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Abstract. We study here the problem of dual representation of the value

functions associated to linear-convex stochastic control problems in infinite
dimensional Hilbert spaces. Since the dual state runs backwards in time,

it turns out that the dual representation has the meaning of a classical

(Markov) control problem only if the primal linear state equation is driven
by the generator of a group. In the general case, a dual representation of

the value function still holds, but such a representation cannot be reduced

to solving a dual Hamilton–Jacobi–Bellman equation.

1. Introduction

It is well known since Bismut [3] that convex duality between spaces of mar-

tingales together with the Fenchel–Legendre transform of convex functions can

be used as a powerful tool to solve stochastic control problems. This line of

ideas has been used extensively, especially in the Mathematical Finance litera-

ture related to Optimal Investment. In this context, duality is not only used to

get a representation of the value function in terms of its dual, but is actually an

essential part in proving existence of optimizers in the primal problem. This is

exactly the case in [5] and [6], where additional technical difficulties come from
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the fact that the dual and primal states lack square integrability conditions, so

a duality theory over the set of non-negative processes has to be developed.

The present note contributes to the duality theory in stochastic control of

infinite dimensional systems. Unlike the Optimal Investment literature men-

tioned above, here there is no difficulty in handling either the primal or the dual

state, which are square integrable. In addition, existence of the optimal control

in the primal can be easily proved using coercivity and weak compactness, as in

Lemma 3.1. The main goal here is a dual representation formula for the primal

value function, and primal optimal controls.

We first derive a dual representation formula for value functions in general

linear convex control problems driven by C0-semigroups, more precisely Theo-

rem 3.4. This is widely expected and is well in line with the ideas following from

Bismut together with duality results in deterministic control coupled with back-

ward stochastic differential equations. It is worth noting that this representation

is proved using a minimax result which follows quickly from the existence of the

optimal control in the primal problem as well as the set of necessary conditions

(Proposition 3.2). Therefore, as mentioned above, our result is only about the

dual representation of the primal value function, since existence of the primal

optimal is known a-priori.

At this level of generality, in infinite dimensions, the dual problem does not

have the meaning of a Markov control problem. This is due to the fact that

the dual to the primal value function depends on random variables rather than

a deterministic state and the dual state runs backwards (see Remark 3.5).

However, if the linear primal stochastic equation is actually driven by a C0

group, then the miminax result can be rewritten to lead to a dual representation

of the primal value function in the form of a convex conjugate that corresponds

to a classical control problem. This is actually our main result, Theorem 3.6.

This easily implies that, for the case of a C0 group, the generalized (viscosity)

solution of the the primal HJB is the dual conjugate of the solution of the dual

HJB. The theory reduces to the duality of solutions of Riccatti equations for the

case of linear-quadratic control problems in Subsection 3.2.

2. Linear state equations and dual states

Consider the linear state equation

(2.1)


dty(t) = (Ay(t) +Bu(t)) dt

+

∞∑
i=1

(
Ciy(t) + σ1,i

)
dβ1,i(t) +

∞∑
j=1

(
Dju(t) + σ2,j

)
dβ2,j(t),

y(0) = x.
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In equation (2.1) we assume that A : D(A) ⊂ H → H is the infinitesimal gene-

rator of a C0 semigroup {exp(tA), t ≥ 0} on the Hilbert space H (with norm

| · | and product 〈 · , · 〉). The control takes values in a different Hilbert space U ,

and B ∈ L(U,H).

We further assume that Ci ∈ L(H), σ1,i ∈ H for each i ∈ N and Dj ∈
L(U,H), σ2,j ∈ H for j ∈ N. In addition,

∞∑
i=1

(
|Ci|2L(H) + σ2

1,i

)
+

∞∑
j=1

(
|Dj |2L(U,H) + σ2

2,j

)
< +∞.

Finally, the countable set {β1,i, β2,j : i, j ∈ N} consists of independent standard

Brownian motions defined on the stochastic basis (Ω,F ,Ft,P). The filtration

is assumed to satisfy the usual conditions of right continuity and completeness.

Given any Hilbert space X, we denote by M2
P(0, T ;X) the set of all X-valued

processes ζ adapted to {Ft : t ≥ 0} such that:

‖ζ‖2M2
P(0,T ;X) = E

[ ∫ T

0

|ζ(s)|2X ds
]
< +∞.

We also denote by C2
P(0, T ;X) the space of all processes ζ ∈ M2

P(0, T ;X) such

that ζ ∈ C([0, T ], L2(Ω,F ,P;X)).

As it is well known (see for instance [4] for the proof in a much more

general situation) for any initial data x ∈ L2(Ω,F0,P;H) and any control

u ∈M2
P(0, T ;H) there exists a unique mild solution y ∈ C2

P(0, T ;H) of (2.1) (the

definition of mild solution is standard, see [4]). When needed, we will denote the

solution by y( · , x, u).

We now introduce the dual state p corresponding to system (2.1). It turns

out that this is the solution to the backward stochastic differential equation:

(2.2)



dtp(t) =

[
−
(
A∗p(t) +

∞∑
i=1

C∗i q1,i(t)

)
+ v

]
dt

+

∞∑
i=1

q1,i(t)dβ1,i(t) +

∞∑
j=1

q2,j(t)dβ2,j(t),

p(T ) = ξ,

where ξ ∈ L2(Ω,FT ,P, H) and v ∈ M2
P(0, T ;H). In order to be able to solve

the backward SDE, we assume that Ft is the smallest filtration which satisfies

the usual conditions and such that all Brownian motions are adapted. More

precisely, we assume that Ft = Fot , where Fot = σ{β1,i(s), β2,j(s) : s ∈ [0, t], i =

1, 2, . . . , j = 1, 2, . . .}. We have to emphasize here that L2(Ω,F0,P, H) =

H, since F0 is trivial. Proceeding exactly as in [8] we get that for all ξ ∈
L2(Ω,FT ,P, H) and v ∈M2

P(0, T ;H) there exists a unique mild solution

(p(ξ, v), q(ξ, v)) = {p, q1,i, q2,j : i = 1, 2, . . . , j = 1, 2, . . .}
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of (2.2) with p ∈ C2
P(0, T ;H), q1,i ∈ M2

P(0, T ;H) for i = 1, 2, . . ., q2,j ∈
M2
P(0, T ;H) for j = 1, 2, . . . and

∞∑
i=1

E
[ ∫ T

0

|q1,i(s)|2 ds
]

+

∞∑
j=1

E
[ ∫ T

0

|q2,j(s)|2 ds
]
< +∞.

We remark that the infinite dimensionality of the noise does not cause any prob-

lems because of the assumption

∞∑
i=1

|Ci|2L(H) < +∞.

Lemma 2.1. Fix x ∈ H, u ∈ M2
P(0, T ;U) and y ∈ C2

P(0, T ;H). Then y is

the solution of the state equation (2.1), i.e. y = y(x, u) if and only if, for any

ξ ∈ L2(FT , H) and v ∈M2
P(0, T ;H), we have Q(y, u, p, v, q) = 0, where

(p, q) = (p(ξ, v), q(ξ, v))

is the unique solution of the BSDE (2.2) and Q is defined by

(2.3) Q(y, u, p, v, q) , E
[
〈y(T ), p(T )〉

]
− 〈x, p(0)〉

− E
[ ∫ T

0

(
〈y(t), v(t)〉+

〈
u(t), B∗p(t) +

∞∑
j=1

D∗j q2,j(t)

〉

+

∞∑
i=1

〈σ1,i, q1,i(t)〉+

∞∑
j=1

〈σ2,j , q2,j(t)〉
)
dt

]
.

Proof. The proof is an easy exercise involving Itô’s lemma for the product

〈y(t), p(t)〉. We note that, since the filtration is the enlarged filtration generated

by {β1,i(s), β2,j}, then p(0) is deterministic. �

Remark 2.2. If σ1,i = 0, i = 1, 2, . . . and σ2,j = 0, j = 1, 2, . . ., we can

define the linear bounded operator

U : H ×M2
P(0, T ;U)→ L2(FT , H)×M2

P(0, T ;H)

by

U(x, u( · )) = (y(T ),−y( · )).

The previous lemma ensures that the adjoint

U∗ : L2(FT , H)×M2
P(0, T ;H)→ H ×M2

P(0, T ;U)

is represented by

U∗(ξ, v) =

(
p(0), B∗p( · ) +

∞∑
j=1

D∗j q2,j( · )
)
,

where (p, q) is the solution of (2.2).
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3. Duality for value functions in linear-convex control problems

Consider the convex, proper and lower semi-continuous functions

h : U → (−∞,∞], g, l : H → (−∞,∞],

with the additional assumption that h is coercive. More precisely, we assume

that there exists k > 0 such that h(u) ≥ k|u|2 for u ∈ U .

Consider now the stochastic control problem of minimizing

(3.1) M2
P(0, T, U) 3 u→ E

[ ∫ T

0

(h(u(s)) + g(y(s))) ds+ l(y(T ))

]
,

where y is the solution to (2.1). We denote by ϕ the value function. More

precisely,

(3.2) ϕ(0, x) = min
u

E
[ ∫ T

0

(h(u(s)) + g(y(s))) ds+ l(y(T ))

]
.

We define the value function for time t = 0 only in order to avoid the discussion

on filtrations. The assumptions at hand ensure that the optimal control problem

is well posed.

Lemma 3.1.The optimization problem (3.1) has a minimizer u∗∈MP(0,T,U).

If the function h is strictly convex then the minimizer is unique.

Proof. The function

M2
P(0, T, U) 3 u→ E

[ ∫ T

0

(h(u(s)) + g(y(s))) ds+ l(y(T ))

]
is convex, lower semi-continuous and coercive, therefore admits a minimizer. The

minimizer is unique if the function above is strictly convex. This is exactly the

case if h is strictly convex, so the proof is complete. �

The next result is a set of necessary (and sufficient, because of convexity)

conditions, i.e. a stochastic maximum principle.

Proposition 3.2. Let u∗ ∈ M2
P(0, T, U) be a minimizer in (3.1). Then,

there exist (ξ∗, v∗) ∈ L2(FT , H)×MP(0, T,H) such that

(3.3)


ξ∗ ∈ ∂l(y∗(T )),

B∗p∗(t) +

∞∑
j=1

D∗j q
∗
2,j(t) ∈ −∂h(u∗(t)) for 0 ≤ t ≤ T,

v∗(t) ∈ −∂g(y∗(t)) for 0 ≤ t ≤ T,

where (p∗, q∗) solve (2.2).

Proof. If l and h are smooth the proof is standard and immediate. Other-

wise, we use the adapted penalty method used in Barbu and Precupanu [2] in

the deterministic case. We omit the details. �
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According to Lemma 2.1 the state equation (2.1), together with its initial

condition can be written as a set of linear constraints. We therefore define the

infinite dimensional Lagrangian

L(y, u, p, v, q) , E
[ ∫ T

0

(h(u(s)) + g(y(s))) ds+ l(y(T ))

]
−Q(y, u, p, v, q),

where Q(y, u, p, v, q) was defined in (2.3).

The next results is a minimax theorem. We would like to point out that its

proof is straightforward, as long as we have Lemma 3.1 and Proposition 3.2. We

therefore avoid a direct proof of the minimax theorem. Since compactness or

coercivity are missing, one cannot simply cite a classical result for the minimax.

Proposition 3.3. Using the notation above, we have the minimax relation

ϕ(0, x) = min
y,u

max
ξ,v

L(y, u, p(ξ, v), v, q(ξ, v))) = max
ξ,v

min
y,u

L(y, u, p(ξ, v), v, q(ξ, v)).

Proof. The proof is almost trivial as soon as we observe that Lemma 3.1

and Proposition 3.2 provide a saddle point for the Lagrangian. More precisely,

using the pairs (u∗, y∗) and (ξ∗, v∗) we have

L(y, u, p∗, v∗, q∗) ≥ L(y∗, u∗, p∗, v∗, q∗) ≥ L(y∗, u∗, p(ξ, v), v, q(ξ, v))

for any (u, y) ∈M2
P (0, T, U)×C2P (0, T,H) and (ξ, v) ∈ L2(FT , H)×M2

P (0, T,H).

The first inequality follows from the properties of the sub-differentials together

with relations (3.3) and the definition of the Lagrangian L. The second inequality

is actually an equality, and follows from Lemma 2.1, since

Q(y∗, u∗, p∗, v∗, q∗) = Q(y∗, u∗, p(ξ, v), v, q(ξ, v)) = 0. �

The whole point of Proposition 3.3 is to consider the representation

ϕ(0, x) = max
ξ,v

min
y,u

L(y, u, p(ξ, v), v, q(ξ, v)),

of the value function. Once (ξ, v) ∈ L2(FT , H)×M2
P(0, T ;H) (therefore (p, v, q))

are fixed, the Lagrangian can now be optimized point-wise in time over y, u to

obtain

min
y,u

L(y, u, p, v, q) = 〈x, p(0)〉

− E
[ ∫ T

0

{
h∗
(
−B∗p(t)−

∞∑
j=1

D∗j q2,j(t)

)
+ g∗(−v(s))

−
( ∞∑
i=1

〈σ1,i, q1,i(t)〉+

∞∑
j=1

〈σ2,j , q2,j(t)〉
)}

ds+ l∗(p(T ))

]
.

Using approximations, if needed, it is clear that the point-wise optimization of

the Lagrangian above coincides with the optimization over (u, y) ∈M2
P(0, T ;U)
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×C2P(0, T ;H) for fixed (ξ, v). Therefore we have proved the following dual rep-

resentation result:

Theorem 3.4. Define the convex function L2(FT , H) 3 ξ → ψ(0, ξ) by

ψ(0, ξ) , min
v∈M2

P(0,T ;H)
E

[ ∫ T

0

{
h∗
(
−B∗p(t)−

∞∑
j=1

D∗j q2,j(t)

)
+ g∗(−v(s))

−
( ∞∑
i=1

〈σ1,i, q1,i(t)〉+

∞∑
j=1

〈σ2,j , q2,j(t)〉
)}

ds

]
− 〈x, p(0)〉.

Then

ϕ(0, x) = max
ξ∈L2(FT ,H)

{−ψ(0, ξ)− l∗(ξ)}.

Remark 3.5. Theorem 3.4 is, indeed, a dual representation for ϕ(0, · ). This

corresponds to the well known Lax–Oleinik–Hopf-type representation of the value

function in the deterministic case. We refer the reader to [1] for this classic

result. In the stochastic case studied here, the function ψ depends on the random

variable ξ ∈ L2(FT , H) rather then a deterministic dual state, and therefore it

cannot satisfy a dual HJB equation.

3.1. Dual representation for groups. Assume now that A generates

a group. The main observation is that, choosing (ξ, v) and solving equation (2.2)

backwards is the same as choosing p(0) = y, and (v, q) and solving (2.2) forward.

As before, we denoted here by q = {q1,i, q2,j : i = 1, 2, . . . , j = 1, 2, . . .} In other

words, we have a bijective correspondence

p(T ) = ξ

v

}
←→


p(0) = y

v

q

Having this in mind, we can fix p(0) = y ∈ H and use both v and q as controls

for the forward controlled state equation (2.2). A similar idea was used in [7]

for a linear quadratic problem related to the null-controllability of the state

equation. With this observation, we can obtain the main result of the paper,

namely:

Theorem 3.6. Define the value function of the (classical) control problem

Ψ(0, y) , min
v,q

E
[ ∫ T

0

{
h∗
(
−B∗p(t)−

∞∑
j=1

D∗j q2,j(t)

)
+ g∗(−v(s))

−
( ∞∑
i=1

〈σ1,i, q1,i(t)〉+

∞∑
j=1

〈σ2,j , q2,j(t)〉
)}

ds+ l∗(p(T ))

]
,
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subject to (2.2), for each y ∈ H. Then

ϕ(0, x) = max
y∈H
{〈x, y〉 −Ψ(0, y)} = Ψ∗(0, x), for all x ∈ H.

While the value functions ϕ and Ψ were only defined at time t = 0 for

convenience, they can be defined at all later times 0 ≤ t < T , provided we

make the appropriate modifications for the filtrations. In this case, both ϕ and

Ψ satisfy the appropriate Hamilton–Jacobi–Bellman equations, at least in an

appropriate weak sense (usually viscosity). We obtain the HJB equation for the

primal problem applying Itô to ϕ(t, y(t)):

d(ϕ(t, y(t)) + “running cost”)

=
{
ϕt + 〈Ay(t) +Bu(t), ϕx〉+ h(u(t)) + g(y(t))} dt

+
1

2

( ∞∑
i=1

〈
ϕxx

(
Ciy(t) + σ1,i

)
,
(
Ciy(t) + σ1,i

)〉
+

∞∑
j=1

〈
ϕxx

(
Dju(t) + σ2,j

)
,
(
Dju(t) + σ2,j

)〉)
dt

+ “martingale terms”

and then minimizing over u:

(3.4)


ϕt + 〈Ax,ϕx〉 −H∗(−B∗ϕx, ϕxx)

+
1

2

( ∞∑
i=1

〈
ϕxx

(
Cix+ σ1,i

)
,
(
Cix+ σ1,i

)〉)
+ g(x) = 0,

ϕ(T, x) = l(x), x ∈ H.

Here, for fixed P symmetric and non-negative the convex (in u) function H is

defined by

H(u, P ) , h(u) +
1

2

( ∞∑
j=1

〈
P
(
Dju+ σ2,j

)
,
(
Dju+ σ2,j

)〉)
,

andH∗( · , P ) is the Fenchel–Legendre transform ofH( · , P ). Similarly, we obtain

the dual HJB for Ψ by applying Itô to Ψ(t, p(t)):

d(Ψ(t, p(t)) + “running cost”

=

{
Ψt +

〈[
−
(
A∗p(t) +

∞∑
i=1

C∗i q1,i(t)

)
+ v

]
,Ψp

〉}
dt

+

{
h∗
(
−B∗p(t)−

∞∑
j=1

D∗j q2,j(t)

)
+ g∗(−v(s))

−
( ∞∑
i=1

〈σ1,i, q1,i(t)〉+

∞∑
j=1

〈σ2,j , q2,j(t)〉
)}

dt
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+
1

2

( ∞∑
i=1

〈
Ψppq1,i, q1,i

〉
+

∞∑
j=1

〈
Ψppq2,j , q2,j

〉)
dt

+ “martingale terms”

and then taking the formal minimum over v and q. We therefore obtain the

equation

(3.5)


Ψt − 〈A∗p,Ψp〉+H∗(−B∗p,Ψ−1pp )

−1

2

( ∞∑
i=1

〈
Ψ−1pp

(
CiΨp + σ1,i

)
,
(
CiΨp + σ1,i

)〉)
− g(Ψp) = 0,

Ψ(T, p) = l∗(p), x ∈ H.

Instead of minimizing over (v, q) we can also (formally) obtain the dual HJB (3.5)

by applying the transformation

p = ϕx, x = Ψp, Ψpp = ϕ−1xx .

3.2. Duality for solutions of Riccati equations in LQ control of

groups. We consider here the LQ case, which amounts to σ1,i = 0, σ2,j = 0 and

h(u) =
1

2
〈Eu, u〉, g(y) =

1

2
〈Sy, y〉, l(y) =

1

2
〈Ry, y〉

for some symmetric and non-negative operators E, S and R. We then have

ϕ(t, x) = 〈P (t)x, x〉/2 and Ψ(t, p) = 〈Q(t)p, p〉/2, where (at least formally)

Q = P−1.

Following [9], the HJB’s for ϕ and Φ translate into Riccati equations for P and Q.

More precisely, since ϕx(t, x) = P (t)x and ϕxx(t, x) = P (t) we have that

H(u, P ) =
1

2

〈[
E +

∞∑
j=1

D∗jPDj

]
u, u

〉
so

H∗(w,P ) =
1

2

〈[
E +

∞∑
j=1

D∗jPDj

]−1
w,w

〉
.

Therefore the HJB (3.4) can be rewritten as the Riccati equation

(3.6)


P ′ +A∗P + PA

−PB
[
E +

∞∑
j=1

D∗jPDj

]−1
B∗P +

∞∑
i=1

C∗i PCi + S = 0,

P (T ) = R.
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The dual Riccati equation corresponding to the HJB (3.5) is now

(3.7)



Q′ −AQ−QA∗ +B

[
E +

∞∑
j=1

D∗jQ
−1Dj

]−1
B∗

−Q
( ∞∑
i=1

C∗i Q
−1Ci

)
Q−QSQ = 0,

Q(T ) = R−1.

This can be either obtained from (3.5) or from the transformation Q = P−1

in (3.6).
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