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EXTREME PARTITIONS OF A LEBESGUE SPACE

AND THEIR APPLICATION IN TOPOLOGICAL DYNAMICS

Wojciech Bu latek — Brunon Kamiński — Jerzy Szymański

Abstract. It is shown that any topological action Φ of a countable or-

derable and amenable group G on a compact metric space X and every

Φ-invariant probability Borel measure µ admit an extreme partition ζ of
X such that the equivalence relation Rζ associated with ζ contains the

asymptotic relation A(Φ) of Φ. As an application of this result and the

generalized Glasner theorem it is proved that A(Φ) is dense for the set
Eµ(Φ) of entropy pairs.

1. Introduction

In the paper we consider topological dynamical systems on a compact metric

space being actions of a countable amenable and orderable (CAO) group.

The simplest class of CAO groups applied in topological dynamics is formed

by the groups Zd, d ≥ 1. One can show that all finitely generated, torsion-free

nilpotent groups are CAO ([3], [7]).

In our further considerations we shall assume that the given compact metric

space is equipped with a Borel measure invariant with respect to the considered

action. Measurable partitions of the space form a useful tool in the theory of

dynamical systems.

In particular extreme partitions play an important role in the entropy theory.

The existence of extreme partitions for Zd-actions has been proved by Rokhlin

2010 Mathematics Subject Classification. Primary: 37B05, 37B40; Secondary: 28D20.
Key words and phrases. Topological G-action; relative entropy; entropy pair; asymptotic

relation; relative Pinsker σ-algebra.

447



448 W. Bu latek — B. Kamiński — J. Szymański

and Sinai (d = 1) and by the second author (for arbitrary d ≥ 2) (cf. [12],

[8]). Golodets and Sinelshchikov ([7]) have shown this for actions of an arbitrary

finitely generated, torsion-free nilpotent group.

Blanchard, Host and Ruette ([1]) proved a strengthened form of the Rokhlin-

Sinai theorem for Lebesgue spaces being compact metric spaces equipped with

a Borel probability invariant measure. Namely, they showed the existence of

an extreme partition (the authors used the name “excellent”) such that the

equivalence relation associated with this partition is a subset of the asymptotic

relation.

The aim of our paper is to extend the results of [1] to the case of any CAO

group. In [2] we applied measurable partitions which are “almost” extreme to

study the asymptotic relation of a topological dynamical system (X,Φ) where

Φ is a topological action of a CAO group G on a compact metric space X. It is

shown among other things that Φ is deterministic if A(Φ) is a diagonal and that

A(Φ) is dense if Φ admits an invariant measure with full support and completely

positive entropy.

Our first main result, Theorem 3.6, says that for any topological action Φ and

any Φ-invariant measure µ there exists an extreme partition ζ of X such that the

equivalence relation Rζ associated with ζ is contained in A(Φ). Applying this

and the generalized Glasner theorem (Proposition 3.8) we relate A(Φ) to the set

Eµ(Φ). Namely, we show (Theorem 3.9) that Eµ(Φ) is contained in the closure

of A(Φ). As consequences of this we obtain the two results of [2] mentioned

above.

It is worth to point out that A(Φ) may be used to characterize zero entropy

actions (see [4] for G = Z).

2. Preliminaries

Let (X, d) be a compact metric space and suppose µ is a Borel probabi-

lity measure on X. We assume X is equipped with the σ-algebra B being the

completion of the Borel σ-algebra with respect to µ. The extension of µ to B
will be also denoted by µ. We associate with µ its support Suppµ and the set

S(µ) = {(x, x) : x ∈ Suppµ}.
For a σ-algebra A ⊂ B we denote by µ× µ

A
the relative self product of µ with

respect to A, i.e.(
µ× µ
A

)
(A×B) =

∫
X

E(1A|A)E(1B |B) dµ, for A,B ∈ B.

We denote by M(X) the lattice of measurable partitions of (X,B, µ). For the

definition and basic properties of M(X) we refer the reader to [10].

Let F(X) ⊂ M(X) denote the set of finite partitions. For any ξ ∈ M(X)

we denote by Rξ ⊂ X × X the equivalence relation determined by ξ and by ξ̂
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the σ-algebra of ξ-sets, i.e. measurable unions of elements of ξ. We denote by N
the σ-algebra corresponding to the trivial partition νX of X.

Let ξ, η ∈ M(X). The relation ξ ≺ η means that any atom of η is included

in some atom of ξ. If ξ ≺ η then obviously ξ̂ ⊂ η̂.

For a countable family {ξt : t ∈ T} ⊂ M(X) we denote by
∨
t∈T

ξt its join. It

is known ([10]) that
∨
t∈T

ξt ∈ M(X). Moreover, if the elements of ξt, t ∈ T are

Borel sets then the elements of
∨
t∈T

ξt are so.

Let 〈G, · 〉 be a countable amenable group equipped with a set Γ ⊂ G called

an algebraic past satisfying the following conditions:

• Γ ∩ Γ−1 = ∅,
• Γ ∪ Γ−1 ∪ {e} = G,

• Γ · Γ ⊂ Γ,

• gΓg−1 ⊂ Γ,

where e is the unity element of G, g ∈ G.

For a finite set A ⊂ G we denote by |A| the number of elements of A.

It is well known that the amenability of G is equivalent to the existence

of a Følner sequence (An) of finite subsets of G, i.e. a sequence satisfying the

condition

lim
n→∞

|g ·An ∩An|
|An|

= 1 for any g ∈ G.

It is also known (cf. [9]) that every countable amenable group has a Følner

sequence (An) such that

A−1
n = An, An ⊂ An+1, n ≥ 1,

∞⋃
n=1

An = G.

The existence of an algebraic past in G is equivalent to the fact that G is order-

able, i.e. there exists in G a linear order < compatible with the group operation.

We have Γ = {g ∈ G : g < e}. It is well-known that all free groups are orderable

and abelian groups are orderableif and only if they are torsion free ([5]).

LetH(X) be the group of all homeomorphisms ofX and let Φ be a topological

action of G on X, i.e. a homomorphism of G into H(X). Let Φg, g ∈ G be the

homeomorphism corresponding to g. We denote by P(X,Φ) the set of all Φ-

invariant probability measures. Given a measure µ ∈ P(X,Φ) and a partition

ξ ∈ F(X) we denote be Hµ(ξ) the entropy of ξ and we use the symbols hµ(Φ)

and πµ(Φ) for the entropy and the Pinsker σ-algebra of Φ, respectively.

We call a pair of points (x, x′) ∈ X ×X, x 6= x′ a measure-theoretic entropy

pair for Φ if for any Borel partition ξ = {F, F c} of X such that x ∈ Int(F ) 6=
∅ 6= Int(F c) 3 x′ it holds hµ(Φ, ξ) > 0. We denote by Eµ(Φ) the set of measure-

theoretic entropy pairs for Φ.
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Let us denote λµ = µ× µ
πµ(Φ)

and Λµ = Supp λµ. For a given topological

G-action Φ on X the relation

A(Φ) =
{

(x, x′) ∈ X ×X : lim
g∈Γ−1

d(Φgx,Φgx′) = 0
}

is said to be the asymptotic relation of Φ, where the above limit has the following

meaning:

∀ ε > 0 ∃ g0 ∈ Γ−1 ∀ g > g0 d(Φgx,Φgx′) < ε.

It is clear that A(Φ) is an equivalence relation.

3. Main results

Let µ ∈ P(X,Φ) be fixed. From now on, up to Proposition 3.8, we omit the

subscript µ in the notation of entropies Hµ, hµ and the Pinsker σ-algebra πµ.

For a partition ξ ∈M(X) and a set A ⊂ G we define

ξ(A) =
∨
g∈A

Φgξ.

We put ξ− = ξ(Γ), ξΦ = ξ(G).

Let σ ∈ M(X) be totally invariant, i.e. Φgσ = σ, g ∈ G. We will make use

of the following result given in [2].

Proposition 3.1. For any Følner sequence (An) in G and any ξ ∈ F(X) it

holds

lim
n→∞

1

|An|
H(ξ(An)|σ̂) = H

(
ξ|ξ̂− ∨ σ̂

)
.

We call this limit the mean σ-relative entropy of ξ with respect to Φ and we

denote it by h(ξ,Φ|σ).

By π(Φ|σ) we denote the relative Pinsker σ-algebra of Φ with respect to

σ, i.e. the join of all partitions ξ ∈ F(X) with h(ξ,Φ|σ) = 0. For the trivial

partition σ = νX of X we have h(ξ,Φ|ν) = h(ξ,Φ) and π(Φ|σ) = π(Φ).

Applying the methods given in [2] to the relative mean entropy instead of

the mean entropy one can prove the following relative version of the generalized

Pinsker formula ([2, Lemma 2]) and its corollary.

Lemma 3.2 (Relative Pinsker formula). For any ξ, η ∈ F(X) we have

h(ξ ∨ η,Φ|σ) = h(ξ,Φ|σ) +H
(
η|η̂− ∨ ξ̂Φ ∨ σ

)
.

Corollary 3.3. For any ξ, η, ζ ∈ F(X) with ξ � η we have

lim
g∈Γ

H
(
ξ|η̂− ∨ Φg ζ̂ − ∨ σ̂

)
= H(ξ|η̂− ∨ σ̂).

In the sequel we shall also need the following

Remark 3.4. π(Φ|π(Φ)) = π(Φ).
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Proof. If ξ ∈ F(X) is measurable with respect to π(Φ) then H(ξ|π(Φ)) = 0.

Hence 0 = H(ξ|ξ− ∨ π(Φ)) = h(ξ,Φ|π(Φ)), i.e. ξ is measurable with respect to

π(Φ|π(Φ)).

Let now ξ ∈ F(X) be measurable with respect to π(Φ|π(Φ)), i.e. h(ξ,Φ|π(Φ))

= 0. Let ηn ∈ F(X), n ∈ N, be such that ηn ↗ π(Φ). Therefore h(ηn,Φ) = 0,

n ∈ N. Hence

H(ηn|η−n ∨ ξΦ) = 0, n ∈ N.

Applying the generalized Pinsker formula we get, for n ∈ N,

h(ξ,Φ) = h(ξ,Φ) +H(ηn|η−n ∨ ξΦ) = h(ξ ∨ ηn,Φ) +H(ξ ∨ ηn|ξ− ∨ η−n )

= H(ξ|ξ− ∨ η−n ) +H(ηn|η−n ∨ ξ ∨ ξ−) = H(ξ|ξ− ∨ η−n ).

Taking the limit as n→∞ we get by the assumption

h(ξ,Φ) = H(ξ|ξ− ∨ π(Φ)) = h(ξ, φ|π(Φ)) = 0,

i.e. ξ is measurable with respect to π(Φ) which finishes the proof. �

Definition 3.5. A partition ζ ∈M(X) is said to be extreme for Φ if

(a) Φgζ � ζ, g ∈ Γ,

(b)
∨
g∈G

Φg ζ̂ = B,

(c)
⋂
g∈G

Φg ζ̂ = π(Φ).

Now we shall show our first main result.

Theorem 3.6. For any measure µ ∈ P(X,Φ) there exists an extreme parti-

tion ζ ∈M(X) with

(d) Rζ ⊂ A(Φ).

Proof. We start (as in the proof of Theorem 4.2 from [2]) with a sequence

(αn) ⊂ F(X) of Borel measurable partitions such that

(3.1) αn � αn+1, n ∈ N and diamαn → 0 as n→∞.

Let σ ∈M(X) be a totally invariant partition. Applying a relativized technique

of Rokhlin (cf. [2]) with respect to σ̂, we get a new sequence (ξp) ⊂ F(X) given

by ξp =
p∨
k=1

Φg
−1
k αk where (gk) ⊂ G is chosen in such a way that

(3.2) H
(
ξp|ξ̂−∨p σ̂)−H(ξp|ξ̂−p+t ∨ σ̂) <

1

p
for any p, t ≥ 1.

We consider the following measurable partitions

ξ =

+∞∨
p=1

ξp, η = ξ−.
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Taking in (3.2) limit as t→∞ we obtain

(3.3) H
(
ξp|ξ̂−p ∨ σ̂

)
−H(ξp|η̂ ∨ σ̂) ≤ 1

p
, p ≥ 1.

It is clear that

(3.4) Φgη � η, g ∈ Γ.

As a consequence of (3.1) we obtain

(3.5)
∨
g∈G

Φg η̂ = B

in the same way as in the proof of Theorem 4.2 from [2].

Now we shall show that

(3.6)
⋂
g∈G

Φg(η̂ ∨ σ̂) ⊂ π(Φ|σ).

Let α ∈ F(X) be measurable with respect to
⋂
g∈G

Φg(η̂∨σ̂). Applying Lemma 3.2

we have

h(α ∨ ξp,Φ|σ) = h(α,Φ|σ) +H
(
ξp|ξ̂−p ∨ α̂Φ ∨ σ̂

)
= h(ξp,Φ|σ) +H

(
α|α̂− ∨ (ξ̂p)Φ ∨ σ̂

)
.

Hence

h(α,Φ|σ) = h(ξp,Φ|σ)−H(ξp|ξ̂−p ∨ α̂Φ ∨ σ̂) +H(α|α̂− ∨ (ξ̂p)Φ ∨ σ̂).

Using the inclusion α̂Φ ⊂
⋂
g∈G

Φg(η̂∨ σ̂) ⊂ η̂∨ σ̂ and applying the inequality (3.3)

we have

h(α,Φ|σ) ≤ h(ξp,Φ|σ)−H
(
ξp|η̂ ∨ σ̂

)
+H

(
α|α̂− ∨ (ξ̂p)Φ ∨ σ̂)

= H(ξp|ξ̂−p ∨ σ̂)−H(ξp|η̂ ∨ σ̂) +H
(
α|α̂− ∨ (ξ̂p)Φ ∨ σ̂

)
≤ 1

p
+H

(
α|α̂− ∨ (ξ̂p)Φ ∨ σ̂

)
.

Taking the limit as p → ∞ and applying (3.5) we obtain h(α,Φ|σ) = 0, i.e. α

is measurable with respect to π(Φ|σ), which proves (3.6). Now, by the same

reasoning as in the proof of Theorem 4.2 from [2], we get Rη ⊂ A(Φ).

Let now σ = π(Φ) and ζ = η ∨ σ = η ∨ π(Φ) . From (3.4) and (3.5) it follows

that (a) and (b) are satisfied and

π(Φ) = σ ⊂
⋂
g∈G

Φg ζ̂ ⊂ π(Φ|σ) = π(Φ|π(Φ)) = π(Φ),

i.e. (c) is also true. Since Rζ ⊂ Rη we have Rζ ⊂ A(Φ) which finishes the proof.�

To prove Proposition 3.8 we shall need the following
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Remark 3.7. For any σ-algebra A and a measure µ ∈ P(X,Φ) we have

∆ ∩ Suppµ× µ
A

= S(µ).

Proof. Assume first that (x, x) ∈ ∆ ∩ Suppµ× µ
A

and (x, x) /∈ S(µ), i.e.

x /∈ Suppµ. Therefore there exists an open neighbourhood U of x such that

µ(U) = 0. Therefore

0 = µ(U) =

∫
X

E(1U |A)dµ,

thus E(1U |A) = 0 for µ-almost every x ∈ X. But by the assumption we have

0 <
(
µ× µ
A

)
(U × U) =

∫
X

E2(1U |A) dµ =

∫
X

E(1U |A) dµ.

This contradiction gives x ∈ Suppµ.

Now let (x, x) ∈ S(µ) and (x, x) /∈ Suppµ× µ
A

. Then there exists an open

set G ⊂ X×X such that (x, x) ∈ G and (µ× µ
A

)(G) = 0. Let U ⊂ X be an open

neighbourhood of x such that U × U ⊂ G. Thus

0 =
(
µ× µ
A

)
(U × U) =

∫
X

E(1U |A) dµ = µ(U)

which gives us a contradiction since x ∈ Suppµ. �

Proposition 3.8. For any measure µ ∈ P(X,Φ)

Λµ = Eµ(Φ) ∪ S(µ).

Proof. The idea of the proof is the same as in the proof of Theorem 1 in [6].

We give here the sketch of the proof for the convenience of the reader.

First one shows the inclusions

(3.7) Λµ ⊂ Eµ(Φ) ∪∆ ⊂ Λµ ∪∆.

The proof of the first inclusion is based on the observation that if Q is a Borel set

and ξ = {Q,Qc} is the partition ofX induced byQ then the equality hµ(ξ,Φ) = 0

is equivalent to the measurability of Q with respect to the Pinsker σ-algebra

πµ(Φ).

In order to show the second inclusion one proves that if x, y ∈ X, x 6= y and

A, B are Borel sets such that x ∈ A, y ∈ B, λµ(A × B) = 0 then one can find

a Borel set Q with

A ⊂ Q, B ⊂ Qc, hµ(η,Φ) = 0, where η = {Q,Qc}.

Namely, one takes Q = A in the case µ(A) = 0 and Q = A ∪ (F \ B) when

µ(A) > 0 where F = {E(1A|πµ(Φ)) > 0}.
Proposition 3.8 easily follows now from (3.7) and Remark 3.7 for A =

πµ(Φ). �
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Theorem 3.9. For any measure µ ∈ P(X,Φ) the set A(Φ) of asymptotic

pairs is dense in the set Eµ(Φ) of entropy pairs, i.e. Eµ(Φ) ⊂ A(Φ).

Proof. Let µ ∈ P(X,Φ) and ζ ∈ M(X) be an extreme partition given in

Theorem 3.6. By (c) we have ⋂
g∈G

Φg ζ̂ = πµ(Φ).

Let g ∈ G and let λg denote the relative product measure λg = µ ×
Φg ζ̂

µ. Since the

net (Φg ζ̂)g∈G of sub-σ-algebras of B is decreasing, the martingale convergence

theorem (cf. [2, Theorem 3.4]) implies that the measure λµ = µ ×
πµ(Φ)

µ is the

weak limit of (λg, g ∈ G), i.e.

(3.8) λµ = lim
g∈G

λg.

Since we deal with a closed set, we have

λµ(A(Φ)) ≥ lim sup
g∈G

λg(A(Φ)).

Applying Lemma 6 of [1] we obtain
(
µ×
ζ̂

µ
)
(Rζ) = 1. Therefore applying (d) we

get
(
µ×
ζ̂

µ
)
(A(Φ)) = 1. The fact that A(Φ) is Φ× Φ-invariant implies

(
µ ×

Φg ζ̂

µ
)
(A(Φ)) = 1, for any g ∈ G.

Thus (3.8) gives λµ(A(Φ)) = 1, i.e. Λµ ⊂ A(Φ). Hence by Proposition 3.8 we

get Eµ(Φ) ⊂ A(Φ) which completes the proof. �

As an easy consequence of Theorem 3.9 we have the following

Corollary 3.10 ([2, Proposition 3]). If µ ∈ P(X,Φ) has full support and the

dynamical system (X,B, µ,Φ) has completely positive entropy, i.e. πµ(Φ) = N
then A(Φ) is a dense subset of X ×X.

Proof. The assumptions and Remark 3.7 imply

Λµ = Suppµ× µ
πµ(Φ)

= Suppµ× µ = X ×X and S(µ) = ∆.

Therefore Theorem 3.9 and Propositon 3.8 give

A(Φ) ⊃ Eµ(Φ) ∪∆ = Eµ(Φ) ∪ S(µ) = Λµ = X ×X. �
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