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NONAUTONOMOUS CONLEY INDEX THEORY.

THE HOMOLOGY INDEX

AND ATTRACTOR-REPELLER DECOMPOSITIONS

Axel Jänig

Abstract. In a previous work, the author established a nonautonomous

Conley index based on the interplay between a nonautonomous evolution

operator and its skew-product formulation. This index is refined to obtain
a Conley index for families of nonautonomous evolution operators. Different

variants such as a categorial index, a homotopy index and a homology

index are obtained. Furthermore, attractor-repeller decompositions and
conecting homomorphisms are introduced for the nonautonomous setting.

In [4], the author defined a nonautonomous Conley index relying on the

interplay between an evolution operator (1) and a skew-product formulation.

Isolatted invariant sets obtained in the skew-product setting give rise to an index

for a related nonautonomous evolution operator.

An important technical detail of defining the index is the class of index pairs

under consideration. In [4], index pairs are always obtained in the skew-product

formulation. In this paper, it will be proved that, roughly speaking, the same

index can be defined using a broader class of index pairs based on the evolution

operator instead of the skew-product formulation.
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Firstly, we will formulate and prove an inclusion property for index pairs.

A homotopy index, a categorial index and a homology Conley index will be

introduced and, using the previously introduced inclusion properties, shown to

be well-defined. Most of these concepts have evolved over decades and are only

adapted (2) to the nonautonomous setting.

A powerful feature of Conley index theories is certainly its ability to reflect

attractor-repeller decompositions obtained from the skew-product formulation.

Passing to homology, an attractor-repeller decomposition gives rise to a long ex-

act sequence [3], [2] and a so-called connecting homomorphism. These sequences

contain information on the connections between attractor and repeller.

Usually this long exact sequence is obtained from so-called index triples. Us-

ing an appropriate adaption of index triples, these algebraic sequences and their

connecting homomorphisms are shown to be available for the nonautonomous

index, too.

Following a Preliminaries section, a notion of related index pairs is introduced

in Section 2. Based on these results, a categorial index is defined in Section 3.

Section 4 is devoted to attractor-repeller decompositions based on the notion of

a homology Conley index defined there as well.

The reader who is interested in applications is referred to [4]. Continuation

properties of Morse-decompositions and a uniformity property of the connecting

homomorphism will be discussed in subsequent papers.

1. Preliminaries

For the convenience of the reader, we collect important definitions and ter-

minology from other sources, mostly following the author’s previous paper on

the subject [4].

1.1. Quotient spaces.

Definition 1.1. Let X be a topological space, and A,B ⊂ X. Denote

A/B := A/R ∪ {A ∩B},

where A/R is the set of equivalence classes with respect to the relation R on

A which is defined by xRy if and only if x = y or x, y ∈ B. We consider A/B

as a topological space endowed with the quotient topology with respect to the

canonical projection q : A→ A/B, that is, a set U ⊂ A/B is open if and only if

q−1(U) =
⋃
x∈U

x

is open in A.

(2) Each genuinely nonautonomous definition in this paper also applies to the autonomous

setting. Therefore, a comparison is possible. Minor differences between our definition and

other variants (such as [1], for instance) might occur.
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Recall that the quotient topology is the final topology with respect to the

projection q.

Remark 1.2. The above definition is compatible with the definition used in

[1] or [6]. The only difference occurs in the case A ∩ B = ∅, where we add ∅,
which is never an equivalence class, instead of an arbitrary point.

1.2. Evolution operators and semiflows. Let X be a metric space. As-

suming that ♦ 6∈ X, we introduce a symbol ♦, which means “undefined”. The

intention is to avoid the distinction if an evolution operator is defined for a given

argument or not. Define A := A∪̇{♦} whenever A is a set with ♦ 6∈ A. Note

that A is merely a set, the notation does not contain any implicit assumption on

the topology.

Definition 1.3. Let ∆ := {(t, t0) ∈ R+ × R+ : t ≥ t0}. A mapping Φ: ∆×
X → X is called an evolution operator if

(a) D(Φ) := {(t, t0, x) ∈ ∆×X : Φ(t, t0, x) 6= ♦} is open in R+ × R+ ×X;

(b) Φ is continuous on D(Φ);

(c) Φ(t0, t0, x) = x for all (t0, x) ∈ R+ ×X;

(d) Φ(t2, t0, x) = Φ(t2, t1,Φ(t1, t0, x)) for all t0 ≤ t1 ≤ t2 in R+ and x ∈ X;

(e) Φ(t, t0,♦) = ♦ for all t ≥ t0 in R+.

A mapping π : R+×X → X is called semiflow if Φ̃(t+ t0, t0, x) := π(t, x) defines

an evolution operator. To every evolution operator Φ, there is an associated

(skew-product) semiflow π on an extended phase space R+ × X, defined by

(t0, x)πt = (t0 + t,Φ(t+ t0, t0, x)). A function u : I → X defined on a subinterval

I of R is called a solution of Φ if u(t1) = Φ(t1, t0, u(t0)) for all [t0, t1] ⊂ I.

Definition 1.4. Let X be a metric space, N ⊂ X and π a semiflow on X.

(a) The set Inv−π (N) := {x ∈ N : there is a solution u : R− → N with

u(0) = x} is called the largest negatively invariant subset of N .

(b) The set Inv+
π (N) := {x ∈ N : xπR+ ⊂ N} is called the largest positively

invariant subset of N .

(c) The set Invπ(N) :={x∈N : there is a solution u : R→ N with u(0)=x}
is called the largest invariant subset of N .

Let X and Y be metric spaces, and assume that y 7→ yt is a global (3)

semiflow on Y , to which we will refer as t-translation.

Example 1.5. Let Z be a metric space, and let Y := C(R+, Z) be a metric

space such that a sequence of functions converges if and only if it converges

uniformly on bounded sets. The translation can now be defined canonically by

yt(s) := y(t+ s) for s, t ∈ R+.

(3) defined for all t ∈ R+
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A suitable abstraction of many non-autonomous problems is given by the

concept of skew-product semiflows introduced below.

Definition 1.6. We say that π = ( · t,Φ) is a skew-product semiflow on

Y ×X if Φ: R+ × Y ×X → Y ×X is a mapping such that

(t, y, x)πt :=

(yt,Φ(t, y, x)) Φ(t, y, x) 6= ♦,

♦ otherwise,

is a semiflow on Y ×X.

Definition 1.7. For y ∈ Y let H+(y) := clY {yt : t ∈ R+} denote the

positive hull of y. Let Yc denote the set of all y ∈ Y for which H+(y) is compact.

Definition 1.8. Let y0 ∈ Y and N ⊂ H+(y0)×X be a closed subset. N is

called an isolating neighbourhood (for K inH+(y0)×X) if InvN ⊂ intH+(y0)×X N

(and K = InvN).

The following definition is a consequence of the slightly modified notion of

a semiflow (Definition 1.3) but not a semantical change compared to [1], for

instance.

Definition 1.9. We say that π explodes in N ⊂ Y ×X if xπ[0, t[ ⊂ N and

xπt = ♦.

Following [5], we formulate the following asymptotic compactness condition.

Definition 1.10. A set M ⊂ Y ×X is called strongly admissible provided

the following holds: Whenever (yn, xn) is a sequence in M and (tn)n is a se-

quence in R+ such that (yn, xn)π [0, tn] ⊂M , then the sequence (yn, xn)πtn has

a convergent subsequence.

Definition 1.11. Let π = ( · t,Φ) be a skew-product semiflow and y ∈ Y .

Define

Φy(t+ t0, t0, x) := Φ(t, yt0 , x).

It is easily proved that Φy is an evolution operator in the sense of Definition 1.3.

2. Related index pairs

In this section we give a definition of a nonautonomous Conley index which

is slightly different from the index defined in [4]. Essentially, the index is now

purely based on nonautonomous index pairs which are subsets of R+×X, where

X is an appropriate metric space. It is often more convenient to compute the

index by using the modified definition of this section. The main results are

Theorem 2.9 and its corollary.
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We say that two index pairs for which the assumptions and thus also the

conclusions of Theorem 2.9 hold are related. Roughly speaking, related index

pairs define the same index (4).

Throughout this section, it is assumed that X and Y are metric spaces, and

π = π( · t,Φ) is a skew-product semiflow on Y ×X. By χ := χy0 we denote the

canonical semiflow (t, x)χy0s := (t+ s,Φy0(s, 0, x)) on R+ ×X.

Definition 2.1. A pair (N1, N2) is called a (basic) index pair relative to

a semiflow χ in R +×X if

(IP1) N2 ⊂ N1 ⊂ R+ ×X, N1 and N2 are closed in R+ ×X;

(IP2) If x ∈ N1 and xχt 6∈ N1 for some t ∈ R+, then xχs ∈ N2 for some

s ∈ [0, t];

(IP3) If x ∈ N2 and xχt 6∈ N2 for some t ∈ R+, then xχs ∈ (R+ ×X) \N1 for

some s ∈ [0, t].

The definition above establishes the core properties of an index pair and is

taken from [4]. To obtain an index, we need to associate invariant sets with

index pairs.

Definition 2.2. Let y0 ∈ Y and (N1, N2) be a basic index pair in R+ ×X
relative to χy0 . Define r := ry0 : R+×X → H+(y0)×X by ry0(t, x) := (yt0, x). et

K ⊂ ω(y0)×X be an (isolated) invariant set. We say that (N1, N2) is a (strongly

admissible) index pair (5) for (y0,K) if:

(IP4) there is a strongly admissible isolating neighbourhood N of K in H+(y0)

×X such that N1 \N2 ⊂ r−1(N);

(IP5) there is a neighbuorhood W of K in H+(y0) ×X such that r−1(W ) ⊂
N1 \N2.

Definition 2.3. We say that (y0,K) is an invariant pair if y0 ∈ Y and

K ⊂ H+(y0) ×X. An invariant pair (y0,K) is called a compact invariant pair

provided that K is compact.

Every FM-index pair relative to the skew-product semiflow induces an in-

dex pair. Therefore, the homotopy index defined here and the homotopy index

from [4] agree (6).

Lemma 2.4. Let y0 ∈ Y and let (N1, N2) be an FM-index pair for K ⊂
H+(y0)×X such that N1 is strongly admissible. Then

(M1,M2) := (r−1y0 (N1), r−1y0 (N2))

is an index pair for (y0,K).

(4) This is not necessarily a homotopy index, so the vague language is intended.

(5) Every index pair in the sense of Definition 2.2 is assumed to be strongly admissible.

(6) A more detailed explanation can be found right after Theorem 2.9.



62 A. Jänig

Proof. (M1,M2) is an index pair by Lemma 4.3 in [4]. We need to prove

that the assumptions (IP4) and (IP5) of Definition 2.2 are satisfied.

(IP4) N := clY×X(N1\N2) is an isolating neighbourhood for K, andM1\M2 =

r−1(N1) \ r−1(N2) ⊂ r−1(N).

(IP5) Let W := intH+(y0)×X(N1 \ N2), which is a neighbourhood of K. We

have r−1(W ) ⊂ r−1(N1) \ r−1(N2). �

The following lemma is not much more than a restatement of Theorem 3.5

in [4].

Lemma 2.5. Suppose that (N1, N2) ⊂ (M1,M2) are index pairs for (y0,K).

The inclusion induced mapping i : (N1/N2, N2) → (M1/M2,M2) is a homotopy

equivalence.

Proof. By Definition 2.2, there is a neighbourhood W of K such that

r−1(W ) ⊂ (N1 \ N2) ∩ (M1 \M2). It follows from Definition 2.2 that the clo-

sure W := clY×XW is strongly admissible, so by [4, Lemma 4.3], (N1, N2) and

(M1,M2) are index pairs for (Φy0 , r
−1
y0 (W )). The claim is now a direct conse-

quence of Theorem 3.5 in [4]. �

Definition 2.6. Let (N1, N2) be an index pair in R+ × X (relative to the

semiflow χ on R+ ×X). For T ∈ R+, we set

N−T2 := N−T2 (N1) := {(t, x) ∈ N1 : ∃s ≤ T (t, x)χs ∈ N2}.

Lemma 2.7. Let (N1, N2) be an index pair for (y0,K). Then so is (N1, N
−T
2 )

for every T ∈ R+.

Proof. We need to check the assumptions of Definitions 2.1 and 2.2.

(IP1) We need to show that N−T2 is closed. Suppose that (sn, xn) is a se-

quence in N−T2 with (sn, xn) → (s, x) in N1. For every n ∈ N, there is

a tn ∈ [0, T ] such that (sn, xn)χtn ∈ N2. We can assume without loss of gen-

erality that tn → t ≤ T , so (s, x)χt ∈ N2, which is closed. Thus it holds that

(s, x) ∈ N−T2 .

(IP2) Let x ∈ N−T2 but xχt 6∈ N1 for some t ∈ R+. (N1, N2) is an index

pair, so xχs ∈ N2 ⊂ N−T2 for some s ∈ [0, t].

(IP3) Suppose that x ∈ N−T2 and xχt 6∈ N−T2 for some t ∈ R+. Letting

t0 := sup{s ∈ R+ : xχ[0, s] ∩ N2 = ∅}, it follows that t0 ≤ T and xχt0 ∈ N2.

Furthermore, one has xχ[0, t0] ⊂ N−T2 , so t > t0. Since (N1, N2) is assumed to

be an index pair, it follows that xχs ∈ (R+ ×X) \N1 for some s ∈ [t0, t].

(IP4) (N1, N2) is an index pair for (y0,K), so there is an isolating neighbour-

hood N of K such that N1 \N−T2 ⊂ N1 \N2 ⊂ r−1(N).

(IP5) Let W be an open neighbourhood of K such that r−1(W ) ⊂ N1 \N2.

We consider the set WT := {(y, x) ∈W : (y, x)π[0, T ] ⊂W}.
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If (t, x) ∈ r−1(WT ) ∩N−T2 , then (t, x)χy0T ∈ r−1(W ) ∩N2 = ∅, so

r−1(WT ) ⊂ N1 \N−T2 .

We need to show that WT is a neighbourhood of K. Suppose to the contrary

that there is (7) a sequence (yn, xn)→ (y′0, x0) ∈ K in N \WT . For every n ∈ N,

there is a tn ∈ [0, T ] with (yn, xn)πtn ∈ (H+(y0) × X) \W . We can assume,

without loss of generality, that tn → t0, so (y′0, x0)πt0 ∈ (H+(y0) × X) \ W ,

which is a closed set. However, (y′0, x0)πt0 ∈ K ⊂W , a contradiction. �

One frequently needs to prove that a pair (N1, N2) is not only an index

pair but also that it belongs to a certain pair (y0,K). For this purpose and in

conjunction with Lemma 2.7, the following — simple — “sandwich” lemma is

useful.

Lemma 2.8. Let y0 ∈ Y , and let (N1, N2), (M1,M2) and (N ′1, N
′
2) be index

pairs with N1 \N2 ⊂M1 \M2 ⊂ N ′1 \N ′2.

If (N1, N2) and (N ′1, N
′
2) are index pairs for (y0,K), then so is (M1,M2).

Proof. One simply needs to check the assumptions of Definition 2.2.

(IP4) (N ′1, N
′
2) is an index pair for (y0,K), so there is a strongly admissible

isolating neighbourhood N of K in H+(y0)×X such that M1 \M2 ⊂ N ′1 \N ′2 ⊂
r−1(N).

(IP5) (N1, N2) is an index pair for (y0,K), so there is a neighbourhood W

of K in H+(y0)×X such that r−1(W ) ⊂ N1 \N2 ⊂M1 \M2. �

We are now in a position to formulate and prove the main result of this

section.

Theorem 2.9. Let there be given index pairs (N1, N2) and (M1,M2) for

(y0,K). Further, let N ⊂ H+(y0) × X be a strongly admissible neighbourhood

of K. Then there are a t0 ∈ R+ and an index pair (L1, L2) such that

(L1, L2) ⊂ (r−1(N) ∩N1 ∩M1, N
−t0
2 (N1) ∩M−t02 (M1)).

An important consequence of the theorem above is that the homotopy index

of (y0,K) can be defined as the pointed homotopy type of (N1/N2, N2), where

(N1, N2) is an index pair for (y0,K). It coincides (8) with Definition 4.1 in [4],

so there is no need to redefine the homotopy index. We have merely extended

the class of possible or good index pairs.

Corollary 2.10. Under the assumptions of Theorem 2.9, the pointed ho-

motopy types of (N1/N2, N2) and (M1/M2,M2) agree.

(7) As a consequence of the admissibility assumption, K is compact.

(8) Under the assumptions of Theorem 2.9, it follows from [6] that there exists an isolating

block for K in H+(y0) × X. This isolating block gives rise to an index pair for (y0,K) as

proved in Lemma 2.4.
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Proof. By Theorem 2.9, there are an index pair and a constant t0 ∈ R+ for

which the following inclusions hold true.

(L1, L2) ⊂ (N1, N
−t0
2 ) ⊃ (N1, N2), (L1, L2) ⊂ (M1,M

−t0
2 ) ⊃ (M1,M2).

In view of Lemmas 2.5 and 2.7, this readily implies that (N1/N2, N2) and

(M1/M2,M2) are isomorphic in the homotopy category of pointed spaces. �

The rest of this section is devoted to the proof of Theorem 2.9. The proof is

similar to the proof of [1, Lemma 4.8], but instead of using isolating blocks, we

will construct appropriate index pairs. In all subsequent lemmas, we will assume

that the hypotheses of Theorem 2.9 hold.

Since N is a neighbourhood of K, there is an open (in H+(y0) × X) set U

with K ⊂ U ⊂ N . Define g+, g− : H+(y0)×X → R+ by

g+(y, x) := sup{t ∈ R+ : (y, x)π[0, t] ⊂ U},

g−(y, x) := sup

{
d((y, x)πt, Inv−π (N)) : t

∫
[0, g+(y, x)]

}
.

It is easy to see that both functions g+ and g− are continuous and mono-

tone decreasing along solutions in U (resp. N), that is, if u : [0, a] → U (resp.

u : [0, a] → N) is a solution of π, then t 7→ g+(u(t)) (resp. t 7→ g−(u(t))) is

continuous and monotone decreasing on [0, a].

Lemma 2.11.

(a) g+ is lower-semicontinuous.

(b) g− is lower-semicontinuous.

(c) {g+ ≤ c} := {(y, x) ∈ N : g+(y, x) ≤ c} is closed.

(d) {g− ≤ c} := {(y, x) ∈ N : g−(y, x) ≤ c} is closed.

(e) For all c1, c2 > 0, the set ({g− ≤ c1} ∩ {g+ > c2}) is a neighbourhood of

K := Inv(N).

Proof. (a) Let ε > 0 and (y, x) ∈ H+(y0) × X. Suppose that (yn, xn) →
(y, x) in H+(y0)×X and g+(yn, xn) ≤ g+(y, x)−ε for all n ∈ N. We can assume,

without loss of generality, that g+(yn, xn)→ t0.

First of all, as N is strongly admissible and (yn, xn)πs→ (y, x)πs, it follows

that (y, x)πs ∈ N for all s ∈ [0, t0]. Secondly, one has (yn, xn)πg+(yn, xn) ∈
X \ U , which is closed, so (y, x)πt0 ∈ X \ U . However, t0 ≤ g+(y, x)− ε, which

is a contradiction.

(b) Let (y, x) ∈ H+(y0)×X and suppose that (yn, xn)→ (y, x) but g−(yn, xn)

≤ g−(y, x)− ε for some ε > 0.

Let t ∈ [0, g+(y, x)[ be arbitrary. By the lower-semicontinuity of g+, one has

g+(yn, xn) ≥ t provided that n is sufficiently large. Furthermore,

d((y, x)πt, Inv−(N)) ≤ d((y, x)πt, (yn, xn)πt) + d((yn, xn)πt, Inv−(N)),
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so

d((y, x)πt, Inv−(N) ≤ g−(yn, xn) ≤ g−(y, x)− ε.
The last inequality holds for arbitrary t ∈ [0, g+(y, x)[. We thus have g−(y, x) ≤
g−(y, x)− ε, which is a contradiction.

(c) and (d) follow immediately from the lower-semicontinuity of the respective

function.

(e) Arguing by contradiction, we may assume that there are (yn, xn) →
(y, x) ∈ K such that either g+(yn, xn) ≤ c2 or g−(yn, xn) > c1 for all n ∈ N. In

the first case, it follows that g+(y, x) ≤ c2 in contradiction to (y, x) ∈ K. In the

second case, we can choose tn ∈ R+ such that for all n ∈ N, tn ≤ g+(yn, xn) and

(2.1) d((yn, xn)πtn, Inv−(N)) ≥ c1 > 0.

Either (tn)n has a convergent subsequence or tn →∞. Suppose that (tn(k))k is

a subsequence with tn(k) → t0 as k →∞. It follows that d((y, x)πt0, Inv−(N)) ≥
c1, which is a contradiction to (y, x) ∈ K. Thus, one has tn →∞, and using the

admissibility of N , there is a subsequence (yn(k), xn(k))πtn(k) which converges to

a point (y′, x′) ∈ Inv−(N), in contradiction to (2.1). �

Lemma 2.12. For c1 > 0 and c2 > 0, set

Lc1,c21 := {g− ≤ c1} ∩ cl{g+ ≥ c2}, Lc1,c22 := Lc1,c21 ∩ {g+ ≤ c2}

and L̂c1,c2i := r−1(Lc1,c2i ),for i = 1, 2. Then, for c1 small and c2 large, one has

(a) Lc1,c21 ⊂ U , and

(b) (L1, L2) := (L̂1, L̂2) := (L̂c1,c21 , L̂c1,c22 ) is an index pair for (y0,K).

Proof. (a) If (y, x) ∈ cl{g+ ≥ c2}, then (y, x)π[0, c2] ⊂ N . Hence, if the

claim does not hold, there is a point (y′, x′) ∈ K ∩ (N \ U) = ∅.
(b) (IP1) It follows from Lemma 2.11 (c) and (d) that Lc1,c21 and Lc1,c22 are

closed, so L̂1 and L̂2 are closed by the continuity of r.

(IP2) Let x ∈ Lc1,c21 and xπt 6∈ Lc1,c21 for some t ≥ 0. The semiflow does not

explode in N . Hence, there is a t′ ≤ t such that xπt′ ∈ (H+(y0) ×X) \ Lc1,c21 .

Choose a sequence xn → x in Lc1,c21 with g+(xn) ≥ c2. We have xnπt 6∈ Lc1,c21

for all n sufficiently large, so xnπsn ∈ Lc1,c22 for some sn ≤ t and all n ∈ N. We

can assume, without loss of generality, that sn → s0 ≤ t, so xπs0 ∈ Lc1,c22 .

(IP3) Let x ∈ Lc1,c22 and xπ [0, t] ⊂ Lc1,c21 . We have Lc1,c21 ⊂ U , so g+(xπs) ≤
g+(x) for all s ∈ [0, t]. Hence, xπ[0, t] ⊂ Lc1,c22 .

Furthermore, one has N ⊃ Lc1,c21 \ Lc1,c22 ⊃ W , where W := {g− ≤ c1} ∩
{g+ > c2} is a neighbuorhood of K by Lemma 2.11 (e). Thus, r−1(N) ⊃ L̂c1,c21 \
L̂c1,c22 ⊃ r−1(W ), which shows that (L̂1, L̂2) is an index pair for (y0,K). �

Until now, our proof is based loosely on the respective proof in [6] concerning

the existence of isolating blocks. However, our claim is significantly weaker, so

the proof is, hopefully, easier to follow.
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Since both (N1, N2) and (M1,M2) are index pairs for (y0,K), we can as-

sume without loss of generality that r−1(N) ⊂ N1 ∩M1. Otherwise, one can

simply replace N by a sufficiently small neighbourhood N ′, and thereby obtain

a stronger result. In order to complete the proof of Theorem 2.9, we need

Lemma 2.13. For every d > 0, one has L̂c,d2 ⊂ N−T2 (resp. L̂c,d2 ⊂ M−T2 )

provided that c is sufficiently small and T is sufficiently large.

Proof. If the lemma is not true, then there are sequences ((tn, xn))n, cn → 0

and Tn →∞ such that (tn, xn) ∈ L̂cn,d2 and (tn, xn)πs ∈ N1 \N2 for all s ≤ Tn
and all n ∈ N.

Taking subsequences and because cn → 0, we can assume without loss of

generality that (ytn0 , xn) → (y, x) ∈ Inv−(N), which is compact because N is

strongly admissible. Since (N1, N2) is an index pair for K, there exists an iso-

lating neighbourhood Ñ for K with N1 \ N2 ⊂ r−1y0 (Ñ). The choice of the

sequences implies that (y, x) ∈ Inv+(Ñ), so (y, x) ∈ Inv(Ñ) = K. However,(
ytn0 , xn

)
πg+

(
ytn0 , xn

)
∈ N \ U for all n ∈ N. Furthermore, g+

(
ytn0 , xn

)
≤ d by

the choice of L̂c,d2 . One may therefore assume without loss of generality that

g+(ytn0 , xn)→ t0. Consequently, one obtains (y, x)πt0 ∈ (N \U)∩K = ∅, which

is an obvious contradiction. �

By using Lemma 2.12, one can construct an index pair (L1, L2) :=
(
L̂c,d1 , L̂c,d2

)
for (y0,K) choosing c small and d large. In view of Lemma 2.13, one can find

a possibly even smaller parameter c > 0 such that the conclusions of Theorem 2.9

hold for large t0. The proof of Theorem 2.9 is complete. �

3. Categorial Conley index

A connected simple system is a small category with the following property:

if A and B are objects, then there is exactly one morphism A→ B.

Understanding the Conley index as a connected simple system is perhaps

the most elegant variant of the index. There is no loss of information, and other

invariants such as a homotopy or (co)homology index can be derived by applying

an appropriate functor. We will show in this section, that the nonautonomous

extension of the Conley index defines a connected simple system as well.

Throughout this section, we will assume the hypotheses (9) at the beginning

of the previous section.

Definition 3.1. Let y0 ∈ Y , and let K ⊂ H+(y0)×X be an isolated invari-

ant set admitting a strongly admissible isolating neighbourhood. The categorial

(nonautonomous) Conley index C(y0,K) of (y0,K) is the smallest subcategory

of the homotopy category of pointed spaces with the following properties:

(9) i.e. the spaces X, Y , the semiflows π, χy0 and the mapping r := ry0 .
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(a) Objects of C(y0,K) are pairs (N1/N2, N2), where (N1, N2) is an index

pair for (y0,K).

(b) If (N1, N2) and (M1,M2) are index pairs for (y0,K) with (N1, N2) ⊂
(M1,M2), then the inclusion induced morphism

i : (N1/N2, N2)→ (M1/M2,M2)

in the homotopy category of pointed spaces is a morphism of C(y0,K).

For brevity, we also write [N1, N2] := (N1/N2, N2).

Theorem 3.2. C(y0,K) is (well-defined and) a connected simple system.

The proof below can be sketched as follows: Given two arbitrary index pairs

(N1, N2) and (M1,M2), one constructs a morphism f : [N1, N2] → [M1,M2] in

C(y0,K). This morphism f is a composition of inclusion induced morphisms or

their inverse morphisms and therefore necessarily a morphism of C(y0,K). These

morphisms are then shown to be unique, that is, f depends only on (N1, N2)

and (M1,M2), and invariant with respect to composition. In other words, the

proof is nothing but an explicit construction.

Proof. Let (N1, N2) and (M1,M2) be arbitrary index pairs for (y0,K). By

Theorem 2.9, there is an index pair (L1, L2) for (y0,K) and a T ∈ R+ such that

(L1, L2) ⊂ (N1 ∩M1, N
−T
2 ∩M−T2 ).

Each inclusion of index pairs gives rise to a morphism. We obtain the follow-

ing diagram, the arrows of which denote isomorphisms (Lemma 2.5) (respectively

the inverse morphim) of C(y0,K).

(3.1) [N1, N2] −→ [N1, N
−T
2 ]←− [L1, L2] −→ [M1,M

−T
2 ]←− [M1,M2]

It follows that there is a morphism in [N1, N2] → [M1,M2] in C(y0,K), namely

the composition of the morphisms in the row above.

Next, we will show that the morphism obtained using this procedure is

unique. Firstly, let T1 ≥ T2 be positive real numbers. The following ladder

with inclusion induced arrows is commutative.

[N1, N2] // [N1, N
−T1
2 ] [L1, L2]oo // [M1,M

−T1
2 ] [M1,M2]oo

[N1, N2] //

OO

[N1, N
−T2
2 ]

OO

[L1, L2]oo

OO

// [M1,M
−T2
2 ]

OO

[M1,M2]oo

OO

Hence, the morphism [N1, N2]→ [M1,M2] defined by (3.1) is independent of T .

Secondly, one needs to consider the index pair (L1, L2). Suppose (L′1, L
′
2) is

another index pair for (y0,K) with (L′1, L
′
2) ⊂

(
N1∩M1, N

−T
2 ∩M−T2

)
. It follows

again from Theorem 2.9 that there exist an index pair (L′′1 , L
′′
2) for (y0,K) and

a constant T > 0 such that (L′′1 , L
′′
2) ⊂

(
L1 ∩ L′1, L−T2 ∩ (L′)−T2

)
.
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We obtain a commutative diagram below, where each arrow denotes an in-

clusion induced (iso)morphism.

[L1,L2]

�� ��

��[
L1,L

−T
2

]
xx &&

[N1,N2] //
[
N1,N

−2T
2

] [
L′′1 ,L

′′
2

]
oo

OO

��

//
[
M1,M

−2T
2

]
[M1,M2]oo

[
L′1,(L

′
2)−T

]
ff 88

[L′1,L
′
2]

OO

^^ @@

The morphisms defined by (L1, L2) and (L′1, L
′
2) agree since each arrow in the

above diagram denotes an isomorphism (Lemma 2.5).

Finally, we will show that the composition of two morphisms obtained from

the above prodecure can be written as in (3.1). Suppose, we are given index

pairs (N1, N2), (M1,M2) and (O1, O2) for (y0,K). By Theorem 2.9, there are

an index pair (L1, L2) for (y0,K) and a T ∈ R+ such that

(L1, L2) ⊂ (N1 ∩M1 ∩O1, N
−T
2 ∩M−T2 ∩O−T2 ).

For every two objects A,B in C(y0,K), let A → B denote the unique mor-

phism defined by (3.1). We also write B ← A for the inverse (morphism) of

A→ B. Given morphisms A→ B and B → C, we write A→ B → C to denote

their composition. We need to prove that A→ B → C = A→ C. One has

[N1, N2]→ [M1,M2]→ [O1, O2]

= [N1, N2]→ [N1, N
−T
2 ]← [L1, L2]→ [M1,M

−T
2 ]← [M1,M2]

→ [M1,M
−T
2 ]← [L1, L2]→ [O1, O

−T
2 ]← [O1, O2]

= [N1, N2]→ [N1, N
−T
2 ]← [L1, L2]→ [M1,M

−T
2 ]← [L1, L2]

→ [O1, O
−T
2 ]← [O1, O2]

= [N1, N2]→ [N1, N
−T
2 ]← [L1, L2]→ [O1, O

−T
2 ]← [O1, O2]

= [N1, N2]→ [O1, O2]. �

We will now introduce CSS(K), the category of connected simple systems

in a given category K. Objects of CSS(K) are subcategories of K which are

connected simple systems. Let A and B be connected simple systems in K.
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A morphism A → B in CSS(K) is a family (fA,B)(A,B)∈Obj(A)×Obj(B), where

Obj( · ) denotes the objects of a given category and each fA,B is a morphism

A→ B in K such that

A
fA,B

//

��

B

��

A′
fA′,B′

// B′

is commutative. The vertical arrows denote the unique (inner) morphisms in A,

respectively B.

If A is an object of A, B is an object of B, and : A→ B is a morphism, then

there is a unique morphism F ∈ CSS(K) with F = F (A,B) = f . We say that

[f ] := F is induced by f .

Now, set K = HT , the homotopy category of pointed spaces, and given an

isolated invariant set K ⊂ H+(y0)×X admitting a strongly admissible isolating

neighbourhood, its index C(y0,K) is an object of CSS(HT ). The morphisms of

C(y0,K) are called inner morphisms.

4. Homology Conley index and attractor-repeller sequences

In this section, attractor-repeller decompositions of isolated invariant sets

are studied. The main tool are long exact sequences in homology.

4.1. Attractor-repeller decompositions and index triples. Attractor-

repeller decompositions with respect to semiflows are not exactly a new concept;

in particular since they are applied to the skew-product formulation of the nonau-

tonomous problem. The main goal of this section is to understand the implica-

tions of having an attractor-repeller decomposition in a space H+(y0) × X on

the index pairs respectively the index, living in the space R+ ×X.

First of all, α and ω-limes sets can be defined as usual.

α(u) :=
⋂
t∈R−

clH+(y0)×X u(]−∞, t]), ω(u) :=
⋂
t∈R+

clH+(y0)×X u([t,∞[).

Based on the above definitions, the notion of an attractor-repeller decompo-

sition can be made precise.

Definition 4.1. Let y0 ∈ Y and K ⊂ H+(y0)×X be an isolated invariant

set. (A,R) is an attractor-repeller decomposition of K if A,R are disjoint isolated

invariant subsets of K and for every solution u : R → K one of the following

alternatives holds true.

(a) u(R) ⊂ A,

(b) u(R) ⊂ R,

(c) α(u) ⊂ R and ω(u) ⊂ A.
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We also say that (y0,K,A,R) is an attractor-repeller decomposition.

Definition 4.2. Let y0 ∈ Y and K ⊂ H+(y0)×X be an isolated invariant

set admitting a strongly admissible isolating neighbourhood N . Suppose that

(A,R) is an attractor-repeller decomposition of K. A triple (N1, N2, N3) is called

an index triple for (y0,K,A,R) provided that:

(a) N3 ⊂ N2 ⊂ N1,

(b) (N1, N3) is an index pair for (y0,K),

(c) (N2, N3) is an index pair for (y0, A).

Suppose we are given an isolated invariant set and an attractor-repeller de-

composition thereof. Does there exist an index triple?

Lemma 4.3. Let y0 ∈ Y and K ⊂ H+(y0) ×X be an isolated invariant set

admitting a strongly admissible isolating neighbourhood N . Suppose that (A,R)

is an attractor-repeller decomposition of K. Then there exists an index triple

(N1, N2, N3) for (y0,K,A,R) such that N1 ⊂ r−1(N).

Proof. It is known that there exists an FM-index triple (N ′1, N
′
2, N

′
3) (see [1])

with N1 ⊂ N . By Lemma 2.4, (r−1(N ′1), r−1(N ′3)) is an index pair for (y0,K)

and (r−1(N ′2), r−1(N ′3)) is an index pair for (y0, A). �

Lemma 4.4. Let (N1, N2, N3) be an index triple for (y0,K,A,R). Then,

(N1, N2) is an index pair for (y0, R).

Proof. Firstly, we will show that (N1, N2) is a basic index pair, that is, we

need to check Definition 2.1.

(IP2) Let x ∈ N1 and t ∈ R+ such that xχy0t 6∈ N1. It is known that

(N1, N3) is an index pair, so xχy0s ∈ N3 ⊂ N2 for some s ∈ [0, t].

(IP3) Let x ∈ N2 and t ∈ R+ such that xχy0t 6∈ N2. (N2, N3) is an index

pair, so xχy0s ∈ N3 for some s ∈ [0, t]. Since (N1, N3) is also an index pair, it

follows that xχy0s
′ ∈ X \N1 for some s′ ∈ [s, t].

Recall the mapping r := ry0 , which can be found in Definition 2.2. Since

(N1, N3) (resp. (N2, N3)) is an index pair for (y0,K) (resp. (y0, A)), there is

a strongly admissible isolating neighbourhood MK (resp. MA) such that N1 \N2

⊂ r−1(MK) (resp. N2 \ N3 ⊂ r−1(MA)). There also exists an open neigh-

bourhood WK (resp. WA) of K (resp. A) with r−1(WK) ⊂ N1 \ N3 (resp.

r−1(WA) ⊂ N2 \N3).

Recall that A∩R = ∅ by the definition of an attractor-repeller decomposition,

so there are disjoint open neighbourhoods UA of A and UR of R. We may assume

without loss of generality that WA ⊂ UA. Setting MR := MK \WA, one has

InvMR ⊂ R ⊂ UR ⊂ MR, which means that MR is an isolating neighbourhood

for R. Moreover, one has

N1 \N2 = (N1 \N3) \ (N2 \N3) ⊂ r−1(MK) \ r−1(WA) = r−1(MR).
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Define N ′A := clH+(y0)×X r(N2 \N3) and WR := WK \N ′A. One has

N1 \N2 ⊃ r−1(WK) \ (N2 \N3) ⊃ r−1(WK) \ r−1(N ′A) = r−1(WR).

The set K∩N ′A ⊂MA is positively invariant: Let x ∈ K∩N ′A and xπs ∈ K \N ′A
for some s ∈ R+. There is a sequence (tn, xn) in N2 \N3 ⊂ R+ ×X such that

r(tn, xn) → x as n → ∞. We can assume that r(tn, xn)πs 6∈ N ′A for all n ∈ N,

so, without loss of generality, there are reals sn → s0 with (tn, xn)χy0sn ∈ N3

for all n ∈ N. We have r(tn, xn)πsn → xπs0 ∈ K, so (tn, xn)χy0sn ∈ r−1(WK)

for all but finitely many n, which is a contradiction since r−1(WK) ∩ N3 = ∅.
Hence, if x ∈ K ∩ N ′A, then ω(x) ⊂ A, implying that R ∩ N ′A = ∅. Therefore

WR, which is obviously open, is a neighbourhood of R. �

Lemma 4.5. Let (N1, N2, N3) be an index triple for (y0,K,A,R). Then, for

every T ∈ R+,

(N1, N
−T
2 , N3) := (N1, N

−T
2 (N1), N3)

and

(N1, N
−T
2 , N−T3 ) := (N1, N

−T
2 (N1), N−T3 (N1))

are index triples for (y0,K,A,R).

Proof. Lemma 2.7 implies that (N1, N
−T
2 ) and (N1, N

−T
3 ) are index pairs

for (y0,K) for every T > 0. Furthermore, assuming that (N−T2 , N3) is an index

pair for (y0, A), it follows from Lemma 2.7 (10) that (N−T2 , N−T3 ) is an index

pair for (y0, A).

Hence, we only need to prove that (N−T2 , N3) is an index pair for (y0, A).

(IP1) (N1, N
−T
2 ) is an index pair, so N−T2 is closed.

(IP2) Let x ∈ N−T2 and xχy0t 6∈ N−T2 ⊃ N2. We have xχy0s
′ ∈ N2 for some

s′ ≤ t. Since (N2, N3) is an index pair, we must have xχy0s ∈ N3 for some

s ∈ [s′, t].

(IP3) Let x ∈ N3 and xχy0t 6∈ N3. (N1, N3) is an index pair, so xχy0s ∈
(R+ ×X) \N1 ⊂ (R+ ×X) \N−T2 for some s ∈ [0, t].

(IP4) (N1, N
−T
2 ) is an index pair for (y0, R), so there is an open neigh-

bourhood WR of R such that r−1(WR) ⊂ N1 \ N−T2 . We may assume that

WR ∩ A = ∅ because A ∩ R = ∅. Let NK be an isolating neighbourhood for K

with N1 \N3 ⊂ r−1(NK). Then NA := NK \WR is an isolating neighbourhood

for A with

N−T2 \N3 ⊂ (N1 \N3) \ (N1 \N−T2 ) ⊂ r−1(NA).

(IP5) Since (N2, N3) is an index pair for (y0, A), there is a neighbourhood

WA of A with r−1(WA) ⊂ N2 \N3. One has

r−1(WA) ⊂ N2 \N3 ⊂ N−T2 (N1) \N3. �

(10) N−T
3 (N1) = N−T

3 (N−T
2 )
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4.2. Long exact sequences. The long exact sequence associated with

an attractor-repeller sequence is usually defined using the concept of so-called

weakly exact sequences (Definition 2.1 in [2]). Instead of weakly exact sequences,

we use the long exact sequence of a triple as a starting point. The advantage is

that our definition relies only on an axiomatic characterization of homology yet

not necessarily on an underlying chain complex. It is therefore only assumed that

H∗ = (Hq)q∈Z is a homology theory satisfying the Eilenberg–Steenrod axioms.

Of course, H∗ can also simply be read as the singular homology functor.

Lemma 4.6. Let (N1, N2, N3) be an index triple for (y0,K,A,R). Then, the

projection p : N1/N3 → N1/N2 induces an isomorphism

% : H∗(N1/N3, N2/N3)→ H∗(N1/N2, {N2}).

The proof will be conducted in three steps, the first two being formulated as

separate lemmas.

Lemma 4.7. Let (N1, N2) be an index pair for (y0,K) and define f : N1 → R+

by f(t, x) := sup{t0 ∈ R+ : (t, x)χy0s ∈ cl(N1 \N2) for all s ∈ [0, t0]}. Then,

(a) f is upper semicontinuous, and

(b) bounded on N2.

Proof. (a) Suppose that f is not upper semicontinuous. Then there is

a sequence (tn, xn) → (t0, x0) in N1 such that f(tn, xn) > f(t0, x0) + ε for

some ε > 0 and all n ∈ N. By the definition of f , there is an s ∈ [0, ε[

with (t0, x0)χy0(f(t0, x0) + s) ∈ (R+ × X) \ (cl(N1 \ N2)). It follows that

(tn, xn)χy0(f(t0, x0) + s) ∈ (R+ ×X) \ (cl(N1 \N2)) for all n sufficiently large.

Hence, f(tn, xn) < f(t0, x0) + ε for those n, which is a contradiction.

(b) (N1, N2) is an index pair for (y0,K), so there is a strongly admissible

isolating neighbourhood N ⊂ H+(y0) ×X for K such that N1 \ N2 ⊂ r−1(N).

N is closed, so cl(N1 \N2) ⊂ r−1(N). Furthermore, there exists an open neigh-

bourhood W of K with r−1(W ) ⊂ N1 \N2. Now, suppose that f is unbounded

on N2. Then there is a sequence (tn, xn) in N2 with f(tn, xn)→∞.

Because f((tn, xn)χy0s) 6= 0, we must have (tn, xn)χy0s ∈ N2∩(clR+×X(N1 \
N2)) for all s ∈ [0, f(tn, xn)[ and all n ∈ N, so r(tn, xn)πs ∈ N \ W for all

s ∈ [0, f(tn, xn)].

Since N is strongly admissible, there is a solution u : R → N \ W of π.

However, u(R) ⊂ K because N is an isolating neighbourhood for K. This is

a contradiction since K ⊂W . �

Lemma 4.8. Let (N1, N2) be an index pair for (y0,K). Then for all T ∈ R+

sufficiently large, N−T2 := N−T2 (N1) is a neighbourhood of N2 in N1.

Proof. By Lemma 4.7 (a), WT := f−1([0, T [) is open for every T ∈ R+. If T

is sufficiently large, then WT ⊃ N2 by Lemma 4.7 (b), so WT is a neighbourhood
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of N2 in N1. We are going to show that WT ⊂ N−T2 , which implies that for

large T ∈ R+, N−T2 is a neighbourhood of N2 as claimed.

In order to prove the inclusion WT ⊂ N−T2 , let x ∈ WT and ε > 0 be

arbitrary. We have xχt 6∈ cl(N1 \N2) for some t ≤ T + ε solely by the definition

of f . Either xχy0t ∈ N1 and thus xχy0t ∈ N2 or xχt′ ∈ N2 for some t′ ≤ t

because (N1, N2) is an index pair. Since ε > 0 is arbitrary and N2 closed, it

follows that xχt′′ ∈ N2 for some t′′ ≤ T , so x ∈ N−T2 . �

Proof of Lemma 4.6. Consider the following sequence of inclusion induced

mappings.

H∗(N1/N3, N2/N3)
i−→ H∗(N1/N3, N

−T
2 /N3)

k−→ H∗(N1/N2, N
−T
2 /N2)

l−→ H∗(N1/N2, N2/N2).

We will show that i, k, l are isomorphisms.

Firstly, we consider i. Define ϕT : N1/N3 → N1/N3 by

ϕT ([t, x]) :=

[(t, x)χy0T ] (t, x)χy0s ∈ N1 \N3 for all s ∈ [0, T ],

N3 otherwise.

It follows from Lemma 3.7 in [4] that ϕT and therefore its restriction to N−T2 /N3

are continuous. We conclude that i−1 = ϕT up to homotopy, so i is indeed an

isomorphism.

Secondly, choosing T sufficiently large, it follows from Lemma 4.8 that N−T2

is a neighbourhood of N2 ⊃ N3. Hence, k is an isomorphism by the excision

property of homology.

Thirdly, it follows as before that the one-point space N2/N2 is a deformation

retract of N−T2 /N2. Hence, k must be an isomorphism as well, completing the

proof. �

In view of Lemma 4.6, we can now make define long exact sequences associ-

ated with index triples. To keep the definition short, recall that the homology

theory defines a boundary operator (connecting homomorphism) ∂(X,A) for

every topological pair (X,A). Let (X,A,B) be a triple of topological spaces,

where B ⊂ A ⊂ X are subspaces. There is a long exact sequence associ-

ated with (X,A,B) and its (natural) connecting homomorphism δ is given by

δ := H∗(k) ◦ ∂(X,A), where k : (A, ∅) → (A,B) denotes the inclusion (see [7,

Theorem 5 in Section 4.8]).

Definition 4.9. Let (N1, N2, N3) be an index triple for (y0,K,A,R). Let

q : H∗(N1/N3, N2/N3) → H∗(N1/N2, N2/N2) be inclusion induced and set ∂ =

δ ◦ q−1, where δ is the connecting homomorphism associated with the triple
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(N1/N3, N2/N3, N3/N3). The long exact sequence associated with (N1, N2, N3)

is

(4.1) −→ H∗[N2, N3]
i−→ H∗[N1, N3]

p−→ H∗[N1, N2]
∂−→ H∗−1[N2, N3] −→

Here, we denote H∗[N1, N2] := H∗(N1/N2, {N2}).

Lemma 4.10. Let (N1, N2, N3) be an index triple for (y0,K,A,R). The se-

quence (4.1) associated with (N1, N2, N3) is exact.

Proof. We rewrite (4.1) as follows.

H∗[N1, N2]

∂

((
// H∗[N2, N3]

i
// H∗[N1, N3]

p
77

// H∗(N1/N3, N2/N3)

q

OO

δ
// H∗−1[N2, N3] //

The lower row is the long exact sequence of the triple (N1/N3, N2/N3, N3/N3).

The result follows easily because q is an isomorphism by Lemma 4.6. �

Lemma 4.11. Let (N1, N2, N3) (resp. (N ′1, N
′
2, N

′
3)) be an index triple for

(y0,K,A,R) (resp. (y′0,K
′, A′, R′)). The boundary operator ∂ is natural with

respect to continuous mappings f : (N1, N2, N3) → (N ′1, N
′
2, N

′
3), that is, if ∂

and ∂′ denote the respective boundary operators, then

H∗[N1, N2]
∂
//

f

��

H∗[N2, N3]

f

��

H∗[N
′
1, N

′
2]

∂′
// H∗[N

′
2, N

′
3]

is commutative.

Proof. This follows easily from Definition 4.9. The connecting homomor-

phisms of the long exact sequences associated with a triple are natural, and so

are the projections q. �

4.3. The homology Conley index. The homotopy index of an invariant

set is the homotopy type of an appropriate quotient space. A homology index

could be defined similarly as equivalence class of graded modules or the like.

However, to not loose the connecting homomorphisms introduced in the previous

sections, requires a more sophisticated approach.

Definition 4.12. Let y0 ∈ Y and K ⊂ H+(y0)×X be an isolated invariant

set admitting a strongly admissible isolating neighbourhood, so its categorial

Conley index C(y0,K) is defined. The (categorial, nonautonomous) homology

Conley index is obtained by applying the homology functor, that is:

(a) If A is an object of C(y0,K), then H∗(A) is an object of H∗ C(y0,K).
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(b) If f is a morphism of C(y0,K), then H∗(f) is a morphism of H∗ C(y0,K).

As a consequence of the above definition, the homology Conley index is

an object of CSS(gradMod), where gradMod denotes the category of graded

modules. Suppose we are given a long sequence

−→ An [fn]−−−→ An+1 −→

in CSS(gradMod). Choose objects An of An for every n ∈ N. We say that the

above sequence is exact if

−→ An
fn

−−−→ An+1 −→

is exact. Note that this notion of exactness is independent of the particular

choice of objects.

The above definition immediately leads to the following question: Does a con-

necting homomorphism ∂ which is defined by a particular index triple give rise

to a unique morphism of the homology index? The answer is affirmative as we

will see below.

Theorem 4.13. Let (N1, N2, N3) be an index triple for (y0,K,A,R). The

connecting homomorphism ∂ that is given by Definition 4.9 gives rise to a unique,

i.e. independent of (N1, N2, N3), morphism [∂] in CSS(gradMod) and

(4.2) −→ H∗ C(y0, A)
[i]−−→ H∗ C(y0,K)

[p]−−→ H∗ C(y0, R)
[∂]−−→ H∗−1 C(y0, A) −→

is a long exact sequence.

(4.2) is called the (long exact) attractor-repeller sequence of (y0,K,A,R). We

also say that [∂] is the connecting homomorphism of (y0,K,A,R) respectively

of the attractor-repeller sequence associated with (y0,K,A,R).

It is an immediate consequence of Theorem 4.15 below that [∂] is well-defined.

The proof that the morphisms [i] and [p] are well-defined is omitted.

Lemma 4.14. Let (N1, N2, N3) and (M1,M2,M3) be index triples for (y0,K,

A,R). Then there is an index triple (L1, L2, L3) such that, for some T > 0,

(4.3) (L1, L2, L3) ⊂ (N1 ∩M1, N
−T
2 (N1)∩M−T2 (M1), N−T3 (M1)∩M−T3 (M1)).

Proof. By Theorem 2.9, there are index pairs
(
L̃1, L̃3

)
for (y0,K) and

(L′2, L
′
3) for (y0, A) which have the required inclusion properties, that is, for

some T ′ > 0 it holds that

(L̃1, L̃3) ⊂
(
N1 ∩M1, N

−T ′
3 (N1) ∩M−T

′

3 (M1)
)
,

(L′2, L
′
3) ⊂

(
L̃1 ∩N2 ∩M2, N

−T ′
3 (N2) ∩M−T

′

3 (M2)
)
.

Assume for the moment that there is a constant T ′′ > 0 such that

(∗)
(
L′2 ∪ L̃−T

′′

3 , L̃−T
′′

3

)
is an index pair for (y0, A).
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By Lemma 2.7,
(
L̃1, L̃

−T ′′
3

)
is an index pair for (y0,K), so by (∗)

(L1, L2, L3) :=
(
L̃1, L

′
2 ∪ L̃−T

′′

3 , L̃−T
′′

3

)
is an index triple for (y0,K,A,R). Furthermore, taking T = T ′ + T ′′, (4.3) is

satisfied.

It is therefore sufficient to prove the assumption above. Firstly, we will show

that L′3 ⊂ L̃−T
′′

3 := L̃−T
′′

3 (L̃1) for T ′′ large enough. Suppose that (tn, xn) ∈
L′3 \ L̃−2n3 (N1) is a sequence. We have

(4.4) (tn, xn)χy0 [0, 2n] ⊂ N−T
′

3 (N2) ⊂ N−T
′

3 (N1)

for all n ∈ N.
(
N1, N

−T ′
3 (N1)

)
is an index pair for (y0,K) by virtue of Lemma

2.7, so there is an admissible isolating neighbourhood N of K such that

r(tn, xn)π[0, 2n] ⊂ N for all n ∈ N.

We may assume without loss of generality that r(tn, xn)πn → (y, x) ∈ K,

(tn, xn)χy0n ∈ N1 \N−T
′

3 (N1) provided that n is sufficiently large, in contradic-

tion to (4.4).

To prove (∗), we need to check the assumptions of an index pair.

(IP1) It is clear that L2 and L3 are closed sets with L2 ⊂ L3.

(IP2) Let x ∈ L2 \ L3 and xχy0t 6∈ L2 for some t > 0. It follows that

xχy0t 6∈ L′2, so xχy0s ∈ L′3 ⊂ L3 for some s ∈ [0, t].

(IP3) Suppose that x ∈ L3, but xχy0t 6∈ L3 for t > 0. (L1, L3) is an index

pair by Lemma 2.7, so xχy0s ∈ (R+×X)\L1 ⊂ (R+×X)\L2 for some s ∈ [0, t].

(IP4) (L′2, L
′
3) is an index pair for (y0, A). Hence there is an admissible

isolating neighbourhood N ⊂ H+(y0)×X for A with L2\L3 ⊂ L′2\L′3 ⊂ r−1(N).

(IP5) There is a neighbourhood W of A in H+(y0)×X such that r−1(W ) ⊂
L′2 \ L′3. Since (L1, L3) is an index pair for (y0,K), there is also a neighbour-

hood WK of K with r−1(WK) ⊂ L1 \ L3. The intersection W0 := W ∩WK is

a neighbourhood of A, and r−1(W0) ⊂ L2 \ L3. �

Theorem 4.15. Let (N1, N2, N3) and (M1,M2,M3) be index triples for (y0,K,

A,R). Then the following diagram is commutative.

// H∗[N1, N2]
∂
//

��

H∗[N2, N3] //

��
// H∗[M1,M2]

∂
// H∗[M2,M3] //

Its rows represent the long exact sequences associated with the respective index

triple, and the vertical arrows denote the respective inner morphism of the cate-

gorial Conley index.
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Proof. Assuming that (N1, N2, N3) ⊂ (M1,M2,M3), the inner morphisms

are inclusion induced, so the theorem is merely a reformulation of Lemma 4.11.

The general case follows from Lemma 4.14. Let the index triple (L1, L2, L3) be

given by that lemma. We have

(N1, N2, N3) ⊂
(
N1, N

−T
2 , N−T3

)
⊃ (L1, L2, L3),

(M1,M2,M3) ⊂
(
M1,M

−T
2 ,M−T3

)
⊃ (L1, L2, L3),

for some T > 0.

By Lemma 4.5, the triples
(
N1, N

−T
2 , N−T3

)
and

(
M1,M

−T
2 ,M−T3

)
in the

middle are index triples. This reduces the general case to the special case covered

by Lemma 4.11.
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