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A THREE SOLUTION THEOREM

FOR A SINGULAR DIFFERENTIAL EQUATION

WITH NONLINEAR BOUNDARY CONDITIONS

Rajendran Dhanya — Ratnasingham Shivaji — Byungjae Son

Abstract. We study positive solutions to singular boundary value prob-

lems of the form: 
−u′′ = h(t)

f(u)

uα
for t ∈ (0, 1),

u(0) = 0,

u′(1) + c(u(1))u(1) = 0,

where 0 < α < 1, h : (0, 1] → (0,∞) is continuous such that h(t) ≤ d/tβ

for some d > 0 and β ∈ [0, 1 − α) and c : [0,∞) → [0,∞) is continuous

such that c(s)s is nondecreasing. We assume that f : [0,∞) → (0,∞)
is continuously differentiable such that [(f(s) − f(0))/sα] + τs is strictly

increasing for some τ ≥ 0 for s ∈ (0,∞). When there exists a pair of

sub-supersolutions (ψ, φ) such that 0 ≤ ψ ≤ φ, we first establish a minimal
solution u and a maximal solution u in [ψ, φ]. When there exist two pairs

of sub-supersolutions (ψ1, φ1) and (ψ2, φ2) where 0 ≤ ψ1 ≤ ψ2 ≤ φ1,

ψ1 ≤ φ2 ≤ φ1 with ψ2 6≤ φ2, and ψ2, φ2 are not solutions, we next
establish the existence of at least three solutions u1, u2 and u3 satisfying

u1 ∈ [ψ1, φ2], u2 ∈ [ψ2, φ1] and u3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]).
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1. Introduction

We study positive solutions to singular boundary value problems of the form:

(1.1)


−u′′ = h(t)

f(u)

uα
for t ∈ (0, 1),

u(0) = 0,

u′(1) + c(u(1))u(1) = 0,

where 0 < α < 1. Here functions f , h and c satisfy the following properties:

(H1) f : [0,∞)→ (0,∞) is continuously differentiable,

(H2) there exists τ ≥ 0 such that g(s) := [(f(s) − f(0))/sα] + τs is strictly

increasing for s ∈ (0,∞),

(H3) h : (0, 1] → (0,∞) is continuous such that inft∈(0,1) h(t) > 0 and h(t) ≤
d/tβ for some d > 0 and β ∈ [0, 1− α),

(H4) c : [0,∞)→ [0,∞) is continuous such that c(s)s is nondecreasing.

The boundary value problem (1.1) also arises in the study of radial solutions

to the following exterior domain problem:

(1.2)


−∆u = K(|x|) f(u)

uα
for x ∈ Ω,

∂u

∂η
+ c(u)u = 0 if |x| = r0,

u(x)→ 0 if |x| → ∞,

where ∆u is the Laplacian of u, Ω := {x ∈ RN | N > 2, |x| > r0 > 0},
∂u/∂η is the outward normal derivative of u on |x| = r0 and K : [r0,∞) →
(0,∞) is a continuous function such that K(|x|) → 0 as |x| → ∞. By a Kelvin

type transformation, namely the change of variable r = |x| and t = (r/r0)2−N ,

(1.2) reduces to anaylzing the singular boundary value problem (1.1). We also

note that such nonlinear boundary conditions arise naturally in applications, see

[6], [16] and [18] where they discuss models arising in chemical reactor theory,

and see [5], [4] and [7] where they discuss models arising in population dynamics.

In [9], for classes of nonlinearities f of the form f(s) = λg(s) where λ > 0

is a parameter, for a certain range of λ, the authors discuss the existence of

two solutions by creating two pairs of sub-supersolutions (ψ1, φ1) and (ψ2, φ2)

as described in the abstract. However, they could not conclude the existence

of a third solution since a three solution theorem for such singular problems

with nonlinear boundary conditions (such as Theorem 1.2 in this paper) was not

available in the literature.

The main goal of this paper is to establish Theorem 1.2 via fixed point

arguments. First we define sub-supersolutions of (1.1). By a subsolution of (1.1),
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we mean a function ψ ∈ C2(0, 1) ∩ C1[0, 1] that satisfies

−ψ′′ ≤ h(t)
f(ψ)

ψα
for t ∈ (0, 1),

ψ(t) > 0 for t ∈ (0, 1],

ψ(0) = 0,

ψ′(1) + c(ψ(1))ψ(1) ≤ 0.

By a supersolution of (1.1), we mean a function φ ∈ C2(0, 1) ∩ C1[0, 1] that

satisfies 

−φ′′ ≥ h(t)
f(φ)

φα
for t ∈ (0, 1),

φ(t) > 0 for t ∈ (0, 1],

φ(0) = 0,

φ′(1) + c(φ(1))φ(1) ≥ 0.

We establish the following results:

Theorem 1.1 (Minimal and maximal solutions). Let (H1)–(H4) hold. Sup-

pose there exist a subsolution ψ and a supersolution φ of (1.1) satisfying 0 ≤
ψ ≤ φ. Then there exist a minimal solution u and a maximal solution u for

(1.1) in the ordered interval [ψ, φ], which belong to C2(0, 1] ∩ C1,κ[0, 1] where

κ = 1− α− β.

Theorem 1.2 (A three solution theorem). Let (H1)–(H4) hold. Suppose

there exist two pairs of ordered sub-supersolutions (ψ1, φ1) and (ψ2, φ2) of (1.1)

such that 0 ≤ ψ1 ≤ ψ2 ≤ φ1, ψ1 ≤ φ2 ≤ φ1 and ψ2 6≤ φ2. Additionally

assume that ψ2 and φ2 are not solutions of (1.1). Then there exist at least

three solutions u1, u2 and u3 for (1.1) belonging to C2(0, 1] ∩ C1,κ[0, 1] such

that u1 ∈ [ψ1, φ2], u2 ∈ [ψ2, φ1] and u3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]) where

κ = 1− α− β.

For problems with nonsingular reaction terms (α = 0), there is a rich history

of such three solution theorems based on sub-supersolutions. See [1] and [17] for

the case of linear boundary conditions, and see [3] and [14] for the case of non-

linear boundary conditions. Recently, for problems with singular reaction terms

with Dirichlet boundary condition, such three solution theorems were discussed

in [10] and [11]. Here we enrich the literature by establishing an extention of

a three solution theorem for singular reaction terms (α ∈ (0, 1)) with nonlin-

ear boundary conditions. Such three solution theorems are useful in analyzing

models arising in combustion theory and population dynamics where the bifur-

cation diagram of positive solutions related to a parameter exhibits a S-shaped

behavior, see [2] and [8].
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To establish our results, our first step is to make a translation so that we can

obtain a monotone operator. Namely, we rewrite (1.1) as:

(1.3)


−u′′ − h(t)

(
f(0)

uα
− τu

)
= h(t)g(u) for t ∈ (0, 1),

u(0) = 0,

u′(1) + c(u(1))u(1) = 0,

where g is as in (H2). Here we extend g to be identically zero for s ≤ 0, and

extend c as an even extension for s < 0 whenever necessary. We note that

a positive solution of (1.3) is a positive solution of (1.1) and also vice versa. The

same is true for positive sub-supersolutions.

In Section 2, a Banach space Ce[0, 1] is introduced. In Section 3, we construct

a priori lower bound for solutions of (1.3). In Section 4, we study a crucial

boundary value problem (related to (1.3)), and observe useful properties of its

solution. In Section 5, we construct an increasing completely continuous operator

associated to (1.3). We prove Theorems 1.1 and 1.2 in Section 6.

2. The Banach space Ce[0, 1]

Consider the following boundary value problem:

(2.1)


−e′′ = 1 for t ∈ (0, 1),

e(0) = 0,

e′(1) + c(e(1))e(1) = 0.

Define the functional J : H̃ → R by

J(z) :=
1

2

∫ 1

0

|z′|2 −
∫ 1

0

z + p(z(1)),

where H̃ := {z ∈ H1(0, 1) | z(0) = 0} and p(s) :=
∫ s
0
c(r)r dr. We note that

z 7→ (
∫ 1

0
z′2)1/2 is equivalent to the standard norm in the space H̃, and p is

convex. Then J is weakly lower semicontinuous and coercive. Hence there exists

e ∈ H̃ such that J(e) = min
u∈H̃

J(u). Since J(|e|) ≤ J(e), without loss of generality,

we can assume that e is nonnegative in (0, 1). Note that J is a C1 functional

on H̃. Therefore e is a critical point of J , i.e.

0 = 〈J ′(e), ϕ〉 =

∫ 1

0

e′ϕ′ −
∫ 1

0

ϕ+ p′(e(1))ϕ(1)

for ϕ ∈ H̃. Thus e is a weak solution of (2.1). In a standard way, we can also

show that e ∈ C2[0, 1] and e(t) > 0 for t ∈ (0, 1]. Finally we note that the

solution for (2.1) is unique. If not, there exist two solutions e and ẽ. Since e and
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ẽ satisfy the weak formulation, we have∫ 1

0

(e− ẽ)′ϕ′ +
(
p′(e(1))− p′(ẽ(1))

)
ϕ(1) = 0

for ϕ ∈ H̃. Taking ϕ = (e − ẽ)+ in the above identity, we find (e − ẽ)+ = 0.

Similarly, we obtain (e− ẽ)− = 0. This is a contradiction. Hence the solution is

unique.

Now we define Ce[0, 1] as the set of functions u ∈ C[0, 1] such that −le ≤ u ≤
le for some l > 0. It is well-known that Ce[0, 1] equipped with a norm ‖u‖e :=

inf{l > 0 | −le ≤ u ≤ le} is a Banach space. Let Pe := {u ∈ Ce[0, 1] | u ≥ 0}
be a positive cone of Ce[0, 1] and P 0

e be the set of all interior points of Pe. We

note that (Ce[0, 1], Pe) is an ordered Banach space. Further, P 0
e is the set of

u ∈ Ce[0, 1] such that u ≥ l1e for some l1 > 0.

3. A priori lower bound for solutions of (1.3)

Lemma 3.1. There exists a unique positive weak solution θ ∈ H̃ to the bound-

ary value problem:

(3.1)


−θ′′ = h(t)

(
f(0)

θα
− τθ

)
for t ∈ (0, 1),

θ(0) = 0,

θ′(1) + c(θ(1))θ(1) = 0.

Further, this solution θ belongs to C2(0, 1] ∩ C1[0, 1] and satisfies (3.1) in the

classical sense.

Proof. We extend here the proof of Lemma 2.1 in [11] for the nonlinear

boundary condition case. By a weak solution we mean θ ∈ H̃ such that∫ 1

0

θ′ϕ′ − f(0)

∫ 1

0

h(t)

θα
ϕ+ τ

∫ 1

0

h(t)θϕ+ p′(θ(1))ϕ(1) = 0

for ϕ ∈ H̃. We define the functional E1 : H̃ → R associated to the problem

(3.1) by

E1(z) :=
1

2

∫ 1

0

|z′|2 − f(0)

1− α

∫ 1

0

h(t)(z+)1−α +
τ

2

∫ 1

0

h(t)z2 + p(z(1)).

Let H̃+ := {z ∈ H̃ | z ≥ 0}. Then E1 is weakly lower semicontinuous and

coercive on H̃+. Thus E1 admits a minimizer, say θ, in the space H̃+. Note that

p(εe(1)) ≤ Lε2 for some L > 0 when ε ≈ 0. Hence for ε ≈ 0, we have

E1(εe) =
ε2

2

∫ 1

0

|e′|2 − ε1−αf(0)

1− α

∫ 1

0

h(t)e1−α +
τε2

2

∫ 1

0

h(t)e2 + p(εe(1))

< 0 = E1(0).
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This implies that the minimizer θ is nonzero. We also note that θ is a global

minimizer in H̃ since E1(|u|) ≤ E1(u) for any u ∈ H̃.

It is important to observe that the functional E1 is not differentiable in the

entire space H̃ because of the presence of the term
∫ 1

0
h(t)(u+)1−α. Hence we

cannot directly conclude that θ is a critical point of E1. Following the proof

of Lemma A.2 in [13], we infer that E1 is Gateaux differentiable at any u ∈ H̃
which additionally satisfies u ≥ ε0φ1 for some ε0 > 0 where φ1 is a positive

principal eigenfunction corresponding eigenvalue problem: −φ′′ = λ1φ in (0, 1)

and φ(0) = φ(1) = 0. Further, for any such a u and any ϕ ∈ H̃,

〈E′1(u), ϕ〉 =

∫ 1

0

u′ϕ′ − f(0)

∫ 1

0

h(t)

uα
ϕ+ τ

∫ 1

0

h(t)uϕ+ p′(u(1))ϕ(1).

As in [11], we can show that θ ≥ ε0φ1 for some ε0 > 0. This implies that θ is

a critical point of E1, and hence θ is a weak solution of (3.1).

In order to prove the uniqueness, we can argue by contradiction. If θ and θ̃

are two weak solutions, then

∫ 1

0

(θ′ − θ̃′)ϕ′ − f(0)

∫ 1

0

h(t)

(
1

θα
− 1

θ̃α

)
ϕ

+ τ

∫ 1

0

h(t)
(
θ − θ̃

)
ϕ+

(
p′
(
θ(1))− p′

(
θ̃(1)

))
ϕ(1) = 0

for ϕ ∈ H̃. Choosing ϕ =
(
θ − θ̃

)+
as a test function in the above identity, we

observe that
(
θ− θ̃

)+
= 0. Similarly, we can show that

(
θ− θ̃

)−
= 0. Hence the

solution is unique.

Further, θ ∈ W 2,p(0, 1) for some p > 1 since θ ≥ ε0φ1. Thus the weak

solution θ satisfies −θ′′ = h(t)[(f(0)/θα) − τθ] almost everywhere. By the em-

bedding W 2,p(0, 1) ⊂ C1[0, 1] and using integration by parts, one can prove that

the boundary condition θ′(1)+c(θ(1))θ(1) = 0 is satisfied in the pointwise sense.

Further, we can show that θ ∈ C2(0, 1]∩C1[0, 1] and solves (3.1) in the classical

sense. For complete details, see Lemma 7 in [12]. �

Remark 3.2. Note that θ is a subsolution of (1.3).

Lemma 3.3. Any positive solution u (or supersolution u) of (1.3), if it exists,

must satisfy u ≥ θ on [0, 1].

Proof. Let u be a positive solution or supersolution of (1.3). Assume to the

contrary that Ω := {t ∈ [0, 1] | u(t) < θ(t)} 6= ∅. Then there exists [a, b] ⊂ [0, 1]

such that u(a)− θ(a) = 0 and u(t)− θ(t) < 0 for t ∈ (a, b). We note that u and
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θ satisfy
−(u− θ)′′ − h(t)

(
f(0)

(
1

uα
− 1

θα

)
− τ(u− θ)

)
≥ 0 for t ∈ (0, 1),

u(0)− θ(0) = 0,

u′(1)− θ′(1) + c(u(1))u(1)− c(θ(1))θ(1) ≥ 0.

Then we have −(u− θ)′′ ≥ 0 on (a, b), and thus u(b)− θ(b) < 0. It follows that

u(t) − θ(t) < 0 for t ∈ (a, 1] and u′(1) − θ′(1) < 0. However, u′(1) − θ′(1) ≥
−c(u(1))u(1) + c(θ(1))θ(1) ≥ 0 by (H4). This is a contradiction. Hence Ω = ∅.�

4. Perron’s method with nonlinear boundary condition

Proposition 4.1. Let v ∈ C(0, 1]∩L∞(0, 1) and v ≥ 0 on (0, 1]. Then there

exists a unique positive weak solution w ∈ H̃ solving :

(4.1)


−w′′ − h(t)

(
f(0)

wα
− τw

)
= v for t ∈ (0, 1),

w(0) = 0,

w′(1) + c(w(1))w(1) = 0.

Proof. We extend here the proof of Lemma 3.2 in [10] for the nonlinear

boundary condition case. Note that w0(t) = t(3− t)/2 uniquely solves:
−w′′0 = 1 for t ∈ (0, 1),

w0(0) = 0,

w0(1) = 2w′0(1).

Let w := θ (where θ is as in Lemma 3.1) and let w := θ + Mw0 where

M ≥ ‖v‖∞ := sup
t∈(0,1]

|v(t)| is a constant. Then w and w are a subsolution

and a supersolution of (4.1), respectively.

Let M :=
{
z ∈ H̃ | w ≤ z ≤ w

}
. Define the functional E : M→ R by

E(z) :=
1

2

∫ 1

0

|z′|2 − f(0)

1− α

∫ 1

0

h(t)z1−α +
τ

2

∫ 1

0

h(t)z2 −
∫ 1

0

vz + p(z(1)).

Then E is weakly lower semicontinuous and coercive. Hence E admits a min-

imizer, say w, in M. To prove that w is a weak solution of (4.1), rest of the

proof is aimed towards showing∫ 1

0

w′ϕ′ − f(0)

∫ 1

0

h(t)

wα
ϕ+ τ

∫ 1

0

h(t)wϕ−
∫ 1

0

vϕ+ p′(w(1))ϕ(1) = 0

for ϕ ∈ C∞c (0, 1]. Let ϕ ∈ C∞c (0, 1], ε > 0 and vε := min{w,max{w,w + εϕ}},
Then vε = w + εϕ − ϕε + ϕε, where ϕε := max{0, w + εϕ − w} and ϕε :=

−min{0, w + εϕ − w}. Note that ϕε, ϕε ∈ H̃ and vε ∈ M. Since M is convex,
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w+ t(vε −w) ∈M. Thus the limit lim
t→0+

(E(w+ t(vε −w))−E(w))/t exists and

is nonnegative, which we denote by 〈DE(w), vε − w〉. Then we have

0 ≤〈DE(w), vε − w〉

=

∫ 1

0

w′(vε − w)′ − f(0)

∫ 1

0

h(t)(vε − w)

wα
+ τ

∫ 1

0

h(t)w(vε − w)

−
∫ 1

0

v(vε − w) + p′(w(1))(vε(1)− w(1)).

Substituting for vε − w in the above expression, we can rewrite

〈DE(w), vε − w〉 = ε
〈
D̃E(w), ϕ

〉
−
〈
D̃E(w), ϕε

〉
+
〈
D̃E(w), ϕε

〉
,

where〈
D̃E(w), ϕ̃

〉
:=

∫ 1

0

w′ϕ̃′− f(0)

∫ 1

0

h(t)ϕ̃

wα
+ τ

∫ 1

0

h(t)wϕ̃−
∫ 1

0

vϕ̃+ p′(w(1))ϕ̃(1)

for ϕ̃ ∈ H̃. This implies

(4.2)
〈
D̃E(w), ϕ

〉
≥ 1

ε

[〈
D̃E(w), ϕε〉 − 〈D̃E(w), ϕε

〉]
.

Once again estimating the terms in RHS as in [10], we get〈
D̃E(w), ϕε

〉
≥ o(ε) +

(
p′(w(1))− p′(w(1))

)
ϕε(1)

and 〈
D̃E(w), ϕε

〉
≤ o(ε) +

(
p′(w(1))− p′(w(1))

)
ϕε(1),

where o(ε)/ε→ 0 as ε→ 0. Then, from (4.2), we obtain

(4.3)
〈
D̃E(w), ϕ

〉
≥ o(ε)

ε
+

(
p′(w(1))− p′(w(1))

)
ϕε(1)−

(
p′(w(1))− p′(w(1))

)
ϕε(1)

ε
.

To estimate the last term in (4.3), we observe all cases of ϕε(1) and ϕε(1):

(a) ϕε(1) = 0 and ϕε(1) = 0,

(b) ϕε(1) > 0 and ϕε(1) = 0,

(c) ϕε(1) = 0 and ϕε(1) > 0,

(d) ϕε(1) > 0 and ϕε(1) > 0.

For the case (a), we have
〈
D̃E(w), ϕ

〉
≥ o(ε)/ε. Let us consider the case (b)

for ε ≈ 0 in detail. If ϕε(1) > 0 for ε ≈ 0, then necessarily w(1) = w(1). This

implies (
p′(w(1))− p′(w(1))

)
ϕε(1)−

(
p′(w(1))− p′(w(1))

)
ϕε(1) = 0.

Thus we obtain
〈
D̃E(w), ϕ

〉
≥ o(ε)/ε for ε ≈ 0. Similar calculations lead to

the same estimate for case (c) as well. Finally we note that the case (d) never

happens by the definitions of ϕε and ϕε. Hence we have
〈
D̃E(w), ϕ

〉
≥ o(ε)/ε
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for ε ≈ 0. This implies
〈
D̃E(w), ϕ

〉
≥ 0. Reversing the sign of ϕ and using the

density of C∞c (0, 1] in H̃, we conclude

0 =
〈
D̃E(w), ϕ

〉
=

∫ 1

0

w′ϕ′ − f(0)

∫ 1

0

h(t)ϕ

wα
+ τ

∫ 1

0

h(t)wϕ−
∫ 1

0

vϕ+ p′(w(1))ϕ(1)

for ϕ ∈ H̃. Thus w is a weak solution of (4.1).

The uniqueness of the weak solution follows in a standard way. �

Lemma 4.2 (Regularity). Let v ∈ C(0, 1] ∩ L∞(0, 1) and v ≥ 0 on (0, 1]

and let w ∈ H̃ be the unique positive solution of (4.1). Then w belongs to

C2(0, 1) ∩ C1,κ[0, 1] for κ = 1− α− β and satisfies (4.1) in the classical sense.

Proof. Since w ∈M, we can show that w ∈ C2(0, 1)∩C1[0, 1] and satisfies

(4.1) in the classical sense. Further, ‖w‖∞ ≤ ‖w‖∞ ≤ C1, where the constant

depends on α, β, c and v. By (H3), we estimate

|w′(t)| =
∣∣∣∣w′(1) +

∫ 1

t

h(s)

(
f(0)

wα
− τw

)
+

∫ 1

t

v

∣∣∣∣
≤ |c(w(1))w(1)|+ C2

∫ 1

t

s−α−β + ‖v‖∞(1− t)

for some C2 > 0. Thus ‖w′‖∞ ≤ C3, where the constant depends on α, β, c

and v. We also obtain

|w′(t2)− w′(t1)| =
∣∣∣∣ ∫ t2

t1

h(s)

(
f(0)

wα
− τw

)
+

∫ t2

t1

v

∣∣∣∣
≤ C4

∣∣∣∣ ∫ t2

t1

s−α−β
∣∣∣∣ ≤ C5|t2 − t1|1−α−β

for some C4 > 0 and C5 > 0, where the constants depend on α, β, c and v. Hence

w ∈ C1,κ[0, 1] and the required estimate holds. �

5. Properties of the associated operator

Definition 5.1. Let A : Ce[0, 1]→ C1,κ[0, 1] be such that A(v) := w, where

w is the unique positive solution of

−w′′ − h(t)[(f(0)/wα)− τw] = h(t)g(v) in (0, 1),

w(0) = 0 = w′(1) + c(w(1))w(1).

For a given v ∈ Ce[0, 1], let ṽ(t) := h(t)g(v(t)) for t ∈ (0, 1]. By (H1)–(H3),

we have

|ṽ(t)| ≤ h(t)g(|v(t)|) = h(t)
(
|f ′(ζ)||v(t)|1−α + τ |v(t)|

)
≤M1t

1−α−β ,
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where ζ(t) ∈ [0, |v(t)|] and for some M1 > 0. Thus ṽ ∈ C(0, 1] ∩ L∞(0, 1). Then

A(v) ∈ C1,κ[0, 1] by Lemma 4.2. Hence A : Ce[0, 1] → C1,κ[0, 1] is well-defined.

Next we shall prove some more properties of this operator.

Proposition 5.2. A : Ce[0, 1]→ Ce[0, 1] and is completely continuous. Fur-

ther, if 0 ≤ v1 ≤ v2 and v1 6≡ v2, then A(v1) < A(v2). i.e. A is strictly increasing.

Proof. We first show that A : Ce[0, 1] → Ce[0, 1] and is completely contin-

uous. Let v, v0 ∈ Ce[0, 1] and w,w0 ∈ C1,κ[0, 1] be such that A(v) = w and

A(v0) = w0. From the definition of the solutions w and w0, we have∫ 1

0

|w′ − w′0|2 = f(0)

∫ 1

0

h(t)

(
1

wα
− 1

wα0

)
(w − w0)− τ

∫ 1

0

h(t)(w − w0)2

+

∫ 1

0

h(t)(g(v)− g(v0))(w − w0)−
(
p′(w(1))− p′(w0(1))

)
(w(1)− w0(1))

≤
∫ 1

0

h(t)|g(v)− g(v0)||w − w0|.

Let ε > 0. We note that

|g(v(t))− g(v0(t))| < ε for t ∈ [0, 1]

provided ‖v − v0‖e ≈ 0. This implies that

‖w − w0‖2H̃ =

∫ 1

0

|w′ − w′0|2 ≤ ε
∫ 1

0

h(t)|w − w0| ≤ εM2‖w − w0‖H̃

for some M2 > 0. Thus if vn → v0 in Ce[0, 1] then A(vn) = wn → w0 =

A(v0) in H̃. Since {vn} is bounded in Ce[0, 1], {ṽn} is uniformly bounded in

C[0, 1]. Then it follows that {wn} is bounded in C1,κ[0, 1] (see the proof of

Lemma 4.2). This implies that {wn} has a subsequence converging to w0 in

C1,κ′
[0, 1] since wn → w0 in H̃ and C1,κ[0, 1] ⊂⊂ C1,κ′

[0, 1] for 0 < κ′ < κ.

Thus A : Ce[0, 1]→ C1,κ′
[0, 1] is continuous. We note that C1,κ′

[0, 1] ⊂⊂ C1[0, 1]

and {z ∈ C1[0, 1] | z(0) = 0} ↪→ Ce[0, 1]. Hence A : Ce[0, 1] → Ce[0, 1] and is

completely continuous. Let 0 ≤ v1 ≤ v2 be such that v1 6≡ v2. Since g is strictly

increasing, we have g(v1) ≤ g(v2) and g(v1) 6≡ g(v2).

Let wi = A(vi) for i = 1, 2. Then

(5.1)



−(w2 − w1)′′ − h(t)

(
f(0)

(
1

wα2
− 1

wα1

)
− τ(w2 − w1)

)
≥ 0

for t ∈ (0, 1),

w2(0)− w1(0) = 0,

w′2(1)− w′1(1) + c(w2(1))w2(1)− c(w1(1))w1(1) = 0.

By the similar argument in the proof of Lemma 3.3, we can easily prove w1 ≤ w2.

Now we can directly apply Corollary in [15] (see page 7) to obtain w1 < w2 in

(0, 1). Hence A is strictly increasing. �
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Remark 5.3. It is also clear from the Hopf maximum principle that w1(1) <

w2(1).

Lemma 5.4. A is strongly increasing, i.e. A(v2) − A(v1) ∈ P 0
e whenever

0 ≤ v1 ≤ v2 and v1 6≡ v2.

Proof. Let v1 ≤ v2, wi = A(vi) for i = 1, 2 and denote w̃ = w2 − w1. By

Proposition 5.2 and Remark 5.3, w̃ > 0 in (0, 1]. From (5.1), we have

−w̃′′ + h(t)

[(
αf(0)

ξα+1

)
+ τ

]
w̃ ≥ 0 for some ξ ∈ [w1, w2].

Note that, when t ≈ 0,

h(t)

[(
αf(0)

ξα+1

)
+ τ

]
≤ c̃

d(t)α+β+1
for some c̃ > 0.

Let β′ = α+ β and ε ≈ 0. Then we have
−w̃′′ + c̃

d(t)β′+1
w̃ ≥ 0 in (0, ε),

w̃(0) = 0,

w̃(ε) > 0.

Let v := e+eγ for some γ ∈ (1, 2−β′), where e is as defined in Section 2. Noting

ε ≈ 0, an explicit calculation yields

−v′′ + c̃

d(t)β′+1
v = 1 + γeγ−1 − γ(γ − 1)eγ−2(e′)2 +

c̃

d(t)β′+1
v ≤ 0

for t ∈ (0, ε) since e′(0) > 0. Now we choose k1 > 0 so that k1v(ε) < w̃(ε). Then

we have 
−(w̃ − k1v)′′ +

c̃

d(t)β′+1
(w̃ − k1v) ≥ 0 for t ∈ (0, ε),

w̃(0)− k1v(0) = 0,

w̃(ε)− k1v(ε) > 0.

By the maximum principle, w̃(t) ≥ k1e(t) for t ∈ (0, ε). Since w̃(t) > 0 for t ∈
[ε, 1], we also obtain that w̃(t) ≥ k2e(t) for t ∈ [ε, 1], where k2 := inf

t∈[ε,1]
w̃(t)/e(t).

Hence the result follows directly by choosing k = min{k1, k2}. �

6. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let E := Ce[0, 1] and Pe be the positive cone

of E. Then (E,Pe) is an ordered Banach space. Let X := [ψ1, φ1]. Then

A : X → E is an increasing completely continuous map by Proposition 5.2. Now

from Corollary 6.2 in [1], the proof of Theorem 1.1 easily follows. �
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Proof of Theorem 1.2. Let X := [ψ1, φ1], X1 := [ψ1, φ2] and X2 :=

[ψ2, φ1]. Then A : X → X is completely continuous and A(Xi) ⊂ Xi for i = 1, 2.

Hence the proof of Theorem 1.2 follows by Lemma 14.1 in [1] and Theorem 1.4

in [17]. �
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