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Abstract. In this article we are concerned with the following Choquard

equation

−∆u = λ|u|q−2u+

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, u > 0, in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded set with continuous boundary in RN (N ≥ 3),

2∗µ = (2N − µ)/(N − 2) and q ∈ [2, 2∗) where 2∗ = 2N/(N − 2). Using
Lusternik–Schnirelman theory, we associate the number of positive solu-

tions of the above problem with the topology of Ω. Indeed, we prove that

if λ < λ1, then problem has catΩ(Ω) positive solutions whenever q ∈ [2, 2∗)
and N > 3 or 4 < q < 6 and N = 3.
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1. Introduction

The purpose of this article is to study the existence and multiplicity of solu-

tion of the following Choquard equation

(Pλ)

−∆u = λ|u|q−2u+

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, u > 0, in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded set with continuous boundary in RN (N ≥ 3),

2∗µ = (2N − µ)/(N − 2) and q ∈ [2, 2∗) where 2∗ = 2N/(N − 2).

It is not unfamiliar that nonlinear analysis fascinates many researchers. In

particular, the study of elliptic equations is attractive both for theoretical pde’s

and real-world applications. There is an ample amount of literature regarding

the existence and multiplicity of solutions of the following equation:

(1.1) −∆u = λ|u|q−2u+ |u|2
∗−2u in Ω, u = 0 on ∂Ω.

In the pioneering work of Brezis and Nirenberg [7], authors studied the problem

(1.1) with q = 2 for the existence of a nontrivial solution. Then many researchers

studied the elliptic equations involving Sobolev critical exponent in bounded

and unbounded domains. In [4], Bahri and Coron studied the problem (1.1)

in case of λ = 0 and proved the existence of a positive solution when Ω is not

a contractible domain using homology theory. Subsequently, Rey [27] studied

critical elliptic problem (1.1) for q = 2 and proved that there exist at least

catΩ(Ω) solutions in H1
0 (Ω) whenever λ is sufficiently small. We cite e.g. [5], [6],

[11], [2], [31] for issues on the existence and multiplicity of solutions of elliptic

problems using variational methods, with no attempt to provide the complete

list. In the framework of the fractional Laplacian, the effect of topology on the

number of solutions of problems was discussed in [13], [14] and references therein.

Currently, nonlocal equations appealed a substantial number of researchers,

especially the Choquard equations. The work on Choquard equations was started

with the quantum theory of a polaron model given by S. Pekar [26] in 1954. After

that in 1976, in the modeling of a one component plasma, P. Choquard [22] used

the following equation with µ = 1, p = 2 and N = 3:

(1.2) −∆u+ u =

(
1

|x|µ
∗ |u|p

)
|u|p−2u in RN .

For µ = 1, p = 2 and N = 3, Lieb [22] proved existence, uniqueness of the ground

state solution of (1.2) by using symmetric decreasing rearrangement inequalities.

With the help of variational methods, Moroz and Schaftingen [24] established

the existence of least energy solutions of (1.2) and prove properties about the

symmetry, regularity, and asymptotic behavior at infinity of the least energy
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solutions. For interested readers, we refer [3], [9], [10], [25] and references therein

for the work on Choquard equations.

The Hardy–Littlewood–Sobolev inequality (2.1) plays a significant role in the

variational formulation of Choquard equations. Observe that the integral∫
Ω

∫
Ω

|u(x)|q|u(y)|q

|x− y|µ
dy dx

is well defined if (2N − µ)/N ≤ q ≤ (2N − µ)/(N − 2) = 2∗µ. Choquard equa-

tions involving Hardy-Littlewood-Sobolev critical exponent (that is, q = 2∗µ)

provoke the interest of the mathematical community due to the lack of compact-

ness in the embedding

H1
0 (Ω) 3 u 7→ |u|

2∗
µ |u|2

∗
µ

|x− y|µ
∈ L1(Ω× Ω).

In [15], authors used variational methods to prove the existence and multiplicity

of positive solutions for the critical Choquard problem involving convex and

convex-concave type nonlinearities.

In this spirit, recently in [21] Goel, Rădulescu and Sreenadh, studied the

Coron problem for Choquard equation and proved the existence of a positive

high energy solution of the following problem

−∆u =

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗µ = (2N − µ)/(N − 2),

0 < µ < N and satisfies the following conditions: There exists constants 0 <

R1 < R2 <∞ such that{
x ∈ RN : R1 < |x| < R2

}
⊂ Ω,

{
x ∈ RN : |x| < R1

}
* Ω.

In [18] Ghimenti and Pagliardini studied the following slightly subcritical Cho-

quard problem

(1.3) −∆u− λu =

(∫
Ω

|u(y)|pε
|x− y|µ

dy

)
|u|pε−2u in Ω, u = 0 on ∂Ω,

where ε > 0, Ω is a regular bounded domain of RN , λ ≥ 0 and pε = 2∗µ−ε. Here

authors proved that there exists ε > 0 such that for every ε ∈ (0, ε], Problem

(1.3) has at least catΩ(Ω) low energy solutions. Moreover, if Ω is not contractible,

there exists another solution with higher energy.

Motivated by all these, in this paper, we study the existence of multiple so-

lutions of the problem (Pλ). Since the geometry of the domain plays an essential

role, here we proved that the topology of the domain yields a lower bound on the

number of positive solutions. More precisely, we show that the problem (Pλ) has

at least catΩ(Ω) solutions. Here catΩ(Ω) is the Lusternik–Schnirelman category

defined as follows
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Definition 1.1. Let X be a topological space and Y be a closed set in X.

Then

CatX(Y ) = min

{
k ∈ N : there exist closed subsets Y1, . . . , Yk ⊂ X

such that Yj is contractible to a point in X for all j and

k⋃
j=1

Yj = X

}
.

In order to achieve our aim, we used the fact that Lusternik–Schnirelman

category is invariant under Nehari manifold. Then using the blowup analysis

involving the minimizers and the mountain pass lemma, we show the infimum

of the functional associated with (Pλ) over the the Nehari manifold is achieved.

Moreover, we define the barycenter mapping associated to Choquard nonlin-

ear term and apply the machinery of barycenter mapping to prove our desired

conclusion. With this introduction we will state our main result:

Theorem 1.2. Let Ω is an open bounded set with continuous boundary in RN

(N ≥ 3) and q ∈ [2, 2∗) then there exists 0 < Λ∗ < λ1 such that, for all λ ∈
(0,Λ∗), there exists at least catΩ(Ω) positive solutions of (Pλ) under the following

conditions

(a) q ∈ [2, 2∗) and N > 3, or

(b) 4 < q < 6 and N = 3.

Turning to the layout of the article: In Section 2, we give the variational

framework and preliminary results. In Section 3, we give the Palais–Smale anal-

ysis and existence of a solution of (Pλ). In Section 4, we prove some technical

lemmas and proof Theorem 1.2. Finally, in the appendix we study the behavior

of optimizing sequence of the best constant SH,L defined in (2.2).

2. Variational framework and the preliminary results

To study the problem (Pλ) by variational approach we will start by stating

the celebrated Hardy–Littlewood–Sobolev inequality.

Proposition 2.1 (Hardy–Littlewood–Sobolev Inequality, [23]). Let t, r > 1

and 0 < µ < N with 1/t+ µ/N + 1/r = 2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There

exists a sharp constant C(t, r, µ,N) independent of f , h, such that

(2.1)

∫
RN

∫
RN

f(x)h(y)

|x− y|µ
dy dx ≤ C(t, r, µ,N)‖f‖Lt‖h‖Lr .

If t = r = 2N/(2N − µ), then

C(t, r, µ,N) = C(N,µ) = πµ/2
Γ(N/2− µ/2)

Γ(N − µ/2)

{
Γ(N/2)

Γ(µ/2)

}−1+µ/N

.
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Equality holds in (2.1) if and only if f ≡ (constant)h and

h(x) = A(γ2 + |x− a|2)(2N−µ)/2,

for some A ∈ C, 0 6= γ ∈ R and a ∈ RN .

The Sobolev space D1,2(RN ) is defined as

D1,2(RN ) =
{
u ∈ L2∗

(RN ) : ∇u ∈ L2(RN ,RN )
}
,

endowed with the norm

‖u‖ =

(∫
RN
|∇u|2 dx

)1/2

.

The best constant for the embedding D1,2(RN ) into L2∗
(RN ) (where 2∗ =

2N/(N − 2) is defined as

S = inf
u∈D1,2(RN )\{0}

{∫
RN
|∇u|2dx :

∫
RN
|u|2

∗
dx = 1

}
.

Consequently, we define

(2.2) SH,L = inf
u∈D1,2(RN )\{0}

{∫
RN
|∇u|2 dx :∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy = 1

}
.

Lemma 2.2 ([16]). The constant SH,L defined in (2.2) is achieved if and

only if

u = C

(
b

b2 + |x− a|2

)(N−2)/2

where C > 0 is a fixed constant , a ∈ RN and b ∈ (0,∞) are parameters.

Moreover,

S = SH,L
(
C(N,µ)

)(N−2)/(2N−µ)
.

Lemma 2.3 ([16]). For N ≥ 3 and 0 < µ < N . Then

‖ · ‖NL :=

(∫
Ω

∫
Ω

| · |2
∗
µ | · |2

∗
µ

|x− y|µ
dy dx

)1/(2·2∗
µ)

defines a norm on L2∗
(Ω), where Ω is an open bounded set with continuous

boundary in RN .

The energy functional Jλ : H1
0 (Ω)→ R associated with (Pλ), is defined by

Jλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ

q

∫
Ω

|u|q dx− 1

2 · 2∗µ

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dy dx.

Employing the Hardy–Littlewood–Sobolev inequality (2.1), we have(∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dy dx

)1/2∗
µ

≤ C(N,µ)(2N−µ)/(N−2)‖u‖2L2∗ .
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It implies the functional Jλ ∈ C1(H1
0 (Ω),R). We know that there exists a one

to one correspondence between the critical points of Jλ and solution of (Pλ).

Notation. We denote λ1 be the first eigenvalue of −∆ with zero Dirichlet

boundary data, which is given by

λ1 = inf
u∈H1

0 (Ω)\{0}

{∫
Ω

|∇u|2 dx :

∫
Ω

|u|2 dx = 1

}
.

We also denote (Q) as the following condition:

(Q) Assume 0 < λ < λ1. Moreover, q ∈ [2, 2∗) and N > 3 or 4 < q < 6 and

N = 3.

Lemma 2.4. Assume N ≥ 3 and λ ∈ (0, λ1). Then Jλ satisfies the following

conditions:

(a) There exists α, ρ > 0 such that Jλ(u) ≥ α for ‖u‖ = ρ.

(b) There exists e ∈ H1
0 (Ω) with ‖e‖ > ρ such that Jλ(e) < 0.

Proof. (a) Using Hölder’s inequality, Sobolev’s inequality and Hardy–Little-

wood inequality, we have

Jλ(u) ≥


1

2

(
1− λ

λ1

)
‖u‖2 −

S−1
H,L

2 · 2∗µ
‖u‖2·2

∗
µ if q = 2,

1

2
‖u‖2 − λS−q/2|Ω|(2∗−q)/2∗

q
‖u‖q −

S−1
H,L

2 · 2∗µ
‖u‖2·2

∗
µ if q ∈ (2, 2∗).

Using the given assumption on λ and the fact that 2 < 2 · 2∗µ, we can choose

α, ρ > 0 such that Jλ(u) ≥ α whenever ‖u‖ = ρ.

(b) Let u ∈ H1
0 (Ω) then

Jλ(tu) =
t2

2
‖u‖2 − tq

q

∫
Ω

|u|q dx− t2·2
∗
µ

2 · 2∗µ

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy → −∞

as t→∞. Hence we can choose t0 > 0 such that e := t0u such that (b) follows.�

The Nehari manifold associated to Jλ defined as

NΩ
λ :=

{
u ∈ H1

0 (Ω) \ {0} : 〈J ′λ(u), u〉 = 0
}
.

Lemma 2.5. Let u be a critical point on NΩ
λ . Then u is a critical point of Jλ

on H1
0 (Ω).

Proof. The proof follows from [12]. �

Lemma 2.6. Assume λ ∈ (0, λ1). Then NΩ
λ 6= ∅ and Jλ is bounded below

on NΩ
λ .



Positive Solutions of Elliptic Equation 757

Proof. Let u ∈ H1
0 (Ω) \ {0}. Consider the function

φu(t) = Jλ(tu) =
t2

2
‖u‖2 − λtq

q

∫
Ω

|u|q dx− t2·2
∗
µ

2 · 2∗µ
‖u‖2·2

∗
µ

NL .

Then φu(t) = 0, φu(t)→ −∞ as t→∞. We now show that there exists unique

t0 > 0 such that φ′u(t0) = 0 . Since

φ′u(t) = t‖u‖2 − λtq−1

∫
Ω

|u|q dx− t2·2
∗
µ−1‖u‖2·2

∗
µ

NL = tmu(t),

where mu(t) = ‖u‖2 − bu(t) and

bu(t) = λtq−2

∫
Ω

|u|q dx+ t2·2
∗
µ−2‖u‖2·2

∗
µ

NL .

Observe that bu is a continuous function, lim
t→∞

bu(t) = ∞ and b′u(t) > 0 for all

t > 0. Therefore, there exists unique t0 > 0 such that bu(t0) = ‖u‖2. That is,

φ′u(t0) = 0. It implies t0φ
′
u(t0) = 0 and t0u ∈ NΩ

λ . It implies NΩ
λ 6= ∅. Now, if

u ∈ NΩ
λ , then Jλ(u) reduced to

Jλ(u) =

(
1

2
− 1

q

)∫
Ω

|u|q dx+

(
1

2
− 1

2 · 2∗µ

)
‖u‖2·2

∗
µ

NL > 0.

Therefore, inf
u∈NΩ

λ

Jλ(u) > 0. That is, Jλ is bounded below on NΩ
λ . �

Now we set

θλ := inf
u∈NΩ

λ

Jλ(u) and θ̂λ := inf
u∈H1

0 (Ω)\{0}
sup
t≥0

Jλ(tu),(2.3)

where θ̂λ denote the Mountain Pass (MP, in short) level.

3. The Palais–Smale condition and estimates of the functional

In this section we will give the Palais–Smale analysis and prove the existence

of a minimizer of the functional Jλ over the Nehari manifold.

Lemma 3.1. Let N ≥ 3, λ ∈ (0, λ1) and q ∈ [2, 2∗). Then the functional Jλ
satisfies the (PS)c condition for all

c <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Proof. Let {un} be a sequence in H1
0 (Ω) such that

(3.1) Jλ(un)→ c and

〈
J ′λ(un),

un
‖un‖

〉
→ 0 as n→∞.

Claim 1. un is a bounded sequence in H1
0 (Ω).
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On the contrary assume that ‖un‖ → ∞. Let ũn = un/‖un‖ be a sequence

in H1
0 (Ω) then ‖ũn‖ = 1 for all n. Therefore we can assume there exists ũ, up

to subsequences, such that

ũn ⇀ ũ weakly in H1
0 (Ω), ũn → ũ strongly in Lr(Ω)

for all r ∈ [1, 2∗). Using (3.1) we have

1

2
‖ũn‖2 −

λ

q
‖un‖q−2

∫
Ω

|ũn|q dx−
1

2 · 2∗µ
‖un‖2·2

∗
µ−2‖ũn‖

2·2∗
µ

NL = on(1),

‖ũn‖2 − λ‖un‖q−2

∫
Ω

|ũn|q dx− ‖un‖2·2
∗
µ−2‖ũn‖

2·2∗
µ

NL = on(1).

It implies that(
1

2
− 1

2 · 2∗µ

)
‖ũn‖2 =

(
1

q
− 1

2 · 2∗µ

)
λ‖un‖q−2

∫
Ω

|ũn|q dx+ on(1).

Now, if q > 2 and λ > 0 then by the assumption ‖un‖ → ∞, we get ‖ũn‖ → ∞,

which is not possible. If q = 2 and λ ∈ (0, λ1), then 0 < (1−λ/λ1)‖un‖2 ≤ on(1),

which is again not possible, this concludes the proof of Claim.

Hence we can assume, there exists a u0 ∈ H1
0 (Ω) such that, up to a subse-

quence, un ⇀ u0 weakly in H1
0 (Ω), un → u0 strongly in Lr(Ω) for all r ∈ [1, 2∗)

and un → u0 almost every on Ω. Using all this and proceeding with the same as-

sertions as in [16, Lemma 2.4], we get J ′λ(u0) = 0. Now the Brezis–Leib Lemma

(see [8], [16]) leads to

Jλ(un) = Jλ(u0) +
1

2
‖un − u0‖2 −

1

2 · 2∗µ
‖un − u0‖

2·2∗
µ

NL + on(1)

and

on(1) = 〈J ′λ(un)− J ′λ(u0), un − u0〉(3.2)

= ‖un‖2 − ‖u0‖2 − ‖un‖
2·2∗

µ

NL + ‖u0‖
2·2∗

µ

NL

= ‖un − u0‖2 − ‖un − u0‖
2·2∗

µ

NL .

It implies

Jλ(u0) +
N − µ+ 2

2(2N − µ)
‖un − u0‖2 = c+ on(1)

and, if ‖un − u0‖2 → M as n → ∞, then by (3.2), ‖un − u0‖
2·2∗

µ

NL → M as

n → ∞. If M = 0 then we are done otherwise, if M > 0 then using the

definition of SH,L, we have M1/2∗
µSH,L ≤ M that is, S

(2N−µ)/(N−µ+2)
H,L ≤ M .

Since 〈J ′λ(u0), u0〉 = 0, it gives

Jλ(u0) =

(
1

2
− 1

q

)
‖u0‖2 +

(
1

2
− 1

2 · 2∗µ

)
‖u0‖

2·2∗
µ

NL ≥ 0.
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Resuming the information collected so far, what we have gained is that,

on(1) + c = Jλ(u0) +
N − µ+ 2

2(2N − µ)
M ≥ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L ,

which yields a contradiction to the range of c. Hence compactness of the sequence

follows. �

Lemma 3.2. Let N ≥ 3 and λ ∈ (0, λ1) then Jλ constraint to NΩ
λ satisfies

the (PS)c condition for all

c <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Proof. Let un ∈ NΩ
λ be such that Jλ(un) → c and there exists a sequence

{αn} in R with

(3.3) sup{|〈J ′λ(un)− αnT ′λ(un), φ〉| : φ ∈ H1
0 (Ω), ‖φ‖ = 1} → 0 as n→∞,

where the functional Tλ is defined as

Tλ(u) = ‖u‖2 − λ
∫

Ω

|u|q dx− ‖u‖2·2
∗
µ

NL .

First of all, we will show that un is a bounded sequence in H1
0 (Ω). From the fact

that Jλ(un) → c, it is easy to see that there exists a positive constant C1 such

that |Jλ(un)| < C1. If q ∈ (2, 2∗) then, using the fact that un ∈ NΩ
λ , we deduce

that

C1 > Jλ(un)− 1

q
〈J ′λ(un), un〉

=

(
1

2
− 1

q

)
‖un‖2 +

(
1

q
− 1

2 · 2∗µ

)
‖un‖

2·2∗
µ

NL ≥
(

1

2
− 1

q

)
‖un‖2.

If q = 2, for λ ∈ (0, λ1), we obtain, for any n ∈ N,

C1 > Jλ(un)− 1

2 · 2∗µ
〈J ′λ(un), un〉

=

(
1

2
− 1

2 · 2∗µ

)
‖un‖2 − λ

(
1

2
− 1

2 · 2∗µ

)∫
Ω

|un|2 dx

≥
(

1

2
− 1

2 · 2∗µ

)(
1− λ

λ1

)
‖un‖2.

This proves that un is a bounded sequence in H1
0 (Ω). So {〈T ′λ(un), un〉} is

a bounded sequence in R and there exists κ ∈ (−∞, 0] such that, up to a subse-

quence, 〈T ′λ(un), un〉 → κ as n → ∞. Let if possible, κ < 0 then using the fact

that un ∈ NΩ
λ and (A.5), we have 〈αnT ′λ(un), un〉 → 0 as n → ∞. This implies

αn → 0 as n→∞. That is,

sup
{
|〈J ′λ(un), φ〉| : φ ∈ H1

0 (Ω), ‖φ‖ = 1
}
→ 0 as n→∞,

which, by employing Lemma 3.1, gives that un has a convergent subsequence.
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At last suppose κ = 0. Since

〈T ′λ(un), un〉 = λ(2− q)
∫

Ω

|un|q dx+ (2− 2 · 2∗µ)‖un‖
2·2∗

µ

NL → κ,

then ∫
Ω

|un|q dx→ 0 and ‖un‖
2·2∗

µ

NL → 0.

Taking into account the fact un ∈ NΩ
λ we have ‖un‖ → 0. That is, un → 0

strongly in H1
0 (Ω). �

To proceed further we will use the minimizer of SH,L. From Lemma 2.2 we

know that

Uε(x) = S(N−µ)(2−N)/(4(N−µ+2))(C(N,µ))(2−N)/(2(N−µ+2))

(
ε

ε2 + |x|2

)(N−2)/2

,

for 0 < ε < 1, are the minimizers of SH,L. Without loss of generality, let us

assume that 0 ∈ Ω. This implies there exists a δ > 0 such that B4δ(0) ⊂ Ω. Now

define η ∈ C∞c (RN ) such that 0 ≤ η ≤ 1 in RN , η ≡ 1 in Bδ(0) and η ≡ 0 in

RN \B2δ(0) and |∇η| < C. Let uε ∈ H1
0 (Ω) be defined as uε(x) = η(x)Uε(x).

Proposition 3.3. Let N ≥ 3, 0 < µ < N and q ∈ (2, 2∗) then the following

holds:

(a) ‖uε‖2 ≤ S(2N−µ)/(N−µ+2)
H,L +O(εN−2).

(b) ‖uε‖
2·2∗

µ

NL ≤ S
(2N−µ)/(N−µ+2)
H,L +O(εN ) and

‖uε‖
2·2∗

µ

NL ≥ S
(2N−µ)/(N−µ+2)
H,L −O(εN ).

(c)

∫
Ω

|uε|2 dx ≥ C


ε2 +O(εN−2) if N > 4,

ε2| log ε|+O(ε2) if N = 4,

εN−2 +O(ε2) if N < 4.

(d)

∫
Ω

|uε|q, dx ≥ O
(
εN−(N−2)q/2

)
whenever q ∈ (2, 2∗) and N > 3 or 4 <

q < 6 and N = 3.

Proof. For (a) and (c) see [30, Lemma 1.46]. For (b) See [20, Proposi-

tion 2.8]. For (d), first let N > 3 and 2 < q < 2∗ then 0 < (N − 2)q −N < N .

Now let N = 3 and 4 < q < 6 then 1 < q − 3 < 3. Hence we have the following

estimate∫
Ω

|uε|q dx ≥ C
∫
|x|<δ

|Uε|q dx ≥ CεN−(N−2)q/2

∫ δ/ε

1

rN−1−(N−2)q dx

=
CεN−(N−2)q/2

(N − 2)q −N

[
1−

(
ε

δ

)(N−2)q−N]
= O(εN−(N−2)q/2). �
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Lemma 3.4. Let N ≥ 3 and λ > 0 and condition (Q) holds. Then

θ̂λ <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Proof. By the definition of θ̂λ, it is enough to show that, for uε ∈ H1
0 (Ω),

sup
t≥0

Jλ(tuε) <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Let

G(t) = Jλ(tuε) =
t2

2
‖uε‖2 −

λtq

q

∫
Ω

|uε|q dx−
t2·2

∗
µ

2 · 2∗µ
‖uε‖

2·2∗
µ

NL ,

then using the same assertions as in Lemma 2.6 for the function G, we deduce

that there exists unique tε > 0 such that sup
t≥0
G(t) = G(tε) = Jλ(tεuε) and

G′(tε) = 0, provided λ ∈ (0, λ1). As a result, we obtain

(3.4) t2ε‖uε‖2 − λtqε
∫

Ω

|uε|q dx− t
2·2∗

µ
ε ‖uε‖

2·2∗
µ

NL = 0.

It implies

‖uε‖2 = λtq−2
ε

∫
Ω

|uε|q dx+ t
2·2∗

µ−2
ε ‖uε‖

2·2∗
µ

NL .

Therefore, using Proposition 3.3, Sobolev embedding, definition of SH,L and the

fact that λ ∈ (0, λ1), we deduce

1 ≤ λC1t
q−2
ε ‖uε‖q−2 + C2t

2·2∗
µ−2

ε ‖uε‖2·2
∗
µ−2,

for some suitable constants C1, C2 > 0. It gives that there exists a T1 > 0 such

that tε ≥ T1. Also, from (3.4), t
2·2∗

µ
ε ‖uε‖

2·2∗
µ

NL ≤ t2ε‖uε‖2. That is,

tε ≤
(
‖uε‖2

‖uε‖
2·2∗

µ

NL

)1/(2·2∗
µ−2)

.

Hence

sup
t≥0
G(t) =

t2ε
2
‖uε‖2 −

λtqε
q

∫
Ω

|uε|q dx−
t
2·2∗

µ
ε

2 · 2∗µ
‖uε‖

2·2∗
µ

NL

≤ sup
t≥0
V(t)− λT q1

q

∫
Ω

|uε|q dx,

where

V(t) =
t2

2
‖uε‖2 −

t2·2
∗
µ

2 · 2∗µ
‖uε‖

2·2∗
µ

NL .

Now, using Proposition 3.3 and the fact that V(t) has maximum at

t∗ =

(
‖uε‖2

‖uε‖
2·2∗

µ

NL

)1/(2·2∗
µ−2)

,
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we get

(3.5) sup
t≥0
G(t) ≤ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + C1ε

N−2 − λT q1
q

∫
Ω

|uε|q dx.

Case 1. N > 3 and q ∈ (2, 2∗) otr N = 3 and 4 < q < 6.

As a consequence of Proposition 3.3 and (3.5), we have

sup
t≥0
G(t) ≤ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + C1ε

N−2 − λT q1
q

∫
Ω

|uε|q dx

≤ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + C1ε

N−2 − λT q1
q

C2ε
N−(N−2)q/2.

Now, using the condition of N and q, we have N − (N − 2)/2q < N − 2 then,

for ε sufficiently small,

C1ε
N−2 − λT q1

q
C2ε

N−(N−2)q/2 < 0.

Therefore,

sup
t≥0

Jλ(tuε) = sup
t≥0
G(t) <

N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Case 2. If q = 2 and N > 3.

When N > 4 then by Proposition 3.3 and (3.5),

sup
t≥0
G(t) ≤ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + C1ε

N−2 − λT 2
1

2
C2ε

2.

Therefore, for ε sufficiently small,

C1ε
N−2 − λT 2

1

2
C2ε

2 < 0,

we obtain

sup
t≥0

Jλ(tuε) <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

When N = 4 then, again by Proposition 3.3 and (3.5), for an appropriate con-

stant C3 > 0, we have

sup
t≥0
G(t) ≤ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + C1ε

2 − λT 2
1

2
C2(ε2| log ε|+ ε2)

≤ N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + C3ε

2 − λT 2
1

2
C2ε

2| log ε|.

Since | log ε| → ∞ as ε→ 0, for ε sufficiently small,

C3ε
2 − λT 2

1

2
C2ε

2| log ε| < 0.

Thus

sup
t≥0

Jλ(tuε) <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L . �
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Lemma 3.5. If condition (Q) holds then the following holds:

(a) θ̂λ = θλ.

(b) 0 < θλ <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

(c) There exists uΩ
λ ∈ NΩ

λ such that Jλ(uΩ
λ ) = inf

u∈NΩ
λ

Jλ(u) = θλ and uΩ
λ ≥ 0.

Proof. (a) By Lemmas 3.1, 3.4, 2.4 and the Mountain Pass Lemma, there

exists a uΩ
λ ∈ H1

0 (Ω) such that Jλ(uΩ
λ ) = θ̂λ and J ′λ(uΩ

λ ) = 0. It implies uΩ
λ ∈ NΩ

λ .

Hence, θλ ≤ Jλ(uΩ
λ ) = θ̂λ. Also from Lemma 2.6, for each v ∈ NΩ

λ , there exists

a unique t0 > 0 such that sup
t≥0

Jλ(tv) = Jλ(t0v). Since uΩ
λ ∈ NΩ

λ , it implies

θ̂λ ≤ sup
t≥0

Jλ(tu) = Jλ(u). Therefore, θ̂λ ≤ θλ.

(b) By Lemma 2.6, θλ > 0 and, by Lemma 3.4,

θλ = θ̂λ <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

(c) By part (a), there exists a uΩ
λ ∈ NΩ

λ such that Jλ(uΩ
λ ) = θ̂λ = θλ =

inf
u∈NΩ

λ

Jλ(u). Since Jλ(uΩ
λ ) = Jλ(|uΩ

λ |), we can assume uΩ
λ ≥ 0. �

4. Proof of Theorem 1.2

In this section, first we gather some information which is needed to estimate

the catΩ(Ω). Before that, we prove some lemmas necessary for the proof of

Theorem 1.2.

Lemma 4.1. Let N ≥ 3 and {un} be a sequence in H1
0 (Ω) such that

‖un‖
2·2∗

µ

NL = ‖un‖2 ≤ S(2N−µ)/(N−µ+2)
H,L + on(1) as n→∞.

Then, there exist sequences zn ∈ RN and αn ∈ R+ such that the sequence

vn(x) = α(N−2)/2
n un(αnx+ zn)

have a convergent subsequence, still denoted by vn. Moreover, vn → v 6≡ 0 in

D1,2(RN ), zn → z ∈ Ω and αn → 0 as n→∞.

Proof. Let {wn} be a sequence such that wn = un/‖un‖NL then ‖wn‖NL =

1, ‖wn‖2 = ‖un‖2/‖un‖2NL = ‖un‖2((N−µ+2)/(2N−µ)) ≤ SH,L + on(1). By defini-

tion of SH,L, ‖wn‖2 ≥ SH,L, it implies ‖wn‖2 → SH,L as n → ∞. Now, using

Proposition A.1 for the sequence {wn}, we have the desired result. �

Since Ω is a smooth bounded domain of RN , we can pick δ > 0 small enough

so that Ω+
δ = {x ∈ RN : dist(x,Ω) < δ} and Ω−δ = {x ∈ RN : dist(x,Ω) > δ} are

homotopically equivalent to Ω.
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Without loss of generality, we can assume that Bδ = Bδ(0) ⊂ Ω. Conse-

quently, we consider the functional JBδλ : H1
0,rad(Bδ)→ RN defined as

JBδλ (u) =
1

2

∫
Bδ

|∇u|2 dx− λ

q

∫
Bδ

|u|q − 1

2 · 2∗µ

∫
Bδ

∫
Bδ

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dy dx,

where H1
0,rad(Bδ) = {u ∈ H1

0 (Bδ) : uis radial}. And let NBδ
λ be the Nehari

manifold associated to functional JBδλ . Then all the results obtained in Section 3

are valid for the functional JBδλ . In particular, by Lemma 3.5, we know that

there exists uBδλ ∈ N
Bδ
λ such that uBδλ ≥ 0 in Bδ. Moreover,

(4.1) JBδλ
(
uBδλ

)
= inf
u∈NBδλ

JBδλ (u) <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Now, with the help of uBδλ , we will define the set Aλ =
{
u ∈ NΩ

λ : Jλ(u) ≤
JBδλ

(
uBδλ

)}
, and the function φλ : Ω−δ → Aλ given by

(4.2)

uBδλ (x− z) if x ∈ Bδ(z),
0 elsewhere.

Next we define the barycenter mapping β : NΩ
λ → RN by setting

(4.3) β(u) =
1

‖u‖2·2
∗
µ

NL

∫
Ω

∫
Ω

x|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dy dx

Using the fact that uBδλ is radial, β(φλ(z)) = z for all z ∈ Ω−δ .

Lemma 4.2. Let N ≥ 3 and q ∈ [2, 2∗). Then there exists Υ∗ > 0 such that

if u ∈ Aλ and λ ∈ (0,Υ∗) then β(u) ∈ Ω+
δ .

Proof. Assume to the contrary, that there exist sequences {λn} ∈ R+ and

un ∈ Aλn such that λn → 0 and β(un) 6∈ Ω+
δ . Using the definition of Aλn , we

have un ∈ NΩ
λn

and Jλn(un) ≤ JBδλn (uBδλn ). Define

M(t) = Jλn(tun) =
t2

2
‖un‖2 −

λnt
q

q

∫
Ω

|un|q dx−
t2·2

∗
µ

2 · 2∗µ
‖un‖

2·2∗
µ

NL ,

using the same assertions and arguments as in Lemma 2.6, there exists a unique

t0 > 0 such that M ′(t0) = 0 and t0un ∈ NΩ
λn

. Since un ∈ NΩ
λn

, it implies that

M ′(1) = 0 and M is increasing for t < 1 and decreasing t > 1. Therefore,

Jλn(un) = sup
t≥0

Jλn(tun).(4.4)

As

‖un‖2 − λn
∫

Ω

|un|q dx− ‖un‖
2·2∗

µ

NL = 0,

employing this with definition of SH,L and Sobolev embedding, we have

1 =
λn
‖un‖2

∫
Ω

|un|q dx+
‖un‖

2·2∗
µ

NL

‖un‖2
≤ λnc1‖un‖q−2 + S

−2∗
µ

H,L ‖un‖
2·2∗

µ−2,
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where c1 > 0 is a appropriate constant. It implies that for large n, there exists

a constant C > 0 such that

‖un‖ > C.(4.5)

Claim 1. There exists an l > 0 such that up to a subsequence ‖un‖
2·2∗

µ

NL → l

as n→∞.

Since

Jλn(un) ≤ JBδλn (uBδλn ) <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L ,

Jλn(un) is bounded in R, subsequently ‖un‖NL is a bounded sequence. Moreover,

from the fact that un ∈ NΩ
λn

, it follows that

Jλn(un) = λn

(
1

2
− 1

q

)∫
Ω

|un|q dx+

(
1

2
− 1

2 · 2∗µ

)
‖un‖

2·2∗
µ

NL .

It implies that λn
∫

Ω
|un|q dx is a bounded sequence. As a consequence, ‖un‖ is

bounded in R. Therefore, there exists a l ≥ 0 such that ‖un‖NL → l as n→∞.

To prove the Claim 1, it is enough to show that l 6= 0. Using (4.5), we deduce

‖un‖
2·2∗

µ

NL = ‖un‖2 − λn
∫

Ω

|un|q dx ≥ ‖un‖2 − λnc1‖un‖q ≥ C2 − λnc2,

where c2 > 0 is a suitable constant. Since λn → 0, so we have l > 0. This proves

Claim 1.

Claim 2. For all n ∈ N, there exists tn > 0 such that ‖tnun‖2 = ‖tnun‖
2·2∗

µ

NL .

Furthermore, tn is a bounded sequence in R.

Assume tn =
[
‖un‖2/‖un‖

2·2∗
µ

NL

]1/(2·2∗
µ−2)

then ‖tnun‖2 = ‖tnun‖
2·2∗

µ

NL for all

n ∈ N. Using the fact that ‖un‖ is bounded and by Claim 1, we deduce that tn
is a bounded sequence in R, concludes the proof of Claim 2.

By the definition of Jλn and taking into account (4.1), (4.4), Claim 2, un ∈
Aλn , λn → 0, and

∫
Ω
|un|q dx is bounded, we obtain

N − µ+ 2

2(2N − µ)
‖tnun‖2 = Jλn(tnun) + λnt

q
n

∫
Ω

|un|q dx ≤ Jλn(un) + on(1)

≤ JBδλn (uBδλn ) + on(1) <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L + on(1).

From Claim 2 and Lemma 4.1, there exists a sequences zn ∈ RN and αn ∈
R+ such that the sequence vn(x) = α

(N−2)/2
n tnun(αnx + zn) have a convergent

subsequence, still denoted by vn. Moreover, vn → v 6≡ 0 in D1,2(RN ), zn → z ∈
Ω and αn → 0 as n → ∞. Let ψ ∈ C∞c (RN ) such that ψ(x) = x for all x ∈ Ω.
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Consider

β(un) = β(tnun) =

∫
RN

∫
RN

ψ(x)|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dy dx∫

RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dy dx

=

∫
RN

∫
RN

ψ(αnx+ zn)|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dy dx∫

RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dy dx

→ z ∈ Ω,

where the last one follows from regularity of ψ and Lebesgue dominated theorem.

This contradicts the assumption β(un) 6∈ Ω+
δ . It concludes the proof. �

Lemma 4.3. Assume N ≥ 3, q ∈ [2, 2∗) and λ ∈ (0,Υ∗) (defined in Lem-

ma 4.2). Then catAλ(Aλ) ≥ catΩ(Ω).

Proof. The proof can be done by using the same assertions as in [2, Lem-

ma 4.3]. �

Next we need following lemma in order to proof Theorem 1.2.

Lemma 4.4. [1] Suppose that X is a Hilbert manifold and F ∈ C1(X,R).

Assume that there are c1 ∈ R and k ∈ N, such that

(a) F satisfies the Palais–Smale condition for energy level c ≤ c1;

(b) Cat({x ∈ X : F (x) ≤ c1}) ≥ k.

Then F has at least k critical points in {x ∈ X : F (x) ≤ c1}.

Proof of Theorem 1.2. By Lemma 3.2, Jλ satisfies (PS)c condition on

NΩ
λ for any

c <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L ,

provided λ ∈ (0, λ1). If condition (Q) holds then from Lemma 3.5,

0 < θλ <
N − µ+ 2

2(2N − µ)
S

(2N−µ)/(N−µ+2)
H,L .

Hence if condition (Q) holds then Lemmas 4.3 and 4.4, we have at least catΩ(Ω)

critical points of Jλ restricted toNλ for any λ ∈ (0,Λ∗), where Λ∗ = min{λ1,Υ
∗}.

Thus using Lemma 2.5, we obtain Jλ has at least catΩ(Ω) critical points on

H1
0 (Ω). From [15, Lemma 4.4] and [19, Theorem 2.2] , we have at least catΩ(Ω)

positive solutions of problem (Pλ). �
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Appendix A

Here we will discuss the behavior of the optimizing sequence of SH,L. For

the local case, Proposition A.1 has been proved in [29] and [30]. Combining

the ideas of [17] and [30], one expects the Proposition A.1 to hold for critical

Choquard case, but as best of our knowledge this type of result has not been

proved exclusively anywhere. For N = 3, Proposition A.1 has been proved

in [28].

Proposition A.1. Let {un} be a sequence in H1
0 (Ω) such that∫

Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dy dx = 1 and ‖un‖2 → SH,L as n→∞.

Then, there exists a sequences zn ∈ RN and αn ∈ R+ such that the sequence

vn(x) = α(N−2)/2
n un(αnx+ zn)

have a convergent subsequence, still denoted by vn, such that vn → v 6≡ 0 in

D1,2(RN ), zn → z ∈ Ω, and αn → 0 as n→∞. In particular, v is a minimizer

of SH,L.

Proof. Define the Lévy concentration function

Qn(λ) := sup
z∈RN

∫
B(z,λ)

(
|x|−µ ∗ |un|2

∗
µ
)
|un|2

∗
µ dx.

It is easy to see that, for each n, lim
λ→0+

Qn(λ) = 0 and lim
λ→∞

Qn(λ) = 1, there

exists αn > 0 such that Qn(αn) = 1/2. Also, there exist zn ∈ RN such that∫
B(zn,αn)

(
|x|−µ ∗ |un|2

∗
µ
)
|un|2

∗
µ dx = Qn(αn) =

1

2
.

Now define the function vn(x) = α
(N−2)/2
n un(αnx+ zn) then

(A.1)

∫
RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy = 1,

‖∇vn‖2L2 → SH,L as n→∞,
1

2
= sup
z∈RN

∫
B(z,1)

(|x|−µ ∗ |vn|2
∗
µ)|vn|2

∗
µ dx

=

∫
B(0,1)

(|x|−µ ∗ |vn|2
∗
µ)|vn|2

∗
µ dx.

It implies {vn} is a bounded sequence in D1,2(RN ). Therefore, there exist a sub-

sequence, still denoted by {vn} such that vn ⇀ v weakly in D1,2(RN ), for some

v ∈ D1,2(RN ). Then we can assume that there exist ω, τ , ν such that

vn → v a.e. on RN , |∇vn|2 ⇀ ω, |vn|2
∗
⇀ τ,

(|x|−µ ∗ |vn|2
∗
µ)|vn|2

∗
µ ⇀ ν in the sense of measure.
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Now, using the Brezis–Leib lemma in sense of measure, we have

|∇(vn − v)|2 ⇀ $ := ω − |∇v|2, |vn − v|2
∗
⇀ χ := τ − |v|2

∗
,

(|x|−µ ∗ |vn − v|2
∗
µ)|vn − v|2

∗
µ ⇀ κ := ν − (|x|−µ ∗ |v|2

∗
µ)|v|2

∗
µ .

Moreover, if we define

ω∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|∇vn|2 dx,

τ∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|vn|2
∗
dx,

ν∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

(|x|−µ ∗ |vn|2
∗
µ)|vn|2

∗
µ dx

then, by using concentration-compactness principle [17, Lemma 2.5], we deduce

that

lim sup
n→∞

‖∇vn‖2L2 =

∫
RN

dω + ω∞,

lim sup
n→∞

‖vn‖2
∗

L2∗ =

∫
RN

dτ + τ∞,

lim sup
n→∞

‖vn‖
2·2∗

µ

NL =

∫
RN

dν + ν∞

and

C(N,µ)−2N/(2N−µ) ν2N/(2N−µ)
∞ ≤ τ∞

(∫
RN

dτ + τ∞

)
,

S2
H,Lν

2/2∗
µ

∞ ≤ ω∞
(∫

RN
dω + ω∞

)
.

Also, if v = 0 and ∫
RN

dω = SH,L

(∫
RN

dν

)1/2∗
µ

then ν is concentrated at a single point. By using [17, (2.11)], we have

(A.2) SH,L

(∫
RN

dκ

)1/2∗
µ

≤
∫
RN

d$.

It implies

(A.3)

SH,L = lim sup
n→∞

‖∇vn‖2L2 =

∫
RN

d$ + ‖∇v‖2L2 + ω∞,

1 = lim sup
n→∞

‖vn‖
2·2∗

µ

NL =

∫
RN

dκ+ ‖v‖2·2
∗
µ

NL + ν∞

SH,Lν
2/2∗

µ
∞ ≤ ω∞.

Using the definition of SH,L, (A.2) and (A.3), we obtain

SH,L ≥ SH,L
((
‖v‖2·2

∗
µ

NL

)1/2∗
µ

+

(∫
RN

dκ

)1/2∗
µ

+ ν
2/2∗

µ
∞

)
,
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that is ∫
RN

dκ+ ‖v‖2·2
∗
µ

NL + ν∞ ≥
(
‖v‖2·2

∗
µ

NL

)1/2∗
µ

+

(∫
RN

dκ

)1/2∗
µ

+ ν
2/2∗

µ
∞ .

Thanks to the fact that ‖v‖NL,
∫
RN dκ, ν∞ are non-negative, we get ‖v‖NL,∫

RN dκ, ν∞ are equal to either 1 or 0. Using (A.1), we have ν∞ ≤ 1/2. It implies

ν∞ = 0. Now, if
∫
RN dκ = 1 then ‖v‖NL = 0 that is, v = 0 almost everywhere

on RN . Therefore

SH,L =

∫
RN

d$ + ω∞ ≥
∫
RN

d$.

Hence

(A.4) SH,L

(∫
RN

dκ

)1/2∗
µ

≥
∫
RN

d$.

Coupling (A.2), (A.4) with the fact that v = 0 almost everywhere on RN , we

have ν is concentrated at a single point z0. From (A.1), we get

1

2
= sup
z∈RN

∫
B(z,1)

(|x|−µ ∗ |vn|2
∗
µ)|vn|2

∗
µ dx

≥
∫
B(z0,1)

(|x|−µ ∗ |vn|2
∗
µ)|vn|2

∗
µ dx→

∫
RN

dκ = 1,

which is not possible. Hence, ‖v‖2·2
∗
µ

NL = 1. Also, SH,L = lim
n→∞

‖∇vn‖2L2 =

‖∇v‖2L2 . In particular, v is a minimizer of SH,L. From [16, Lemma 1.2], we

know SH,L is achieved if and only if

u = C

(
b

b2 + |x− a|2

)(N−2)/2

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,∞) are parameters. It

implies

v = u = C

(
b

b2 + |x− a|2

)(N−2)/2

.

In particular, v 6≡ 0. Now, we will prove that αn → 0 and zn → z0 ∈ Ω.

Let if possible αn → ∞. Since {un} is a bounded sequence in H1
0 (Ω), {un} is

a bounded sequence in L2(Ω). Thus, if we define Ωn = (Ω− zn)/αn, then∫
Ωn

|vn|2 dx =
1

α2
n

∫
Ω

|un|2 dx ≤
C

α2
n

→ 0.

Contrary to this, by Fatou’s Lemma we have

0 = lim inf
n→∞

∫
Ωn

|vn|2 dx ≥
∫

Ωn

|v|2 dx.

This means v ≡ 0, which is not true. Hence {αn} is bounded in R that is, there

exists α0 ∈ R such that αn → α0 as n → ∞. If zn → ∞ then for any x ∈ Ω

and large n, αnx + zn 6∈ Ω. Since un ∈ H1
0 (Ω) then un(αnx + zn) = 0 for all
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x ∈ Ω, it yields a contradiction to the assumption ‖un‖
2·2∗

µ

NL = 1. Therefore,

zn is bounded, it implies that zn → z0. Now suppose αn → α0 > 0 then

Ωn → (Ω− z0)/α0 = Ω0 6= RN . Hence∫
Ω0

∫
Ω0

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy = 1,∫

Ω0

|vn|2 dx→
∫

Ω0

|v|2 dx = SH,L as n→∞,

which is not true. Hence αn → 0 as n → ∞. Finally, arguing by contradiction,

we assume that

z0 6∈ Ω.(A.5)

In view of the fact that αnx + zn → z0 for all x ∈ Ω as n → ∞. Now, using

(A.5), we have αnx + zn 6∈ Ω for all x ∈ Ω and n large enough. It implies that

un(αnx + zn) = 0 for n large enough. This yields a contradiction, therefore,

z0 ∈ Ω. �
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