
Topological Methods in Nonlinear Analysis
Volume 53, No. 2, 2019, 427–446

DOI: 10.12775/TMNA.2019.006

c© 2019 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

NONAUTONOMOUS CONLEY INDEX THEORY

THE CONNECTING HOMOMORPHISM

Axel Jänig

Abstract. Attractor-repeller decompositions of isolated invariant sets give
rise to so-called connecting homomorphisms. These homomorphisms reveal

information on the existence and strucuture of connecting trajectories of

the underlying dynamical system.
To give a meaningful generalization of this general principle to nonau-

tonomous problems, the nonautonomous homology Conley index is ex-

pressed as a direct limit. Moreover, it is shown that a nontrivial connecting
homomorphism implies, on the dynamical systems level, a sort of uniform

connectedness of the attractor-repeller decomposition.

In previous works [6], [7] the author developed a nonautonomous Conley

index theory. The index relies on the interplay between a skew-product semi-

flow and a nonautonomous evolution operator. It can be applied to various

nonautonomous problems, including ordinary differential equations and semilin-

ear parabolic equations (see [6]).

Every attractor-repeller decomposition of an isolated invariant set gives rise

to a long exact sequence involving the homology Conley index. The connecting

homomorphism of this sequence contains information on the connections between
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repeller and attractor. In particular, the connecting homomorphism vanishes if

a connecting orbit does not exist.

However, the mere existence of a connecting orbit is a very weak result in

the context of nonautonomous dynamical systems. This is due to the fact that,

in general, a nonautonomous Conley index is always tied to a family of nonau-

tomous dynamical systems. Therefore, for a specific dynamical system, only (in

an appropriate sense) uniform properties are meaningful. It will be shown that

the existence of connections due to a non-trivial connecting homomorphism is

such a uniform property.

More precisely, the nonautonomous homology Conley index is expressed as

a direct limit, which resembles the definition of a discrete Conley index. Using

the direct limit formula, a notion of uniform connectedness of the attractor-

repeller decomposition respectively the invariant set is introduced. Moreover,

it is shown that a non trivial connecting homomorphism implies not only the

existence of a connection but a uniform connection of repeller and attractor.

Theorem 1.1 below, included mainly for illustrative purposes, translates the

results of this paper to the problem of small perturbations of a class of semi-

linear parabolic equations, e.g. reaction diffusion equations. The main part of

the paper starts with a Preliminaries section, where we collect important defini-

tions and results from other works. In Section 3, the direct limit formulation is

formlated and proved. The notion of uniform connectedness is introduced in Sec-

tion 4. Subsequently, we prove Theorem 4.2 stating that a nontrivial connecting

homomorphism implies a uniform connection of repeller and attractor.

1. Nonautonomous C0-small perturbations

of (autonomous) semilinear parabolic equations

Let X be a Banach space and A0 be a sectorial operator defined on a dense

subset D(A0) ⊂ X. We are interested in mild solutions of

(1.1) ut +A0u = f̂(t, u),

which happen to be strong solutions due to regularity assumptions. Let us

further assume that A0 has compact resolvent.

As it is often done, the operator A0 is assumed to be positive, so there is

a family of fractional power spaces Xα defined by A0. The respective norm is

given by ‖x‖α := ‖Aα0x‖X . A typical example would be the Laplace-operator

on a bounded domain with smooth boundary under appropriate boundary con-

ditions (see e.g. [3], [11], [9]).

We will shortly introduce another metric space Y . With every f ∈ Y there is

an associated mapping f̂ , which serves a a parameter for the evolution operator

defined by (1.1). A typical example for f̂ is assigning the Nemytskĭı operator

associated with a function f .
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We are interested C0-small nonautonomous perturbations of autonomous

equations that is,

ut +A0u = f̂(u) + ĝ(t, u)

where g is assumed to be small in an appropriate metric. Note that this is much

stronger than

ut +A0u = f̂(u) + εĝ(t, u),

where ε is assumed to be small.

The main result is the persistence of Morse-decompositions and certain solu-

tions: Morse-sets with a non-zero index as well as connecting orbits with a non-

vanishing connecting homomorphism. A typical Morse-set with non-zero index

might be a hyperbolic equilibrium and a typical Morse-set with a non-vanishing

connecting homomorphism might be a transversal heteroclinic solution (see [5]).

In the sequel, a specific choice for Y is made. Additional material can be

found in [6] and [12].

Let Ω ⊂ RN be a smooth bounded domain, and suppose that, for some

α ∈ [0, 1[, there is a continuous inclusion Xα ⊂ C(Ω). Let Y denote the set of

all continuous functions f : R × Ω × R → R which are subject of the following

restriction:

• For some δ > 0 and every C1 > 0, there are constants C2 = C2(C1) and

C3 = C3(C1) such that, for all (t, x, u) ∈ R× Ω× R with |u| ≤ C1,

|f(t, x, u)| ≤ C2

and for all (t1, x1, u1), (t2, x2, u2) ∈ R× Ω× R with |u1|, |u1| ≤ C1

|f(t1, x1, u1)− f(t2, x2, u2)| ≤ C3

(
|t1 − t2|δ + |x1 − x2|δ + |u1 − u2|

)
.

Defining addition and scalar multiplication pointwise as usual, Y becomes a lin-

ear space. We consider a family (δn)n∈N of seminorms

δn(f) := sup{|f(t, x, u)| : (t, x, u) ∈ R× Ω× R with |t|, |u| ≤ n}.

These seminorms give rise to an invariant metric d on Y :

d(f1, f2) :=

∞∑
n=1

2−n
δn(f1 − f2)

1 + δn(f1 − f2)
.

The metric d induces the compact-open topology on Y , so a sequence of functions

converges with respect to d if and only if it converges uniformly on bounded

subsets of R× Ω× R.

To formulate the theorem below, a uniform distance is also required i.e.,

dunif(f1, f2) := sup
(t,x,u)∈R×Ω×R

|f1(t, x, u)− f2(t, x, u)|.
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Denote h : R→ R by

h(t) :=

(t+ 1) sin ln(t+ 1) if t > 0,

0 if t ≤ 0,

and tn := e2πn − 1, n ∈ N. Then, ln(tn + s)− 2πn→ 0 as n→∞ uniformly for

s lying in bounded subsets of R. Hence, one has

h(tn + s) = h(tn) +

tn+s∫
tn

sin ln(t+ 1) + cos ln(t+ 1) dt,

so that h(tn + s)→ s as n→∞ uniformly on bounded sets.

We are interested in full (defined on R) solutions of a perturbed equation.

Suppose that f ∈ Y is the parameter associated with the perturbed equation.

Computing the index with respect to f would imply the loss of all the informa-

tion contained in f for negative times. The index would be determined by the

equation’s behaviour at large times. This restriction can be overcome by using

the auxialiary function h defined above. It allows to embed f into the ω-limes

set of a related parameter, namely

f.h := ((t, x, u) 7→ f(h(t), x, u)).

It is easy to see that f ∈ Y implies f.h ∈ Y and, from the calculations above,

it follows that (f.h)tn → f in Y , that is, uniformly on bounded subsets.

Combining this approach with the abstract results of this paper and previous

works on the subject, one obtains the following theorem.

Theorem 1.1. Suppose that f ∈ Y is autonomous, and let K ⊂ Xα be

a compact invariant set with respect to the evolution operator (semiflow) on Xα

defined by (1.1). Let N ⊂ Xα be a strongly admissible (e.g. bounded) isolated

neighbourhood of K. Let (A,R) be an attractor-repeller decomposition of K, and

assume that the associated connecting homomorphism ∂ : H∗C(f,A)→ H∗C(f,R)

defined by the homology attractor-repeller sequence does not vanish. Let NA ⊂
Xα (resp. NR) be an isolating neighbourhood for A (resp. R), and suppose that

NA ∩NR = ∅. Then, there exists an ε > 0 such that the following holds true for

all f ′ ∈ Y with dunif(f, f
′) < ε:

(a) If u : R→ N ⊂ Xα is a solution of

(1.2) ut +A0u = f̂ ′(t, u),

then either u(R) ⊂ NA ∪NR or α(u) ⊂ NR and ω(u) ⊂ NA.

(b) There is a solution u : R→ NR of (1.2).

(c) There is a solution u : R→ NA of (1.2).
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(d) Suppose UA ⊂ Xα is a neighbourhood of A, UR ⊂ Xα a neighbourhood

of R and UA∩UA = ∅. Then there is a solution u : R→ N of (1.2) such

that α(u) ⊂ NR, ω(u) ⊂ NA and u(0) ∈ Xα \ (UA ∪ UR).

Using the same arguments as below, the theorem can be generalized to par-

tially ordered Morse decompositions (see [4]). Moreover, even if the connecting

homomorphism is trival, Morse-decompositions are still preserved under small

perturbations, but depending on the Conley indices of attractor and repeller, the

existence of solutions can no longer be proved (1).

Note that for a generic reaction diffusion equation, all equlibria are hyper-

bolic, and their respective stable and unstable manifolds intersect transver-

sally [1]. For such a generic reaction-diffusion equation each heteroclinic con-

nection between equilibria of adjacent Morse indices corresponds to a nontrivial

connecting homomorphism [5].

Proof. First of all, note that f.h = f as f is autonomous. Furthermore,

Y ×N , Y ×NA and Y ×NR are isolating neighbourhoods for (f.h,K), (f.h,A)

and (f.h,R), respectively.

Therefore, (a) follows from Theorem 2.2 in [4]. We will now consider (the

relevant part of) an attractor-repeller sequence containing the non-vanishishing

connecting homomorphism ∂:

// H∗C(f,R)
∂
// H∗−1C(f,A) //

Since ∂ 6= 0, one necessarily has H∗C(f,R) 6= 0 and H∗C(f,A) 6= 0. By using

Theorem 3.4 in [4], one proves that for all f ′ in a neighbourhood of f given

by (a), the attractor-repeller sequence above extends to a commutative ladder:

// H∗C(f,R)
∂

//

'
��

H∗−1C(f,A) //

'
��

// H∗C(f ′.h, R′)
∂′
// H∗−1C(f ′.h, A′) //

Here, we set R′ := Inv(ω(f ′.h)×NR) and A′ := Inv(ω(f ′.h)×NA).

Consequently, in view of Corollary 4.11 in [6] and because f ′ ∈ ω(f ′.h), (b)

and (c) must hold. Finally, claim (d) is a consequence of Theorem 4.2, stating

that K ′ = Inv(ω(f ′.h)×N) is uniformly connected. �

2. Preliminaries

The section starts with a collection of useful definitions and terminology,

mainly from [6] and [7]. Thereafter, we review the concept of index pairs and

(1) At least not with these arguments.
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index triples, followed by the nonautonomous homology Conley index and the

connecting homomorphism.

2.1. Quotient spaces.

Definition 2.1. Let X be a topological space, and A,B ⊂ X. Denote

A/B := A/R ∪ {A ∩B},

where A/R is the set of equivalence classes with respect to the relation R on

A which is defined by xRy iff x = y or x, y ∈ B. We consider A/B as a topo-

logical space endowed with the quotient topology with respect to the canonical

projection q : A→ A/B, that is, a set U ⊂ A/B is open if and only if

q−1(U) =
⋃
x∈U

x

is open in A.

Recall that the quotient topology is the final topology with respect to the

projection q.

Remark 2.2. The above definition is compatible with the definition used

in [2] or [10]. The only difference occurs in the case A∩B = ∅, where we add ∅,
which is never an equivalence class, instead of an arbitrary point.

2.2. Evolution operators and semiflows. Let X be a metric space. As-

suming that ♦ 6∈ X, we introduce a symbol ♦, which means “undefined”. The

intention is to avoid the distinction if an evolution operator is defined for a given

argument or not. Define A := A∪̇{♦} whenever A is a set with ♦ 6∈ A. Note

that A is merely a set, the notation does not contain any implicit assumption on

the topology.

Definition 2.3. Let ∆ := {(t, t0) ∈ R+ × R+ : t ≥ t0}. A mapping Φ: ∆×
X → X is called an evolution operator if

(a) D(Φ) := {(t, t0, x) ∈ ∆×X : Φ(t, t0, x) 6= ♦} is open in R+ × R+ ×X;

(b) Φ is continuous on D(Φ);

(c) Φ(t0, t0, x) = x for all (t0, x) ∈ R+ ×X;

(d) Φ(t2, t0, x) = Φ(t2, t1,Φ(t1, t0, x)) for all t0 ≤ t1 ≤ t2 in R+ and x ∈ X;

(e) Φ(t, t0,♦) = ♦ for all t ≥ t0 in R+.

A mapping π : R+×X → X is called semiflow if Φ̃(t+ t0, t0, x) := π(t, x) defines

an evolution operator. To every evolution operator Φ, there is an associated

(skew-product) semiflow π on an extended phase space R+ × X, defined by

(t0, x)πt = (t0 + t,Φ(t+ t0, t0, x)). A function u : I → X defined on a subinterval

I of R is called a solution of (with respect to) Φ if u(t1) = Φ(t1, t0, u(t0)) for all

[t0, t1] ⊂ I.
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Definition 2.4. Let X be a metric space, N ⊂ X and π a semiflow on X.

The set

Inv−π (N) := {x ∈ N : there is a solution u : R− → N with u(0) = x}

is called the largest negatively invariant subset of N . The set

Inv+
π (N) := {x ∈ N : πR+ ⊂ N}

is called the largest positively invariant subset of N . The set

Invπ(N) := {x ∈ N : there is a solution u : R→ N with u(0) = x}

is called the largest invariant subset of N .

Let X and Y be metric spaces, and assume that y 7→ yt is a global (2)

semiflow on Y , to which we will refer as t-translation.

Example 2.5. Let Z be a metric space, and let Y := C(R+, Z) be a metric

space such that a sequence of functions converges if and only if it converges

uniformly on bounded sets. The translation can now be defined canonically by

yt(s) := y(t+ s) for s, t ∈ R+.

A suitable abstraction of many non-autonomous problems is given by the

concept of skew-product semiflows introduced below.

Definition 2.6. We say that π = ( · t,Φ) is a skew-product semiflow on

Y ×X if Φ: R+ × Y ×X → Y ×X is a mapping such that

(t, y, x)πt :=


(
yt,Φ(t, y, x)

)
if Φ(t, y, x) 6= ♦,

♦ otherwise,

is a semiflow on Y ×X.

A skew-product semiflow gives rise to evolution operators.

Definition 2.7. Let π = ( · t,Φ) be a skew-product semiflow and y ∈ Y .

Define

Φy(t+ t0, t0, x) := Φ(t, yt0 , x).

It is easily proved that Φy is an evolution operator in the sense of Definition 2.3.

Definition 2.8. For y ∈ Y let H+(y) := clY {yt : t ∈ R+} denote the

positive hull of y. Let Yc denote the set of all y ∈ Y for which H+(y) is compact.

Definition 2.9. Let y0 ∈ Y and K ⊂ H+(y0) × X be an invariant set.

A closed set N ⊂ Y ×X (resp. N ⊂ H+(y0) ×X) is called an isolating neigh-

bourhood for (y0,K) (in Y ×X) (resp. in H+(y0)×X) provided that:

(a) K ⊂ H+(y0)×X,

(2) Defined for all t ∈ R+.
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(b) K ⊂ intY×XN (resp. K ⊂ intH+(y0)×XN),

(c) K is the largest invariant subset of N ∩ (H+(y0)×X).

The following definition is a consequence of the slightly modified notion of

a semiflow (Definition 2.3) but not a semantical change compared to [2], for

instance.

Definition 2.10. We say that π explodes in N ⊂ Y ×X if xπ[0, t[ ⊂ N and

xπt = ♦.

Following [10], we formulate the following asymptotic compactness condition.

Definition 2.11. A set M ⊂ Y ×X is called strongly admissible provided

the following holds: Whenever (yn, xn) is a sequence in M and (tn)n is a se-

quence in R+ such that (yn, xn)π [0, tn] ⊂M , then the sequence (yn, xn)πtn has

a convergent subsequence.

2.3. Index pairs and index triples. The notion of (basic) index pairs

relies on [6] and was introduced in [7].

Definition 2.12. A pair (N1, N2) is called a (basic) index pair relative to

a semiflow χ in R+ ×X if

(IP1) N2 ⊂ N1 ⊂ R+ ×X, N1 and N2 are closed in R+ ×X;

(IP2) If x ∈ N1 and xχt 6∈ N1 for some t ∈ R+, then xχs ∈ N2 for some

s ∈ [0, t];

(IP3) If x ∈ N2 and xχt 6∈ N2 for some t ∈ R+, then xχs ∈ (R+ ×X) \N1 for

some s ∈ [0, t].

Definition 2.13. Let y0 ∈ Y and (N1, N2) be a basic index pair in R+ ×X
relative to χy0 . Define r := ry0 : R+ ×X → H+(y0) ×X by ry0(t, x) := (yt0, x).

Let K ⊂ ω(y0) × X be an (isolated) invariant set. We say that (N1, N2) is a

(strongly admissible) index pair (3) for (y0,K) if:

(IP4) there is a strongly admissible isolating neighbourhood N of K in H+(y0)

×X; such that N1 \N2 ⊂ r−1(N);

(IP5) there is a neighbourhood W of K in H+(y0) ×X such that r−1(W ) ⊂
N1 \N2.

Definition 2.14. Let (N1, N2) be an index pair in R+ ×X (relative to the

semiflow χ on R+ ×X). For T ∈ R+, we set

N−T2 := N−T2 (N1) := {(t, x) ∈ N1 : ∃ s ≤ T (t, x)χs ∈ N2}.

To define index triples, the notion of an attractor-repeller decomposition is

required.

(3) Every index pair in the sense of Definition 2.13 is assumed to be strongly admissible.
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First of all, α and ω-limes sets can be defined as usual.

α(u) :=
⋂
t∈R−

clH+(y0)×Xu(]−∞, t]), ω(u) :=
⋂
t∈R+

clH+(y0)×Xu([t,∞[).

Based on these definitions, the notion of an attractor-repeller decomposition

can be made precise.

Definition 2.15. Let y0 ∈ Y and K ⊂ H+(y0)×X be an isolated invariant

set. (A,R) is an attractor-repeller decomposition of K if A, R are disjoint isolated

invariant subsets of K and for every solution u : R → K one of the following

alternatives holds true.

(a) u(R) ⊂ A,

(b) u(R) ⊂ R,

(c) α(u) ⊂ R and ω(u) ⊂ A.

We also say that (y0,K,A,R) is an attractor-repeller decomposition.

Finally, index triples (which correspond to attractor-repeller decompositions)

are defined.

Definition 2.16. Let y0 ∈ Y and K ⊂ H+(y0)×X be an isolated invariant

set admitting a strongly admissible isolating neighbourhood N . Suppose that

(A,R) is an attractor-repeller decomposition of K. A triple (N1, N2, N3) is called

an index triple for (y0,K,A,R) provided that:

(a) N3 ⊂ N2 ⊂ N1,

(b) (N1, N3) is an index pair for (y0,K),

(c) (N2, N3) is an index pair for (y0, A).

2.4. Homology Conley index and attractor repeller decomposi-

tions. A connected simple system is a small category such that given a pair

(A,B) of objects, there is exactly one morphism A→ B.

Let y0 ∈ Yc and K ⊂ H+(y0) × X be an isolated invariant set for which

there is a strongly admissible isolating neighbourhood. The categorial Conley

index C(y0,K) (as defined in [7]) is a subcategory of the homotopy category of

pointed spaces and a connected simple system. Its objects are the index pairs

for (y0,K). Roughly speaking, one can think of an index pair with collapsed exit

set as a representative of the index. All of the representatives are isomorphic in

the homotopy category of pointed spaces.

Let (H∗, ∂) denote a homology theory with compact supports [13]. Recall

that H∗ is a covariant function from the category of topological pairs to the

category of graded abelian groups (or modules).

Define the homology Conley index H∗C(y0,K) to be the following connected

simple system: H∗(N1/N2, {N2}) is an object whenever (N1/N2, N2) is an ob-

ject of C(y0,K). The morphisms of H∗C(y0,K) are obtained analogously from
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the morphisms of C(y0,K). Note that we also write H∗(A, a0) := H∗(A, {a0})
provided the meaning is clear.

Let (y0,K,A,R) be an attractor-repeller decomposition. There is a long

exact sequence (see [7])

// H∗C(y0, A) // H∗C(y0,K) // H∗C(y0, R)
∂
// H∗−1C(y0, A) //

where ∂ denotes the connecting homomorphism.

3. The homology Conley index as a direct limit

Let (N1, N2) be a basic index pair. Another basic index pair is (N1([t,∞[),

N2([t,∞[)), where t > 0 is arbitrary and Ni([t,∞[) = {(s, x) ∈ Ni : s ≥ t} for

i ∈ {1, 2}. The inclusion (N1([t,∞[), N2([t,∞[)) ⊂ (N1, N2) induces a homo-

topy equivalence between the (pointed) quotient spaces (N1([t,∞[)/N2([t,∞[),

N2([t,∞[)) and (N1/N2, N2). Apparently, only the index pair at large times is

relevant.

In the present section, this limit behavior will be studied. Finite sections of

an index pair (N1, N2), that is, sets of the form Ni [α, β] = Ni ∩ ([α, β] × X),

in conjunction with appropriate morphisms form a direct system. The index

H∗(N1/N2, N2/N2) is then proved to be isomomorphic to a direct limit obtained

from these sections.

It is interesting to note that this result (in particular Lemma 3.8) resembles

constructing a Conley index for discrete time dynamical systems (see e.g. [8]).

In this paper, however, we will focus on the use of the direct limit representation

of the index as a tool.

For the rest of this section, let Λ be a set and ≤ a partial order on Λ.

Recall [13] that a direct system of sets is a family (Aα)α∈Λ of sets and a family

of functions (fα,β), where α, β ∈ Λ, α ≤ β and fα,β : Aα → Aβ .

The direct limit dirlim(Aα, fα,β) of (Aα, fα,β) is the set of equivalence classes

in
⋃
α∈Λ

{α} × Aα under the relation ∼, which is defined as follows: Let α, β ∈ Λ

and (a, b) ∈ Aα × Aβ . (α, a) ∼ (β, b) if and only if there is a γ ∈ Λ such that

α, β ≤ γ and fα,γ(a) = fβ,γ(b).

Let (X, d) be a complete metric space, and V ⊂ R+ ×X. We set

V (t) := {x : (t, x) ∈ V },

V ([a, b]) := V [a, b] := {(t, x) ∈ V : t ∈ [a, b]}.

Definition 3.1. An index pair (N1, N2) is called regular (with respect to y0)

if the (inner) exit time Ti : N1 → [0,∞], Ti(x) := sup{t ∈ R+ : xχy0 [0, t] ⊂
N1 \N2} is continuous.

The main motivation for regular index pairs are Lemma 3.2 below and

Lemma 3.8 at the end of this section. As stated subsequently in Lemma 3.3,
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it is easily possible to obtain regular index pairs by modifying (enlarging) the

exit set appropriately. The following notational shortcut is used frequently.

H∗[A,B] := H∗(A/B, {B}).

Lemma 3.2. Let (N1, N2) be a regular index pair in R+ ×X. Consider the

direct system (Aα, fα,β) for α, β ∈ Λ, where Λ denotes the set of all non-empty

compact subintervals of R+ ordered by inclusion, and Aα := H∗[N1(α), N2(α)].

For α ⊂ β, let iα,β : (N1(α), N2(α)) → (N1(β), N2(β)) denote the respective

inclusion and set fα,β := H∗(iα,β) : Aα → Aβ. Then, the inclusions

iα : (N1(α), N2(α))→ (N1, N2)

induce an isomorphism

j : dirlim(H∗(N1(α), N2(α)), fα,β)→ H∗[N1, N2], [(α, x)] 7→ H∗(p ◦ iα)(x),

where p : N1 → N1/N2 denotes the canonical projection.

Lemma 3.3. Let (N1, N2) be an index pair for (y0,K). Then there are a con-

stant τ ∈ R+ and a set N ′2 ⊂ N1 such that :

(a) N2 ⊂ N ′2 ⊂ N−τ2 ,

(b) (N1, N
′
2) is a regular index pair for (y0,K).

Proof. By Lemma 4.8 in [7], N−T2 is a neighbourhood of N2 in N1 provided

that T is sufficiently large. It follows that N2 ∩ cl(N1 \N−T2 ) = ∅. By Urysohn’s

lemma, there exists a continuous function f : N1 → [0, 1] such that f(x) = 0

on N2 and f(x) = 1 on cl(N1 \N−T2 ). Set

λ(x) :=

∫ T (x)

0

f(xχy0s) ds,

where T (x) := sup{t ∈ R+ : xχy0 [0, t] ⊂ N1 \ N2}, in order to guarantee that

the integrand is defined.

It is easy to see that λ(x) = 0 on N2 and λ(x) ≤ T (x) for all x ∈ N1. Next,

we are going to prove the left-hand inequality of

(3.1) T (x)− T ≤ λ(x) ≤ T (x).

One has λ(x) ≥ 0 for all x ∈ N1, so let x ∈ N1 with T (x) > T . It follows that

f(xχy0s) = 1 for all s ∈ [0, T (x)− T ], so

T (x)− T =

∫ T (x)−T

0

f(xχy0s) ds ≤ λ(x),

proving (3.1) for all x ∈ N1.

We need to show that λ is continuous. Suppose that xn → x0 is a sequence

and λ(x0) <∞. Assume additionally that T (xn) is unbounded, so it is possible

extract a subsequence x′n with T (x′n) → ∞. We have x′nχy0s ∈ N1 \ N−T2
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for all s < T (x′n) − T and all n ∈ N, so x0χy0s ∈ cl(N1 \ N−T2 ) ⊂ N1 \ N2

for all s ∈ R+, which in turn implies that T (x0) = ∞. However by (3.1),

λ(x0) ≥ T (x0) − T = ∞, which is a contradiction. Consequently, the sequence

(T (xn))n must be bounded.

We further have xnχy0 [0, T (xn)] ⊂ N1 and xnχy0T (xn) ∈ N2 for all n ∈ N.

T (xn) is bounded, so we may choose a subsequence x′n with T (x′n) → t0 < ∞.

It follows that

λ(x′n)→
∫ t0

0

f(xχy0s) ds = λ(x0),

where the last equality stems from the facts that N2 is positively invariant and

f(x) = 0 on N2. This readily implies that λ(xn)→ λ(x0).

Finally, if λ(x0) = ∞, then x0χy0s ∈ N1 \N−T2 for all s ∈ R+. Arguing by

contradiction, assume that there exist a real number t0 and a subsequence x′n
with λ(x′n) ≤ t0 for all n ∈ N. From (3.1), one obtains that x′nχy0tn ∈ N−T2 for

some tn ∈ [0, t0]. Taking subsequences, we may assume without loss of generality,

that tn → t′0 ≤ t0, so x0χy0t
′
0 ∈ N−T2 , implying that λ(x0) ≤ T (x0) ≤ t′0 + T .

This is a contradiction and completes the proof that λ is continuous.

It is easy to see that N ′2 := λ−1([0, T + 1]) is a closed neighbourhood of N−T2

in N1. Moreover, λ is monotone decreasing along the semiflow, so (N1, N
′
2) is an

index pair.

By (3.1), it holds that N ′2 ⊂ N−τ2 , where τ := 2T + 1. It follows from

Lemm 2.7 in [7] that (N1, N
−τ
2 ) is an index pair. In conjunction with Lemma 2.8

in [6], one concludes that (N1, N
′
2) is an index pair for (y0,K).

Let x ∈ N1 \N ′2 and recall the definition Ti(x) := sup{t ∈ R+ : xχy0 [0, t] ⊂
N1 \N ′2} of the inner exit time. We have λ(xχy0Ti(x)) = T + 1 and f(x) = 1 on

N1 \N ′2, so λ(x) = Ti(x) +T + 1. λ is continuous as already proved, so (N1, N
′
2)

is a regular index pair as claimed. �

Using regular index pairs, it is easy to prove the following stronger version

of Corollary 4.9 in [6].

Lemma 3.4. Let y0 ∈ Y and K ⊂ H+(y0) × X an isolated invariant set

admitting a strongly admissible isolating neighbourhood. If (N1, N2) is an index

pair for (y0,K), and h(N1/N2, N2) 6= 0, then there are a t0 ∈ R+ and a solution

u : [t0,∞[→ N1 \N2 of Φy0 .

Proof. In view of Lemma 3.3, one may assume without loss of generality

that (N1, N2) is a regular index pair. Suppose that (N1, N2) is such that for

every t0 ∈ R+ there does not exist a solution u : [t0,∞[→ N1 \N2 of Φy0 . Then

the (continuous) exit time Ti satisfies

Ti(x) = sup
t∈R+

{xχy0 [0, t] ⊂ N1 \N2} <∞ for all x ∈ N1.
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It is easy to see that for each x ∈ N1, xχy0 [0, Ti(x)] ⊂ N1 and xχy0Ti(x) ∈ N2.

One can define H : [0, 1]×N1 → N1 by

H(λ, x) := xχy0(λTi(x)).

H is continuous, and H(λ, x) = x for all (λ, x) ∈ [0, 1] × N2. Consequently,

(N1/N2, N2) and (N2/N2, N2) are homotopy equivalent, completing the proof

because h(N2/N2, N2) = 0. �

Lemma 3.5. Let (N1, N2) be a regular index pair with respect to y0 ∈ Y .

Then the projection p : N1 → N1/N2 induces an isomorphism

p∗ : H∗(N1, N2)→ H∗(N1/N2, N2/N2).

Proof. The (inner) exit time Ti(x) := sup{t ∈ R+ : xχy0 [0, t] ⊂ N1 \N2} is

continuous. Therefore, N ′2 := N−1
2 = {x ∈ N1 : xχy0s ∈ N2 for some s ∈ [0, 1]}

is a neighbourhood of N2 in N1. Define H : [0, 1] × N1 → N1 by H(λ, x) :=

xχy0(λmin{Ti(x), 1}). Using H, we conclude that there are inclusion induced

isomorphisms

H∗(N1, N2) → H∗(N1, N
′
2),

H∗(N1/N2, {N2}) → H∗(N1/N2, N
′
2/N2).

Using the excision property of homology, it follows that p induces an isomorphism

H∗(N1, N
′
2)→ H∗(N1/N2, N

′
2/N2). �

Proof of Lemma 3.2. In view of Lemma 3.5, it is sufficient to consider the

inclusion induced mapping

j′ : dirlim(H∗(N1(α), N2(α)),H∗(iα,β))→ H∗(N1, N2).

j′ is an isomorphism since H is assumed to be a homology theory with compact

supports (see e.g. [13, Theorem 13 in Section 4.8]). �

Lemma 3.6. Let the direct system (Aα, fα,β) be defined as in Lemma 3.2,

a < c, and α := [a, c] ⊂ [b, c] =: β. Then, fα,β is an isomorphism.

Proof. Let h > 0 and γ := [d − h, d] ⊂ R+ be an otherwise arbitrary

interval. Since (N1, N2) is assumed to be a regular index pair, the inner exit

time T (x) := sup{t ∈ R+ : xχy0 [0, t] ⊂ N1 \N2} is continuous.

We can define a continuous mapping H : [0, 1]×N1(γ)→ N1(γ) by

H(λ, (d− t, x)) :=

(d− t, x)χy0(λt) if λt ≤ T (x),

(d− t, x)χy0T (x) if λt > T (x).

It follows that (N ′1(γ), N2(γ)) is a strong deformation retract of (N1(γ), N2(γ)),

where we set

N ′1 := N1({d}) ∪N2.
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Therefore, the inclusion (N ′1(γ), N2(γ)) ⊂ (N1(γ), N2(γ)) defines an isomorphism

H∗(N
′
1(γ), N2(γ))→ H∗(N1(γ), N2(γ)).

Moreover, the inclusion (N ′1(α), N2(α)) → (N ′1(β), N2(β)) induces an isomor-

phism in homology by excision (4).

Summing up, there is a commutative diagram, where every arrow denotes an

isomorphism induced by the inclusion of the respective subspaces:

H∗(N1(α), N2(α))

fα,β

**
H∗(N

′
1(α), N2(α))oo //H∗(N

′
1(β), N2(β)) //H∗(N1(β), N2(β))

�

Lemma 3.7. Let y0 ∈ Y , (N1, N2) be a regular index pair with respect to y0

and ε > 0 be arbitrary (not necessarily small). Let Γ denote the set of all non-

empty compact subintervals of R+ ordered by inclusion. Let α, β ∈ Γ, N−ε2 :=

N−ε2 (N1) and Aεα := H∗(N1(α), N−ε2 (α)). Finally, let fεα,β : Aεα → Aεβ be induced

inclusion. Then, for every pair [a, c] ⊂ [b, c] of subintervals of R+ (5), it holds

that fεα,β is an isomorphism.

Proof. As in the proof of Lemma 3.6, it can be shown that

(N ′1, N
′
2) := (N1({c}) ∪N2([a, c]), N−ε2 ({c}) ∪N2([a, c])

is a strong deformation retract of (N1[a, c], N−ε2 ([a, c])).

We have N−ε2 = T−1([0, ε]), where T : N1 → [0,∞] denotes the inner exit

time T (x) := sup{t ∈ R+ : xχy0 [0, t] ⊂ N1 \ N2}. Due to the continuity of T ,

N
−ε/2
2 (N1)∩N ′1 is a neighbourhood of N2 in N ′1. Hence, (N1({c}), N−ε2 ({c})) ⊂

(N ′1, N
′
2) induces an isomorphism in homology by excision. Further details are

omitted. �

Lemma 3.8. Let (N1, N2) be a regular index pair with respect to y0 ∈ Y for

ε > 0, and let the direct sytem (Aεα, fα,β) be defined as in Lemma 3.7. Suppose

we are given a strictly monotone increasing sequence (an)n in R+ with an →∞.

Define a direct system (Bεk, gk,l), where k, l ∈ N, k ≤ l and Bεk := Aε{ak}. More-

over, for k ≤ l and in view of Lemma 3.7, we can define

gk,l := f−1
{al},[ak,al] ◦ f{ak},[ak,al].

Then, the inclusions ik : (N1({ak}), N−ε2 ({ak})→ (N1, N
−ε
2 ) induce an isomor-

phism

g : dirlim(Bεk, gk,l)→ H∗[N1, N
−ε
2 ], [k, x] 7→ H∗(p ◦ ik)(x),

(4) Here, the assumption a 6= c is used.

(5) In contrast to Lemma 3.6, the case α = {c} is included.
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where p is the canonical projection onto the quotient space as given by Lemma 3.5.

Proof. First of all, we need to prove that g is well defined. Let there be

given two representations [k, x] = [l, x′] of the same element in dirlim(Bεk, gk,l),

that is, gk,l(x) = x′. The following diagram with inclusion induced morphisms

is commutative.

Bεk
//

gk,l

((

H∗(ik)
((

H∗(N1([ak, al]), N
−ε
2 ([ak, al]))

��

Bεl
oo

H∗(il)
vv

H∗(N1, N2)

Consequently, g is well defined.

Let the isomorphism j : dirlim(Aεα, fα,β) → H∗[N1, N
−ε
2 ] be given by Lem-

ma 3.2 with (N1, N2) replaced by (N1, N
−ε
2 ). It is clear that j([ak, x]) = g([k, x])

for all [k, x] ∈ dirlim(Bεk, gk,l). Letting y ∈ H∗(N1, N
−ε
2 ), there exists [α, x] ∈

dirlim(Aεk, fα,β) such that j([α, x]) = y. We can assume, without loss of gene-

rality, that α = [ak, al] for k, l ∈ N with k ≤ l. It follows from Lemma 3.7

that j([α, x]) = j([{al}, x′]) = y for some x′ ∈ Aε{ak} = Bεk. Thus, g is an

epimorphism.

Assume that g([k, x]) = 0. Since j is an isomorphism, it follows that [{ak}, x]

= 0, so there exists a compact interval [a, b] with a ≤ ak ≤ b such that

f{ak},[a,b](x) = 0. We even have f{ak},[a,al](x) = f[ak,al],[a,al] ◦ f{ak},[ak,al](x) = 0

provided that b ≤ al, so f{ak},[ak,al] = 0. From Lemma 3.7, one obtains

gk,l(x) = f−1
{al},[ak,al] ◦ f{ak},[ak,al](x) = 0, so [k, x] = [l, gk,l(x)] = [l, 0] = 0.

We have proved that g is a monomorphism. �

4. Uniformly connected attractor-repeller decompositions

In analogy to the previous section, let V ⊂ Y ×X and define (6)

V (y) := {x : (y, x) ∈ V }, V (U) := V ∩ (U ×X) where U ⊂ Y.

Definition 4.1. Let (y0,K,A,R) be an attractor-repeller decomposition.

We say that A and R are not uniformly connected (in K) if there exists an

y ∈ ω(y0), an open neighbourhood UA ofA inH+(y0)×X and an open neighbour-

hood UR of R in H+(y0)×X such that UA∩UR = ∅ and K(y) ⊂ UA(y)∪UR(y).

Otherwise, (y0,K,A,R) is called uniformly connected.

The following theorem is the main result of this section, and the rest of the

section is devoted to its proof. The strategy is to exploit Lemma 3.8 together

with the assumption that A and R are not uniformly connected.

(6) For arbitrary spaces Y and X, in particular also Y = R+.
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Theorem 4.2. Let (y0,K,A,R) be an attractor-repeller decomposition, and

let there exist a strongly admissible isolating neighbourhood N ⊂ H+(y0) × X
for K. The connecting homomorphism of the associated attractor-repeller se-

quence is trivial if (y0,K,A,R) is not uniformly connected.

Lemma 4.3. Let (y0,K,A,R) be an attractor-repeller decomposition such

that A and R are not uniformly connected. Suppose that K is compact (7). Then

there are y′ ∈ ω(y0), an open neighbourhood UA ⊂ H+(y0) × X of A, an open

neighbourhood UR ⊂ H+(y0) ×X of R and a neighbourhood U of y′ in H+(y0)

such that UA ∩ UR = ∅ and K(y) ⊂ UA(y) ∪ UR(y) for all y ∈ U .

Proof. Since A and R are not uniformly connected, there must exist a y′ ∈
ω(y0), an open neighbourhood UA ⊂ H+(y0)×X of A and an open neighbour-

hood UR ⊂ H+(y0)×X of R such that UA∩UR = ∅ and K(y′) ⊂ UA(y′)∪UR(y′).

Suppose that the lemma does not hold. Then there is a sequence (yn, xn) ∈ K
such that yn → y′ and xn ∈ K(yn) \ (UA ∪ UR). Due to the compactness of K,

we may assume without loss of generality that (yn, xn) → (y′, x0) ∈ K. Thus,

(y′, x0) ∈ K \ (UA ∪ UR), which is a contradiction. �

Let y′ ∈ ω(y0), U ⊂ H+(y0) a closed neighbourhood of y′, UA ⊂ H+(y0)×X
an open neighbourhood of A and UR ⊂ H+(y0) × X an open neighbourhood

of R for which the conclusions of Lemma 4.3 hold. There is a sequence tn →∞
in R+ such that an := ytn0 ∈ U for all n ∈ N. By the choice of U , one has

UA(an) ∩ UR(an) = ∅ and K(an) ⊂ UA(an) ∪ UR(an) for all n ∈ N.

Lemma 4.4. Let N ′ε := clH+(y0)×X
⋃

(y,x)∈K
Bε(y, x). There is a real ε0 > 0

such that for all ε < ε0, N ′ε ⊂ H+(y0)×X is an isolating neighbourhood for K

such that N ′ε(U) ⊂ UA(U) ∪ UR(U).

Proof. It is sufficient to prove that for all ε > 0 sufficiently small, N ′ε(U) is

an isolating neighbourhood for K in H+(y0)×X and N ′ε(U) ⊂ UA∪UR. K is (by

assumption) an isolated invariant set admitting a strongly admissible isolating

neighbourhood, so for small ε > 0, N ′ε is an isolating neighbourhood for K.

Suppose that N ′ε(U) ⊂ UA ∪ UR does not hold for small ε > 0. Using the

compactness of K and the closedness assumption on U , one concludes that there

is a point (y, x) ∈ K(U) \ (UA ∪ UR) = ∅, which is a contradiction. �

Fix an isolating neighbourhood N ′ ⊂ H+(y0)×X for K for which the con-

clusions of Lemma 4.4 hold. Recall that r : R+ × X → H+(y0) × X is defined

by r(t, x) := (yt0, x). By using Lemma 4.3 in [7], one obtains an index triple

(N1, N2, N3) for (y0,K,A,R) with N1 ⊂ r−1(N ′).

(7) This follows from the assumptions of Theorem 4.2.
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Lemma 4.5. Letting N̂ ′ε := r−1(N ′ε), there exist reals ε > 0, T > 0 such that

(4.1) N̂ ′ε \N−T2 (N1) ⊂ r−1(UR).

Proof. Suppose to the contrary that there exists sequences (εn)n in R+ and

(tn, xn) in clR+×X
(
N̂ ′εn\N

−n
2 (N1)

)
with εn → 0 and r(tn, xn) 6∈ UR for all n ∈ N.

As εn → 0, there is a subsequence (tn(k), xn(k))k such that r(tn(k), xn(k)) →
(y, x) ∈ K \ UR.

Let NR be an isolating neighbourhood for R in H+(y0)×X with N1 \N2 ⊂
r−1(NR). We have (y, x)πt ∈ NR for all t ∈ R+, so (y, x) ∈ R \ UR = ∅. �

Lemma 4.6. For arbitrary ε > 0, there is an index triple (L1, L2, L3) for

(y0,K,A,R) such that (L1, L2, L3) ⊂
(
N̂ ′ε ∩ N1, N2, N

−T
3

)
for some T = T (ε)

in R+.

Proof. By choosing ε smaller if required we can assume without loss of

generality that N̂ ′ε and N3 are disjoint. By virtue of Theorem 2.9 in [7], there

is an index pair (L1, L3) for (y0,K) with (L1, L3) ⊂
(
N̂ ′ε ∩N1, N

−T
3

)
for real T

sufficiently large. Setting L2 := L1 ∩N2, it remains to prove that (L2, L3) is an

index pair for (y0, A).

(IP2) Let x ∈ L2 and xχt 6∈ L2 for some t > 0. We must have xχt 6∈ N2 or

xχt 6∈ L1. Thus either xχs ∈ L3 for some s ∈ [0, t] or xχ [0, t] ⊂ L1 and xχs 6∈ N1

for some s ∈ [0, t]. The second case leads immediately to a contradiction since

L1 ⊂ N1.

(IP3) Let x ∈ L2 and xχt 6∈ L2 for some t > 0. Either xχt 6∈ N2, so

xχs ∈ (R+ × X) \ N2 for some s ∈ [0, t], or xχt 6∈ L1. In the second case, it

follows that xχs ∈ (R+ ×X) \ L2 for some s ∈ [0, t].

(IP4) There is an isolating neighbourhood M1 (resp. M2) for K (resp. A)

with clR+×X(L1 \L3) ⊂ r−1(M1) (resp. clR+×X(N2 \N3) ⊂ r−1(M2)). Another

isolating neighbourhood for A is M3 := M1 ∩M2. One has clR+×X(L2 \ L3) ⊂
clR+×X(L1 \ L3) ⊂ r−1(M1) and, using the fact that L2 and N3 are disjoint,

clR+×X(L2 \ L3) ⊂ clR+×X(N2 \ N3) ⊂ r−1(M2). Combining the inclusions

yields clR+×X(L2 \ L3) ⊂ r−1(M1) ∩ r−1(M2) = r−1(M1 ∩M2).

(IP5) There is a neighbourhood U1 (resp. U2) of K (resp. A) such that

r−1(U1) ⊂ L1 \ L3 (resp. r−1(U2) ⊂ N2 \N3 ⊂ N2). U3 := U1 ∩ U2 is a neigh-

bourhood of A and r−1(U3) ⊂ (L1 \ L3) ∩N2. �

By redefining (N1, N2, N3) and using Lemma 4.6 together with Lemma 4.4,

Lemma 4.5 and Lemma 4.5 in [7], one can assume that (N1, N2, N3) is an index

triple for (y0,K,A,R) such that

N1(r−1(U)) ⊂ r−1(UA) ∩ r−1(UR),(4.2)

N1 \N2 ⊂ r−1(UR),
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and thus also

(4.3) N1 ∩ r−1(UA) ⊂ N2.

Lemma 4.7. Let (N1, N2, N3) be an index triple for (y0,K,A,R). Then there

is a set N ′3 ⊃ N3 such that (N1, N
′
3) is a regular index pair for (y0,K), N ′3 ⊂

N−τ3 (N1) for some τ ≥ 0 and (N−τ2 (N1), N ′3) is a regular index pair for (y0, A).

Proof. It follows from Lemma 3.3 that there exist a set N ′3 ⊃ N3 and

a constant τ ∈ R+ such that (N1, N
′
3) is a regular index pair for (y0,K) and

N3 ⊂ N ′3 ⊂ N−τ3 (N1). This means in particular that the (inner) exit time

T : N1 → [0,∞], T (x) := sup{t ∈ R+ : xχy0 [0, t] ⊂ N1 \N ′3} is continuous.

One needs to prove that (N−τ2 (N1), N ′3) is an index pair.

(IP2) Let x ∈ N−τ2 (N1) and xχy0t 6∈ N−τ2 (N1) for some t ≥ 0. One cannot

have xχy0 [0, t] ⊂ N1, so xχy0s ∈ N ′3 for some s ≤ t.
(IP3) Let x ∈ N ′3 and xχy0t 6∈ N ′3. It follows that xχy0s ∈ (R+ ×X) \N1 ⊂

(R+ ×X) \N−τ2 (N1) for some s ∈ ]0, t] because (N1, N
′
3) is an index pair.

By Lemma 4.5 in [7], (N−τ2 (N1), N3) and (N−τ2 (N1), N−τ3 (N1)) are index

pairs for (y0, A). By using the sandwich lemma [7, Lemma 2.8], one concludes

that (N−τ2 (N1), N ′3) is an index pair for (y0, A).

Finally, the exit time with respect to the index pair (N−τ2 (N1), N ′3) is the

restriction of T to N−τ2 (N1) and therefore continuous that is, the index pair is

regular. �

Having proved Lemma 4.7, we can assume without loss of generality that

(N1, N2, N3) is an index triple, satisfies (4.2), (4.3), and (N1, N3) as well as

(N2, N3) are regular index pairs (8).

By using [7, Theorem 2.9], we can further assume that there exists an index

pair (L1, L2) for (y0, A) such that L1 ⊂ r−1(UA).

We are now in a position to complete the proof of Theorem 4.2. In view of

the hypotheses of Lemma 3.8, one chooses a small real ε > 0, which is unrelated

to the previous uses of this letter.

Let ι : H∗[L1, L2]→ H∗[N
−ε
2 , N−ε3 ] be inclusion induced. It is clear that ι is

an isomorphism. Moreover, the following long exact sequence

// H∗[N1, N
−ε
3 ] // H∗[N1, N

−ε
2 ]

δ
//

ι−1◦δ
##

H∗−1[N−ε2 , N−ε3 ]
i
// H∗−1[N1, N

−ε
3 ] //

H∗−1[L1, L2]

ι

OO

(8) One could say that (N1, N2, N3) is a regular index triple.
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associated with the index triple (N1, N
−ε
2 , N−ε3 ) gives rise to the connecting

homomorphism. The above sequence is exact, so in order to prove δ = 0

it is sufficient to prove that i ◦ ι and thus also i is a monomorphism, where

i : H∗[N
−ε
2 , N−ε3 ]→ H∗[N1, N

−ε
3 ] is inclusion induced.

Let (an)n be a sequence of reals such that an → ∞ and yan0 ∈ U for all

n ∈ N. By using Lemma 3.8, a commutative diagram

H∗[L1, L2]
i◦ι

// H∗[N1, N
−ε
3 ]

dirlim(Bεk, gk,l) j
//

g

OO

dirlim(B̃εk, g̃k,l)

g̃

OO

is obtained. Recall that by definition Bεk := H∗(L1({ak}), L3({ak}) and B̃εk :=

H∗(N1({ak}), N−ε3 ({ak})). Let jk : Bεk → B̃εk be inclusion induced and set

j([k, x]) := [k, jkk(x)] for x ∈ Bεk. We omit the proof that j is well-defined.

By Lemma 3.8, g and g̃ are isomorphisms. Thus it is sufficient to prove

that j is a monomorphism. Suppose j([k0, x]) = [k0, jk0(x]) = [k0, y] = 0 for

x ∈ Bεk0 , y ∈ B̃εk0 and k0 ∈ N . There is an l ∈ N, l ≥ k0 such that g̃k0,l(y) = 0.

Furthermore, jl ◦ gk0,l(x) = g̃k0,l(y) = 0. We can hence assume without loss of

generality that jk0(x) = 0.

For brevity, a couple of notational shortcuts are introduced: M1 :=N1({ak0}),
M2 := N−ε2 ({ak0}), M3 := N−ε3 ({ak0}), ÛA := r−1(UA) and ÛR := r−1(UR). It

follows from (4.2) and the choice of the sequence ak that

H∗(M1 ∩ ÛA,M3 ∩ ÛA)⊕H∗(M1 ∩ ÛR,M3 ∩ ÛR) ' H∗(M1,M3).

Let the projection p : H∗(M1,M3) → H∗(M1 ∩ ÛA,M3 ∩ ÛA) be defined by the

above direct sum decomposition.

We obtain once again a commutative diagram with inclusion induced homo-

morphisms and the projection p introduced above.

H∗(L1({ak0}), L2({ak0}))
h1
//

jk0

**

H∗(M2,M3)
h2

// H∗(M1,M3)

p

��

H∗(M1 ∩ ÛA,M3 ∩ ÛA)

h3

ii

It follows that h1(x) = h3 ◦ p ◦ h2 ◦ h1(x) = 0. Moreover, h1(x) = ι(g([k, x])),

implying that [k, x] = 0 in dirlim(Bεk, gk,l) since ι and g are isomorphisms. The

proof of Theorem 4.2 is complete. �
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