θ?〉 = 0 while by an application of the divergence theorem

on the unit sphere ∫
Sn−1

〈∇T f, θ?〉 =

∫
Sn−1

−f divT θ
? = 0(6.11)

in view of the vector field θ? being divergence-free, that is,

divT θ
? = divT (Hθ) = trH = 0. �

The above proposition shows that if the pair G = G (r) and A ∈ so(n) are

such that the expression on the right in (6.5) is a gradient field in the annulus Xn

then the twist u with the Lie exponential type twist path Q(r) = exp{G (r)H}
serves as a solution to the nonlinear system (1.3). The next proposition and the

subsequent theorem it leads to give an infinite number of such solutions in the

case of n even. This complements the explicit solutions constructed in Section 4

for the special Lagrangian F = h
(
|x|, |u|2)

∣∣∇u|2.

Proposition 6.6. For n ≥ 2 even, let G ∈ C 2[a, b] be a solution to (5.1),

Jn = diag(J, . . . , J) with J as in (4.7) and P ∈ O(n) be arbitrary. Then

L
[
rP exp{G (r)Jn}Ptθ

]
=

d

dr

[
Fξ
(
r, r2, n+ r2Ġ 2

)]
θ

− r
[
Ġ 2Fξ(r, r

2, n+ r2Ġ 2) + Fs
(
r, r2, n+ r2Ġ 2

)]
θ.

In particular L
[
rPexp{G (r)Jn}Ptθ

]
is a gradient field in Xn[a, b].

Proof. We make use of the action formulation (6.5) in Proposition 6.2 by

writing A = H = PJnPt. In this case basic calculations give H2 = PJ2
nPt = −In,
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while |θ?|2 = 1, θ?? = −θ and 〈θ?, θ〉 = 0. As a result (6.5) can be rewritten as

L
[
rPexp{G (r)Jn}Ptθ

]
=

d

dr

[
Fξ
(
r, r2, n+ r2Ġ 2

)]
θ

+
1

rn−1

d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ 2
]
θ

− r2Ġ G̈Fξ
(
r, r2, n+ r2Ġ 2

)
θ − rFs

(
r, r2, n+ r2Ġ 2

)
θ

+
1

rn
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]
θ?

− r Ġ 2Fξ
(
r, r2, n+ r2Ġ 2

)
θ.

Now, by assumption G satisfies (5.1) and so

d

dr

[
rn+1Fξ(r, r

2, n+ r2Ġ 2
)
Ġ
]

= 0.

As a result referring to the second term in the expression on the right we have

1

rn−1

d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ 2
]

= r2Fξ
(
r, r2, n+ r2Ġ 2

)
Ġ G̈ +

Ġ

rn−1

d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]

= r2Fξ
(
r, r2, n+ r2Ġ 2

)
Ġ G̈ .

Finally, a further reference to the ODE satisfied by G and taking into account

the resulting cancellations gives

L
[
rPexp{G (r)Jn}Ptθ

]
= −r

[
Ġ 2Fξ

(
r, r2, n+ r2Ġ 2

)
+ Fs

(
r, r2, n+ r2Ġ 2

)]
θ +

d

dr

[
Fξ
(
r, r2, n+ r2Ġ 2

)]
θ = −∇G+∇Fξ.

Here G = G(r) satisfies

Ġ(r) = r
[
Ġ 2Fξ

(
r, r2, n+ r2Ġ 2

)
+ Fs(r, r

2, n+ r2Ġ 2)
]

and Fξ = Fξ
(
r, r2, r2Ġ

)
. In summary L

[
r exp{G (r)H}θ

]
= ∇P where P =

P(|x|) is given, up to a constant, by P = Fξ −G. �

Theorem 6.7. For n ≥ 2 even and F = F (r, s, ξ) as described earlier the

system (1.3)–(1.10) has an infinite family of twisting solutions

u = u(x;m) = r exp
{
G (r;m)H

}
θ = rP diag

(
R[G ](r;m), . . . ,R[G ](r;m)

)
Ptθ

(with m ∈ Z), where G = G (r;m) ∈ C 2[a, b] is the unique solution to the two

point boundary value problem (5.5), H = PJnPt and P ∈ O(n) is arbitrary.

Proof. With the above propositions at our disposal it remains to prove

that for each m ∈ Z the boundary value problem (5.5) has a unique solution
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G = G (r;m) in C 2[a, b]. To this end we note that solutions to (5.5) are minimi-

sers of (5.8) over the Dirichlet class

Jp(a, b) =
{
G ∈W 1,p(a, b) : G (a) = 0,G (b) = 2mπ

}
.

As this energy is coercive and sequentially weakly lower semicontinuous on W 1,p

the existence of a minimiser follows by an application of the direct methods of

the calculus of variations. The C 2 regularity of the minimiser then follows by

invoking the classical Tonelli–Hilbert–Weierstrass differentiability theorem (cf.

e.g. [7, pp. 55–61]). Finally, the uniqueness of minimiser and solution to (5.5)

is a consequence of the uniform convexity of the function ξ 7→ F (r, r2, n+ r2ξ2)

for a ≤ r ≤ b and ξ ∈ R and the fact that solutions to the Euler–Lagrange

equation (5.5) are minimisers of the energy (5.8) in their own Dirichlet class. �
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