NONLINEAR PERIODIC SYSTEMS WITH UNILATERAL CONSTRAINTS

Sergiu Aizicovici - Nikolaos S. Papageorgiou - Vasile Staicu

Dedicated to the memory of Ioan I. Vrabie

Abstract

We consider a general periodic system driven by a nonlinear, nonhomogeneous differential operator, with a maximal monotone term which is not defined everywhere. Using a topological approach based on Leray-Schauder alternative principle, we show the existence of a periodic solution.

1. Introduction

In this paper, we study the existence of solutions for the following periodic system

$$
\left\{\begin{array}{l}
a\left(u^{\prime}(t)\right)^{\prime} \in A(u(t))+f\left(t, u(t), u^{\prime}(t)\right) \quad \text { for a.a. } t \in T:=[0, b] \tag{P}\\
u(0)=u(b), \quad u^{\prime}(0)=u^{\prime}(b)
\end{array}\right.
$$

In this problem, $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a continuous, strictly monotone (hence maximal monotone too) map which satisfies certain polynomial growth conditions. As a special case, the differential operator $u \rightarrow a\left(u^{\prime}\right)^{\prime}$ incorporates the vector p Laplacian $u \rightarrow\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}$, where $|\cdot|$ denotes the \mathbb{R}^{N} norm. However, we stress that a is not in general homogeneous. On the right-hand side of (P),

[^0]$A: \mathbb{R}^{N} \rightarrow 2^{\mathbb{R}^{N}}$ is a maximal monotone map and $D(A)=\left\{x \in \mathbb{R}^{N}: A(x) \neq \emptyset\right\}$ needs not to be all of \mathbb{R}^{N}. In this way problem (P) includes also systems with unilateral constraints (differential variational inequalities). The perturbation $f: T \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function (that is, for all $(x, y) \in$ $\mathbb{R}^{N} \times \mathbb{R}^{N}, t \rightarrow f(t, x, y)$ is measurable and for almost all $t \in T,(x, y) \rightarrow f(t, x, y)$ is continuous). We impose on $f(t, x, y)$ some general growth restrictions and unilateral conditions for $|x|,|y|$ big. The presence of the multivalued maximal monotone term A and the dependence of f on the derivative u^{\prime}, make problem (P) nonvariational. Therefore our approach is topological based on the fixed point theory. More precisely, we use the Leray-Schauder alternative principle.

In the past periodic systems were studied assuming $A \equiv 0$ and that the function $f(t, x, y)$ satisfied the Hartman or the Nagumo-Hartman condition (see Hartman [4], Knobloch [5]). A condition of this kind is very convenient because it produces an a priori bound for the solutions of the problem. We refer also to the works of Knobloch and Schmitt [6], Manasevich and Mawhin [7], Mawhin [9]. We mention that problems with maximal monotone terms (unilateral constraints), both finite and infinite dimensional, can be found in the book of Vrabie [10].

2. Mathematical background - hypotheses

Let X be a reflexive Banach space. By X^{*} we denote the topological dual of X and by $\langle\cdot, \cdot\rangle$ the duality brackets for the pair $\left(X^{*}, X\right)$. Given $A: X \rightarrow 2^{X^{*}}$, the graph of A is the set

$$
\operatorname{Gr}(A)=\left\{\left(u, u^{*}\right) \in X \times X^{*}: u^{*} \in A(u)\right\} .
$$

We say that A is monotone if

$$
\left\langle u^{*}-v^{*}, u-v\right\rangle \geq 0 \quad \text { for all }\left(u, u^{*}\right),\left(v, v^{*}\right) \in \operatorname{Gr}(A) .
$$

We say that A is strictly monotone if the above inequality is strict when $u \neq v$. The map A is maximal monotone if $\operatorname{Gr}(A)$ is maximal with respect to the inclusion among the graphs of all monotone maps. This is equivalent to the following condition:

$$
\text { if }\left\langle u^{*}-v^{*}, u-v\right\rangle \geq 0 \quad \text { for all }\left(u, u^{*}\right) \in \operatorname{Gr}(A) \text {, then }\left(v, v^{*}\right) \in \operatorname{Gr}(A) \text {. }
$$

By $D(A)$ we denote the domain of A, that is, the set

$$
D(A)=\{u \in X: A(u) \neq \emptyset\} .
$$

If $A: X \rightarrow 2^{X^{*}}$ is maximal monotone, then it is easy to check that $\operatorname{Gr}(A)$ is sequentially closed in $X_{w} \times X^{*}$ and in $X \times X_{w}^{*}$. Here by X_{w} (resp. X_{w}^{*}) we denote the space X (resp. X^{*}) furnished with the weak topology.

When the ambient space is a Hilbert space, then we introduce some useful single valued approximations of the identity and of A. So, suppose that H is
a Hilbert space of norm $\|\cdot\|$. We identify H with its dual (that is, $H=H^{*}$ by the Riesz-Frechet theorem). Given $A: H \rightarrow 2^{H}$ and $\lambda>0$, we introduce the following single-valued maps

$$
\begin{array}{ll}
J_{\lambda}:=(I+\lambda A)^{-1} & (\text { the resolvent of } A) \\
A_{\lambda}:=\frac{1}{\lambda}\left(I-J_{\lambda}\right) & (\text { the Yosida approximation of } A)
\end{array}
$$

The next proposition summarizes the properties of these maps.
Proposition 2.1. If $A: H \rightarrow 2^{H}$ is a maximal monotone map and $\lambda>0$, then:
(a) $J_{\lambda}: H \rightarrow H$ is nonexpansive, that is,

$$
\left\|J_{\lambda}(u)-J_{\lambda}(v)\right\| \leq\|u-v\| \quad \text { for all } u, v \in H
$$

(b) $A_{\lambda}(u) \in A\left(J_{\lambda}(u)\right)$ for all $u \in H$;
(c) A_{λ} is $1 / \lambda$ Lipschitz, that is,

$$
\left\|A_{\lambda}(u)-A_{\lambda}(v)\right\| \leq \frac{1}{\lambda}\|u-v\| \quad \text { for all } u, v \in H
$$

(d) $\left\|A_{\lambda}(u)\right\| \leq\left\|A^{0}(u)\right\|=\min \left\{\left\|u^{*}\right\|: u^{*} \in A(u)\right\}$ and $A_{\lambda}(u) \rightarrow A^{0}(u)$ as $\lambda \rightarrow 0^{+}$for all $u \in D(A)$;
(e) $\overline{D(A)}$ is convex and $J_{\lambda}(x) \rightarrow \operatorname{proj}(u ; \overline{D(A)})$ as $\lambda \rightarrow 0^{+}$for all $u \in H$.

Remarks 2.2. We know that when $A: H \rightarrow 2^{H}$ is maximal monotone, then for every $u \in D(A), A(u)$ is nonempty, closed and convex. Therefore it is proximinal (that is, it has the best approximation property, which means that given any $v^{*} \in H$, we can find $\widehat{u}^{*} \in A(u)$ such that

$$
\left\|v^{*}-\widehat{u}^{*}\right\|_{*}=d\left(v^{*}, A(u)\right)=\inf \left\{\left\|v^{*}-u^{*}\right\|: u^{*} \in A(u)\right\}
$$

Moreover, when $v^{*}=0$, the strict convexity of H (a consequence of the parallelogram law), implies that this best approximation element \widehat{u}^{*} denoted by $A^{0}(u)$ is unique. The map $u \rightarrow A^{0}(u)$ is known as the "minimal section of A ". Similarly, since $\overline{D(A)} \subseteq H$ is convex, given $u \in H$, by $\operatorname{proj}(u, \overline{D(A)})$ we denote the unique best approximation of u from $\overline{D(A)}$. If $D(A)=H$, then $J_{\lambda}(u) \rightarrow u$ for all $u \in H$ as $\lambda \rightarrow 0^{+}$and so, we can think of J_{λ} as an approximation of the identity. For more details on these and related issues we refer to Gasinski and Papageorgiou [3] and Vrabie [10].

Let X, Y be two Banach spaces and $G: X \rightarrow Y$. We introduce the following topological notions for G :
(a) We say that G is compact, if it is continuous and maps bounded sets into relatively compact sets.
(b) We say that G is completely continuous, if

$$
u_{n} \xrightarrow{w} u \quad \text { in } X \Rightarrow G\left(u_{n}\right) \rightarrow G(u) \quad \text { in } Y .
$$

Here and in what follows \xrightarrow{w} denotes weak convergence.
In general, these concepts are distinct. Indeed, let $X=Y=l^{1}$ and let $G=$ $I=$ the identity map. Then by the Schur property, G is completely continuous, but since l^{1} is infinite dimensional, it cannot be compact. However, if X is reflexive, then complete continuity implies compactness. Moreover, if in addition G is linear, then the two notions are equivalent.

Next we recall the Leray-Schauder alternative principle which we will use in the analysis of problem (P); see e.g. [3, p. 627].

Theorem 2.3. If X is a Banach space, $G: X \rightarrow X$ is compact and

$$
K:=\{u \in X: u=\theta G(u) \text { for some } 0<\theta<1\}
$$

then one of the following statements holds:
(a) K is unbounded;
(b) G has a fixed point.

In the analysis of problem (P) we will use the space

$$
W_{\mathrm{per}}^{1, p}\left((0, b) ; \mathbb{R}^{N}\right):=\left\{u \in W^{1, p}\left((0, b) ; \mathbb{R}^{N}\right): u(0)=u(b)\right\}, \quad 1<p<\infty .
$$

By $\|\cdot\|$ we denote the norm of this space which is defined by

$$
\|u\|=\left(\|u\|_{p}^{p}+\left\|u^{\prime}\right\|_{p}^{p}\right)^{1 / p} \quad \text { for all } u \in W_{\mathrm{per}}^{1, p}\left((0, b) ; \mathbb{R}^{N}\right)
$$

where $\|\cdot\|_{p}$ denotes the L^{p}-norm. In the sequel, for notational economy, we will write $W_{N}^{1, p}=W_{\text {per }}^{1, p}\left((0, b) ; \mathbb{R}^{N}\right)$. Also, given a measurable function $g: T \times$ $\mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ (for example, a Carathéodory function), by N_{g} we denote the Nemytski operator corresponding to g, defined by

$$
N_{g}(u)(\cdot)=g\left(\cdot, u(\cdot), u^{\prime}(\cdot)\right) \quad \text { for all } u \in W_{N}^{1, p} .
$$

Now we introduce the hypotheses on the data of (P).
$\mathrm{H}(a) a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a map such that $a(y)=a_{0}(|y|) y$ with $a_{0}:(0,+\infty) \rightarrow$ $(0,+\infty)$ such that $t a_{0} \rightarrow 0^{+}$as $t \rightarrow 0^{+}$and
(i) a is continuous, strictly monotone (hence maximal monotone too);
(ii) $(a(y), y)_{\mathbb{R}^{N}} \geq C_{0}|y|^{p}$ for all $y \in \mathbb{R}^{N}$, with $C_{0}>0,2 \leq p<+\infty$;
(iii) $|a(y)| \leq C_{1}\left(1+|y|^{p-1}\right)$ for all $y \in \mathbb{R}^{N}$, with $C_{1}>0$.

Remarks 2.4. The above hypotheses are general and include the case of the vector p-Laplacian which corresponds to the map

$$
y \rightarrow|y|^{p-2} y, \quad \text { for all } y \in \mathbb{R}^{N} .
$$

Other possibilities are the maps

$$
\begin{array}{ll}
y \rightarrow|y|^{p-2} y+|y|^{q-2} y, & 2 \leq q<p, \\
\text { for all } y \in \mathbb{R}^{N} ; \\
y \rightarrow\left(1+|y|^{2}\right)^{(p-2) / 2} y, & \text { for all } y \in \mathbb{R}^{N} .
\end{array}
$$

The restriction $2 \leq p$ (see hypothesis $\mathrm{H}(a)$ (ii)) is needed because in general we have $D(A) \neq \mathbb{R}^{N}$ (see hypothesis $\mathrm{H}(A)$ below). If $D(A)=\mathbb{R}^{N}$, then we can have $1<p<\infty$. Finally note that $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a homeomorphism.

The hypothesis on the multivalued term A is the following:
$\mathrm{H}(A) A: \mathbb{R}^{N} \rightarrow 2^{\mathbb{R}^{N}}$ is a maximal monotone map such that $0 \in A(0)$.
REmark 2.5. We do not require $D(A)=\mathbb{R}^{N}$. This way we incorporate in our framework systems with inequality constraints.

The hypotheses on the perturbation $f(\cdot, \cdot, \cdot)$ are the following:
$\mathrm{H}(f) f: T \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function satisfying:
(i) there exist $\beta_{1}: T \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $\beta_{2}: T \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
|f(t, x, y)| \leq \beta_{1}(t,|x|)+\beta_{2}(t,|x|)|y|^{q-1}
$$

for almost all $t \in T$, all $x, y \in \mathbb{R}^{N}$, with $1<q<p$ and, for every $M>0$, we have
$\sup \left\{\beta_{1}(t, s): 0 \leq s \leq M\right\} \leq \gamma_{1, M}(t), \quad$ for a.a. $t \in T$, $\sup \left\{\beta_{2}(t, s): 0 \leq s \leq M\right\} \leq \gamma_{2, M}(t), \quad$ for a.a. $t \in T$, where $\gamma_{1, M} \in L^{p^{\prime}}(T)$ and $\gamma_{2, M} \in L^{\infty}(T)$ (where $1 / p+1 / p^{\prime}=1$);
(ii) there exists a function $\eta \in L^{\infty}(T)$ such that $0 \leq \eta(t)$ for almost all $t \in T, \eta \neq 0$, and for every $\varepsilon>0$, there exist $M_{\varepsilon}>0$ and $\widehat{C}_{\varepsilon}>0$ such that

$$
(f(t, x, y), x)_{\mathbb{R}^{N}} \geq[\eta(t)-\varepsilon]|x|^{p}-\widehat{C}_{\varepsilon}|y|^{q-1}|x|
$$

for almost all $t \in T$, all $|x|,|y| \geq M_{\varepsilon}$.
Remark 2.6. Consider the function

$$
f(t, x, y)=\eta(t) g(x)+\widehat{C}|y|^{q-1}+k(t) x
$$

where $\eta \in L^{\infty}(T), \eta(t) \geq 0$ for almost all $t \in T, \eta \neq 0, g \in C\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and satisfies
$\liminf _{|x| \rightarrow \infty} \frac{(g(x), x)_{\mathbb{R}^{N}}}{|x|^{p}} \geq \mu>0, \quad \widehat{C} \in \mathbb{R}^{N}$ and $k \in L^{p^{\prime}}(T), k(t) \geq 0$ for a.a. $t \in T$.
This function satisfies hypotheses $\mathrm{H}(f)$ above.

3. Existence theorem

Let $g \in L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$. We first consider the following periodic problem

$$
\left\{\begin{array}{l}
-a\left(u^{\prime}(t)\right)^{\prime}+|u(t)|^{p-2} u(t)=g(t) \quad \text { for a.a. } t \in T:=[0, b] \tag{3.1}\\
u(0)=u(b), \quad u^{\prime}(0)=u^{\prime}(b)
\end{array}\right.
$$

Proposition 3.1. If hypotheses $\mathrm{H}\left(\right.$ a) hold and $g \in L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$, then problem (3.1) admits a unique solution $\widehat{u} \in C^{1}\left(T, \mathbb{R}^{N}\right)$.

Proof. Let $G: W_{N}^{1, p} \rightarrow\left(W_{N}^{1, p}\right)^{*}$ be the nonlinear map defined by

$$
\langle G(u), h\rangle=\int_{0}^{b}\left(a\left(u^{\prime}\right), h^{\prime}\right)_{\mathbb{R}^{N}} d t \quad \text { for all } u, h \in W_{N}^{1, p}
$$

Hypotheses $\mathrm{H}(a)$ imply that G is continuous, monotone, hence maximal monotone too. In addition, let

$$
\xi_{p}: L^{p}\left(T, \mathbb{R}^{N}\right) \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)=\left(L^{p}\left(T, \mathbb{R}^{N}\right)\right)^{*}
$$

be defined by

$$
\xi_{p}(u)(\cdot)=|u(\cdot)|^{p-2} u(\cdot)
$$

This map is continuous and strictly monotone, hence maximal monotone too. Then the map $V=G+\xi_{p}: W_{N}^{1, p} \rightarrow\left(W_{N}^{1, p}\right)^{*}$ is continuous and strictly monotone, hence maximal monotone too. Also for all $u \in W_{N}^{1, p}$, we have

$$
\langle V(u), u\rangle \geq C_{0}\left\|u^{\prime}\right\|_{p}^{p}+\|u\|_{p}^{p}
$$

(see hypothesis $\mathrm{H}(a)$ (ii)), hence V is coercive.
Invoking Corollary 3.2.32, p. 320 of Gasinski and Papageorgiou [3], we infer that V is surjective. So, we can find $\widehat{u} \in W_{N}^{1, p} \subseteq C\left(T, \mathbb{R}^{N}\right)$ such that $V(\widehat{u})=g$, therefore

$$
\left\{\begin{array}{l}
-a\left(\widehat{u}^{\prime}(t)\right)^{\prime}+|\widehat{u}(t)|^{p-2} \widehat{u}(t)=g(t) \quad \text { for a.a. } t \in T:=[0, b], \tag{3.2}\\
\widehat{u}(0)=\widehat{u}(b)
\end{array}\right.
$$

Moreover, the strict monotonicity of V implies that this solution is unique. From (3.2) we see that $\left(a\left(u^{\prime}\right)\right)^{\prime} \in L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$. Also, since $\widehat{u}^{\prime} \in L^{p}\left(T, \mathbb{R}^{N}\right)$, from hypothesis $\mathrm{H}(a)$ (iii) we see that $a\left(\widehat{u}^{\prime}\right) \in L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$. It follows that $a\left(\widehat{u}^{\prime}\right) \in W_{N}^{1, p^{\prime}} \subseteq C\left(T, \mathbb{R}^{N}\right)$. Recalling that a is a homeomorphism, we infer that $\widehat{u}^{\prime} \in C\left(T, \mathbb{R}^{N}\right)$ and so, we conclude that $\widehat{u} \in C^{1}\left(T, \mathbb{R}^{N}\right)$. Finally, it follows that $\widehat{u}^{\prime}(0)=\widehat{u}^{\prime}(b)$.

Let $\widehat{a}: D(\widehat{a}) \subseteq L^{p}\left(T, \mathbb{R}^{N}\right) \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$ be defined by

$$
\begin{equation*}
\widehat{a}(u)(\cdot)=-a\left(u^{\prime}(\cdot)\right)^{\prime} \tag{3.3}
\end{equation*}
$$

for all $u \in D(\widehat{a})=\left\{y \in C^{1}\left(T, \mathbb{R}^{N}\right): a\left(y^{\prime}\right) \in W_{N}^{1, p^{\prime}}, y(0)=y(b), y^{\prime}(0)=y^{\prime}(b)\right\}$. We have the following result for this map:

Proposition 3.2. If hypotheses $\mathrm{H}(a)$ hold, then the map

$$
\widehat{a}: D(\widehat{a}) \subseteq L^{p}\left(T, \mathbb{R}^{N}\right) \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)
$$

defined by (3.3) is maximal monotone.

Proof. From Proposition 3.1 we know that

$$
\begin{equation*}
R\left(\widehat{a}+\xi_{p}\right)=L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right) . \tag{3.4}
\end{equation*}
$$

Also, the map \widehat{a} is monotone. Indeed, let $u, v \in D(\widehat{a})$ and let $\langle\cdot, \cdot\rangle_{p, p^{\prime}}$ be the duality brackets for the pair $\left(L^{p}\left(T, \mathbb{R}^{N}\right), L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)\right)$. We have

$$
\begin{aligned}
\langle\widehat{a}(u) & -\widehat{a}(v), u-v\rangle_{p, p^{\prime}} \\
& =\int_{0}^{b}\left(-a\left(u^{\prime}\right)^{\prime}+a\left(v^{\prime}\right)^{\prime}, u-v\right)_{\mathbb{R}^{N}} d t \\
& =\int_{0}^{b}\left(a\left(u^{\prime}\right)-a\left(v^{\prime}\right), u^{\prime}-v^{\prime}\right)_{\mathbb{R}^{N}} d t \quad \text { (by integration by parts) } \\
& \geq 0
\end{aligned}
$$

hence \widehat{a} is monotone.
Suppose that $v \in L^{p}\left(T, \mathbb{R}^{N}\right), v^{*} \in L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$ and assume that

$$
\begin{equation*}
\left\langle\widehat{a}(u)-v^{*}, u-v\right\rangle_{p, p^{\prime}} \geq 0 \quad \text { for all } u \in D(\widehat{a}) \tag{3.5}
\end{equation*}
$$

From (3.4) we know that there exists $u_{1} \in D(\widehat{a})$ such that

$$
\begin{equation*}
\widehat{a}\left(u_{1}\right)+\xi_{p}\left(u_{1}\right)=v^{*}+\xi_{p}(v) \tag{3.6}
\end{equation*}
$$

Using (3.6) in (3.5) with $u=u_{1} \in D(\widehat{a})$, we obtain

$$
0 \leq\left\langle\xi_{p}(v)-\xi_{p}\left(u_{1}\right), u_{1}-v\right\rangle_{p, p^{\prime}}
$$

hence $u_{1}=v$ (recall that ξ_{p} is strictly monotone), therefore $\widehat{a}\left(u_{1}\right)=v^{*}$ (see (3.6)). So, $\left(v, v^{*}\right) \in \operatorname{Gr}(\widehat{a})$ and we conclude that \widehat{a} is maximal monotone.

For $\lambda>0$, we next consider the following approximation to problem (P):
$\left(\mathrm{P}_{\lambda}\right) \quad\left\{\begin{array}{l}a\left(u^{\prime}(t)\right)^{\prime}=A_{\lambda}(u(t))+f\left(t, u(t), u^{\prime}(t)\right) \quad \text { for a.a. } t \in T:=[0, b], \\ u(0)=u(b), \quad u^{\prime}(0)=u^{\prime}(b) .\end{array}\right.$
Proposition 3.3. If hypotheses $\mathrm{H}(a), \mathrm{H}(A), \mathrm{H}(f)$ hold and $\lambda>0$, then problem $\left(\mathrm{P}_{\lambda}\right)$ has a solution $u_{\lambda} \in C^{1}\left(T, \mathbb{R}^{N}\right)$.

Proof. Let $\widehat{A}_{\lambda}: L^{p}\left(T, \mathbb{R}^{N}\right) \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$ be defined by

$$
\widehat{A}_{\lambda}(u)(\cdot)=A_{\lambda}(u(\cdot)) .
$$

Recall that $1<p^{\prime} \leq 2 \leq p$. We consider the map

$$
L_{\lambda}: D(\widehat{a}) \subseteq L^{p}\left(T, \mathbb{R}^{N}\right) \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)
$$

defined by

$$
L_{\lambda}(u)=\widehat{a}(u)+\xi_{p}(u)+\widehat{A}_{\lambda}(u) \quad \text { for all } u \in D(\widehat{a}) .
$$

Using Theorem 3.2.41 of Gasinski and Papageorgiou [3, p. 328,], we have

$$
\begin{equation*}
L_{\lambda} \text { is maximal monotone. } \tag{3.7}
\end{equation*}
$$

Also, since A_{λ} is monotone and $A_{\lambda}(0)=0$, via hypothesis $\mathrm{H}(a)$ (ii) we see that

$$
\begin{equation*}
L_{\lambda} \text { is coercive. } \tag{3.8}
\end{equation*}
$$

From (3.7), (3.8) and Corollary 3.2.31 of Gasinski and Papageorgiou [3, p. 319], it follows that L_{λ} is surjective. Evidently L_{λ} is strictly monotone (recall that ξ_{p} is so). Hence, the inverse map

$$
L_{\lambda}^{-1}: L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right) \rightarrow D(\widehat{a}) \subseteq L^{p}\left(T, \mathbb{R}^{N}\right)
$$

is well defined. Recall that $D(\widehat{a}) \subseteq C^{1}\left(T, \mathbb{R}^{N}\right)$.
Claim 1. $L_{\lambda}^{-1}: L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right) \rightarrow C^{1}\left(T, \mathbb{R}^{N}\right)$ is completely continuous.
Let $g_{n} \xrightarrow{w} g$ in $L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$. Let $u_{n}=L_{\lambda}^{-1}\left(g_{n}\right)$ for $n \in \mathbb{N}$, and $u=L_{\lambda}^{-1}(g)$. We have $L_{\lambda}\left(u_{n}\right)=g_{n}$ for all $n \in \mathbb{N}$, hence

$$
\widehat{a}\left(u_{n}\right)+\xi_{p}\left(u_{n}\right)+\widehat{A}_{\lambda}\left(u_{n}\right)=g_{n}, \quad u_{n} \in D(\widehat{a}), \quad \text { for all } n \in \mathbb{N},
$$

therefore

$$
C_{0}\left\|u_{n}^{\prime}\right\|_{p}^{p}+\left\|u_{n}\right\|_{p}^{p} \leq\left\|g_{n}\right\|_{p^{\prime}}\left\|u_{n}\right\|_{p}
$$

(recall that $\left(A_{\lambda}(x), x\right)_{\mathbb{R}^{N}} \geq 0$ for all $\left.x \in \mathbb{R}^{N}\right)$ and we derive $\left\|u_{n}\right\|^{p} \leq C_{2}\left\|u_{n}\right\|$ for some $C_{2}>0$ and for all $n \in \mathbb{N}$, therefore

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{N}^{1, p} \text { is bounded. } \tag{3.9}
\end{equation*}
$$

For almost all $t \in T$ and all $n \in \mathbb{N}$ we have

$$
-a\left(u_{n}^{\prime}(t)\right)^{\prime}+\left|u_{n}(t)\right|^{p-2} u_{n}(t)+A_{\lambda}\left(u_{n}(t)\right)=g_{n}(t),
$$

therefore

$$
\begin{equation*}
\left\{a\left(u_{n}^{\prime}\right)^{\prime}\right\}_{n \in \mathbb{N}} \subseteq L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right) \text { is bounded. } \tag{3.10}
\end{equation*}
$$

Hypothesis $\mathrm{H}(a)$ (iii) and (3.9) imply that

$$
\begin{equation*}
\left\{a\left(u_{n}^{\prime}\right)\right\}_{n \in \mathbb{N}} \subseteq L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right) \text { is bounded. } \tag{3.11}
\end{equation*}
$$

Then, from (3.10) and (3.11), it follows that

$$
\left\{a\left(u_{n}^{\prime}\right)\right\}_{n \in \mathbb{N}} \subseteq W^{1, p^{\prime}}\left(T, \mathbb{R}^{N}\right) \text { is bounded, }
$$

hence

$$
\begin{equation*}
\left\{a\left(u_{n}^{\prime}\right)\right\}_{n \in \mathbb{N}} \subseteq C\left(T, \mathbb{R}^{N}\right) \text { is relatively compact } \tag{3.12}
\end{equation*}
$$

(recall that $W^{1, p^{\prime}}\left(T, \mathbb{R}^{N}\right) \subseteq C\left(T, \mathbb{R}^{N}\right)$ compactly). We know that a is a homeomorphism. Let $\widehat{\eta}: C\left(T, \mathbb{R}^{N}\right) \rightarrow C\left(T, \mathbb{R}^{N}\right)$ be defined by

$$
\widehat{\eta}(u)(\cdot)=a^{-1}(u(\cdot)) \quad \text { for all } u \in C\left(T, \mathbb{R}^{N}\right) .
$$

Evidently $\widehat{\eta}$ is continuous and bounded (that is, maps bounded sets to bounded sets). Then, from (3.12) we infer that

$$
\begin{equation*}
\left\{u_{n}^{\prime}\right\}_{n \in \mathbb{N}} \subseteq C\left(T, \mathbb{R}^{N}\right) \text { is relatively compact. } \tag{3.13}
\end{equation*}
$$

In addition by (3.9) and the compact embedding of $W^{1, p}\left(T, \mathbb{R}^{N}\right)$ into $C\left(T, \mathbb{R}^{N}\right)$, we conclude that

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq C\left(T, \mathbb{R}^{N}\right) \text { is relatively compact. } \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.14) we infer that

$$
\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq C^{1}\left(T, \mathbb{R}^{N}\right) \text { is relatively compact. }
$$

So, we may assume that (along a subsequence)

$$
\begin{equation*}
u_{n} \rightarrow \widehat{u} \quad \text { in } C^{1}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty \tag{3.15}
\end{equation*}
$$

Note that $\left(u_{n}, g_{n}\right) \in \operatorname{Gr}\left(L_{\lambda}\right)$ for all $n \in \mathbb{N}$. Since L_{λ} is maximal monotone, we know that $\operatorname{Gr}\left(L_{\lambda}\right)$ is sequentially closed in $L^{p}\left(T, \mathbb{R}^{N}\right) \times L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)_{w}$. Therefore $(\widehat{u}, g) \in \operatorname{Gr}\left(L_{\lambda}\right)$, hence $L_{\lambda}(\widehat{u})=g$. Hence, for the original sequence, we have

$$
u_{n} \rightarrow \widehat{u}=L_{\lambda}^{-1}(g) \quad \text { in } C^{1}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty .
$$

This proves Claim 1.
Now let $\widehat{N}: W_{N}^{1, p} \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$ be defined by

$$
\widehat{N}(u)(\cdot)=-N_{f}(u)(\cdot)+\xi_{p}(u)(\cdot) \quad \text { for all } u \in W_{N}^{1, p} .
$$

Claim 2. $\widehat{N}: W_{N}^{1, p} \rightarrow L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right)$ is continuous.
Consider a sequence $u_{n} \rightarrow u$ in $W_{N}^{1, p}$. Then $u_{n} \rightarrow u$ in $C\left(T, \mathbb{R}^{N}\right)$ and so

$$
\left\|u_{n}\right\|_{C\left(T, \mathbb{R}^{N}\right)} \leq M \quad \text { for some } M>0, \text { all } n \in \mathbb{N} .
$$

Then hypothesis $\mathrm{H}(f)$ (i) implies that

$$
\begin{equation*}
\left|f\left(t, u_{n}(t), u_{n}^{\prime}(t)\right)\right| \leq \gamma_{1, M}(t)+\gamma_{2, M}(t)\left(1+\left|u_{n}^{\prime}(t)\right|^{p-1}\right) \tag{3.16}
\end{equation*}
$$

for all $t \in T$, all $n \in \mathbb{N}$. We may assume that

$$
\begin{cases}u_{n}(t) \rightarrow u(t) & \text { for all } t \in T \tag{3.17}\\ u_{n}^{\prime}(t) \rightarrow u^{\prime}(t) & \text { for a.a. } t \in T, \\ \left|u_{n}^{\prime}(t)\right| \leq \varphi(t) & \text { for a.a. } t \in T, \text { all } n \in \mathbb{N} \text { with } \varphi \in L^{p}(T)\end{cases}
$$

From (3.17) it follows that

$$
\begin{equation*}
f\left(t, u_{n}(t), u_{n}^{\prime}(t)\right) \rightarrow f\left(t, u(t), u^{\prime}(t)\right) \quad \text { for a.a. } t \in T . \tag{3.18}
\end{equation*}
$$

Then (3.16)-(3.18) and Vitali's theorem (the extended dominated convergence theorem; see Gasinski and Papageorgiou [3, p. 901]) imply that

$$
N_{f}\left(u_{n}\right) \rightarrow N_{f}(u) \quad \text { in } L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty
$$

Also, the continuity of ξ_{p} implies that

$$
\xi_{p}\left(u_{n}\right) \rightarrow \xi_{p}(u) \quad \text { in } L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty
$$

We conclude that

$$
\widehat{N}\left(u_{n}\right) \rightarrow \widehat{N}(u) \quad \text { in } L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty
$$

that is, $\widehat{N}(\cdot)$ is continuous. This proves Claim 2.
Let $K_{\lambda}=\left\{u \in W_{N}^{1, p}: u=\theta L_{\lambda}^{-1} \widehat{N}(u), 0<\theta<1\right\}$.
CLaim 3. $K_{\lambda} \subseteq W_{N}^{1, p}$ is bounded.
Let $u \in K_{\lambda}$. Then, for some $\theta \in(0,1)$, we have $L_{\lambda}(u / \theta)=\widehat{N}(u)$, hence

$$
\begin{equation*}
\widehat{a}\left(\frac{1}{\theta} u\right)+\frac{1}{\theta^{p-1}} \xi_{p}(u)+\widehat{A}_{\lambda}\left(\frac{1}{\theta} u\right)=-N_{f}(u)+\xi_{p}(u) \tag{3.19}
\end{equation*}
$$

Hypotheses $\mathrm{H}(f)$ (i), (ii) imply that for a given $\varepsilon>0$, we can find $C_{3}=C_{3}(\varepsilon)>0$ and $\mu \in L^{p^{\prime}}(T)$ such that

$$
\begin{equation*}
(-f(t, x, y), x)_{\mathbb{R}^{N}} \leq[-\eta(t)+\varepsilon]|x|^{p}+C_{3}|y|^{q-1}|x|+\mu(t) \tag{3.20}
\end{equation*}
$$

for almost all $t \in T$, all $x, y \in \mathbb{R}^{N}$. On (3.19) we act with u. Using hypothesis $\mathrm{H}(a)$ (ii) and (3.20), we obtain

$$
\begin{align*}
& \frac{C_{0}}{\theta^{p-1}}\left\|u^{\prime}\right\|_{p}^{p}+\frac{1}{\theta^{p-1}}\|u\|_{p}^{p} \tag{3.21}\\
& \quad \leq \int_{0}^{b}[-\eta(t)+\varepsilon]|u|^{p} d t+C_{3} \int_{0}^{b}\left|u^{\prime}\right|^{q-1}|u| d t+C_{4}
\end{align*}
$$

with $C_{4}=\|\mu\|_{1}>0$, hence

$$
\begin{equation*}
C_{0}\left\|u^{\prime}\right\|_{p}^{p}+[1-\varepsilon]\|u\|_{p}^{p}+\int_{0}^{b} \eta(t)|u|^{p} d t \leq C_{3} \int_{0}^{b}\left|u^{\prime}\right|^{q-1}|u| d t+C_{4} \tag{3.22}
\end{equation*}
$$

(recall that $0<\theta<1$). Using Young's inequality with $\varepsilon>0$ (see Gasinski and Papageorgiou [3, p. 913]), we obtain

$$
\begin{equation*}
C_{3} \int_{0}^{b}\left|u^{\prime}\right|^{q-1}|u| d t \leq C_{5}\left\|u^{\prime}\right\|^{\tau}+\varepsilon\|u\|_{p}^{p} \tag{3.23}
\end{equation*}
$$

for some $\tau<p$ and some $C_{5}=C_{5}(\varepsilon)>0$ (recall that $\theta<1$ and $q<p$).
We return to (3.22) and use (3.23). Then

$$
\begin{equation*}
C_{0}\left\|u^{\prime}\right\|_{p}^{p}+[1-2 \varepsilon]\|u\|_{p}^{p}+\int_{0}^{b} \eta(t)|u|^{p} d t \leq C_{6}\left[\left\|u^{\prime}\right\|^{\tau}+1\right] \tag{3.24}
\end{equation*}
$$

for some $C_{6}>0$. Also, reasoning as in the proof of Lemma 1 of Aizicovici, Papageorgiou and Staicu [1], we conclude that

$$
C_{6}\left\|u^{\prime}\right\|_{p}^{p}+\int_{0}^{b} \eta(t)|u|^{p} d t \geq C_{7}\|u\|^{p} \quad \text { for some } C_{7}>0
$$

Using this in (3.24) and choosing $\varepsilon \in(0,1 / 2)$ we finally arrive at

$$
\|u\|^{p} \leq C_{8}\left[\|u\|^{\tau}+1\right] \quad \text { for some } C_{8}>0
$$

Since $\tau<p$, it follows that $K_{\lambda} \subseteq W_{N}^{1, p}$ is bounded. This proves Claim 3.

Claims 1 and 2 imply that $L_{\lambda}^{-1} \widehat{N}: W_{N}^{1, p} \rightarrow W_{N}^{1, p}$ is continuous. In addition, since \widehat{N} maps bounded sets into bounded sets, it follows by Claim 1 that $L_{\lambda}^{-1} \widehat{N}$ maps bounded sets into relatively compact sets. Hence $L_{\lambda}^{-1} \widehat{N}$ is compact. Combining this with Claim 3 and Theorem 2.3 (the Leray-Schauder alternative principle), we see that we can find $u_{\lambda} \in D(A)$ such that

$$
u_{\lambda}=L_{\lambda}^{-1} \widehat{N}\left(u_{\lambda}\right)
$$

Hence $u_{\lambda} \in C^{1}\left(T, \mathbb{R}^{N}\right)$ is a solution of $\left(\mathrm{P}_{\lambda}\right)$.
Letting $\lambda \rightarrow 0^{+}$we will now produce a solution of problem (P).
Theorem 3.4. If hypotheses $\mathrm{H}(a), \mathrm{H}(A), \mathrm{H}(f)$ hold, then problem (P) has a solution $\widetilde{u} \in C^{1}\left(T, \mathbb{R}^{N}\right)$.

Proof. Let $\lambda_{n} \rightarrow 0^{+}$and let $u_{n}=u_{\lambda_{n}}$ be the solution of problem $\left(\mathrm{P}_{\lambda_{n}}\right)$ (see Proposition 3.3). We have

$$
\begin{equation*}
\widehat{a}\left(u_{n}\right)+\widehat{A}_{\lambda_{n}}\left(u_{n}\right)+N_{f}\left(u_{n}\right)=0 \quad \text { in } L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right), \text { for all } n \in \mathbb{N} . \tag{3.25}
\end{equation*}
$$

By using integration by parts, $\mathrm{H}(a)$ (iii) and that

$$
t\left(\widehat{A}_{\lambda_{n}}(x), x\right)_{\mathbb{R}^{N}} \geq 0 \quad \text { for all } x \in \mathbb{R}^{N}
$$

we obtain

$$
\begin{aligned}
C_{0}\left\|u_{n}^{\prime}\right\|_{p}^{p} & \leq \int_{0}^{b}\left(-f\left(t, u_{n}, u_{n}^{\prime}\right), u_{n}\right)_{\mathbb{R}^{N}} d t \\
& \leq \int_{0}^{b}[-\eta(t)+\varepsilon]\left|u_{n}(t)\right|^{p} d t+C_{3} \int_{0}^{b}\left|u_{n}^{\prime}\right|^{q-1}\left|u_{n}\right| d t+\|\mu\|_{1}
\end{aligned}
$$

(see (3.20), hence, as before, using Young's inequality and Lemma 1 of [1], we obtain

$$
\left[C_{9}-\varepsilon C_{10}\right]\left\|u_{n}\right\|^{p} \leq C_{11}\left[1+\left\|u_{n}\right\|^{\tau}\right] \quad \text { with } C_{9}, C_{10}, C_{11}>0,1<\tau<p
$$

Choosing $\varepsilon \in\left(0, C_{9} / C_{10}\right)$ and recalling that $\tau<p$, we obtain

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{N}^{1, p} \quad \text { is bounded } \tag{3.26}
\end{equation*}
$$

On (3.25) we act with $\widehat{A}_{\lambda_{n}}\left(u_{n}\right) \in L^{p}\left(T, \mathbb{R}^{N}\right)$. Noting that

$$
\left|\widehat{A}_{\lambda_{n}}\left(u_{n}\right)(t)\right|=\left|A_{\lambda_{n}}\left(u_{n}(t)\right)\right| \leq \frac{1}{\lambda_{n}}\left|u_{n}(t)\right| \quad \text { for all } t \in T, \text { all } n \in \mathbb{N}
$$

we have

$$
\begin{align*}
& \int_{0}^{b}\left(-a\left(u_{n}^{\prime}(t)\right)^{\prime}, A_{\lambda_{n}}\left(u_{n}\right)\right)_{\mathbb{R}^{N}} d t+\left\|A_{\lambda_{n}}\left(u_{n}\right)\right\|_{2}^{2} \tag{3.27}\\
& \leq \int_{0}^{b}\left|N_{f}\left(u_{n}\right)\right|\left|A_{\lambda_{n}}\left(u_{n}\right)\right| d t
\end{align*}
$$

From Proposition 2.1 we know that $A_{\lambda_{n}}$ is Lipschitz continuous. Hence by Rademacher's theorem (see Gasinski and Papageorgiou [3, p. 56]), $A_{\lambda_{n}}$ is differentiable almost everywhere on \mathbb{R}^{N}. Recall that $u_{n} \in C^{1}\left(T, \mathbb{R}^{N}\right)$. So, the map $t \rightarrow A_{\lambda_{n}}\left(u_{n}(t)\right)$ is differentiable almost everywhere on T and

$$
\frac{d}{d t} A_{\lambda_{n}}\left(u_{n}(t)\right)=A_{\lambda_{n}}^{\prime}\left(u_{n}(t)\right) u_{n}^{\prime}(t) \quad \text { for a.a. } t \in T
$$

(chain rule). Here $A_{\lambda_{n}}^{\prime}\left(u_{n}(t)\right) u_{n}^{\prime}(t)$ is interpreted to be zero when $u_{n}^{\prime}(t)=0$ (even if $A_{\lambda_{n}}$ is not differentiable); see Marcus and Mizel [8]. Moreover, by the monotonicity of $A_{\lambda_{n}}$ (see Proposition 2.1), at every point of differentiability $x \in \mathbb{R}^{N}$, we have

$$
\begin{equation*}
\left(y, A_{\lambda_{n}}^{\prime}(x) y\right)_{\mathbb{R}^{N}} \geq 0 \quad \text { for all } y \in \mathbb{R}^{N} \tag{3.28}
\end{equation*}
$$

Performing an integration by parts, we have

$$
\begin{align*}
& \int_{0}^{b}\left(-a\left(u_{n}^{\prime}\right)^{\prime}, A_{\lambda_{n}}\left(u_{n}\right)\right)_{\mathbb{R}^{N}} d t \tag{3.29}\\
& \quad=\int_{0}^{b}\left(a\left(u_{n}^{\prime}\right), \frac{d}{d t} A_{\lambda_{n}}\left(u_{n}\right)\right)_{\mathbb{R}^{N}} d t \\
& \left.\quad=\int_{0}^{b} a_{0}\left(\left|u_{n}^{\prime}\right|\right)\left(u_{n}^{\prime}, A_{\lambda_{n}}^{\prime}\left(u_{n}\right) u_{n}^{\prime}\right)_{\mathbb{R}^{N}} d t \quad \text { (see hypotheses } \mathrm{H}(a)\right) \\
& \quad \geq 0
\end{align*}
$$

for all $n \in \mathbb{N}$ (see (3.28)). Returning to (3.27) and using (3.29) and the CauchySchwarz inequality (recall that $1<p^{\prime} \leq 2 \leq p$), we obtain

$$
\begin{equation*}
\left\|\widehat{A}_{\lambda_{n}}\left(u_{n}\right)\right\|_{2} \leq C_{12} \quad \text { for some } C_{12}>0, \text { all } n \in \mathbb{N} \text {. } \tag{3.30}
\end{equation*}
$$

So, we may assume that

$$
\begin{equation*}
\left.\widehat{A}_{\lambda_{n}}\left(u_{n}\right) \xrightarrow{w} k \text { in } L^{2}\left(T, \mathbb{R}^{N}\right) \quad \text { (hence in } L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right) \text { too }\right) . \tag{3.31}
\end{equation*}
$$

As before (see the proof of Proposition 3.3, Claim 1), using (3.26) and (3.25), we obtain that

$$
\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq C^{1}\left(T, \mathbb{R}^{N}\right) \text { is relatively compact. }
$$

Hence we may assume that

$$
\begin{equation*}
u_{n} \rightarrow \widetilde{u} \quad \text { in } C^{1}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty \tag{3.32}
\end{equation*}
$$

We have

$$
\begin{equation*}
N_{f}\left(u_{n}\right) \rightarrow N_{f}(\widetilde{u}) \quad \text { in } L^{p^{\prime}}\left(T, \mathbb{R}^{N}\right), \text { as } n \rightarrow \infty . \tag{3.33}
\end{equation*}
$$

Therefore, passing to the limit as $n \rightarrow \infty$ in (3.25) and using (3.31)-(3.33), we obtain

$$
\widehat{a}(\widetilde{u})+k+N_{f}(\widetilde{u})=0 .
$$

We now complete the proof of the theorem by showing that

$$
k(t) \in A(\widetilde{u}(t) \quad \text { for almost all } t \in T .
$$

To this end, note that

$$
J_{\lambda_{n}}\left(u_{n}(t)\right)+\lambda_{n} A_{\lambda_{n}}\left(u_{n}(t)\right)=u_{n}(t) \quad \text { for all } t \in T, \text { all } n \in \mathbb{N},
$$

hence

$$
\widehat{J}_{\lambda_{n}}\left(u_{n}\right)+\lambda_{n} \widehat{A}_{\lambda_{n}}\left(u_{n}\right)=u_{n}
$$

with

$$
\widehat{J}_{\lambda_{n}}(u)(\cdot)=J_{\lambda_{n}}\left(u_{n}(\cdot)\right) \quad \text { for all } u \in W_{N}^{1, p},
$$

therefore

$$
\left\|\widehat{J}_{\lambda_{n}}\left(u_{n}\right)-u_{n}\right\|_{2}=\lambda_{n}\left\|\widehat{A}_{\lambda_{n}}\left(u_{n}\right)\right\|_{2} \leq C_{12} \lambda_{n} \quad \text { for all } n \in \mathbb{N}
$$

(see (3.30)), and we conclude that $\widehat{J}_{\lambda_{n}}\left(u_{n}\right) \rightarrow \widetilde{u}$ in $L^{2}\left(T, \mathbb{R}^{N}\right)$ (see (3.32))
From Proposition 2.1 we know that

$$
A_{\lambda_{n}}\left(u_{n}(t)\right) \in A\left(J_{\lambda_{n}}\left(u_{n}(t)\right)\right) \quad \text { for all } t \in T, \text { all } n \in \mathbb{N},
$$

therefore

$$
\left(\widehat{J}_{\lambda_{n}}\left(u_{n}\right), \widehat{A}_{\lambda_{n}}\left(u_{n}\right)\right) \in \operatorname{Gr}(\widehat{A}) \quad \text { for all } n \in \mathbb{N},
$$

where \widehat{A} is the lifting of A on $L^{2}\left(T, \mathbb{R}^{N}\right)$, that is,

$$
\widehat{A}(u)=\left\{v \in L^{2}\left(T, \mathbb{R}^{N}\right): v(t) \in A(u(t)) \text { for a.a. } t \in T\right\} .
$$

We know that \widehat{A} is maximal monotone on $L^{2}\left(T, \mathbb{R}^{N}\right)$ (see e.g. Aizicovici, Papageorgiou and Staicu [2, Lemma 1]). Therefore

$$
\operatorname{Gr}(\widehat{A}) \subseteq L^{2}\left(T, \mathbb{R}^{N}\right) \times L^{2}\left(T, \mathbb{R}^{N}\right)_{w} \text { is sequentially closed. }
$$

Hence, from (3.32) and (3.31), it follows that $(\widetilde{u}, k) \in \operatorname{Gr}(\widehat{A})$, hence $k(t) \in$ $A(\widetilde{u}(t))$ for almost all $t \in T$. We conclude that $\widetilde{u} \in C^{1}\left(T, \mathbb{R}^{N}\right)$ is a solution of problem (P).

4. An example

Let $C=\mathbb{R}_{+}^{N}=\left\{x=\left(x_{k}\right)_{k=1}^{N} \in \mathbb{R}^{N}: x_{k} \geq 0\right.$ for all $\left.k=1, \ldots, N\right\}$ and let i_{C} be the indicator function of C, that is

$$
i_{C}(x)= \begin{cases}0 & \text { if } x \in C=\mathbb{R}_{+}^{N} \\ +\infty & \text { otherwise }\end{cases}
$$

We know that i_{C} is proper, convex, lower semicontinuous (that is, $i_{C} \in \Gamma_{C}\left(\mathbb{R}^{N}\right)$; see Gasinski and Papageorgiou [3, p. 488]). We set

$$
A(x)=\partial i_{C}(x)=N_{C}(x)
$$

where ∂ stands for subdifferential in the sense of convex analysis and $N_{C}(x)$ is the normal cone to C at x.

Recall that

$$
\begin{aligned}
N_{C}(x) & =\left\{x^{*} \in \mathbb{R}^{N}:\left(x^{*}, c-x\right)_{\mathbb{R}^{N}} \leq 0 \text { for all } c \in C\right\} \\
& =\left\{x^{*} \in \mathbb{R}^{N}:\left(x^{*}, x\right)_{\mathbb{R}^{N}}=\sigma\left(x^{*}, C\right):=\sup \left\{\left(x^{*}, c\right): c \in \mathbb{R}^{N}\right\}\right\} .
\end{aligned}
$$

Evidently, if $x \in \operatorname{int}(C)$, then $N_{C}(x)=\{0\}$ and if $x \notin C=\operatorname{dom} i_{C}$ then $N_{C}(x)=\emptyset$ (see Gasinski and Papageorgiou [3, p. 526]). We have

$$
D(A)=C=\mathbb{R}_{+}^{N}
$$

and

$$
A(x)= \begin{cases}\{0\} & \text { if } x=\left(x_{k}\right)_{k=1}^{N} \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right) \\ & \left(\text { that is } x_{k}>0 \text { for all } k=1, \ldots, N\right), \\ -\mathbb{R}_{+}^{N} \cap\{x\}^{\perp} & \text { if } x=\left(x_{k}\right)_{k=1}^{N} \in \partial \mathbb{R}_{+}^{N} \\ & \text { (that is } \left.x_{k}=0 \text { for some } k=1, \ldots, N\right) .\end{cases}
$$

Then problem (P) is equivalent to the following differential inequality

$$
\begin{cases}a\left(u^{\prime}(t)\right)^{\prime}=f\left(t, u(t), u^{\prime}(t)\right) & \text { a.e. on }\left\{t \in T: u(t) \in \operatorname{int}\left(\mathbb{R}_{+}^{N}\right)\right\} \tag{4.1}\\ a\left(u^{\prime}(t)\right)^{\prime} \leq f\left(t, u(t), u^{\prime}(t)\right) & \text { a.e. on }\left\{t \in T: u(t) \in \partial \mathbb{R}_{+}^{N}\right\} \\ \left(f\left(t, u(t), u^{\prime}(t)\right)-a\left(u^{\prime}(t)\right)^{\prime}, u(t)\right)_{\mathbb{R}^{N}}=0 \quad \text { for a.a. } t \in T \\ u(t) \in \mathbb{R}_{+}^{N} & \text { for } t \in T, u(0)=u(b), u^{\prime}(0)=u^{\prime}(b) .\end{cases}
$$

Using Theorem 3.4, we can state the following existence result for problem (4.1):
Theorem 4.1. If hypotheses $\mathrm{H}(a), \mathrm{H}(f)$ hold, then problem (4.1) admits a solution $\widetilde{u} \in C^{1}\left(T, \mathbb{R}^{N}\right)$.

References

[1] S. Aizicovici, N.S. Papageorgiou and V. Staicu, Nodal and multiple solutions for nonlinear periodic problems with competing nonlinearities, Commun. Contemp. Math. 15 (2013), no. 3, 1350001-1350030.
[2] S. Aizicovici, N.S. Papageorgiou and V. Staicu, Nonlinear, nonconvex second order multivalued systems with maximal monotone terms, Pure Appl. Funct. Anal. 2 (2017), 553-574.
[3] L. Gasinski and N.S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall/CRC Press, Boca Raton, 2006.
[4] P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations, Trans. Amer. Math. Soc. 96 (1960), 493-509.
[5] H.W. Knobloch, On the existence of periodic solutions for second order vector differential equations, J. Differential Equations 9 (1971), 67-85.
[6] H.W. Knobloch and K. Schmitt, Nonlinear boundary value problems for systems of differential equations, Proc. Roy. Soc. Edinburgh Sect. A 78 (1977), 139-159.
[7] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Lapla-cian-like operators, J. Differential Equations 145 (1998), 367-393.
[8] M. Marcus and V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Ration. Mech. Anal. 45 (1972), 294-320.
[9] J. Mawhin, Some boundary value problems for Harman-type perturbations of the ordinary vector p-Laplacian, Nonlinear Anal. 40 (2000), 497-503.
[10] I. Vrabie, Compactness Methods for Nonlinear Evolutions, Longman Scientific and Technical, Harlow, Essex, 1987.

Sergiu Aizicovici

Department of Mathematics
Ohio University
Athens, OH 45701, USA
E-mail address: aizicovs@ohio.edu

Nikolaos S. Papageorgiou
Department of Mathematics
National Technical University
Zografou Campus
Athens 15780, GREECE
E-mail address: npapg@math.ntua.gr

Vasile Staicu
CIDMA, Department of Mathematics
University of Aveiro
3810-193 Aveiro, PORTUGAL
E-mail address: vasile@ua.pt

[^0]: 2010 Mathematics Subject Classification. 34A60, 34B15.
 Key words and phrases. Maximal monotone map; periodic solution; resolvent; Yosida approximation; chain rule.

 The third author acknowledges partial support by the Portuguese Foundation for Science and Technology (FCT), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2019(CIDMA).

