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AMENABILITY AND HAHN–BANACH

EXTENSION PROPERTY

FOR SET VALUED MAPPINGS

Anthony To-Ming Lau — Liangjin Yao

Abstract. Amenability is an important notion in harmonic analysis on
groups and semigroups, and their associated Banach algebras. In this pa-

per, we present some characterization of a semitopological semigroup S on

the existence of a left invariant mean on LUC(S), AP(S) and WAP(S) in
terms of the Hahn–Banach extension theorem, which extend the first au-

thor’s early results in 1970s. Moreover, we refine and extend the well known

Day’s result and Mitchell’s results on fixed point properties for set-valued
mappings. As an application, we give an application of our result to a class

of Banach algebras related to amenability of groups and semigroups.

1. Introduction

Throughout this paper, we assume that E is a real separated locally convex

space. All topologies in this paper are assumed to be Hausdorff.

Let A : E ⇒ E be a set-valued operator (also known as multifunction) from

E to E, i.e. for every x ∈ E, Ax ⊆ E, and let graA := {(x, y) ∈ E×E | y ∈ Ax}
be the graph of A, domA := {x ∈ E | Ax 6= ∅} be the domain of A. We say that

A is a linear relation if graA is a subspace of E × E.
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Let P : E → R. We say that P is sublinear if P (x + y) ≤ P (x) + P (y) and

P (λx) = λP (x) for all x, y ∈ E, λ ≥ 0. Let C be a subset of E. Then intC is

the interior of C.

Let S be a semitopological semigroup, i.e. S is a semigroup with Hausdorff

topology such that for every a ∈ S, the mappings s 7→ sa and s 7→ as from S

into S are continuous.

Let `∞(S) denote the space of all bounded real-valued functions on S with

the supremum norm: ‖ · ‖∞. For each a ∈ S and f ∈ `∞(S), let laf and raf

denote the left and right translate of f by a respectively, i.e. (laf)(s) := f(as) and

(raf)(s) := f(sa), for all s ∈ S. Let Y be a closed subspace of `∞(S) containing

constants and invariant under translations (i.e. la(Y ) ⊆ Y and ra(Y ) ⊆ Y ,

for all a ∈ S). Then a linear functional m ∈ Y ∗ is called a mean on Y if

‖m‖ = m(1) = 1. We say that a mean m is a left invariant mean on Y , denoted

by LIM, if

〈m, laf〉 = 〈m, f〉, for all a ∈ S, for all f ∈ Y.

A mean m on Y is called multiplicative if m(f) ·m(g) = m(f · g) for all f, g ∈ Y .

Let CB(S) denote the space of all bounded continuous real-valued functions

on S with the supremum norm: ‖ · ‖∞. Let LUC(S) be the space of bounded left

uniformly continuous functions on S, i.e. all f ∈ CB(S) such that the mappings

a → laf from S into CB(S) are continuous. Note that if S is a topological

group, then LUC(S) is precisely the space of bounded right uniformly continuous

functions on S defined in [13]. Set LO(f) := {lsf | s ∈ S} and RO(f) := {rsf |
s ∈ S}, where f ∈ CB(S).

Let AP(S) and WAP(S) be denoted by space of almost periodic functions and

the space of weakly almost periodic functions on S, respectively. More precisely,

the spaces AP(S) and WAP(S) are defined by the followings:

AP(S) := the space of all f ∈ CB(S) such that LO(f)

(or equivalently, RO(f), see [3])

is relatively compact in the norm topology of CB(S);

WAP(S) := the space of all f ∈ CB(S) such that LO(f)

(or equivalently, RO(f), see [3])

is relatively compact in the weak topology of CB(S).

In general, we have the following inclusions.

AP(S) ⊆ LUC(S) ⊆ CB(S) and AP(S) ⊆WAP(S) ⊆ CB(S).

We say that S is left amenable if LUC(S) has a left invariant mean (LIM). In

the case G is a locally compact group, this is equivalent to the space L∞(G),
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the equivalent classes of bounded measurable functions on G, has a left invariant

mean (see [12]).

Let S be a semitopological semigroup. A set-valued action of S on E is

a set-valued mapping from S × E to E, denoted by (s, x) ⇒ s · x.

Let e ∈ E. We say that e is an invariant element if e ∈ s · e for every

s ∈ S. Let F be a nonempty subset of E. We say that F is an invariant set

if (s · x) ∩ F 6= ∅ for every s ∈ S and every x ∈ F . We say that F is a totally

invariant set if s · x ⊆ F for every s ∈ S and every x ∈ F . Let F ⊆ E be an

invariant set and f : F → R. We say that f is an invariant function on F if for

every s ∈ S and every x ∈ F ,

f(F ∩ (s · x)) = f(x), i.e. f(y) = f(x), for all y ∈ F ∩ (s · x).

Let S be a semitopological semigroup. Then a right linear set-valued action of S

on E is a set-valued action of S on E satisfying:

(1) (ab)·x = b·(a·x) , for all a, b ∈ S and all x ∈ E, where b·(a·x) :=
⋃

z∈a·x
b·z.

(2) For each s ∈ S, the map x⇒ s · x is a linear relation from E to E.

We denote by ⇀ the weak convergence of nets in E (i.e. convergence in the

weak topology of E).

We say that a set-valued action of S on E is continuous (resp. weakly con-

tinuous) if for every convergent net sα → s in S and every x ∈ E, there exists

zα ∈ sα · x such that zα → z ∈ s · x (resp. zα ⇀ z ∈ s · x). We shall use a right

linear set-valued action of S on E, following the ideas in [34], [18], [39], to show

the amenability of S with Hahn–Banach extension theorem in Section 2.

The rest of this paper are organized as follows. In Section 2, we present our

first main result: Theorem 2.2. In Section 3, we establish the existence of left

invariant means on the spaces AP(S) and WAP(S) as our second main result.

In Section 4, we refine and extend the well known Day’s result and Mitchell’s

result for set-valued mappings: Theorems 4.1 and 4.2 as well as Theorem 4.4. An

extension of Mitchell’s result in WLUC(S) and some characterizations of a left

invariant mean on AP(S) are presented in Section 5. In Section 6, we present an

application of our result to a class of Banach algebras related to amenability of

groups and semigroups. Some open interesting problems are listed in Section 7.

The original definition of amenability, in terms of a finitely additive invariant

measure (or mean) on subsets of a locally compact topological group G, was

introduced by John von Neumann in 1929. In 1950, Mahlon M. Day introduced

the notion of amenable semigroups (see [6], [7], [12], and [27]). The notion is

later extended to Banach algebras (see [15]). A semigroup S is left amenable if

and only if the Banach algebra `1(S) is left amenable ([21]).
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2. Amenability of a semitopological semigroup S

We first introduce some preliminary properties of linear relations.

Lemma 2.1 (Cross, see [4, Chapter 1] or [40, Proposition 3.1.3, p. 15]). Let

A : E ⇒ E be a linear relation. Then the following hold :

(a) A0 is a linear subspace of E.

(b) Ax = y +A0 for all (x, y) ∈ graA.

(c) A(αx + βy) = αAx + βAy for all x, y ∈ domA and for all (α, β) ∈
R2 \ {(0, 0)}.

Theorem 2.2 is our first main result which shows the amenability of a semi-

topological semigroup S is equivalent to Hahn–Banach extension properties,

which is inspired by [18, Theorem 1].

Theorem 2.2. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent :

(a) S is left amenable.

(b) For any continuous right linear set-valued action of S on E, if P is

a continuous sublinear function on E such that supP (s · x) ≤ P (x) for

all s ∈ S, x ∈ E, and if L is an invariant linear functional on an

invariant subspace F of E such that L ≤ P on F , then there exists

a continuous invariant linear extension L̃ of L to E such that L̃ ≤ P .

(c) For any continuous right linear set-valued action of S on E, if U is a to-

tally invariant open convex subset of E containing an invariant element,

and M is an invariant subspace of E with M ∩ U = ∅, then there ex-

ists a totally invariant closed hyperplane H of E such that M ⊆ H and

H ∩ U = ∅.
(d) For any continuous right linear set-valued action of S on E with a base

of the neighbourhoods of the origin consisting of totally invariant open

convex sets, if M is an invariant closed subspace of E, then any two

elements x, y ∈ E can be separated by a continuous invariant linear

functional on E provided x− y /∈M and x− y is an invariant element.

(e) For any continuous right linear set-valued action of S on E with a base

of the neighbourhoods of the origin consisting of totally invariant open

convex sets, then any two distinct points in the set Ef , the set of invari-

ant elements in E, i.e. Ef := {x ∈ E | x ∈ s · x for all s ∈ S} can be

separated by a continuous invariant linear functional on E.

Proof. (a) ⇒ (b) By the assumption, supP (s · 0) ≤ P (0) = 0 for all s ∈ S.

Lemma 2.1 (a) shows that s · 0 is a subspace of E. Then, for every s ∈ S,

0 = P (0) = P (x− x) ≤ P (x) + P (−x) ≤ 0 + 0 = 0 for all x ∈ s · 0
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and then P (x) = 0, which is

(2.1) P (s · 0) ≡ 0, for all s ∈ S.

By Hahn–Banach extension theorem, there exists a linear function φ : E → R
such that φ ≤ P on E and φ|F = L. By (2.1), we have φ(s · 0) ≡ 0, for all s ∈ S.

Hence, for every s ∈ S and x ∈ E, Lemma 2.1 (b) implies that

(2.2) φ(s · x) = φ(y), for all y ∈ s · x.

Fix x ∈ E and define fx : S → R by

fx(s) := φ(s · x), for all s ∈ S.

By (2.2), fx is well defined and fx ∈ `∞(S) since ‖fx‖∞ ≤ |P (x)| + |P (−x)|.
Now we show that fx ∈ LUC(S). Let sα −→ s in S. By the continuity of the

action of S on E, there exists zα ∈ sα · x such that zα → z ∈ s · x. Then

fx(sαt)− fx(st) = φ(sαt · x)− φ(st · x) = φ(t · (sα · x))− φ(t · (s · x))(2.3)

= φ(t · zα)− φ(t · z) = φ(t · (zα − z))

(by (2.2) and Lemma 2.1 (c))

≤ supP (t · (zα − z)) ≤ P (zα − z),

for all t ∈ S. Similarly,

(2.4) fx(st)− fx(sαt) ≤ P (z − zα), for all t ∈ S.

Then, combining (2.3) and (2.4),

‖lsα(fx)− ls(fx)‖∞ = sup
t∈S
|fx(sαt)− fx(st)| ≤ |P (zα − z)|+ |P (z − zα)| → 0

(since zα − z → 0). On the other hand, the continuity of φ shows that

|fx(sα)− fx(s)| = |φ(sα · x)− φ(s · x)| = |φ(zα)− φ(z)| = |φ(zα − z)| → 0.

Hence fx is a continuous function on S and then fx ∈ LUC(S) for all x ∈ E.

Let m be a LIM on LUC(S). We define L̃ : E → R by

L̃(x) := m(fx), for all x ∈ E.

By Lemma 2.1 (c), for every x, y ∈ E and every γ ∈ R,

fx+y(s) = fx(s) + fy(s) and fγx(s) = γfx(s), for all s ∈ S.

Then L̃ is a linear function on E.

Let x ∈ F . We show that L̃(x) = L(x). Since L is an invariant function on

the invariant subspace F and φ|F = L,

fx(s) = φ(s · x) = L(F ∩ (s · x)) = L(x) for all s ∈ S.
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Hence fx is a constant function in LUC(S). Then, for every x ∈ F ,

L̃(x) = m(fx) = m(L(x)) = L(x).

Furthermore, let x ∈ E. We have

L̃(x) = m(fx) ≤ sup
s∈S

fx(s) = sup
s∈S

φ(s · x) ≤ sup
s∈S
{supP (s · x)} ≤ P (x).

Hence L̃ ≤ P . Therefore, L̃ is continuous.

Next we will show that L̃ is an invariant functional on E. Let s ∈ S and

x ∈ E. Let y ∈ s · x. We have

(2.5) (ls(fx))(t) = fx(st) = φ(st · x) = φ(t · (s · x)) = φ(t · y) = fy(t),

for all t ∈ S. Thus ls(fx) = fy and then

L̃(y) = m(fy) = m(ls(fx)) = m(fx) = L̃(x),

for all y ∈ s · x. Thus L̃ is an invariant function. Hence L̃ is a continuous

invariant linear extension of L to E such that L̃ ≤ P .

(b) ⇒ (c) Let e be an invariant element in U and set W := U − e. We first

show that W is a totally invariant set. Let s ∈ S and u ∈ U . Take y ∈ s · u.

Since e ∈ s · e, Lemma 2.1 (c) shows that y − e ∈ s · u− s · e = s · (u− e). Thus,

by Lemma 2.1 (b),

s · (u− e) = (y − e) + s · 0 = y + s · 0− e = s · u− e ⊆ U − e = W.

Hence W is a totally invariant open convex set with 0 ∈W .

Let P be the Minkowski functional on E for W , i.e.

P (x) := inf{λ > 0 | x ∈ λW}, for all x ∈ E.

Then P is sublinear, non-negative and continuous on E by [33, Theorem 1.35,

p. 26]. Since W is totally invariant,

(2.6) supP (s · x) ≤ P (x), for all s ∈ S, for all x ∈ E.

Let F be the linear span of M and e. Then F is an invariant subspace. We

define L : F → R by (for every x ∈ F )

L(x) := λ, if x = h− λe with h ∈M.

Then L(e) = −1 and L is a linear functional on F . Now we claim that

(2.7) L ≤ P on F .

Let x ∈ F . Suppose to the contrary that λ > P (x), where λ := L(x). Thus

λ > 0 and x ∈ λW = λ(U − e) = λU − λe, which shows that x/λ+ e ∈ U .

On the other hand, since λ = L(x), there exists h ∈M such that

x = h− λe and thus
x

λ
+ e =

h

λ
∈M.
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Hence x/λ + e ∈ M ∩ U , which contradicts that M ∩ U = ∅. Therefore, (2.7)

holds.

Next we show that L is an invariant function on F . Let s ∈ S and y ∈ F .

Combining (2.6) and (2.7), we have

P (s · 0) = 0 and hence L(F ∩ (s · 0)) = 0.

Thus, by Lemma 2.1 (b),

(2.8) L(F ∩ (s · y)) = L(z) for all z ∈ F ∩ (s · y)

(since F ∩ (s · y) = z+F ∩ (s · 0)). Set δ := L(y). Then there exists g ∈M such

that y = g − δe. Let v ∈ (s · g) ∩M . Then v − δe ∈ F and Lemma 2.1 (c) shows

that

v − δe ∈ s · g − δ(s · e) = s · (g − δe) = s · y.

Thus (2.8) implies that

L(F ∩ (s · y)) = L(v − δe) = δ = L(y).

Hence L is an invariant linear function on F . Thus, by (b), we can obtain

a continuous invariant linear extension L̃ of L to E such that L̃ ≤ P . Then

H := ker L̃ is a closed totally invariant hyperplane of E containing M .

Now we show that H ∩ U = ∅. Suppose to the contrary that there exists

x ∈ H ∩ U . Then we have L̃(x) = 0 and x− e ∈ U − e = W . Thus

L̃(x)− (−1) = L̃(x)− L(e) = L̃(x)− L̃(e) = L̃(x− e) ≤ P (x− e) < 1.

The above inequality shows that L̃(x) < 0, which contradicts that L̃(x) = 0.

Hence H ∩ U = ∅.
(c) ⇒ (d) Let x, y ∈ E be with x − y /∈ M such that x − y is an invariant

element. Since M is closed, by the assumption and [33, Theorem 1.10, p. 10],

there exists a totally invariant open convex set V with 0 ∈ V such that U∩M = ∅,
where U := x−y+V . Thus U is a totally invariant open convex set and contains

an invariant element: x− y. So, by (c), we can obtain a totally invariant closed

hyperplane H such that x− y /∈ H. We define L : E → R, for every z ∈ E, by

L(z) := λ, if z = h+ λ(x− y) with h ∈ H.

Then L is linear continuous, and invariant since s · 0 ⊆ H for all s ∈ S. Since

L(x)− L(y) = L(x− y) = 1, L(x) 6= L(y).

(d) ⇒ (e) Let x, y ∈ Ef with x 6= y. We have M := {0} is an invariant

closed subspace of E. Clearly, x − y is an invariant element by Lemma 2.1 (c)

and x− y /∈ M . Then, applying (d), x and y can be separated by a continuous

invariant linear functional on E.

(e) ⇒ (a) Apply [18, Theorem 1 (a), (d)]. �
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Corollary 2.3. Let S be a semitopological semigroup. If S is abelian, a solv-

able group, or a compact semigroup with finite intersection property for closed

right ideals, then S has properties (b)–(e) of Theorem 2.2.

Proof. In all above cases, S is left amenable (see [9], [10]). Then apply

Theorem 2.2 directly. �

Similarly, we have the following result for `∞(S). Note that it is traditional

to assume that an algebraic semigroup S to be a topological semigroup with the

discrete topology. Then, S left amenable is equivalent to that `∞(S) has a left

invariant mean.

Theorem 2.4. Let S be algebraically a semigroup. The following conditions

on S are equivalent :

(a) S is left amenable.

(b) For any right linear set-valued action of S on E, if P is a sublinear

function on E such that supP (s · x) ≤ P (x) for all s ∈ S, x ∈ E, and

if L is an invariant linear functional on an invariant subspace F of E

such that L ≤ P on F , then there exists an invariant linear extension L̃

of L to E such that L̃ ≤ P .

Proof. (a) ⇒ (b) Follow the proof of Theorem 2.2, (a) ⇒ (b).

(b) ⇒ (a) We define a right linear action of S on `∞(S) by

s · f := lsf, for all s ∈ S, for all f ∈ `∞(S).

Then the above the right linear action is well defined. Set P := ‖ · ‖∞ on `∞(S).

So we have P is a sublinear function and

P (s · f) = P (lsf) = ‖lsf‖∞ ≤ ‖f‖∞ = P (f), for all s ∈ S, for all f ∈ `∞(S).

Let F be the subspace of `∞(S), which consists of all constant functions. Thus

F is an invariant subspace. Fix a ∈ S. Define L : F → R by

L(f) := f(a), for all f ∈ F.

Thus L is an invariant linear functional on F and L(f) = f(a) ≤ ‖f‖∞ = P (f)

for all f ∈ F . Then, by (b), there exists an invariant linear extension function

L̃ of L on `∞(S) such that L̃ ≤ P = ‖ · ‖∞. Hence L̃ is continuous and thus

L̃ ∈ (`∞(S))∗ with ‖L̃‖ ≤ 1. We also have L̃(1) = L(1) = 1. Then m := L̃ is

a left invariant mean of `∞(S). Hence S is left amenable. �

3. Existence of a LIM on AP(S) and WAP(S)

In this section, we will follow the ideas in [20], [11] to present some results

on the existence of a left invariant mean on AP(S) and WAP(S).
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Let S be a semitopological semigroup. We say that a set-valued action of

S on E is almost periodic (resp. weakly almost periodic) of S on E if for each

x ∈ E, there exists zs ∈ s · x with s ∈ S such that the set {zs | s ∈ S} is

relatively compact in the topology of E (resp. weak topology).

Theorem 3.1 is inspired by [11, Theorems 1 and 3] by Fan and [20, Theo-

rem 1], which is our second main result and also extends [34, Theorem 15.A] by

Silverman.

Theorem 3.1. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent :

(a) AP(S) has a left invariant mean.

(b) For any almost periodic weakly continuous right linear set-valued ac-

tion of S on E, if P is a continuous sublinear function on E such that

supP (s · x) ≤ P (x) for all s ∈ S, x ∈ E, and if L is an invariant linear

functional on an invariant subspace F of E such that L ≤ P on F , then

there exists a continuous invariant linear extension L̃ of L to E such

that L̃ ≤ P .

(c) For any almost periodic weakly continuous right linear set-valued action

of S on E, if F is an invariant subspace of E and U is a nonempty

convex subset of E such that U − e is a totally invariant set for some

point e ∈ F ∩ intU , then for each invariant linear functional L on F

such that L(x) ≤ α for all x ∈ F ∩U and some fixed real number α, then

there exists a continuous invariant linear extension L̃ of L to E such

that L̃(x) ≤ α for all x ∈ U .

Proof. (a) ⇒ (b) By the assumption,

supP (s · 0) ≤ P (0) = 0, for all s ∈ S.(3.1)

By Hahn–Banach extension theorem, there exists a linear function φ : E → R
such that φ ≤ P on E and φ|F = L. Since s ·0 is a subspace (see Lemma 2.1 (a)),

(3.1) and Lemma 2.1 (b) show that, for all s ∈ S and x ∈ E,

(3.2) φ(s · 0) ≡ 0 and φ(s · x) = φ(y), for all y ∈ s · x.

Fix x ∈ E and define fx : S → R by

fx(s) := φ(y) = φ(s · x) (for all y ∈ s · x), for all s ∈ S.

Then fx is well defined by (3.2) and fx ∈ `∞(S) since ‖fx‖∞ ≤ |P (x)|+ |P (−x)|.
Now we first show that fx ∈ CB(S). Let sα → s in S. By the weak continuity

of the action of S on E, there exists zα ∈ sα · x such that zα ⇀ z ∈ s · x. Then

the continuity of φ shows that

|fx(sα)− fx(s)| = |φ(sα · x)− φ(s · x)| = |φ(zα)− φ(z)| = |φ(zα − z)| → 0.

Hence fx ∈ CB(S).
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Next we will show that fx ∈ AP(S). Let s ∈ S. Following the proof of (2.5),

we have ls(fx) = fy, for all y ∈ s · x. Since the action of S on E is almost

periodic, there exists zs ∈ s · x such that {zs | s ∈ S} is relatively compact in E.

Hence the above equation implies that

(3.3) LO(fx) = {ls(fx) | s ∈ S} = {fzs | s ∈ S}.

Next we claim that

(3.4) ‖fv − fw‖∞ ≤ |P (v − w)|+ |P (w − v)|, for all v, w ∈ E.

Let v, w ∈ E. By (3.2) and Lemma 2.1 (c), for all s ∈ S,

fv(s)− fw(s) = φ(s · v)− φ(s · w)(3.5)

= φ(s · (v − w)) ≤ supP (s · (v − w)) ≤ P (v − w).

Similarly, fw(s) − fv(s) ≤ P (w − v), for all s ∈ S. Thus combining with (3.5),

we have (3.4) holds.

Now combining (3.3) and (3.4), we have LO(fx) is relatively compact and

then fx ∈ AP(S) for all x ∈ E.

Let m be a LIM on AP(S). We define L̃ : E → R by

L̃(x) := m(fx), for all x ∈ E.

Similarly to the corresponding part in the proof of Theorem 2.2, (a) ⇒ (b), L̃ is

a continuous invariant linear extension of L to E such that L̃ ≤ P .

(b) ⇒ (c) Clearly, it holds when L ≡ 0 on F . Now we suppose that L 6≡ 0

on F . We first claim that L(e) < α.

Since L 6≡ 0 on F and L is linear, there exists v ∈ F such that L(v) > 0. By

e ∈ F ∩ intU , there exists t > 0 such that e+ tv ∈ F ∩U . Since L ≤ α on F ∩U ,

the above equation shows that

L(e) < L(e) + tL(v) = L(e+ tv) ≤ α.

Hence L(e) < α.

Now we define L0 : F → R by

L0(x) :=
L(x)

α− L(e)
, for all x ∈ F.

Then L0 is an invariant linear function on F since L is an invariant linear function

on F .

Set W := U − e. Let P : E → R be defined by

P (x) := inf{λ > 0 | x ∈ λW}, for all x ∈ E.

We have P is sublinear, non-negative and continuous on E by [33, Theorem 1.35,

p. 26]. Since W is a totally invariant set,

(3.6) supP (s · x) ≤ P (x), for all s ∈ S, for all x ∈ E.
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Now we show that

(3.7) L0 ≤ P on F.

Let x ∈ F . Suppose to the contrary that λ − δ > P (x), where λ := L0(x) and

δ > 0. Thus λ− δ > 0 and then

P

(
x

λ− δ

)
=

1

λ− δ
P (x) < 1.

This implies that x/(λ− δ) ∈ W = U − e. Hence x/(λ− δ) + e ∈ U ∩ F since

e, x ∈ F . Thus
1

λ− δ
L(x) + L(e) = L

(
x

λ− δ
+ e

)
≤ α

and then
L(x)

α− L(e)
≤ λ− δ = L0(x)− δ,

which is a contradiction with that L(x)/(α− L(e)) = L0(x). Hence (3.7) holds.

Then, applying (b), there exists a continuous invariant linear extension L̃0 of L0

to E such that L̃0 ≤ P . Therefore, L̃0(y) ≤ P (y) ≤ 1 for all y ∈ W = U − e.
Then, for every x ∈ U ,

L̃0(x) = L̃0(x)− L̃0(e) + L̃0(e)

= L̃0(x− e) + L0(e) ≤ 1 +
L(e)

α− L(e)
=

α

α− L(e)
.

Now define L̃ : E → R by L̃ := (α−L(e))L̃0. Then L̃ is a continuous invariant

linear extension of L to E such that L̃(x) ≤ α for all x ∈ U .

(c) ⇒ (a) Apply [20, Theorem 1 (b) and (a)] directly. �

With a proof similar to that of Theorem 3.1, we can have the following result

for WAP(S).

Theorem 3.2. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent :

(a) WAP(S) has a left invariant mean.

(b) For any weakly almost periodic weakly continuous right linear set-valued

action of S on E, if P is a continuous sublinear function on E such that

supP (s · x) ≤ P (x) for all s ∈ S, x ∈ E, and if L is an invariant linear

functional on an invariant subspace F of E such that L ≤ P on F , then

there exists a continuous invariant linear extension L̃ of L to E such

that L̃ ≤ P .

(c) For any weakly almost periodic weakly continuous right linear set-valued

action of S on E, if F is an invariant subspace of E and U is a nonempty

convex subset of E such that U − e is a totally invariant set for some

point e ∈ F ∩ intU , then for each invariant linear functional L on F
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such that L(x) ≤ α for all x ∈ F ∩U and some fixed real number α, then

there exists a continuous invariant linear extension L̃ of L to E such

that L̃(x) ≤ α for all x ∈ U .

A semitopological semigroup is left reversible if any two closed right ideals

aS and bS have non-void intersection (for every a, b ∈ S) (see [14]).

Corollary 3.3. If S is a left reversible semitopological semigroup and nor-

mal, then (b) and (c) of Theorem 3.2 hold (see [17]).

Remark 3.4. Some other generalizations of Hahn–Banach extension theo-

rems can be found in [28], [29], [16], [14], [12], [23].

4. An extension of Day’s fixed point properties

In this section, we will refine and extend the well known Day’s results (see

[8], [1], [26]) for set-valued mappings: Theorems 4.1 and 4.4.

Let S be a semitopological semigroup. Then a linear set-valued action of S

on E is a set-valued action of S on E satisfying:

(1) (ab) · x = a · (b · x), for all a, b ∈ S and all x ∈ E.

(2) For each s ∈ S, the map x⇒ s · x is a linear relation from E to E.

Let C ⊆ E be nonempty. We say a set-valued action of S on E is right closed

on the set C if for each s ∈ S, the set {(x, y) ∈ E × E | y ∈ s · x} ∩ C × C is

closed in E × E.

We say a set-valued action of S on E is left closed on the set C if, for each

x ∈ C, the implication

if sα → s and zα ∈ (sα · x) ∩ C with zα → z then z ∈ s · x

holds. A set-valued action of S on E is separately closed on the set C if it is left

closed on the set C and right closed on the set C. We say a set-valued action of

S on E is jointly closed on the set C if for every convergent net sα → s in S and

every convergent net xα → x in C such that the implication

if zα ∈ (sα · xα) ∩ C with zα → z then z ∈ s · x

holds.

Let s ∈ S. The linear functional δs : `∞(S)→ R is defined by

δs(f) := f(s), for all f ∈ `∞(S).

Then we have δs ∈ (`∞(S))
∗
.

Let C ⊆ E be a nonempty convex set and f : C → R. We say that f is an

affine function on C if, for every x, y ∈ C,

f(tx+ (1− t)y) = tf(x) + (1− t)f(y), for all t ∈ [0, 1].
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Theorem 4.1. Let S be a semigroup. The following conditions on S are

equivalent :

(a) S is left amenable.

(b) For any linear set-valued action of S on E such that (st) · 0 = s · 0 (for

all s, t ∈ S), if C ⊆ E is an invariant convex compact set and the action

of S on E is right closed on C, then Ef := {x ∈ C | x ∈ s · x, for all

s ∈ S} 6= ∅.

Proof. (a) ⇒ (b) Let the space Y be defined as

Y := the space of all affine continuous real-valued functions on the set C.

Fix c ∈ C. Since C is an invariant subset of E, there exists cs ∈ (s · c) ∩ C for

every s ∈ S. We define the mapping Lc : Y → `∞(S) by (for every f ∈ Y )

(Lcf)(s) := f(cs), for all s ∈ S.

Since S is left amenable with the discrete topology, `∞(S) has a left invariant

mean. Let u be a left invariant mean of `∞(S). By Day’s result (see [7]), there

exists a weak∗ convergent net (uα)α∈Γ in (`∞(S))∗ such that

(4.1) uα
w*
⇁u,

where uα :=
nα∑
i=1

λα,iδsα,i with λα,i > 0, nα ∈ N, sα,i ∈ S and
nα∑
i=1

λα,i = 1. Since(
nα∑
i=1

λα,icsα,i

)
α∈Γ

is in the convex compact set C, there exists a convergent sub-

net of

(
nα∑
i=1

λα,icsα,i

)
α∈Γ

, still denoted by

(
nα∑
i=1

λα,icsα,i

)
α∈Γ

for convenience,

such that

(4.2)

nα∑
i=1

λα,icsα,i → c∞ ∈ C.

Let f ∈ Y . Then by (4.1), we have〈
u, Lcf

〉
= lim

α
〈uα, Lcf〉 = lim

α

〈 nα∑
i=1

λα,iδsα,i , L
cf

〉
(4.3)

= lim
α

nα∑
i=1

λα,iδsα,i(L
cf) = lim

α

nα∑
i=1

λα,i(L
cf)sα,i

= lim
α

nα∑
i=1

λα,if(csα,i) = lim
α
f

( nα∑
i=1

λα,icsα,i

)
(since f is affine)

= f(c∞) (by (4.2)).
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On the other hand, let s ∈ S. By (4.1) again, we have〈
u, ls(L

cf)
〉

= lim
α

〈
uα, ls(L

cf)
〉

= lim
α

〈 nα∑
i=1

λα,iδsα,i , ls(L
cf)

〉
(4.4)

= lim
α

nα∑
i=1

λα,i
〈
δsα,i , [ls(L

cf)]
〉

= lim
α

nα∑
i=1

λα,i[ls(L
cf)]sα,i

= lim
α

nα∑
i=1

λα,i(L
cf)(ssα,i) = lim

α

nα∑
i=1

λα,if(cssα,i)

= lim
α
f

( nα∑
i=1

λα,icssα,i

)
(since f is affine). By Lemma 2.1 (b) and (c), we have

s · (sα,i · c) = s · (csα,i + sα,i · 0) = s · csα,i + s · (sα,i · 0)(4.5)

= s · csα,i + (ssα,i) · 0 = s · csα,i + s · 0

(by the assumption)

= s · (csα,i + 0) = s · csα,i .

Note that cssα,i ∈ (ssα,i) · c = s · (sα,i · c) = s · csα,i by (4.5). Hence

(4.6)

nα∑
i=1

λα,icssα,i ∈
nα∑
i=1

λα,is · csα,i = s ·
( nα∑
i=1

λα,icsα,i

)

(by Lemma 2.12.1). Since C is convex compact and
nα∑
i=1

λα,icssα,i ∈ C, the

right closeness of the action of S on C and (4.6) imply that all cluster points of( nα∑
i=1

λα,icssα,i

)
α

are in the set C ∩ (s · c∞) by (4.2). Thus, by (4.4),

(4.7) 〈u, ls(Lcf)〉 ≤ sup 〈f, C ∩ (s · c∞)〉.

Since u is a left invariant mean of `∞(S), (4.3) and (4.7) give us

f(c∞) ≤ sup 〈f, C ∩ (s · c∞)〉, for all f ∈ Y.

Hence c∞ ∈ C ∩ (s · c∞) by the Separation Theorem and then

c∞ ∈ C ∩ (s · c∞), for all s ∈ S.

Thus Ef 6= ∅.
(b) ⇒ (a) We define a linear action of S on (`∞(S))∗ by

s · u := l∗su, for all s ∈ S, for all u ∈ (`∞(S))∗,

where l∗s is the adjoint of ls. Then the above linear action is well defined since ls
is a continuous linear operator from `∞(S) to `∞(S). Let C be set of all means

on `∞(S). Thus we have C is a weak∗ compact convex set and C is invariant.
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Clearly, the linear action of S is right closed on C in the weak∗ topology of

(`∞(S))∗ by the continuity of l∗s . By (b), there exists m ∈ C, i.e. m is a mean

on `∞(S), such that

m = s ·m = l∗sm, for all s ∈ S.

Hence m is a left invariant mean of `∞(S). Therefore, S is left amenable. �

Theorem 4.2 is inspired by [26, Theorem 2] by Mitchell, and we shall refine

and extend it for set-valued mappings.

Theorem 4.2. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent:

(a) S is left amenable.

(b) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

convex compact set and the action of S on E is jointly closed on C, then

Ef := {x ∈ C | x ∈ (s · x) + F, for all s ∈ S} 6= ∅.
(c) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant convex compact set and the

action of S on E is jointly closed on C, then Ef := {x ∈ C | x ∈ s · x,
for all s ∈ S} 6= ∅.

Proof. (a) ⇒ (b) Let the space Y be defined as Y := {x∗ ∈ E∗ | 〈x∗, F 〉
≡ 0}. Fix c ∈ C. Since C is an invariant subset of E, there exists cs ∈ (s · c)∩C
for every s ∈ S. By the definition of the space Y , for all s ∈ S and f ∈ Y , we

have f(s · 0) ≡ 0 since s · 0 ⊆ F .

We define the mapping Lc : Y → `∞(S), for every f ∈ Y , by

(Lcf)(s) := f(cs) = f(cs) + f(s · 0) = f (cs + s · 0) = f(s · c), for all s ∈ S

(by Lemma 2.1 (b)). Let f ∈ Y . Now we show that Lcf ∈ LUC(S). Let sγ → s

in S. We first show that

(4.8) |(Lcf)(sγ)− (Lcf)(s)| → 0.

Suppose to the contrary that there exists λ > 0 and a subnet of (sγ)γ , still

denoted by (sγ)γ for convenience, such that

(4.9) |(Lcf)(sγ)− (Lcf)(s)| = |f(csγ )− f(s · c)| > λ.

Since csγ ∈ C and C is compact, there exists a convergent subnet of (csγ )γ , still

denoted by (csγ )γ for convenience, such that

csγ → z.(4.10)

Since csγ ∈ sγ · c and the action of S on E is jointly closed on C, we have

z ∈ s · c by (4.10). Then by the continuity of f , f(csγ )→ f(z) = f(s · c), which
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contradicts (4.9). Hence (4.8) holds and thus Lcf is a continuous function on S.

Then Lcf ∈ CB(S).

Next we shall show that

(4.11) ‖lsγ (Lcf))− ls(Lcf))‖∞ = sup
t∈S
|(Lcf)(sγt)− (Lcf)(st)| → 0.

Suppose to the contrary that there exist δ > 0 and a subnet of (sγ)γ , still denoted

by (sγ)γ for convenience, and tγ ∈ S such that

|(Lcf)(sγtγ)− (Lcf)(stγ)| > δ.

Thus, by the definition of Lcf , we have

δ < |(Lcf)(sγtγ)− (Lcf)(stγ)| = |f(sγ · (tγ · c))− f(s · (tγ · c))|(4.12)

= |f(sγ · ctγ )− f(s · ctγ )|

by Lemma 2.1 (b). Since ctγ ∈ C and C is compact, there exists a subnet of

(ctγ )γ , still denote by (ctγ )γ , such that

(4.13) ctγ → d ∈ C.

Since C is an invariant set, there exists vγ ∈ (sγ · ctγ ) ∩ C. By the compactness

of C, there exists a subnet of (vγ)γ , still denote by (vγ)γ for convenience, such

that

(4.14) vγ → v ∈ C.

Since the action of S on E is jointly closed on C, (4.13) implies that v ∈ s · d.

On the other hand, since C is an invariant set, there also exists wγ in

(s · ctγ ) ∩ C. By the compactness of C, there exists a subnet of (wγ)γ , still

denote by (wγ)γ for convenience, such that

(4.15) wγ → w ∈ C.

Since the action of S on E is jointly closed on C, w ∈ s ·d by (4.13) again. Thus

combining (4.12), (4.14) and (4.15), we have

δ < |f(vγ)− f(wγ)
∣∣→ |f(v)− f(w)| = |f(v)− f(v)| = 0

(since v, w ∈ s · d), which is a contradiction. Hence (4.11) holds. Combining the

above results, we have Lcf ∈ LUC(S) for all f ∈ Y .

Let u be a left invariant mean of LUC(S). By Day’s result (see [7]), there

exists a weak∗ convergent net (uα)α∈Γ in (LUC(S))∗ such that

uα
w*
⇁u,(4.16)

where uα :=
nα∑
i=1

λα,iδsα,i with λα,i > 0, nα ∈ N, sα,i ∈ S and
nα∑
i=1

λα,i = 1.
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Since
( nα∑
i=1

λα,icsα,i

)
α∈Γ

is in the convex compact set C, there exists a con-

vergent subnet of
( nα∑
i=1

λα,icsα,i

)
α∈Γ

, still denoted by
( nα∑
i=1

λα,icsα,i

)
α∈Γ

for con-

venience, such that

(4.17)

nα∑
i=1

λα,icsα,i → c∞ ∈ C.

Let f ∈ Y . Then following the corresponding lines in the proof of Theorem 4.1

(a) ⇒ (b), we have

(4.18) 〈u, Lcf〉 = lim
α
〈uα, Lcf〉 = 〈f, c∞〉.

Let s ∈ S. By Lemma 2.1 (b) and (c), we have

s · (sα,i · c) = s · (csα,i + sα,i · 0) = s · csα,i + s · (sα,i · 0)(4.19)

= s · csα,i + (ssα,i) · 0 ⊆ s · csα,i + F

(by the assumption). Then cssα,i ∈ (ssα,i)·c = s·(sα,i · c) ⊆ s·csα,i+F by (4.19).

Hence, by Lemma 2.1 (c),

nα∑
i=1

λα,icssα,i ∈
nα∑
i=1

λα,i(s · csα,i + F )(4.20)

⊆
( nα∑
i=1

λα,is · csα,i
)

+ F = s ·
( nα∑
i=1

λα,icsα,i

)
+ F.

We have

〈u, ls(Lcf)〉 = lim
α
〈uα, ls(Lcf)〉 = lim

α

〈 nα∑
i=1

λα,iδsα,i , ls(L
cf)

〉
(4.21)

= lim
α

nα∑
i=1

λα,i〈δsα,i , ls(Lcf)〉 = lim
α

nα∑
i=1

λα,i(L
cf)(ssα,i)

= lim
α

nα∑
i=1

λα,i〈f, cssα,i〉 = lim
α

〈
f,

nα∑
i=1

λα,icssα,i

〉

≤ lim sup
α

sup

〈
f, s ·

( nα∑
i=1

λα,icsα,i

)
+ F

〉
(by (4.20))

= lim sup
α

〈
f, s ·

( nα∑
i=1

λα,icsα,i

)〉
(since 〈f, F 〉 ≡ 0)

≤ 〈f, (s · c∞)〉

(by the closeness of the action on C, the compactness of C and (4.17)).

Since u is a left invariant mean of LUC(S), (4.18) and (4.21) show that

(4.22) 〈f, c∞〉 ≤ 〈f, (s · c∞)〉, for all f ∈ Y.
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Since (s · c∞) + F = y + s · 0 + F = y + F is closed (for every y ∈ s · c∞) by

Lemma 2.1 (b), (4.22) shows that c∞ ∈ (s · c∞) +F by the Separation Theorem.

Since c∞ ∈ C by (4.17),

c∞ ∈ ((s · c∞) + F ) ∩ C, for all s ∈ S.

Hence Ef 6= ∅.
(b) ⇒ (c) Let F := s · 0 (for all s ∈ S). Then F is a closed subspace by the

assumption. By (b), there exists c0 ∈ C such that c0 ∈ s · c0 + F , for all s ∈ S.

Thus Lemma 2.1 (b) shows that

c0 ∈ s · c0 + F = s · c0 + s · 0 = s · c0, for all s ∈ S.

Hence Ef 6= ∅.
(c) ⇒ (a) Apply the proof of [26, Theorem 2, (F2) ⇒ (P2)]. �

Theorem 4.3 is inspired by [26, Theorem 1] by Mitchell.

Theorem 4.3. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent :

(a) LUC(S) has a multiplicative left invariant mean.

(b) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

compact set and the action of S on E is jointly closed on C, then

Ef := {x ∈ C | x ∈ (s · x) + F, for all s ∈ S} 6= ∅.

(c) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant compact set and the action of

S on E is jointly closed on C, then

Ef := {x ∈ C | x ∈ s · x, for all s ∈ S} 6= ∅.

Proof. (a) ⇒ (b) Let the space Y be defined as

Y := {x∗ ∈ E∗ | 〈x∗, F 〉 ≡ 0}.

Fix c ∈ C. Since C is an invariant subset of E, there exists cs ∈ (s · c) ∩ C for

every s ∈ S. By the definition of the space Y , for all s ∈ S and f ∈ Y , we have

f(s · 0) ≡ 0 since s · 0 ⊆ F .

We define the mapping Lc : Y → `∞(S), for every f ∈ Y , by

(Lcf)(s) := f(cs) = f(cs) + f(s · 0) = f(cs + s · 0) = f(s · c), for all s ∈ S.

Following the corresponding lines in the proof of Theorem 4.2, (a) ⇒ (b), we

have Lcf ∈ LUC(S), for all f ∈ Y .

Let u be a multiplicative left invariant mean of LUC(S). Then there exists

a weak∗ convergent net (δsα)α∈Γ in (LUC(S))∗ with sα ∈ S such that

(4.23) δsα
w*
⇁u.
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Since (csα)α∈Γ is in the compact set C, there exists a convergent subnet of

(csα)α∈Γ, still denoted by (csα)α∈Γ for convenience, such that

(4.24) csα → c∞ ∈ C.

Let f ∈ Y . We have

(4.25) 〈u, Lcf〉 = lim
α
〈δsα , Lcf〉 = lim

α
(Lcf)(sα) = lim

α
〈f, csα〉 = 〈f, c∞〉.

Similar to the proof of (4.19),

(4.26) cssα,i ∈ (ssα,i) · c = s · (sα,i · c) ⊆ s · csα,i + F.

Thus, for every s ∈ S,

〈u, ls(Lcf)〉 = lim
α

〈
δsα , ls(L

cf)
〉

= lim
α

(Lcf)(ssα) = lim
α
〈f, cssα〉(4.27)

≤ lim sup
α

sup〈f, s · csα + F 〉 (by (4.26))

= lim sup
α
〈f, s · csα〉 (since 〈f, F 〉 ≡ 0)

≤ 〈f, s · c∞〉

by the closeness of the action on C, the compactness of C and (4.24). Since u is

a left invariant mean of LUC(S), (4.25) and (4.27) show that, for every s ∈ S)

〈f, c∞
〉
≤ 〈f, s · c∞〉, for all f ∈ Y.

Following the corresponding lines in the proof of Theorem 4.2, (a) ⇒ (b), we

have

c∞ ∈ (s · c∞ + F ) ∩ C, for all s ∈ S.

Hence Ef 6= ∅.
(b) ⇒ (c) Follow the proof of Theorem 4.2, (b) ⇒ (c).

(c) ⇒ (a) Apply the proof of [26, Theorem 1 (F1), ⇒ (P1)]. �

Following the proofs of Theorems 4.2 and 4.1, we can obtain the following

two results.

Theorem 4.4. Let S be a semitopological semigroup. Assume that CB(S)

has a left invariant mean. Then the following hold :

(a) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

convex compact set and the action of S on E is separately closed on C,

then Ef := {x ∈ C | x ∈ (s · x) + F, for all s ∈ S} 6= ∅.
(b) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant convex compact set and the

action of S on E is separately closed on C, then Ef := {x ∈ C | x ∈ s ·x,
for all s ∈ S} 6= ∅.
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Theorem 4.5. Let S be an algebraic semigroup. The following conditions

on S are equivalent :

(a) S is left amenable.

(b) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

convex compact set and the action of S on E is right closed on C, then

Ef := {x ∈ C | x ∈ (s · x) + F, for all s ∈ S} 6= ∅.
(c) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant convex compact set and the

action of S on E is right closed on C, then Ef := {x ∈ C | x ∈ s · x,
for all s ∈ S} 6= ∅.

5. Invariant means on WLUC(S) and AP(S)

In this section, we present some characterizations on the existence of a left

invariant mean on WLUC(S) and AP(S) (see Theorems 5.1 and 5.2), which

extend [26, Theorem 4] by Mitchell and [17, Theorem 3.2].

Let S be a semitopological semigroup. LetWLUC(S) be the space of bounded

weakly left uniformly continuous functions on S, i.e. all f ∈ CB(S) such that

the mappings a→ laf from S into CB(S) are weakly continuous. Clearly,

LUC(S) ⊆WLUC(S) ⊆ CB(S).

Rao showed that WLUC(S) is a closed subspace of CB(S) containing constants

and invariant under translations in [31].

Theorem 5.1 is inspired by Mitchell’s result: [26, Theorem 4].

Theorem 5.1. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent :

(a) WLUC(S) has a left invariant mean.

(b) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

convex compact set and the action of S on E is separately closed on C,

then Ef := {x ∈ C | x ∈ (s · x) + F, for all s ∈ S} 6= ∅.
(c) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant convex compact set and the

action of S on E is separately closed on C, then Ef := {x ∈ C | x ∈ s ·x
for all s ∈ S

}
6= ∅.

Proof. (a) ⇒ (b) Let Y := {x∗ ∈ E∗ | 〈x∗, F 〉 ≡ 0}. Fix c ∈ C. Since C

is an invariant subset of E, there exists cs ∈ (s · c) ∩ C for every s ∈ S. By the

definition of the space Y , for all s ∈ S and f ∈ Y , we have f(s · 0) ≡ 0 since

s · 0 ⊆ F .
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We define the mapping Lc : Y → `∞(S) by (for every f ∈ Y )

(5.1) (Lcf)(s) := f(cs) = f(cs) + f(s · 0) = f(cs + s · 0) = f(s · c),

for all s ∈ S. Let f ∈ Y . Following the corresponding lines in the proof of

Theorem 4.2, (a) ⇒ (b), we have Lcf ∈ CB(S). Now we show that Lcf ∈
WLUC(S). Let sγ → s in S. Let µ be a mean of CB(S). Now we claim

(5.2) 〈µ, lsγ (Lcf)〉 → 〈µ, ls(Lcf)〉.

Suppose to the contrary that there exists λ > 0 and a subnet of (sγ)γ , still

denoted by (sγ)γ for convenience, such that

(5.3) |〈µ, lsγ (Lcf)〉 − 〈µ, ls(Lcf)〉| > λ.

By Day’s result (see [7]), there exists a weak∗ convergent net (µα)α∈Γ in (CB(S))∗

such that µα
w*
⇁µ, where µα :=

nα∑
i=1

λα,iδsα,i with λα,i > 0, nα ∈ N, sα,i ∈ S

and
nα∑
i=1

λα,i = 1. Since
( nα∑
i=1

λα,icsα,i

)
α∈Γ

is in the compact set C, there exists

a convergent subnet of
( nα∑
i=1

λα,icsα,i

)
α∈Γ

, still denoted by
( nα∑
i=1

λα,icsα,i

)
α∈Γ

for

convenience, such that

(5.4)

nα∑
i=1

λα,icsα,i → c∞ ∈ C.

Similar to the proof of (4.21), we have

(5.5) 〈µ, lt(Lcf)〉 ≤ 〈f, t · c∞〉, for all t ∈ S.

Note that Lc(−f) = −Lcf by (5.1) and then lt(L
c(−f)) = −lt(Lcf) for all t ∈ S.

Hence, by (5.5),

−〈µ, lt(Lcf)〉 = 〈µ, lt(Lc(−f))〉 ≤ 〈−f, t · c∞〉, for all t ∈ S.

Then, combining with (5.5), we have

(5.6) 〈µ, lt(Lcf)〉 = 〈f, t · c∞〉, for all t ∈ S.

Thus (5.3) and (5.6) show that

(5.7) |〈f, sγ · c∞〉 − 〈f, s · c∞〉| > λ.

Since C is an invariant set, (5.4) implies that there exists vγ ∈ (sγ · c∞)∩C. By

the compactness of C, there exists a subnet of (vγ)γ , still denote by (vγ)γ for

convenience, such that

(5.8) vγ → v ∈ C.

Since the action of S on E is separately closed on C and sγ → s, (5.8) implies

that v ∈ s · c∞. Thus, by the continuity of f , (5.8) and (5.1) show that

〈f, sγ · c∞〉 = 〈f, vγ〉 → 〈f, v〉 = 〈f, s · c∞〉,
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which contradicts (5.7). Hence (5.2) holds.

Since each y∗ ∈ (CB(S))∗ can be expressed as a linear combination of two

means on CB(S), (5.2) shows that

〈y∗, lsγ (Lcf)〉 → 〈y∗, ls(Lcf)〉, for all y∗ ∈ (CB(S))∗.

Hence Lcf ∈WLUC(S).

Following the corresponding parts in the proof of Theorem 4.2, (a) ⇒ (b),

we have (b) holds.

(b) ⇒ (c) Follow the proof of Theorem 4.2, (b) ⇒ (c).

(c) ⇒ (a) Apply the same proof of [26, Theorem 4, (F4) ⇒ (P4)]. �

Given a set-valued action of S on E, let C ⊆ E be an invariant compact set.

We say that the action of S on C is equicontinuous if, for each x ∈ C and each

open neighbourhood U of 0 in E, there exists an open neighbourhood V of x in

E such that, for every y ∈ V ∩C and every s ∈ S, there exist v ∈ (s · y)∩C and

w ∈ (s · x) ∩ C with v − w ∈ U .

Theorem 5.2 is inspired by [17, Lemma 3.1 and Theorem 3.2].

Theorem 5.2. Let S be a semitopological semigroup. The following condi-

tions on S are equivalent :

(a) AP(S) has a left invariant mean.

(b) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

convex compact set such that the action of S on E is separately closed

on C and the action of S on C is equicontinuous, then Ef := {x ∈ C |
x ∈ (s · x) + F, for all s ∈ S} 6= ∅.

(c) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant convex compact set such that

the action of S on E is separately closed on C and the action of S on C

is equicontinuous, then Ef := {x ∈ C | x ∈ s · x, for all s ∈ S} 6= ∅.

Proof. (a) ⇒ (b) Let the space Y be defined as Y := {x∗ ∈ E∗ | 〈x∗, F 〉
≡ 0}. Fix c ∈ C. Since C is an invariant subset of E, there exists cs ∈ (s · c)∩C
for every s ∈ S. By the definition of the space Y , for all s ∈ S and f ∈ Y , we

have f(s · 0) ≡ 0 since s · 0 ⊆ F .

We define the mapping Lc : Y → `∞(S), for every f ∈ Y , by

(5.9) (Lcf)(s) := f(cs) = f(cs) + f(s · 0) = f(cs + s · 0) = f(s · c),

for all s ∈ S. Let f ∈ Y . Following the corresponding lines in the proof of

Theorem 4.2, (a)⇒ (b), we have Lcf ∈ CB(S). Now we show that Lcf ∈ AP(S).

It suffices to show that

RO(Lcf) = {ra(Lcf) | a ∈ S} is relatively compact in `∞(S).
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We have, for every a ∈ S,

(ra(Lcf))(t) = (Lcf)(ta) = f(ta · c) = f(t · (a · c)) = f(t · ca) = (Lcaf)(t),

for all t ∈ S (by (5.9)). Thus ra(Lcf) = Lcaf for all a ∈ S. Then

(5.10) RO(Lcf) = {Lcaf | a ∈ S}.

On the other hand, let ε > 0 and set

Uε := f−1

(
−ε

2
,
ε

2

)
:=

{
x ∈ E

∣∣∣∣ |f(x)| < ε

2

}
.

Then Uε is an open neighbourhood of 0 in E by the continuity of f . Let x ∈ C.

Since the action of S on C is equicontinuous, there exists an open neighbourhood

V of x in E such that, for each y ∈ V ∩C and s ∈ S, there exist vy,s ∈ (s ·y)∩C
and wy,s ∈ (s · x) ∩ C with vy,s − wy,s ∈ U . Then

|f(vy,s)− f(wy,s)| = |f(vy,s − wy,s)| <
ε

2
, for all y ∈ V ∩ C.

Hence (5.9) shows that

(5.11) ‖Lyf − Lxf‖∞ = sup
s∈S
|f(s · y)− f(s · x)| = sup

s∈S
|f(vy,s)− f(wy,s)| ≤

ε

2
,

for all y ∈ V ∩ C. Since {ca | a ∈ S} ⊆ C and C is compact, (5.10) and (5.11)

imply that RO(Lcf) is relatively compact in `∞(S). Hence Lcf ∈ AP (S).

Following the corresponding parts in the proof of Theorem 4.2, (a) ⇒ (b),

we have (b) holds.

(b) ⇒ (c) Follow the proof of Theorem 4.2, (b) ⇒ (c).

(c) ⇒ (a) Apply exactly the proof of the second statement in [17, Theo-

rem 3.2]. �

6. Application to left amenability of F -algebras

Let X be a Banach A-bimodule and A be a Banach algebra. A linear mapping

D : A→ X is called a derivation if it satisfies

D(ab) = a ·D(b) +D(a) · b, for all a, b ∈ X.

Derivations in the form D(a) := a · x0− x0 · a (a ∈ A) for some fixed x0 ∈ X are

called inner derivations.

A Banach algebra A is an F -algebra [21] (also known as Lau algebras [30])

if it is the (unique) predual of a W ∗-algebra M and the identity e of M is

a multiplicative linear functional on A. Since A∗∗ = M∗, we denote by P1(A∗∗)

the set of all normalized positive linear functionals on M, i.e.

P1(A∗∗) := {m ∈ A∗∗ | m ≥ 0, m(e) = 1
}
.

In this case, P1(A∗∗) is a semigroup with the first (or second) Arens multipli-

cation. A mean m ∈ P1(A∗∗) on A∗ is called a topological left invariant mean,
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abbreviated as TLIM, if a ·m = m for all a ∈ P1(A) = P1(A∗∗) ∩ A; in other

words, m ∈ P1(A∗∗) is a TLIM if m(x · a) = m(x) for all a ∈ P1(A) and x ∈ A∗.
Examples of F -algebras include the predual algebras of a Hopf von Neumann

algebra (in particular, quantum group algebras), the group algebra L1(G) of a

locally compact group G, the Fourier algebra A(G) and the Fourier–Stieltjes

algebra B(G) of a topological group G (see [5], [21], [22]). They also include

the measure algebra M(S) of a locally compact semigroup S. Moreover, the

hypergroup algebra L1(H) and the measure algebra M(H) of a locally compact

hypergroup H with a left Haar measure are F -algebras. In this case, it was shown

in [37, Theorem 5.2.2] (see also [38, Remark 5.3]) that (L1(H))∗ = L∞(H) is

not a Hopf von Neumann algebra unless H is a locally compact group.

An F -algebra A is called left amenable if, for each Banach A-bimodule X

with the left module action specified by a · x := 〈a, e〉x, for all a ∈ A, x ∈ X,

every continuous derivation from A into X∗ is inner. The following result was

shown in [21, Theorems 4.1 and 4.6].

Lemma 6.1. Let A be an F -algebra. Then the following are equivalent.

(a) There is a TLIM for A∗.

(b) The algebra A is left amenable.

(c) There exists a net (mα) ⊆ P1(A) such that amα −mα → 0 in the norm

topology for each a ∈ P1(A).

We note here that, being F -algebras, the group algebra L1(G) and the mea-

sure algebra M(G) of a locally compact group G are left amenable if and only if G

is an amenable group, while the Fourier algebra A(G) and the Fourier–Stieltjes

algebra B(G) are always left (and right) amenable [21]. The hypergroup al-

gebra L1(H) of a locally compact hypergroup H with a left Haar measure is

left amenable if and only if H is an amenable hypergroup [35]. Also the left

amenability of the predual algebra of a Hopf von Neumann algebra, as an F -

algebra, coincides with that studied in [32], [36] (see also [2] and references

therein).

Mitchell showed in [26] that a semitopological semigroup S is extremely left

amenable (i.e. LUC(S) has a multiplicative left invariant mean) if and only if S

has the following fixed point property:

(FE) Every jointly continuous representation of S on a compact Hausdorff

space C has a common fixed point in C.

For an F -algebra A, the left amenability of A is equivalent to the extreme left

amenability of P1(A).

Lemma 6.2 (See [25, Theorem 3.2]). Let A be an F -algebra. Then A is left

amenable if and only if P1(A) has the fixed point property (FE).
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The following theorem is now a consequence of Theorem 4.3.

Theorem 6.3. Let A be an F -algebra. Then A is left amenable if and only if

the following fixed point property holds for the topological semigroup S := P1(A)

with the norm topology and multiplication of the F -algebra A:

(a) For any linear set-valued action of S on E such that there exists a closed

subspace F of E with F ⊇ s · 0 (for all s ∈ S), if C ⊆ E is an invariant

compact set and the action of S on E is jointly closed on C, then Ef :=

{x ∈ C | x ∈ (s · x) + F, for all s ∈ S} 6= ∅.
(b) For any linear set-valued action of S on E such that s · 0 = t · 0 is closed

(for all s, t ∈ S), if C ⊆ E is an invariant compact set and the action

of S on E is jointly closed on C, then Ef := {x ∈ C | x ∈ s · x, for all

s ∈ S} 6= ∅.

7. Remarks and open problems

Remark 7.1. Theorems 2.2 and 3.1 extend the first author’s results: [18,

Theorem 1] and [20, Theorem 1], respectively.

Remark 7.2. An extension of Markov–Kakutani fixed point theorem for

a family of set-valued mappings was presented in [24] recently.

Problem 7.3. Can we improve our results in Sections 4 and 5 by weakening

the constraints on the linear set-valued action of S on E?

Problem 7.4. Can we extend the fixed point properties in [19] for set-valued

mappings?
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