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ABOUT POSITIVE W 1,Φ
loc (Ω)-SOLUTIONS

TO QUASILINEAR ELLIPTIC PROBLEMS

WITH SINGULAR SEMILINEAR TERM

Carlos Alberto Santos — José Valdo Gonçalves

Marcos Leandro Carvalho

Abstract. This paper deals with the existence, uniqueness and regularity

of positive W 1,Φ
loc (Ω)-solutions of singular elliptic problems on a smooth

bounded domain with Dirichlet boundary conditions involving the Φ-

Laplacian operator. The proof of the existence is based on a variant of

the generalized Galerkin method that we developed inspired by ideas of
Browder [4] and a comparison principle. By the use of a kind of Moser’s

iteration scheme we show the L∞(Ω)-regularity for positive solutions.

1. Introduction

The paper concerns the existence, uniqueness and regularity of W 1,Φ
loc (Ω)-so-

lutions to the singular elliptic problem

(1.1) −div(φ(|∇u|)∇u) =
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where Ω ⊂ RN , with N ≥ 2, is a bounded domain with smooth boundary ∂Ω,

a is a non-negative function, 0 < α < ∞ and φ : (0,∞) → (0,∞) is of class C1

and satisfies

(φ1) (i) tφ(t)→ 0 as t→ 0,
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(ii) tφ(t)→∞ as t→∞,

(φ2) tφ(t) is strictly increasing in (0,∞),

(φ3) there exist `,m ∈ (1, N) such that

`− 1 ≤ (tφ(t))′

φ(t)
≤ m− 1, t > 0.

We extend s 7→ sφ(s) to R as an odd function. It follows that the function

Φ(t) =

∫ t

0

sφ(s) ds, t ∈ R

is even and it is actually an N -function. Due to the nature of the operator

∆Φu := div(φ(|∇u|)∇u)

we shall work in the framework of Orlicz and Orlicz–Sobolev spaces namely

LΦ(Ω), LΦ̃(Ω) and W 1,Φ
0 (Ω).

We recall some basic notation on these spaces along with bibliographycal

references in the Apendix.

In the last years many research papers have been devoted to the study of

singular problems like (1.1). In [23], Karlin and Nirenberg studied the singular

integral equation

u(x) =

∫ 1

0

G(x, y)
1

u(y)α
dy, 0 ≤ x ≤ 1,

where α > 0 and G(x, y) is a suitable potential. In [11], Crandall, Rabinowitz

and Tartar, addressed a class of singular problems which included as a special

case, the model problem

(1.2) −∆u =
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where α > 0 and a : Ω→ [0,∞) is a suitable L1-function. A broad literature on

problems like (1.2) is available to date. We would like to mention [24], [36], [38]

and their references. We would like to refer the reader to the very recent paper

by Orsina and Petitta [31] who dealt with the problem

−∆u =
µ

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

µ is a nonnegative bounded Radon measure. Other kinds of operators have been

addressed and we mention Canino, Sciunzi and Trombetta [7], Chu-Wenjie [9]

and De Cave [13] for problems involving the p-Laplacian operator

−div
(
|∇u|p−2∇u

)
=
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω;

Qihu Zhang [37] and Liu, Zhang and Zhao [28] for p(x)-Laplacian operator,

−div
(
|∇u|p(x)−2∇u

)
=
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω;
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Boccardo, Orsina [3] and Bocardo, Casado-Dı́az [2] for the problem

−div(M(x)∇u) =
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where M is a suitable matrix, Lazer and McKenna [26]; Gonçalves and San-

tos [18], Hu and Wang [22] for problems involving the Monge–Ampére opera-

tor, e.g.

det(D2u) =
a(x)

(−u)γ
in Ω, u < 0 in Ω, u = 0 on ∂Ω,

where a ∈ C∞(Ω), a > 0 and γ > 1. Finally, Canino, Montoro, Sciunzi and

Squassina [5] considered issues of existence and uniqueness for the fractional

p-Laplacian operator.

To the best of our knowledge singular problems like (1.1) in the presence

of the operator ∆Φ were never studied and the main results of this paper (see

Section 2) namely Theorems 2.1, 2.3 as well as Corollary 2.2 are new.

Other problems which are special cases of (1.1) are

−∆pu−∆qu = a(x)u−α in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where φ(t) = tp−2 + tq−2 with 1 < p < q < N ,

−
N∑
i=1

∆piu = a(x)u−α in Ω, u > 0 in Ω, u = 0 on ∂Ω.

where φ(t) =
N∑
j=1

tpj−2, 1 < p1 < . . . < pN <∞ and
N∑
j=1

1

pj
> 1,

(1.3)

−div(a(|∇u|p)|u|p−2∇u) = a(x)u−α in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where φ(t) = a(tp)tp−2, 2 ≤ p < N and a : (0,∞)→ (0,∞) is a suitable C1(R+)-

function.

We also refer the reader to the paper [29], where the operator ∆Φ is employed.

The operator ∆Φ appears in applied mathematics, for instance in Plasticity, see

e.g. Fukagai and Narukawa [16] and references therein. We refer the reader to [33]

for problems involving general operators.

2. Main results

In this work, we will consider that u ∈W 1,Φ
loc (Ω) is a solution of the problem

(1.1) if u > 0 in Ω and (u−ε)+ ∈W 1,Φ
0 (Ω) for each ε > 0. Besides, let us denote

by d(x) = inf
y∈∂Ω

|x− y| the distance of the point x ∈ Ω to the boundary of Ω.



494 C.A. Santos — J.V. Gonçalves — M.L. Carvalho

Theorem 2.1. Assume that (φ1)–(φ3) and a ∈ L1(Ω) hold. Then there is

u such that u(α−1+`)/` ∈ W 1,`
0 (Ω), u ≥ Cd almost everywhere in Ω, for some

C > 0, and :

(a) u ∈W 1,Φ
0 (Ω), and

(2.1)

∫
Ω

φ(|∇u|)∇u∇ϕdx =

∫
Ω

a(x)

uα
ϕdx, ϕ ∈W 1,Φ

0 (Ω),

provided additionally that either ad−α ∈ LΦ̃(Ω) or 0 < α ≤ 1 and a ∈
L`
∗/(`∗+α−1)(Ω),

(b) u ∈W 1,Φ
loc (Ω), and

(2.2)

∫
Ω

φ(|∇u|)∇u∇ϕdx =

∫
Ω

a(x)

uα
ϕdx, ϕ ∈ C∞0 (Ω)

provided in addition that α ≥ 1.

Next we will present some regularity results:

Corollary 2.2. Under the conditions of the Theorem 2.1, we have that :

(a) u ∈ C(Ω) if a ∈ L∞(Ω),

(b) u ∈ L∞(Ω) if either a ∈ Lq(Ω) ∩ L`∗/(`∗+α−1)(Ω) and 0 < α ≤ 1 or

a ∈ Lq(Ω) and α > 1, where N/` < q ≤ q(α) with

(2.3) q(s) :=

`∗/s if 0 < s ≤ 1,

(`∗ + (α− 1)`∗/`)/s if s > 1,

(c) there exists a unique solution to the problem (1.1) both in the sense of

(2.1) and in the sense of (2.2).

We are going to take advantage of our techniques to show the existence results

to the singular-convex problem

(2.4)

−div(φ(|∇u|)∇u) =
a(x)

uα
+ b(x)uγ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where α, γ > 0.

Theorem 2.3. Assume (φ1)− (φ3) and 0 ≤ γ < `− 1. Assume in addition

that ad−α ∈ LΦ̃(Ω) and 0 ≤ b ∈ Lσ(Ω) for some σ > `/(` − γ − 1). Then

problem (2.4) admits a weak solution u ∈ W 1,Φ
0 (Ω) such that u ≥ Cd in Ω

for some constant C > 0. Besides, u ∈ L∞(Ω) if b ∈ L∞(Ω), and either

a ∈ Lq(Ω) ∩ L`∗/(`∗+α−1)(Ω) with 0 < α ≤ 1 or a ∈ Lq(Ω) with α > 1, where

N/` < q ≤ q(α+ γ) and q(s) was defined in (2.3).
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Remark 2.4. We note that:

(a) solutions studied in both Theorems may be found by variational argu-

ments in some particular cases,

(b) if Ψ is an N -function such that Φ < Ψ << Φ∗, then the conditions

ad−α ∈ LΨ̃(Ω) and a ∈ LΦ̃
loc(Ω) could be used in our results, instead of

ad−α ∈ LΦ̃(Ω) and a ∈ L∞loc(Ω), respectively.

3. A family of auxiliary problems

In this section, we are going to “regularize” Problem (2.4) by considering

a perturbation by small ε > 0 of the singular term in (2.4). Of course a regular-

ized form of problem (1.1) corresponds to b = 0. Let us consider

(3.1)


−∆Φu =

aε(x)

(u+ ε)α
+ bε(x)uγ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

for each ε > 0 given, where the L∞(Ω)-functions are defined by

aε(x) = min{a(x), 1/ε}, bε(x) = min{b(x), 1/ε}, x ∈ Ω.

Consider the map A := Aε : W 1,Φ
0 (Ω)×W 1,Φ

0 (Ω)→ R, defined by

(3.2) A(u, ϕ) :=

∫
Ω

[
φ(|∇u|)∇u∇ϕdx− aε(x)ϕ

(|u|+ ε)α
− bε(x)(u+)γϕ

]
dx,

Thus, finding a weak solution of (3.1) means to find u ∈W 1,Φ
0 (Ω) such that

(3.3) A(u, ϕ) = 0 for each ϕ ∈W 1,Φ
0 (Ω).

Proposition 3.1. For each u ∈ W 1,Φ
0 (Ω), the functional A(u, · ) is linear

and continuous. In particular, the operator T := Tε : W 1,Φ
0 (Ω) → W−1,Φ̃(Ω)

defined by

〈T (u), ϕ〉 = A(u, ϕ), for u, ϕ ∈W 1,Φ
0 (Ω),

is linear and continuous, and satisfies

(3.4) ‖T (u)‖W−1,Φ̃ ≤ 2‖φ(|∇u|)∇u‖Φ̃ +
C

ε
‖aε‖Φ̃ + C‖bε|u|γ‖Φ̃.

Proof. Let u, ϕ ∈ W 1,Φ
0 (Ω). We shall use below the Hölder inequality and

the embedding W 1,Φ
0 (Ω) ↪→ LΦ(Ω):

|A(u, ϕ)| ≤
∫

Ω

[
φ(|∇u|)|∇u||∇ϕ|+ aε(x)|ϕ|

εα
+ bε(x)(u+)γ |ϕ|

]
dx(3.5)

≤ 2‖φ(|∇u|)∇u‖Φ̃‖ϕ‖+
2

εα
‖aε‖Φ̃‖ϕ‖Φ + 2‖bε|u|γ‖Φ̃‖ϕ‖Φ

≤
(

2‖φ(|∇u|)∇u‖Φ̃ +
C

εα
‖aε‖Φ̃ + C‖bε|u|γ‖Φ̃

)
‖ϕ‖.
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It is sufficient to show that ‖bε|u|γ‖Φ̃ < ∞. Indeed, by using the embedding

LΦ(Ω) ↪→ L`(Ω) and γ ∈ (0, `− 1) it follows by Lemma A.3 that∫
Ω

Φ̃(bε(x)|uγ |) dx ≤ max
{
‖bε‖`/(`−1)

∞ , ‖bε‖m/(m−1)
∞

}∫
Ω

Φ̃(|u|γ) dx

≤ C
(∫

u≤1

+

∫
u≥1

)
Φ̃(|u|γ) dx

≤ C
(
|Ω|+

∫
u≥1

|u|γ`/(`−1) dx

)
≤ C

(
|Ω|+

∫
u≥1

|u|` dx
)

≤ C
(
|Ω|+

∫
Ω

|u|` dx
)
≤ C(|Ω|+ ‖u‖`),

where C = C(b,Φ, ε) > 0 is a constant. So A(u, · ) is linear and continuous. The

claims about T are now immediate.

By Proposition 3.1 the problem of finding a weak solution of (3.1) reduces

to finding u = uε ∈W 1,Φ
0 (Ω) \ {0} such that T (uε) = 0. This ends the proof. �

4. Applied generalized Galerkin method

In order to find u = uε ∈ W 1,Φ
0 (Ω) \ {0} such that T (uε) = 0, we shall

employ a Galerkin-like method inspired by arguments found in [4]. We are going

to constrain the operator T to finite dimensional subspaces. As a first step take

a ω ∈W 1,Φ
0 (Ω) such that

(4.1) aω 6= 0 and aω ∈ L1(Ω),

Let F ⊂ W 1,Φ
0 (Ω) be a finite dimensional subspace such that ω ∈ F . Now,

consider the map TF : F → F ′ given by TF = I ′F ◦ T ◦ IF , where

IF : (F, ‖ · ‖)→ (W 1,Φ
0 (Ω), ‖ · ‖), IF (u) = u

and let I ′F be the adjoint of IF . So, we have that TF = T |F , because

〈TFu, v〉 = 〈I ′F ◦ T ◦ IFu, v〉 = 〈T ◦ IFu, IF v〉 = 〈Tu, v〉, u, v ∈ F,

that is, for u, v ∈ F ,

(4.2) 〈TF (u), v〉 :=

∫
Ω

[
φ(|∇u|)∇u∇v − aε(x)v

(|u|+ ε)α
− bε(x)(u+)γv

]
dx.

The result below, which is a consequence of the Brouwer Fixed Point Theorem

(see [27]), will play a central role in solving the finite dimensional equation

TF (u) = 0.

Proposition 4.1. Assume that S : Rs → Rs is a continuous map such that

(S(η), η) > 0, |η| = r for some r > 0, where ( · , · ) is the usual inner product

in Rs and | · | is its corresponding norm. Then, there is η0 ∈ Br(0) such that

S(η0) = 0.

Proposition 4.2. The operator TF is continuous.
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Proof. Let (un) ⊆ F be a sequence such that un → u in F . Since, the

operator −∆Φ : W 1,Φ
0 (Ω)→W−1,Φ̃(Ω) given by

〈−∆Φu, v〉 :=

∫
Ω

φ(|∇u|)∇u∇v dx, u, v ∈W 1,Φ
0 (Ω),

is continuous (see [16, Lemma 3.1]), we have that ∆Φ|F is also continuous.

To complete our proof, it remains to show that TF −∆Φ|F is continuous. By

applying Lemma A.4 and the embedding LΦ(Ω) ↪→ L`(Ω), it follows, by passing

to a subsequence if necessary, that

(1) un → u almost everywhere in Ω;

(2) there is h ∈ L`(Ω) such that |un| ≤ h.

Then, for each v ∈W 1,Φ
0 (Ω),

aε(x)v

(|un|+ ε)α
→ aε(x)v

(|u|+ ε)α
, bε(x)(u+

n )γv → bε(x)(u+)γv a.e. in Ω.

On the other hand, since Φ̃ is increasing, we obtain

(4.3) Φ̃

(∣∣∣∣ aε(x)

(|un|+ ε)α
− aε(x)

(|u|+ ε)α

∣∣∣∣)
≤ Φ̃

(
aε(x)

(|un|+ ε)α
+

aε(x)

(|u|+ ε)α

)
≤ Φ̃

(
2aε(x)

εα

)
∈ L1(Ω),

because 0 ≤ aε ≤ 1/ε. So, by Lebesgue’s Theorem,∫
Ω

Φ̃

(∣∣∣∣ aε(x)

(|un|+ ε)α
− aε(x)

(|u|+ ε)α

∣∣∣∣) dx→ 0,

and as a consequence of Φ̃ ∈ ∆2, we have∥∥∥∥ aε(x)

(|un|+ ε)α
− aε(x)

(|u|+ ε)α

∥∥∥∥
Φ̃

→ 0.

By applying the Hölder’s inequality, we find that, for each v ∈W 1,Φ
0 (Ω),∣∣∣∣ ∫

Ω

(
aε(x)

(|un|+ ε)α
− aε(x)

(|u|+ ε)α

)
v dx

∣∣∣∣ ≤ 2

∥∥∥∥ aε(x)

(|un|+ ε)α
− aε(x)

(|u|+ ε)α

∥∥∥∥
Φ̃

‖v‖Φ → 0.

Estimating as in (4.3), we have

Φ̃(bε|(u+
n )γ − (u+)γ |) ≤ Φ̃

(
2|bε|∞

(u+
n )γ + (u+)γ

2

)
≤ C

(
Φ̃((u+

n )γ) + Φ̃((u+)γ)
)
≤ C

(
|u|` + |h|` + 2

)
∈ L1(Ω),

for some C = C(a,Φ, ε) > 0. Arguing as above, we obtain∫
Ω

bε(x)
[
(u+
n )γ − (u+)γ

]
v dx→ 0

showing that TF is continuous. �



498 C.A. Santos — J.V. Gonçalves — M.L. Carvalho

Proposition 4.3. There exists 0 6= u = uF = uε,F ∈ F such that TF (u) = 0

for each ε > 0 sufficiently small.

Proof. Let s := dimF be the dimension of the subspace F , and set F =

span{e1, . . . , es}. That is, each u ∈ F is uniquely expressed as

u =

s∑
j=1

ξjej , ξ = (ξ1, . . . , ξs) ∈ Rs.

Set |ξ| := ‖u‖ and consider the map i = iF : (Rs, | · |) → (F, ‖ · ‖) given by

i(ξ) = u. So, it follows by Proposition 4.2 and the fact that i is an isometry that

the operator SF : Rs → Rs given by

(4.4) SF := i′ ◦ TF ◦ i

is continuous as well, where i′ is the adjoint of i. Besides, by setting u := i(ξ) for

ξ ∈ Rs, it follows from (φ3) and the embeddings W 1,Φ
0 (Ω) ↪→ LΦ(Ω) ↪→ L`(Ω) ↪→

Lγ+1(Ω) that

(SF ξ, ξ) = (i′ ◦ TF ◦ i(ξ), ξ) = 〈TF (u), u〉(4.5)

≥
∫

Ω

[
φ(|∇u|)|∇u|2 − aε(x)|u|

εα
− bε(x)|u|γ+1

]
dx

≥ `
∫

Ω

Φ(|∇u|) dx− 1

εα
‖aε‖Φ̃‖u‖Φ − |bε|∞|u|

γ+1
γ+1

≥ `min{‖u‖`, ‖u‖m} − C1‖u‖ − C2‖u‖γ+1,

for some positive constants C1 = C1(ε) and C2 = C2(ε). So, we can choose an

r0 = r0(ε) > 1 such that `r`0 − C1r0 − C2r
γ+1
0 > 0. More specifically, for each ξ

such that |ξ| = r0, we have (SF ξ, ξ) > 0.

By the above, from Proposition 4.1 it follows that there exists a ξF ∈ Br0(0)

such that SF (ξF ) = 0, that is, letting u = uF = i(ξF ), it follows from (4.4), that

〈TF (u), v〉 = (SF (ξF ), η) = 0 for all v ∈ F,

where v = i(η), and hence TF (u) = 0. As a consequence of this, we have∫
Ω

[
φ(|∇u|)∇u∇v − aε(x)v

(|u|+ ε)α
− bε(x)(u+)γv

]
dx = 0 for all v ∈ F.

We claim that u = uε 6= 0 for enough small ε > 0. Indeed, otherwise by taking

v = w and using Lebesgue’s Theorem, we obtain∫
Ω

a(x)w dx = lim
ε→0

∫
Ω

aε(x)w dx = 0,

but this is impossible by (4.1). �

The result below is a direct consequence of the above proved proposition.
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Corollary 4.4. The number r0 > 0 and the function uF ∈ F found above

satisfy: ‖uF ‖ ≤ r0, TF (uF ) = 0, and r0 > 0 does not depends on subspace

F ⊂ W 1,Φ
0 (Ω) with 0 < dimF < ∞. Besides, we can choose it independent

of ε > 0 as well if 0 < α ≤ 1, a ∈ L`∗/(`∗+α−1)(Ω), and b ∈ Lσ(Ω) for some

σ > `/(`− γ − 1).

Proof. The first part of it was proved above. To show that r0 does not

depends on ε > 0, we just redo the estimatives in (4.5) by using the hypotheses

on a and b. �

Our aim below is to build a non-zero vector uε ∈W 1,Φ
0 (Ω) such that T (uε) =

0, where T was given by Proposition 3.1. This will provide us with some uε ∈
W 1,Φ

0 (Ω) such that

(4.6)

∫
Ω

[
φ(|∇u|)∇u∇ϕ− aε(x)ϕ

(|u|+ ε)α
− bε(x)(u+)γϕ

]
dx = 0, ϕ ∈W 1,Φ

0 (Ω).

In this direction we have

Lemma 4.5. There is a non-zero vector uε ∈ W 1,Φ
0 (Ω) such that T (uε) = 0

or equivalently (4.6) holds true.

Proof. Let w as in (4.1) and set

A =
{
F ⊂W 1,Φ

0 (Ω) | F is a finite dimensional subspace of W 1,Φ
0 (Ω)

and ω ∈ F
}
.

We assume that A is partially ordered by set inclusion. Take F0 ∈ A and set

VF0 =
{
uF ∈ F | F ∈ A, F0 ⊂ F, TF (uF ) = 0 and ‖uF ‖ ≤ r0

}
.

Note that, by Proposition 4.3 and Corolary 4.4, VF0 6= ∅.
Since VF0 ⊂ Br0(0), then V

σ

F0
⊂ Br0(0), where V

σ

F0
denotes the weak closure

of VF0 . As a matter of this fact, V
σ

F0
is weakly compact.

Consider the family B :=
{
V
σ

F | F ∈ A
}

.

Claim B has the finite intersection property.

Proof of Claim. Indeed, let {V σF1
, . . . , V

σ

Fp} be a finite subfamily of B and

set F := span{F1, . . . , Fp}. By the very definition of VFi , we have that uF ∈ V
σ

Fi ,

i = 1, . . . , p, that is
p⋂
i=1

V
σ

Fi 6= ∅. �

Since Br0 is weakly compact, it follows that (cf. [30, Theorem 26.9])

W :=
⋂
F∈A

V
σ

F 6= ∅.

Let uε ∈W . Then uε ∈ V
σ

F for each F ∈ A.
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Take F0 ∈ A such that span{ω, uε} ⊂ F0. Since uε ∈ V
σ

F0
, it follows by [14,

Theorem 1.5] and the definition of VF0
that there are sequences (un) = (un,ε) ⊂

VF0
and (Fn) = (Fn,ε) ⊂ A such that un ⇀ uε in W 1,Φ

0 (Ω), un ∈ Fn, ‖un‖ ≤ r0,

F0 ⊂ Fn, and for each v ∈ Fn

(4.7)

∫
Ω

φ(|∇un|)∇un∇v dx =

∫
Ω

(
aε(x)

(|un|+ ε)α
+ bε(x)(u+

n )γ
)
v dx.

Now, by eventually taking subsequences and using W 1,Φ
0 (Ω)

comp
↪→ LΦ(Ω), we

obtain that un → uε in LΦ(Ω), un → uε almost everywhere in Ω and (|un|)
is bounded away by some function in LΦ(Ω). Set vn = un − uε and note that

vn ∈ Fn, because un ∈ Fn and uε ∈ F0 ⊂ Fn in (4.7). Then

lim〈−∆Φ(un),un − uε〉(4.8)

= lim

∫
Ω

(
aε(x)

(|un|+ ε)α
+ bε(x)

(
u+
n

)γ)
(un − uε) dx

≤ lim

∫
Ω

(
aε(x)

εα
+ bε(x)|un|γ

)
|un − uε |dx.

As W 1,Φ
0 (Ω)

comp
↪→ LΦ(Ω), we have∣∣∣∣ ∫

Ω

aε(x)

εα
(un − u0) dx

∣∣∣∣ ≤ q 1

εα
‖aε‖Φ̃ ‖un − uε‖Φ → 0.

Recalling that γ < ` − 1, W 1,Φ
0 (Ω) ↪→ L`(Ω) and (un) is bounded in L`(Ω),

we get∫
Ω

bε(x)|un|γ |un − uε| dx ≤ |bε|∞
(∫

Ω

|un|γ`/(`−1) dx

)(`−1)/`

|un − uε|`

≤ |bε|∞
(
|Ω|+

∫
Ω

|un|` dx
)(`−1)/`

|un − uε|` → 0.

Now, by using the facts above, it follows from (4.7) that

lim〈−∆Φ(un), un − uε〉 ≤ 0,

and a consequence of this, we have that un → uε in W 1,Φ
0 (Ω), because −∆Φ sat-

isfies the condition (S+) (see [8, Proposition A.2]). So, passing to a subsequence

if necessary, we have

(1) ∇un → ∇uε almost everywhere in Ω,

(2) there is h ∈ LΦ(Ω) such that |∇un| ≤ h.

Since ϕ ∈ W 1,Φ
0 (Ω), it follows of the fact that tφ(t) is nondecreasing in [0,∞)

and (2), that

|φ(|∇un|)∇un∇ϕ| ≤ φ(|∇un|)|∇un||∇ϕ| ≤ φ(h)h|∇ϕ|

≤ Φ̃(φ(h)h) + Φ(|∇ϕ|) ≤ Φ(2h) + Φ(|∇ϕ|) ∈ L1(Ω),
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that is, it follows by the Lebesgue Theorem, that∫
Ω

φ(|∇un|)∇un∇ϕdx→
∫

Ω

φ(|∇uε|)∇uε∇ϕdx.

Now, by passing to the limit in (4.7) and using the above information, we get that

uε satisfies (4.6), that is, Tε(uε) = T (uε) = 0 for each ε > 0, since ϕ ∈W 1,Φ
0 (Ω)

was taken arbitrarily. By arguments as in the proof of Proposition 4.3 we infer

that uε 6≡ 0. �

Lemma 4.6. The function uε ∈ C1,αε(Ω), for some 0 < αε ≤ 1, and it is

a solution of (3.1).

Proof. By Lemma 4.5, it remains to show that uε > 0. Set −u−ε as a test

function in (4.6). So, it follows by Remark A.1 (see Appendix), that

`

∫
Ω

Φ(|∇u−ε |) dx ≤
∫

Ω

φ(|∇u−ε |)|∇u−ε |2 dx = −
∫

Ω

aε(x)

(|u−ε |+ ε)α
u−ε dx,

which implies that u−ε ≡ 0. So, for all ϕ ∈W 1,Φ
0 (Ω), uε satisfies

(4.9)

∫
Ω

φ(|∇uε|)∇uε∇ϕ =

∫
Ω

aε(x)

(uε + ε)α
ϕdx+

∫
Ω

bε(x)uγεϕdx.

Finally, for each p ∈ (m, `∗), it follows that

|f(x, t)| := aε(x)

(|t|+ ε)α
+ bε(x)(t+)γ ≤ Cε

(
1 + |t|p−1

)
and lim

t→∞

tp

Φ∗(λt)
= 0

for each ε, λ > 0 given. So, by [35, Corollary 3.1], uε ∈ C1,αε(Ω) for some

0 < αε ≤ 1. Now, by summing up the term uεφ(uε) to both sides of (4.9) and

applying [8, Proposition 5.2] we infer that uε > 0. In conclusion, uε is a solution

of (3.1). �

5. Comparison of solutions and estimates

Let n ≥ 1 be an integer and take ε = 1/n. Let un ∈ W 1,Φ
0 (Ω) ∩ C1,αn(Ω),

for some αn ∈ (0, 1], denotes the solution of (3.1), both for b = 0 and b ≥ 0 not

identically null, given by Lemma 4.6, that is,

(5.1)

−∆Φun =
an(x)

(un + 1/n)α
+ bn(x)uγ in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

We have the following result on comparison of solutions.

Lemma 5.1. The following inequalities hold :

(a) un + 1/n ≥ u1 for each integer n ≥ 1,

(b) u1 ≥ Cd in Ω for some C > 0 which independs of n.
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Proof. First, we consider b = 0 in (5.1), that is,

(5.2) −∆Φun =
an(x)

(un + 1/n)α
in Ω, un > 0 in Ω, un = 0 on ∂Ω.

So, by (5.2), we have

(5.3) div(φ(|∇u1|)∇u1)− a1(x)

(u1 + 1)α
≥ 0 in Ω,

in the weak sense. On the other hand, since

an(x)

(wn + 1/n)α
≥ a1(x)

((wn + 1/n) + 1)α
in Ω.

we get by (5.2) that

(5.4) div(φ(|∇(un + 1/n)|)∇(un + 1/n))− a1(x)

((un + 1/n) + 1)α
≤ 0 in Ω,

in the weak sense, (test finctions are taken non-negative). By applying Theo-

rem 2.4.1 in [32] to (5.3) and (5.4), we obtain un + 1/n ≥ u1.

Now, since ∂Ω is smooth, it follows by [17, Lemma 14.16] that the distance

function x 7→ d(x) satisfies

d ∈ C2(Ω), d > 0 on Ωδ and
∂d

∂η
< 0 on Ω \ Ωδ,

where Ωδ = {x ∈ Ω | d(x) > δ} for some δ > 0, and η stands for the exterior

unit normal to ∂Ω.

Now, since u1 ∈W 1,Φ
0 (Ω) ∩ C1,α1(Ω) is a solution of

(5.5) −∆Φu =
a1(x)

(u+ 1)α
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

it follows by [35, Lemma 4.2] that

∂u1

∂η
< 0 on Ω \ Ωδ.

So there is a constant C > 0 such that

∂u1

∂η
≤ C ∂d

∂η
on Ω \ Ωδ,

and as a consequence

(5.6) Cd(x) ≤ u1(x) for x ∈ Ω.

This ends the proof of Lemma 5.1 for b = 0. If b is not identically null, we redo

the above proof by considering (5.3) and obtaining (5.4) as a consequence of b

be non-negative. �

We have the following estimates.
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Lemma 5.2. Let un ∈ C1,αn(Ω) be a solution of (5.2). Then there is a con-

stant C > 0 such that∥∥[(un + 1/n)(α+`−1)/` − (1/n)(α+`−1)/`
]∥∥

1,`
≤ C, for all integer n ≥ 1.

where ‖ · ‖1,` above is the norm of W 1,`
0 .

Proof. At first notice that

un,
[
(un + 1/n)α − (1/n)α

]
∈W 1,Φ

0 (Ω) ∩ C1,αn(Ω) ⊂W 1,`
0 (Ω).

By estimating, we get

`αΦ(1)

∫
|∇un|≥1

|∇un|`
(
un +

1

n

)α−1

dx

≤ `αΦ(1)

[ ∫
|∇un|<1

|∇un|m
(
un +

1

n

)α−1

dx

+

∫
|∇un|≥1

|∇un|`
(
un +

1

n

)α−1

dx

]
= `αΦ(1)

∫
Ω

min
{
|∇un|`, |∇un|m

}(
un +

1

n

)α−1

dx.

Applying Remark A.1 and Lemma A.2 and using [(un + 1/n)α − (1/n)α] as a

test function in (5.2), we find

`αΦ(1)

∫
|∇un|≥1

|∇un|`(un + 1/n)α−1 dx(5.7)

≤ `α
∫

Ω

Φ(|∇un|)(un + 1/n)α−1 dx

≤α
∫

Ω

φ(|∇un|)|∇un|2(un + 1/n)α−1 dx

=

∫
Ω

an(x)[(un + 1/n)α − (1/n)α]

(un + 1/n)α
dx ≤ |a|1.

When α ≤ 1, it follows from Lemma 5.1, that

(5.8) `αΦ(1)

∫
|∇un|≤1

|∇un|`
(
un +

1

n

)α−1

dx

≤ `αΦ(1)

[
|Ω|+ Cα−1

∫
Ω

d(x)α−1

]
:= D,

which is finite, by a well known result, cf. Lazer and McKenna [25].

From (5.7) and (5.8) it follows that∫
Ω

∣∣∣∣∇((un +
1

n

)(α−1+`)/`)∣∣∣∣` dx ≤ (α+ `− 1

`

)`
1

`αΦ(1)
(‖a‖1 +D),
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because∣∣∣∣∇((un +
1

n

)(α+`−1)/`)∣∣∣∣` =

(
α+ `− 1

`

)`
|∇un|`

(
un +

1

n

)α−1

.

Hence, [(un + 1/n)(α+`−1)/` − (1/n)(α+`−1)/`] is bounded in W 1,`
0 (Ω).

When α > 1, we have

(5.9) `αΦ(1)

∫
|∇un|≤1

|∇un|`
(
un +

1

n

)α−1

dx

≤ `αΦ(1)

[
|Ω|+

∫
un>1

(
un +

1

n

)α−1

dx

]
.

Summing up (5.7) and (5.9), we obtain a positive constant C such that

(5.10)

∫
Ω

∣∣∣∣∇((un +
1

n

)(α−1+`)/`)∣∣∣∣` ≤ C(1 +

∫
un>1

(
un +

1

n

)α−1)
.

Now, by picking ε such that 0 < ε < ` − `(α− 1)/(α+ `− 1), it follows from

(5.10), using un > 1 and of the embbeding W 1,`
0 (Ω) ↪→ L`(Ω) ↪→ L`−ε(Ω), that∥∥∥∥∇((un +

1

n

)(α−1+`)/`)∥∥∥∥`
`

≤ C
(

1 +

∫
un>1

((
un +

1

n

)(α+`−1)/`)`−ε
dx

)
≤ C

(
1 +

∥∥∥∥∇((un +
1

n

)(α+`−1)/`)∥∥∥∥`−ε
`

)
,

for some C > 0. That is, [(un + 1/n)(α+`−1)/` − (1/n)(α+`−1)/`] is bounded in

W 1,`
0 (Ω) as well. �

6. Proof of the main results

We begin proving Theorem 2.1 that treats about existence of positive solution

to the pure singular problem (1.1).

6.1. Pure singular problem – existence of solutions.

Proof of (a) of Theorem 2.1. Assume first that ad−α ∈ LΦ̃(Ω). Since

un ∈W 1,Φ
0 (Ω) satisfies (5.2), it follows from Remark A.1, Lemma A.2, (5.6) and

Hölder inequality, that

`ζ0(‖∇un‖Φ) ≤ `
∫

Ω

Φ(|∇un|) dx ≤
∫

Ω

φ(|∇un|)|∇un|2 dx(6.1)

=

∫
Ω

an(x)

(un + 1/n)α
un dx ≤ C

∫
Ω

a(x)

dα
|un| dx

= C

(∫
Ω/Ωδ

+

∫
Ωδ

)
a(x)

dα
|un| dx



Uniqueness of W 1,Φ
loc (Ω)-Solutions to Singular Problem 505

≤ C
∫

Ω

|un| dx+ C

∫
Ω

a(x)

dα(x)
|un| dx

≤ C‖un‖Φ + 2C

∥∥∥∥ adα
∥∥∥∥

Φ̃

‖un‖Φ,

where we used an ≤ a just above. It follows from our assumptions and from

W 1,Φ
0 (Ω)

cpt
↪→ LΦ(Ω), that (un) ⊂ W 1,Φ

0 (Ω) is bounded. If 0 < α ≤ 1 and

a ∈ L`∗/(`∗+α−1)(Ω), then the boundedness of (un) in W 1,Φ
0 (Ω) is a consequence

of Corollary 4.4. So, in both cases, up to subsequences, there exist u ∈W 1,Φ
0 (Ω)

and θ ∈ LΦ(Ω) such that

(1) un ⇀ u in W 1,Φ
0 (Ω),

(2) un → u in LΦ(Ω),

(3) un → u almost everywhere in Ω,

(4) 0 ≤ un ≤ θ.

As a first consequence of these facts, it follows from Lemma 5.1 and (3) that

u ≥ Cd almost everywhere in Ω.

Now, by using un − u as a test function in (5.2) and following similar argu-

ments as in (4.8), we get

〈−∆Φun, un − u〉 ≤
∣∣∣∣ ∫

Ω

an(x)

(un + 1/n)α
(un − u) dx

∣∣∣∣(6.2)

≤
[
C + 2

∥∥∥∥ adα
∥∥∥∥

Φ̃

]
‖un − u‖Φ

for some C > 0 independent of n. Since, the operator −∆Φ is of the type S+, it

follows from (2) and (6.2) that un → u in W 1,Φ
0 (Ω).

To finish our proof, given ϕ ∈W 1,Φ
0 (Ω), it follows from Lemma 5.1, that∣∣∣∣ an

(un + 1/n)α
ϕ

∣∣∣∣ ≤ a

dα

(
d

un + 1/n

)α
|ϕ| ≤ C a

dα
|ϕ| ∈ L1(Ω),

that is, by passing to the limit in (5.2), we obtain that u is a solution of (1.1).�

We were not able to employ the above arguments in the proof of (b) of

Theorem 2.1, because in this case we do not know if a/dα belongs to LΦ̃(Ω), that

is, the sequence (un) is likely not bounded in W 1,Φ
0 (Ω). Instead, it is possible to

show that (un) is bounded in W 1,Φ
loc (Ω). This was done by applying Lemma 5.2.

Proof of (b) of Theorem 2.1. Given U ⊂⊂ Ω, let δU = min{d(x) |
x ∈ U} > 0. So, it follows from Lemma 5.1, that un + 1/n ≥ CδU := CU > 0

in U , that is, for n > 1 enough big, we can take (un + 1/n − CU )+ as a test
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function in (5.2), to obtain∫
U

φ(|∇un|)|∇un|2 ≤
∫
un+1/n≥CU

φ(|∇un|)|∇un|2 dx(6.3)

≤
∫
un+1/n≥CU

a(x)

(un + 1/n)α−1
dx

≤ 1

Cα−1
U

∫
Ω

a dx <∞,

because a ∈ L1(Ω), and α ≥ 1. So, from Remark A.1 and Lemma A.2 it follows

that (un) ⊂ W 1,Φ(U) is bounded. That is, there exist (uUn1
), uU ∈ W 1,Φ(U)

such that uUn1
⇀ uU in W 1,Φ(U), uUn1

→ uU in LΦ(U), uUn1
(x) → uU (x) almost

everywher in U . In particular, from Lemma 5.1 and of the pointwise convergence

it follows that u ≥ Cd almost everywhere in U . Hence, by using a Cantor diago-

nalization argument applied to an exhaustion Uk of Ω with Uk ⊂⊂ Uk+1 ⊂⊂ Ω,

we show that there is u ∈ W 1,Φ
loc (Ω) such that uk → u in W 1,Φ

loc (Ω) and u ≥ Cd

almost everywhere in Ω.

Now, we are going to show that this u satisfies the equation in (1.1). Given

ϕ ∈ C∞0 (Ω), let Θ ⊂⊂ Ω be the support of ϕ. So, by very above information,

we have that

(a) un ⇀ u in W 1,Φ(Θ),

(b) un → u in LΦ(Θ),

(c) un(x)→ u(x) almost everywhere in Θ,

and there exists θ ∈ LΦ(Θ) such that un ≤ θ in Θ. So, by using ϕ(un − u) as

a test function in (5.2), LΦ(Θ) ↪→ L1(Θ), and (b) above, we obtain∣∣∣∣ ∫
Θ

φ(|∇un|)∇un∇(ϕ(un − u))

∣∣∣∣ dx ≤ 1

cαd

∫
Θ

an|ϕ(un − u)| dx

≤ Cϕ‖a‖LΦ̃(Θ)
‖un − u‖LΦ(Θ) → 0,

where Θ ⊂⊂ Ω is the support of ϕ. That is,

(6.4)

∫
Θ

φ(|∇un|)∇un∇(un − u)ϕ =

∫
Θ

φ(|∇un|)∇un∇ϕ(un − u) + on(1).

In addition Holder’s inequality, (b) above and the property Φ̃(φ(t)t) ≤ Φ(2t) for

t > 0 imply that∣∣∣∣ ∫
Θ

φ(|∇un|)∇un∇ϕ(un − u)

∣∣∣∣ dx ≤ Cϕ ∫
Θ

φ(|∇un|)|∇un||un − u| dx

≤ Cϕ‖φ(|∇un|)|∇un|‖LΦ̃(Θ)‖un − u‖LΦ(Θ) → 0

≤ Cϕ‖un − u‖LΦ(Θ) → 0,

and using this information in (6.4), we obtain that

(6.5)

∫
Ω

φ(|∇un|)∇un∇(un − u)ϕdx = on(1).
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Besides, we note that∣∣∣∣ ∫
Θ

φ(|∇u|)∇u∇(un − u)ϕdx

∣∣∣∣ ≤ ∣∣∣∣ ∫
Θ

φ(|∇u|)∇u∇[ϕ(un − u)]ϕdx

∣∣∣∣
+

∣∣∣∣ ∫
Θ

φ(|∇u|)∇u∇ϕ(un − u) dx

∣∣∣∣,
and the first integral on the right side goes to zero, due to (a) above, and the

second one converges to zero due to (b) above. That is,

(6.6)

∣∣∣∣ ∫
Θ

φ(|∇u|)∇u∇(un − u)ϕdx

∣∣∣∣→ 0.

So, it follows from (4.13) and (4.15), that∫
Θ

(φ(|∇un|)∇un − φ(|∇u|)∇u,∇un −∇u)ϕdx→ 0.

As a consequence of this, together with the Lemma 6 in [12], we have that

∇un(x)→ ∇u(x) almost everywhere in Θ, i.e.

φ(|∇un(x)|)∇un(x)→ φ(|∇u(x)|)∇u(x) a.e. in Θ.

In addition, since (φ(|∇un|)∇un) ⊂ (LΦ̃(Θ))N is bounded, from Lemma 2 in

[19] it follows that

φ(|∇un|)∇un ⇀ φ(|∇u|)∇u in
(
W 1,Φ(Θ)

)N
.

Now, passing to limit in (5.2), we obtain that u ∈W 1,Φ
loc (Ω) satisfies∫

Ω

φ(|∇u|)∇u∇ϕdx =

∫
Ω

a(x)

uα
ϕdx.

Besides, Lemma 5.2 implies that

u(α−1−`)/`
n ⇀ v in W 1,`

0 (Ω),

that is, u(α−1−`)/` ∈W 1,`
0 (Ω) as well. �

Below, we take advantage of the former arguments to show the existence of

solutions to problem (2.4). The greatest effort is made to show L∞-regularity of

its solutions.

6.2. Convex singular problem. Regularity of solutions.

Proof of Theorem 2.3. Since 0 < γ < `− 1 and 0 ≤ a ∈ Lq(Ω) for some

q > `/(` − γ − 1), it follows by arguments similar to those used in the proof of

Theorem 2.1 that there exist both a sequence of approximating solutions still

denoted by (un) and a corresponding solution u ∈ W 1,Φ
0 (Ω) to problem (2.4)

such that u ≥ Cd in Ω for some constant C > 0.

Claim. u ∈ L∞(Ω).
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The proof of this Claim uses arguments driven by a Moser Iteration Scheme.

Parts of our argument were motivated by reading of [21]. However our proof in

the present paper is self-contained. In order to show the Claim, set

β1 := (`+ α− 1)q′ > 0, β∗k := βk + β1, βk+1 :=
`∗

`q′
β∗k , δ :=

`∗

q′`
,

where 1/q′ + 1/q = 1.

We point out that δ > 1 because q > N/`. In addition,

β∗k =
(
2δk−1 + δk−2 + . . .+ 1

)
β1 =

2δk − δk−1 − 1

δ − 1
β1,(6.7)

βk =
2δk − δk−1 − δ

δ − 1
β1,(6.8)

and, since δ > 1, βk ↗∞.

Now, taking k0 such that βk0 , βk0 + q′(α− 1) > 1, we have that u
βk/(q

′+α)
n is

a test function for each k ≥ k0 and using it in (4.6), we obtain

βk
q′

∫
Ω

φ(|∇un|)|∇un|2uβk/q
′+α−1

n dx(6.9)

≤
∫

Ω

(
anu

βk/q
′+α

n

(un + 1/n)α
+ buβk/q

′+α+γ
n

)
dx

≤
∫

Ω

(
auβk/q

′

n + buβk/q
′+α+γ

n

)
dx

≤ ‖a‖q‖un‖βk/q
′

βk
+ ‖b‖∞‖un‖βk/q

′

βk
‖uα+γ

n ‖q.

We claim that ‖uα+γ
n ‖q is bounded.

Indeed, if (α + γ)q ≤ 1, it follows that α ≤ 1, because q > N/` > 1. In this

case, it follows from Corollary 4.4 that un is bounded in W 1,Φ
0 (Ω). In particular,

there exists θ0 ∈ L1(Ω) such that un ≤ θ0, that is,

‖uα+γ
n ‖q ≤ (|Ω|+ ‖θ0‖1)1/q.

If (α+ γ)q > 1 we distinguish between two cases: α > 1 and α ≤ 1.

In the case α > 1, we find by using that ((un + 1/n)(`+α−1)/`) is bounded in

W 1,`(Ω) and W 1,`(Ω) ↪→ L`
∗
(Ω) that

‖un‖1+(α−1)/`
`∗+(α−1)`∗/` =

(∫
Ω

u`
∗+(α−1)`∗/`
n dx

)1/`∗

=
∥∥u(`+α−1)/`

n )
∥∥
`∗
≤ C,

that is, by using our assumption q ≤ q(α + γ), it follows from its definition

(see (2.3)) that (α+ γ)q ≤ `∗ + (α− 1)`∗/`. So,

(6.10) ‖un‖(α+γ)q ≤ C,

because L`
∗+(α−1)`∗/`(Ω) ↪→ L(α+γ)q(Ω).
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If α ≤ 1, then again we have that un is bounded in W 1,Φ
0 (Ω). So, the

embedding W 1,Φ
0 (Ω) ↪→ L(γ+α)q(Ω), see (2.3) again, implies that

‖uα+γ
n ‖q = ‖un‖α+γ

(α+γ)q ≤ κ‖un‖
α+γ ≤ C,

for some κ,C > 0.

Thus, in both cases, in view of (6.9) and the estimates just above, we see

that there exists a constant c0 > 0 such that

(6.11)
βk
q′

∫
Ω

φ(|∇un|)|∇un|2uβk/q
′+α−1

n dx ≤ (‖a‖q + ‖b‖∞c0)‖un‖βk/q
′

βk
.

On the other hand, it follows by Lemma A.2 that

(6.12)
βk
q′

∫
Ω

φ(|∇un|)|∇un|2uβk/q
′+α−1

n dx

≤ `Φ(1)

q′
βk

∫
|∇un|≥1

|∇un|`uβk/q
′+α−1

n

and so it follows from (6.11) and (6.12), that

`Φ(1)

q′
βk

∫
Ω

|∇un|`uβk/q
′+α−1

n dx(6.13)

≤ `Φ(1)

q′
βk

∫
|∇un|<1

|∇un|`uβk/q
′+α−1

n dx+ (‖a‖q + ‖b‖∞c0)‖un‖βk/q
′

βk

≤ `Φ(1)

q′
βk

∫
Ω

uβk/q
′+α−1

n dx+ (‖a‖q + ‖b‖∞c0)‖un‖βk/q
′

βk
.

Our next objective is to show that

(6.14)

∫
Ω

|∇un|`u(βk+(α−1)q′)/q′

n dx ≤ B‖un‖βk/q
′

βk
,

for some constant B > 0. To do this, we are going to consider two cases again:

α ≤ 1 and α > 1.

If α ≤ 1, the we notice that Lβk(Ω) ↪→ Lβk/q
′+α−1(Ω). Hence∫

Ω

uβk/q
′+α−1

n dx = ‖un‖βk/q
′+α−1

βk/q′+α−1(6.15)

≤ |Ω|1−1/q′+(1−α)/βk‖un‖βk/q
′

βk
‖un‖α−1

βk
.

On the other hand, since u1 ≤ un, we have

(6.16) ‖u1‖βk ≤ ‖un‖βk ,

and by the embedding Lβk(Ω) ↪→ L1(Ω) we get

(6.17) ‖u1‖1 ≤ |Ω|1−1/βk‖u1‖βk .

Combining (6.16) and (6.17) we have

(6.18) ‖un‖α−1
βk
≤ |Ω|(1−α)(1−1/βk)‖u1‖α−1

1 .
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So, by (6.15) and (6.18), we infer that

(6.19)

∫
Ω

uβk/(q
′+α−1

n ) dx ≤ |Ω|2−α−1/q′‖u1‖α−1
1 ‖un‖βk/q

′

βk
.

Now, by applying (6.19) in (6.13), we get

(6.20)
`Φ(1)

q′
βk

∫
Ω

|∇un|`uβk/q
′+α−1

n dx

≤ `Φ(1)

q′
|Ω|2−α−1/q′‖u1‖α−1

1 βk‖un‖βk/q
′

βk
+ (‖a‖q + ‖b‖∞c0)‖un‖βk/q

′

βk
.

Let α > 1. By Hölder inequality, (α− 1)q < (α+ γ)q and (6.10), we have∫
Ω

uβk/q
′+α−1

n dx ≤ ‖un‖βk/q
′

βk

(∫
Ω

u(α−1)q
n dx

)1/q

(6.21)

≤ ‖un‖βk/q
′

βk

(
|Ω|+

∫
[un≥1]

u(α−1)q
n dx

)1/q

≤ ‖un‖βk/q
′

βk

(
|Ω|+ ‖un‖(α+γ)q

(α+γ)q

)1/q ≤ (|Ω|+ C)1/q‖un‖βk/q
′

βk
.

Now, by applying (6.21) in (6.13), we get

(6.22)
`Φ(1)

q′
βk

∫
Ω

|∇un|`uβk/q
′+α−1

n dx

≤ `Φ(1)

q′
βk(|Ω|+ C)1/q‖un‖βk/q

′

βk
+ (‖a‖q + ‖b‖∞c0)‖un‖βk/q

′

βk
.

So, it follows from (6.20) (the case α ≤ 1) and (6.22) (the case α > 1) that the

inequality (6.14) is true for B > 0 defined by

B :=


q′

`Φ(1)

(
`Φ(1)

q′
|Ω|2−α−1/q′‖u1‖α−1

1 + ‖a‖q + ‖b‖∞c0
)

if 0 < α ≤ 1,

q′

`Φ(1)

(
`Φ(1)

q′
(|Ω|+ C)1/q + ‖a‖q + ‖b‖∞c0

)
if α > 1.

This shows the inequality (6.14). Now, since(
`q′

βk + β1

)` ∫
Ω

∣∣∇(u(βk+β1)/(`q′)
n

)∣∣` dx =

∫
Ω

|∇un|` u(βk+q′(α−1))/q′

n dx,

it follows from (6.14) and W 1,`
0 (Ω) ↪→ L`

∗
(Ω) that, for some µ > 0,

(6.23) ‖un‖
β∗k/q

′

βk+1
=
∥∥uβ∗k/(`q′)∥∥`

`∗
≤ µ`B

(
β∗k
`q′

)`
‖un‖βk/q

′

βk
,

Set Fk+1 := βk+1 ln(‖un‖βk+1
). So, it follows from the last inequality, that

Fk+1 ≤
βk+1q

′

β∗k

(
` lnµ+ ` ln

(
β∗k
`q′

)
+ lnB +

βk
q′

ln(‖un‖βk)

)
(6.24)

≤ `∗ ln
(
µBβ∗k

)
+
`∗

q′`
Fk = λk + δFk,
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where λk := `∗ ln
(
µBβ∗k

)
.

Now, by using (6.7) and (6.8), we can infer that

λk = b+ `∗ ln(2δk−1 + δk−2 + . . .+ 1),

where b := `∗ ln(µBβ1), that is,

Fk ≤ δk−1F1 + λk−1 + δλk−2 + . . .+ δk−2λ1.

So

Fk
βk
≤ δk−1F1 + λk−1 + δλk−2 + . . .+ δk−2λ1

2δk − δk−1 − δ
δ − 1

β1

(6.25)

=
F1 +

λk−1

δk−1
+
λk−2

δk−2
+ . . .+

λ1

δ
2δ − 1− 1/δk−1

δ − 1
β1

.

Since

λn
δn

=
b

δn
+
`∗

δn
ln

(
2δn − δn−1 − 1

δ − 1

)
≤ b

δn
+
`∗

δn
ln

(
2δn

δ − 1

)
,

it follows from (6.25), that

Fk
βk
≤
F1 + b

(
1

δk−1
+ . . .+

1

δ

)
+ `∗

(
1

δk−1
ln

(
2δk−1

δ − 1

)
+ . . .+

1

δ
ln

(
2δ

δ − 1

))
2δ − 1− 1/δk−1

δ − 1
β1

≤
F1 +

b

δ − 1
+ `∗

(
1

δk−1
ln

(
2δk−1

δ − 1

)
+ . . .+

1

δ
ln

(
2δ

δ − 1

))
2δ − 1− 1/δk−1

δ − 1
β1

≤
F1 +

b

δ − 1
+ `∗

[
ln

2

δ − 1

(
1

δk−1
+ . . .+

1

δ

)
+ ln δ

(
k − 1

δk−1
+ ...

1

δ

)]
2δ − 1− 1/δk−1

δ − 1
β1

≤
F1 +

b

δ − 1
+ `∗

[
1

δ − 1
ln

2

δ − 1
+ ln δ

∞∑
n=1

n

δn

]
2δ − 1− 1/δk−1

δ − 1
β1

→ d0.

Now, going back to the definition of Fk, we obtain

|un(x)| ≤ ‖un‖∞ = lim sup
k→∞

‖un‖βk ≤ lim sup
k→∞

eFk/βk ≤ ed0

for all x ∈ Ω, and

|u(x)| = lim
n→∞

|un(x)| ≤ ed0
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for almost every x ∈ Ω, because un(x) → u(x) almost everywhere in Ω, that is,

u ∈ L∞(Ω). �

Proof of Corollary 2.2. (a) In this case, we have an = a for n large

enough. So, as a consequence of the Comparison Principle, like at the end of the

proof in Lemma 5.1, we have that un+1 ≥ un. Besides this, if we assume that

Ω0 :=

{
x ∈ Ω

∣∣∣∣ un+1(x) +
1

n+ 1
> un(x) +

1

n

}
⊂⊂ Ω,

is not empty, then we would obtain −∆Φ(un+1 + 1/(n + 1)) ≤ −∆Φ(un + 1/n)

in Ω0, that is

un+1(x) +
1

n+ 1
≤ un(x) +

1

n
in Ω0.

This is impossible. So, we have

0 ≤ un − uk ≤
1

k
− 1

n
in Ω.

Since (un)⊂C1(Ω), we obtain that un converges uniformly to u, that is, u∈C(Ω).

(b) It just follows from the same arguments as those used in the proof of

Theorem 2.3 by taking b = 0.

(c) This proof is based on the ideas from [6]. If 0 < u, v ∈ W 1,Φ
0 (Ω) are two

solutions of the problem (1.1), then the claim is immediately true. So, let us

assume that 0 < u, v ∈ W 1,Φ
loc (Ω) are two solutions of the problem (1.1). Now,

by defining Cv := {w ∈W 1,Φ
0 (Ω) | 0 ≤ w ≤ v} and Jε : Cv → R by

Jε(w) :=

∫
Ω

[
Φ(|∇w|)− a(x)

∫ w(x)

0

1

(s+ ε)α

]
dx,

we obtain that Jε is weakly lower semicontinuous and coercive on the convex

and closed set Cv. Therefore, there is a w = wε ∈ Cv such that

Jε(w) = inf
Cv
Jε,

that is, by defining σ : [0, 1]→ R by σ(t) = Jε(tψ + (1− t)w) for ψ ∈ C, we get

σ(0) = Jε(w) = min{J(w) | w ∈ C} ≤ σ(t) for all t ∈ [0, 1].

In other words, we have that

0 ≤ σ′(0) = 〈J ′ε(w), ψ − w〉 for all ψ ∈ C.

This leads us, after some manipulations, to

(6.26)

∫
Ω

φ(|∇w|)∇w∇ϕdx ≥
∫

Ω

a(x)

(w + ε)α
ϕdx

for all ϕ ∈W 1,Φ
0 (Ω) ∩ L∞c (Ω) with ϕ ≥ 0.

Now, since w ∈ W 1,Φ
0 (Ω), it follows from our definition of zero-boundary

condition, that (u−w− ε)+ ∈W 1,Φ
0 (Ω), and Tτ ((u−w− ε)+) ∈W 1,Φ

0 (Ω) with

supp(Tτ ((u − w − ε)+))) ⊂ Ω for each τ > 0 given, where Tτ (s) := min{s, τ}
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for s ≥ 0, and Tτ (−s) = −Tτ (s) for s < 0. So, by using that u is a W
1,p(x)
loc (Ω)-

solution for (1.1) and w ∈W 1,Φ
0 (Ω) satisfies (6.26), we obtain∫

Ω

(φ(|∇u|)∇u− φ(|∇w|)∇w)∇Tτ ((u− w − ε)+)

≤
∫

Ω

[
a(x)

uα
− a(x)

(w + ε)α

]
Tτ ((u− w − ε)+) ≤ 0,

that is∫
[u≥w+ε]

(φ(|∇(u− ε)|)∇(u− ε)− φ(|∇w|)∇w)∇Tτ ((u− w − ε)+) ≤ 0

for each τ > 0 given. Now, by passing τ → ∞ and using the fact that Φ is

a strictly convex function, we obtain

0 ≤
∫

[u≥w+ε]

[φ(|∇(u− ε)|)∇(u− ε)− φ(|∇w|)∇w][∇(u− ε)−∇w] ≤ 0,

which implies that∇(u−w−ε)+ = 0 almost everywhere in Ω. Since (u−w−ε)+ ∈
W 1,Φ

0 (Ω), we obtain that |[u ≥ w + ε]| = 0, that is,

u ≤ w + ε ≤ v + ε a.e. in Ω.

for each ε > 0. By redoing the above arguments with Cu in the place of Cv, we

obtain that u = v in Ω. �

Appendix A. On Orlicz–Sobolev spaces

In this section we present for the reader’s convenience several results/nota-

tion used in the paper. The reader is referred to [1], [34] regarding basics on

Orlicz–Sobolev spaces. The usual norm on LΦ(Ω) is (Luxemburg norm)

‖u‖Φ = inf

{
λ > 0

∣∣∣∣ ∫
Ω

Φ

(
u(x)

λ

)
dx ≤ 1

}
,

while the Orlicz–Sobolev norm of W 1,Φ(Ω) is

‖u‖1,Φ = ‖u‖Φ +

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥

Φ

.

We denote by W 1,Φ
0 (Ω) the closure of C∞0 (Ω) with respect to the Orlicz–Sobolev

norm of W 1,Φ(Ω). We remind that

Φ̃(t) = max
s≥0
{ts− Φ(s)}, for t ≥ 0.

It turns out that Φ and Φ̃ are N-functions satisfying the ∆2-condition, (cf. [34,

p. 22]). In addition, LΦ(Ω) and W 1,Φ(Ω) are reflexive and Banach spaces.

Remark A.1. It is well known that (φ3) implies that the condition

(φ3)′ ` ≤ φ(t) t2/Φ(t) ≤ m, t > 0,

is verified. Furthermore, under this condition, Φ, Φ̃ ∈ ∆2.
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By the Poincaré Inequality (see e.g. [19]), i.e., the inequality∫
Ω

Φ(u) dx ≤
∫

Ω

Φ(2dΩ|∇u|) dx,

where dΩ = diam(Ω), it follows that

‖u‖Φ ≤ 2dΩ‖∇u‖Φ for all u ∈W 1,Φ
0 (Ω).

As a consequence, we have that ‖u‖ := ‖∇u‖Φ defines a norm in W 1,Φ
0 (Ω) that

is equivalent to ‖ · ‖1,Φ. Let Φ∗ be the inverse of the function

t ∈ (0,∞) 7→
∫ t

0

Φ−1(s)

s(N+1)/N
ds

which can be extended to R by Φ∗(t) = Φ∗(−t) for t ≤ 0.

We say that an N -function Ψ grows essentially more slowly (grows more

slowly) than Υ, denoted by Ψ� Υ (Ψ < Υ), if

lim
t→∞

Ψ(λt)

Φ∗(t)
= 0 for each λ > 0

(Ψ(t) ≤ Υ(kt) for all t ≥ t0 for some k, t0 > 0).

The imbeddings below (cf. [1]) were used in this paper. First, we have

W 1,Φ
0 (Ω)

cpt
↪→ LΨ(Ω) if Φ < Ψ� Φ∗,

and in particular, W 1,Φ
0 (Ω)

cpt
↪→ LΦ(Ω), because Φ � Φ∗ (cf. [20, Lemma 4.14]).

Furthermore,

W 1,Φ
0 (Ω)

cont
↪→ LΦ∗(Ω).

Besides, it is worth mentioning that, if (φ1) − (φ2) and (φ3)′ are satisfied (cf.

[10, Lemma D.2]), then

LΦ(Ω)
cont
↪→ L`(Ω).

In this text we use the notation LΨ
loc(Ω) in the sense that u ∈ LΨ

loc(Ω) if and

only if u ∈ LΨ(Ω) for all U ⊂⊂ Ω.

Lemma A.2. (cf. [15]) Assume that φ satisfies conditions (φ1)–(φ3). Set

ζ0(t) = min{t`, tm} and ζ1(t) = max{t`, tm}, t ≥ 0.

Then Φ satisfies

ζ0(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ1(t)Φ(ρ), ρ, t > 0,

ζ0(‖u‖Φ) ≤
∫

Ω

Φ(u) dx ≤ ζ1(‖u‖Φ), u ∈ LΦ(Ω).

Lemma A.3 (cf. [15]). Assume that φ satisfies (φ1)–(φ3) and 1 < `,m < N

hold. Set

ζ2(t) = min
{
t
˜̀
, tm̃
}

and ζ3(t) = max
{
t
˜̀
, tm̃
}
, t ≥ 0,
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where m̃ = m/(m− 1) and ˜̀= `/(`− 1). Then

˜̀≤ t2 Φ̃′(t)

Φ̃(t)
≤ m̃, t > 0,

ζ2(t) Φ̃(ρ) ≤ Φ̃(ρt) ≤ ζ3(t) Φ̃(ρ), ρ, t > 0,

ζ2(‖u‖Φ̃) ≤
∫

Ω

Φ̃(u) dx ≤ ζ3(‖u‖Φ̃), u ∈ LΦ̃(Ω).

Lemma A.4. Let Let Φ be an N -function satisfying ∆2. Let (un) ⊂ LΦ(Ω) be

a sequence such that un → u in LΦ(Ω). Then there is a subsequence (unk) ⊆ (un)

such that

(a) unk(x)→ u(x) for almost every x ∈ Ω,

(b) there is h ∈ LΦ(Ω) such that |unk | ≤ h almost everywhere in Ω.

Proof (Sketch). We have that
∫

Ω
Φ(un−u) dx→ 0. By [1] LΦ(Ω) ↪→ L1(Ω).

So, there is a subsequence, we keep the notation, and h̃ ∈ L1(Ω) such that un → u

almost everywehere in Ω and Φ(un − u) ≤ h̃ almost everywhere in Ω. Since Φ is

convex, increasing and satisfies ∆2, we have

Φ(|un|) ≤ CΦ

(
|un − u|+ |u|

2

)
≤ C

2
[Φ(|un − u|) + Φ(|u|)] ≤ C

2

[
h̃+ Φ(|u|)

]
,

that is

|un| ≤ Φ−1

(
C

2

(
h̃+ Φ(|u|)

))
:= h ∈ LΦ(Ω),

because h̃ ∈ L1(Ω), Φ(|u|) ∈ L1(Ω), and∫
Ω

Φ(h) dx =

∫
Ω

Φ

(
Φ−1

(
K

2

(
h̃+ Φ(|u|)

)))
dx =

∫
Ω

(
K

2

(
h̃+ Φ(|u|)

))
dx <∞,

showing that h ∈ LΦ(Ω). �
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