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PARABOLIC EQUATIONS

WITH LOCALIZED LARGE DIFFUSION:

RATE OF CONVERGENCE OF ATTRACTORS

Alexandre N. Carvalho — Leonardo Pires

Abstract. In this paper we study the asymptotic nonlinear dynamics
of scalar semilinear parabolic problems of reaction-diffusion type when the

diffusion coefficient becomes large in a subregion in the interior to the do-

main. We obtain, under suitable assumptions, that the family of attractors
behaves continuously and we exhibit the rate of convergence. An accurate

description of the localized large diffusion is necessary.

1. Introduction

Local spatial homogenization is a feature that appears in several physical

phenomenona. It is often present in heat conduction in materials for which the

heat may diffuse much more faster in some regions than in others (composite

materials).

Reaction-diffusion models for which the diffusivity varies considerably from

one region to another have solutions that tend to become spatially homogeneous

in the regions where the diffusivity is large. There has been many studies of

mathematical models for which this property was exploited (see, for example,

[2], [7] and [16]).
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Also, in [10] the authors considered a scalar parabolic problem where the

diffusivity is large except in a neighbourhood of a finite number of points where it

becomes small (see also, [13]). There it was shown that the asymptotic behavior

is described by a system of linearly coupled ordinary differential equations. The

analysis in [10] requires a detailed description of the transition between large

and small diffusion.

Inspired by these works, we formulate a prototype problem of the localized

large diffusion in order to understand its effects on the continuity of global at-

tractors. Specifying the details on how the diffusivity becomes large or converge

we obtain, not only continuity of attractor but also the rate of their convergence.

Our formulation refines the results on continuity of attractors (without rate) ob-

tained in [7] where the diffusivity becomes large in a subregion which is interior

to the domain. We will need to make an accurate description of the localized

large diffusion as in [10] to be able to establish the rate of convergence.

To present better the main ideas while avoiding excessive notation, we con-

sider the one dimensional scalar case for which the diffusion is large only in a part

of the domain, leaving the case where the diffusion is large in a finite number of

parts of the domain as implicit.

Figure 1. Diffusion

Consider the scalar parabolic problem

(1.1)


uεt − (pε(x)uεx)x + λuε = f(uε) if 0 < x < 1, t > 0,

uεx(0) = uεx(1) = 0 if t > 0,

uε(0) = uε0,

where ε ∈ (0, ε0] is a parameter (0 < ε0 ≤ 1), f ∈ C2(R) and λ > 0. To

describe the coefficients pε, let 0 = x0 < x1 < x2 < x3 = 1 be a partition of the
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interval Ω = (0, 1). We assume the diffusion is very large in the open interval

Ω0 = (x1, x2) and converges uniformly to p0 ∈ C2(Ω1) in the Ω1 = [0, x1]∪ [x2, 1]

as ε approaches to zero. More precisely, for m0 > 0 and ε ∈ (0, ε0], pε ∈ C2([0, 1])

satisfies the following conditions (see Figure 1).

(1.2)


pε

ε→0−−−→ p0 uniformly in Ω1,

pε(x) ≥ 1

ε
in [x1 + ε, x2 − ε],

m0 ≤ pε in Ω and, consequently, m0 ≤ p0 in Ω1.

Due to the large diffusivity it is natural to expect that solutions uε of the

(1.1) become approximately spatially constant on Ω0 as t becomes large. Assume

that solutions uε(t, x) exist and converge (in some sense), as ε→ 0, to a function

u0(t, x) which is spatially constant on (x1, x2) and denote its value in Ω0 by

u0
Ω0

(t). With this, the limiting problem of (1.1) as ε→ 0 should be given by

(1.3)



u0
t − (p0(x)u0

x)x + λu0 = f(u0) if x ∈ Ω1, t > 0,

u0
x(0) = u0

x(1) = 0 if t > 0,

u0|Ω0
= u0

Ω0
,

u̇0
Ω0

+ λu0
Ω0

= f(u0
Ω0

),

u0(0) = u0
0,

where u0
0 = limε→0 u

ε
0 is constant on Ω0.

In fact, the problems (1.1) and (1.3) are particular cases of those in [16]

where it was proved that solutions of the elliptic operator in (1.3) approximate

those of the elliptic operator in (1.1) (resolvent convergence). As a consequence

of that the authors in [16] proved also the convergence of the spectrum of the

associated elliptic operators. Nonetheless, nothing is said in [16] about the rate

of convergence of resolvents or of the spectrum.

To better describe the results we write (1.1) and (1.3) abstractly in a natural

energy space. To do that we introduce some more terminology. We start defining

the operator Aε : D(Aε) ⊂ L2(0, 1)→ L2(0, 1) by

D(Aε) = {u ∈ H2(0, 1) : ux(0) = ux(1) = 0} and Aεu = −(pεux)x + λu.

Next, we define the spaces of functions which are constant in Ω0 by

L2
Ω0

(0, 1) = {u ∈ L2(0, 1) : u is constant a.e. in Ω0},

H1
Ω0

(0, 1) = {u ∈ H1(0, 1) ; ux = 0 in Ω0}.
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Using this terminology, we define the operator A0 : D(A0)⊂L2
Ω0

(0, 1)→L2
Ω0

(0, 1)

by

D(A0) =
{
u ∈ H1

Ω0
(0, 1) : −(p0ux)x ∈ L2(Ω1), ux(0) = ux(1) = 0

}
,

A0u = [−(p0ux)x + λu]χΩ1
+ [λuΩ0

]χΩ0
,

where uΩ0 is the constant value of u in Ω0.

Hence, Aε is a positive self-adjoint operator with compact resolvent for each

ε ∈ [0, ε0], its first eigenvalue is λ and we can define, in the usual way (see [14]),

the fractional power space X
1/2
ε = H1(0, 1), ε ∈ (0, ε0], and X

1/2
0 = H1

Ω0
(0, 1)

with the respective scalar products

〈u, v〉
X

1/2
ε

=

∫ 1

0

pεuxvx dx+

∫ 1

0

λuv dx, u, v ∈ X1/2
ε , ε ∈ (0, ε0],

〈u, v〉
X

1/2
0

=

∫
Ω1

p0uxvx dx+

∫ 1

0

λuv dx, u, v ∈ X1/2
0 .

The space X
1/2
0 is a closed subspace of X

1/2
ε , ε ∈ (0, ε0] and X

1/2
ε ⊂ H1(0, 1)

with embedding constant independent of ε. However, a delicate issue here is

that, the embedding H1(0, 1) ⊂ X1/2
ε is not independent of ε, in fact

‖u‖H1 ≤ C‖u‖
X

1/2
ε
≤Mε‖u‖H1 , u ∈ H1,

where Mε → ∞ as ε → 0. Actually, it can be proved that it is not possible to

choose Mε independent of ε (see [11]), therefore estimates in H1 norm do not

provide (uniform in ε) estimates in X
1/2
ε norm.

We will consider X
1/2
ε as the phase space for the problems (1.1) and (1.3) that

is, if we also denote by f the Nemytskĭı operator associated to the function f ,

then (1.1) and (1.3) can be written in the following coupled form

(1.4)

uεt +Aεu
ε = f(uε),

uε(0) = uε0 ∈ X
1/2
ε for ε ∈ [0, ε0].

Since X
1/2
ε ⊂ C([0, 1]), we do not require any growth condition for f and we

only assume that it satisfies the dissipativeness condition

lim sup
|x|→∞

f(x)

x
< λ.

It follows from [3], [4] and [2] that (1.4), for each ε ∈ [0, ε0], is globally well

posed and its solutions are classical and continuously differentiable with respect

to the initial data. Also, we may assume, without loss of generality, that f is

globally bounded with globally bounded derivatives up to second order. Thus we

are able to consider in X
1/2
ε the family of nonlinear semigroups {Tε( · )}ε∈[0,ε0]
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defined by Tε(t) = uε(t, uε0), t ≥ 0, where uε(t, uε0) is the solution of (1.4) through

uε0 ∈ X
1/2
ε and

(1.5) Tε(t)u
ε
0 = e−Aεtuε0 +

∫ t

0

e−Aε(t−s)f(Tε(s)) ds, t ≥ 0,

has a global attractor Aε, for each ε ∈ [0, ε0] such that
⋃

ε∈[0,ε0]

Aε is compact

in H1(0, 1).

We recall that the family {Aε}ε∈[0,ε0] of global attractors is continuous at

ε = 0 if

dH(Aε,A0) = distH(Aε,A0) + distH(A0,Aε)→ 0 as ε→ 0,

where

distH(A,B) = sup
a∈A

inf
b∈B
‖a− b‖

X
1/2
ε
, A,B ⊂ X1/2

ε .

We also recall that the equilibria solutions of (1.4) are those which are in-

dependent of time, that is, for ε ∈ [0, ε0], they are the solutions of the elliptic

problem Aεu
ε − f(uε) = 0. We denote by Eε the set of the equilibria solutions

of Aε and we say that uε∗ ∈ Eε is a hyperbolic if

σ(Aε − f ′(uε∗)) ∩ {µ ∈ C : Re(µ) = 0} = ∅.

Since hyperbolicity of equilibria is a quite common property for reaction dif-

fusion equations (see [9], for example), we assume E0 is composed of hyperbolic

equilibria only, therefore E0 is finite and the family {Eε}ε∈[0,ε0] is continuous

at ε = 0 (see [7]); in fact, for ε sufficiently small, Eε is composed of a finite

number of hyperbolic solutions and the semigroups in (1.5) are gradient. More-

over, in [8] the authors proved that the semigroup T0( · ) is Morse–Smale from

which it follows the stability of its phase diagram under suitable perturbations

(see [6]). In [8] the authors also proved the gap condition for eigenvalues of the

operators Aε, ε ∈ [0, ε0], and then the existence of exponential attracting finite

dimensional inertial manifolds Mε (of dimension independent of ε) containing

Aε is ensured. Thus we can restrict the semigroups Tε to these inertial manifolds

in order to obtain a finite dimensional problem. The robustness these smooth

inertial manifolds under regular perturbations is used to ensure the the phase

diagram commutativity between attractors.

Under these assumptions, the authors in [2] and [7] proved the continuity

of attractors (as sets) for a problem similar to (1.4) in the phase space X
1/2
ε ,

however rate of convergence of attractors was not considered. The aim of this

paper is to consider the rate of convergence of attractors as ε tends to zero.

Some results about rate of convergence of attractors for Morse–Smale prob-

lems are founded in [5], where the authors have obtained an almost optimal rate
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of convergence of attractors involving the compact convergence of the resolvent

operators ‖A−1
ε −A−1

0 ‖L
(
L2

Ω0
,X

1/2
ε

) for a specific thin domain problems.

Inspired by the works described above, we exhibit a rate of convergence of

the attractor of (1.4), in the phase space X
1/2
ε , to the attractor of (1.3), in the

pase space X
1/2
0 , in terms of the ε dependence of the diffusion coefficients pε.

All asymptotic objects in our prototype problem (equilibria, unstable manifolds,

invariant manifolds and attractors) converge at this rate which is the rate of

convergence of resolvent operators.

Therefore our main contribution in this paper is to establish the rate of con-

vergence of resolvents operators, eigenvalues and equilibria for the problem (1.4)

to be able to apply the results of [5] to the continuity of attractors. In addition,

for the particular model considered, our work improves the works [1], [7] and [8]

(in what concerns the continuity of attractors), where continuity of attractors

was proved without any rate. The current paper is the first to consider the rate

of convergence of attractors for parabolic problems with localized large diffusion.

This paper is organized as follows. In the Section 2 we make the study of the

elliptic problem in order to find a rate of attraction for the resolvent operators. In

the Section 3 we exhibit a rate of attraction for the eigenvalues and equilibrium

points. In Section 4 we obtain the rate of convergence of invariant manifolds and

in the Section 5 we reduce the system to finite dimensions and we finally obtain

a rate of convergence of attractors.

2. Elliptic problem

In this section we analyze the solvability of the elliptic problem associated

to (1.4) in order to obtain the rate of convergence of the resolvent operators. As

a consequence we will estimate the convergence of Tε(1); that is, the solution

operator associated to (1.5) at time one. Later we will transfer such estimate to

the convergence of Tε(1) restricted to finite dimensional invariant manifold.

Next we prove the convergence of the resolvent operator A−1
ε

∣∣
L2

Ω0

to A−1
0

establishing that the rate of this convergence of resolvent operators is

(‖pε − p0‖L∞(Ω1) + ε)1/2.

Lemma 2.1. For g ∈ L2
Ω0

with ‖g‖L2 ≤ 1 and ε ∈ [0, ε0], let uε be the solution

of elliptic problem Aεuε = g for x ∈ (0, 1),

uεx(0) = uεx(1) = 0.

Then there is a constant C > 0 independent of ε such that∥∥uε − u0
∥∥
X

1/2
ε
≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2.
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Proof. First note that the weak solution uε satisfies∫ 1

0

pεu
ε
xϕx dx+

∫ 1

0

λuεϕdx =

∫ 1

0

gϕ dx, for all ϕ ∈ X1/2
ε , ε ∈ (0, ε0],(2.1) ∫

Ω1

p0u
0
xϕx dx+

∫ 1

0

λu0ϕdx =

∫ 1

0

gϕ dx, for all ϕ ∈ X1/2
0 .(2.2)

If we take ϕ = uε as a test function we get uniform bound for weak solution

uε in the spaces H1 and X
1/2
ε for ε ∈ [0, ε0]. Also the embedding H1 ⊂ L∞

gives us an uniform bound for uε in the space L∞. For estimate uεx note that

−(pεu
ε
x)x = g − λuε integrating from 0 to x, we obtain

pε|uεx| ≤ ‖g‖L2 + λ‖uε‖L2 , for x ∈ [0, 1]

and, using (1.2), we have m0|uεx| ≤ 1+λ, x ∈ [0, 1], Thus ‖uεx‖L∞ ≤ m−1
0 (1+λ).

In what follows C denotes a positive constant independent of ε (it may vary

from one place no another).

We define the linear operator E : X
1/2
ε → X

1/2
0 by

Eu =


u in Ω1ε = [0, x1 − ε] ∪ [x2 + ε, 1],

linear in Ωε = [x1 − ε, x1] ∪ [x2, x2 + ε],

u :=
1

x2 − x1

∫ x2

x1

u dx in Ω0,

for all u ∈ X
1/2
ε . If we let uε − u0 as a test function in (2.1) and if we let

E(uε − u0) as a test function in (2.2), we have∫ 1

0

pε(u
ε
x − u0

x)2 dx+ λ

∫ 1

0

(uε − u0)2 dx

= −
∫

Ω1

(pε − p0)u0
x(uεx − u0

x) dx+

∫ x2+ε

x1−ε
g(I − E)(uε − u0) dx

−
∫

Ωε

p0u
0
x(I − E)(uε − u0)x dx− λ

∫ x2+ε

x1−ε
u0(I − E)(uε − u0) dx.

Since pε converges uniformly to p0 in Ω1, we have pε is uniformly bounded in Ω1.

Thus, by Höder inequality, (1.2) and the uniform bound for weak solutions uε

and uεx, first term in the right hand side of the above expression can be estimated

by C‖uε−u0‖
X

1/2
ε

(‖pε− p0‖L∞(Ω1) + ε1/2). For terms that involve the operator

E we have used ∫
Ωε

|E(uε − u0)x| dx ≤ C‖uε − u0‖
X

1/2
ε
ε1/2,

‖E(uε − u0)‖L∞(Ωε) ≤ C‖u
ε − u0‖

X
1/2
ε
.
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We will prove the first of these inequalities. Denote vε = uε − u0 and assume

that x ∈ [x1 − ε, x1]. In this case we have

|E(vε)x| =
∣∣∣∣vε − vε(x1 − ε)

ε

∣∣∣∣ ≤ ∣∣∣∣vε − vε(x1 + ε)

ε

∣∣∣∣+

∣∣∣∣vε(x1 + ε)− vε(x1 − ε)
ε

∣∣∣∣.
Consequently,∣∣vε − vε(x1 + ε)

∣∣ ≤ 1

x2 − x1

∫ x2

x1

|vε − vε(x1 + ε)| dx

=
1

x2 − x1

[ ∫ x1+ε

x1

+

∫ x2−ε

x1+ε

+

∫ x2

x2−ε
|vε − vε(x1 + ε)| dx

]
and we have that∫ x1+ε

x1

+

∫ x2

x2−ε
|vε − vε(x1 + ε)| dx ≤ C‖vε‖L∞ε ≤ C‖vε‖X1/2

ε
ε1/2.

Now, for x ∈ [x1 + ε, x2 − ε],

|vε(x)− vε(x1 + ε)| ≤
∫ x2−ε

x1+ε

|vεx| dx ≤
(∫ x2−ε

x1+ε

|vεx|2 dx
)1/2

,

but

1

ε

∫ x2−ε

x1+ε

|vεx|2 dx ≤
∫ x2−ε

x1+ε

pε|vεx|2 dx ≤ ‖vε‖2X1/2
ε

and then ∫ x2−ε

x1+ε

|vε(x)− vε(x1 + ε)| dx ≤ C‖vε‖
X

1/2
ε
ε1/2.

We also have

|vε(x1 + ε)− vε(x1 − ε)| ≤
∫ x1+ε

x1−ε
|vεx| dx

≤
(∫ x1+ε

x1−ε
|vεx|2 dx

)1/2

(2ε)1/2 ≤ C‖vε‖
X

1/2
ε
ε1/2.

All other estimates are similar and the proof is complete. �

As a consequence of the previous lemma, we have the following result.

Corollary 2.2. There is a positive constant C independent of ε such that∥∥A−1
ε −A−1

0

∥∥
L
(
L2

Ω0
,X

1/2
ε

) ≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2.

Furthermore, there is ϕ ∈ (π/2, π) such that for all µ ∈ Σλ,ϕ = {µ ∈ C :

|arg(µ+ λ)| ≤ ϕ} \ {µ ∈ C : |µ+ λ| ≤ r}, for small r > 0,∥∥(µ+Aε)
−1 − (µ+A0)−1

∥∥
L(L2

Ω0
,X

1/2
ε )
≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2.
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Proof. The first part is an immediate consequence of Lemma 2.1. Let ρ(Aε)

be the resolvent set of the operator Aε, ε ∈ [0, ε0]. If µ ∈ ρ(−Aε) ∩ ρ(−A0), we

choose ϕ ∈ (π/2, π) suitable in order to get the sectorial estimates∥∥(µ+Aε)
−1
∥∥
L(L2)

≤ Mϕ

|µ|
, ε ∈ (0, ε0], and ‖(µ+A0)−1‖L(L2

Ω0
) ≤

Mϕ

|µ|
.

Therefore, ‖Aε(µ+Aε)
−1‖L(L2) ≤ 1+Mϕ for ε ∈ (0, ε0] and ‖A0(µ+A0)−1‖L(L2

Ω0
)

≤ 1 +Mϕ. But, if g ∈ L2
Ω0

, we can write

A1/2
ε

(
(µ+Aε)

−1− (µ+A0)−1
)
g = Aε(µ+Aε)

−1A1/2
ε (A−1

ε −A−1
0 )A0(µ+A0)−1g

and thus∥∥(µ +Aε)
−1 − (µ+A0)−1

∥∥
L(L2

Ω0
,X

1/2
ε )

≤
∥∥Aε(µ+Aε)

−1
∥∥
L(L2

Ω0
)

∥∥A1/2
ε (A−1

ε −A−1
0 )
∥∥
L(L2

Ω0
)

∥∥A0(µ+A0)−1
∥∥
L(L2

Ω0
)

≤
∥∥Aε(µ+Aε)

−1
∥∥
L(L2)

∥∥A1/2
ε

(
A−1
ε −A−1

0

)∥∥
L(L2

Ω0
)

∥∥A0(µ+A0)−1
∥∥
L(L2

Ω0
)

≤C(‖pε − p0‖L∞(Ω1) + ε)1/2,

for some constant C = C(ϕ) > 0 independent of µ and ε. �

Next we obtain the rate of convergence of nonlinear semigroups. We will

follow [5] that improves (for the Morse-Smale case) the results presented by [1].

For our purposes we just need to consider the time t = 1. In fact, for each ε, the

time one map Tε(1) generates a discrete semigroup {Tε(1)n : n ∈ N} with the

same attractor Aε of Tε(t).

Theorem 2.3. For each w0 ∈ A0, there is a positive constant C independent

of ε such that

‖Tε(1)w0−T0(1)w0‖X1/2
ε
≤ C(‖pε−p0‖L∞(Ω1) +ε)1/2| log(‖pε−p0‖L∞(Ω1) +ε)|.

Proof. For each ε ∈ [0, ε0] the operator Aε generates an analytic semigroup

{e−Aεt : t ≥ 0} which is given by

e−Aεt =
1

2πi

∫
Γ

eµt(µ+Aε)
−1 dµ,

where Γ is the boundary of

Σλ,ϕ = {µ ∈ C : |arg(µ+ λ)| ≤ ϕ} \ {µ ∈ C : |µ+ λ| ≤ r}

for some small r and ϕ ∈ (π/2, π), oriented towards the increasing imaginary

part. It is clear that∥∥e−Aεt∥∥
L
(
L2,X

1/2
ε

) ≤Mt−1/2e−λt, t > 0, ε ∈ (0, ε0],∥∥e−A0t
∥∥
L
(
L2

Ω0
,X

1/2
ε

) ≤Mt−1/2e−λt, t > 0,
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where M is a positive constant independent of ε. Thus, for t > 0,∥∥e−Aεt − e−A0t
∥∥
L(L2

Ω0
,X

1/2
ε )
≤
∥∥e−Aεt∥∥

L
(
L2

Ω0
,X

1/2
ε

) +
∥∥e−A0t

∥∥
L
(
L2

Ω0
,X

1/2
ε

)
≤Mt−1/2e−λt +Mt−1/2e−λt ≤ 2Mt−1/2e−λt.

Moreover, using the Corollary 2.2, we can prove that∥∥e−Aεt − e−A0t
∥∥
L
(
L2

Ω0
,X

1/2
ε

)
≤ 1

2π

∫
λ

∣∣eµt∣∣∥∥(µ+Aε)
−1 − (µ+A0)−1

∥∥
L
(
L2

Ω0
,X

1/2
ε

) |dµ|
≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2t−1e−λt.

Note that the terms t−1/2 and t−1 in the the estimates above originates a sin-

gularity in the variation of constants formula. This is the main difficulty in esti-

mating the nonlinear semigroups. In [1] the authors performed an interpolation

of these terms together with the rate of convergence of resolvent operators which

resulted in the considerable loss in the rate of convergence of attractors. In the

situation where the limiting problems is Morse–Smale, the authors in [5] had the

same problem, however they used the following estimate (placed in our context).

If we denote τ(ε) =
(
‖pε − p0‖L∞(Ω1) + ε

)1/2
and lε(t) = min

{
t−1/2, τ(ε)t−1

}
,

then

(2.3)

∫ τ

−∞
lε(τ − r)e−λ(τ−r) dr ≤ Cτ(ε)| log(τ(ε))|.

Since the nonlinear semigroup is given by (1.5), then for 0 < t ≤ 1, we have

‖Tε(t)w0 − T0(t)w0‖X1/2
ε
≤
∥∥(e−Aεt − e−A0t

)
w0

∥∥
X

1/2
ε

+

∫ t

0

∥∥e−Aε(t−s)f(Tε(s)w0)− e−A0(t−s)f(T0(s)w0)
∥∥
X

1/2
ε

ds,

but ∫ t

0

∥∥e−Aε(t−s)f(Tε(s)w0)− e−A0(t−s)f(T0(s)w0)
∥∥
X

1/2
ε

ds

≤
∫ t

0

∥∥e−Aε(t−s)[f(Tε(s)w0)− f(T0(s)w0)]
∥∥
X

1/2
ε

ds

+

∫ t

0

∥∥[e−Aε(t−s) − e−A0(t−s)]f(T0(s)w0)
∥∥
X

1/2
ε

ds

≤C
∫ t

0

(t− s)−1/2‖Tε(s)w0 − T0(s)w0]‖
X

1/2
ε

ds

+ C

∫ t

0

lε(t− s)e−λ(t−s)‖f(T0(s)w0)‖
X

1/2
ε

ds.
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By etimate (2.3) and Gronwall’s inequality (see [9] and [14] for singular Gronwall

Lemma) we have

‖Tε(t)w0 − T0(t)w0‖X1/2
ε
≤ Cτ(ε)| log(τ(ε))|+ Cτ(ε)| log(τ(ε))|eKt,

where K = CΓ(1/2)1/2. Now the result follows taking t = 1.

3. Rate of convergence of eigenvalues and equilibria

In this section we will obtain the rate of convergence of eigenvalues, spectral

projection and equilibrium points.

The convergence of eigenvalues and eigenfunctions of the linear operators was

proved in [16] and the properties about the compact convergence of the spectral

projections was studied in details in several works (see, for example, [7], [12]

and [16]). In the next result we will follow [1], where it was considered rate of

convergence for the eigenvalues and spectral projections. We also state the gap

condition proved in [8].

Lemma 3.1. If λε ∈ σ(Aε), ε ∈ [0, ε0], and λε
ε→0−−−→λ0, then

|λε − λ0| ≤ C
(
‖pε − p0‖L∞(Ω1) + ε

)1/2
.

Moreover, if we denote σ(Aε) = {λεi}∞i=0 (ordered and counting multiplicity), we

have the following gap condition

λεi+1 − λεi
i→∞−−−→∞.

Proof. Let λ0 ∈ σ(A0) be an isolated eigenvalue. We consider an appro-

priated closed curve Γ in ρ(−A0) around λ0 and define the spectral projection

Qε =
1

2πi

∫
Γ

(µ+Aε)
−1 dµ, ε ∈ [0, ε0].

It follows from Corollary 2.2 that

‖Qε −Q0‖L
(
L2

Ω0
,X

1/2
ε

) ≤ C(‖pε − p0‖L∞(Ω1) + ε
)1/2

.

If we have λε ∈ σ(Aε) such that λε
ε→0−−−→λ0 then for ε sufficiently small there

is u0 ∈ Ker(λ0 − A0) with
∥∥u0
∥∥
X

1/2
ε

= 1 such that Qεu
0 is eigenfunction of Aε

associated with λε, thus∣∣λε − λ0
∣∣ ≤ ∥∥(λε − λ0

)
u0
∥∥
X

1/2
ε

=
∥∥λεQ0u

0 − λ0u0
∥∥
X

1/2
ε
,

but ∥∥λεQ0u
0 − λ0u0

∥∥
X

1/2
ε
≤
∥∥λεQ0u

0 − λ0Qεu
0 + λ0Qεu

0 − λ0u0
∥∥
X

1/2
ε

≤
∣∣λελ0

∣∣∥∥∥∥ 1

λ0
Q0u

0 − 1

λε
Qεu

0

∥∥∥∥
X

1/2
ε

+
∥∥λ0(Qε −Q0)u0

∥∥
X

1/2
ε

≤
∣∣λελ0

∣∣∥∥A−1
0 Q0u

0 −A−1
ε Qεu

0
∥∥
X

1/2
ε

+
∣∣λ0
∣∣∥∥(Qε −Q0)u0

∥∥
X

1/2
ε
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and ∥∥A−1
0 Q0u

0 −A−1
ε Qεu

0
∥∥
X

1/2
ε

=
∥∥A−1

0 Q0u
0 −A−1

ε Q0u
0 +A−1

ε Q0u
0 −A−1

ε Qεu
0
∥∥
X

1/2
ε

≤
∥∥(A−1

0 −A−1
ε

)
Q0u

0
∥∥
X

1/2
ε

+
∥∥A−1

ε (Q0 −Qε)u0
∥∥
X

1/2
ε
.

Hence the estimate for |λε − λ0| follows.

In [8] it was proved that the eigenvalues of −Aε has a gap condition by

characterizing these eigenvalues, that is, if σ(−Aε) = {µεi}∞i=0 then

µεi = − 1

l2
i2π2 + o(i) as i→∞, where l =

∫ 1

0

pε(s)
−1/2 ds.

Consequently λεi − λεi+1
i→∞−−−→∞. �

Recall that Eε denotes the set of the equilibria solutions of the Aε and we as-

sume that E0 is composed of hyperbolic equilibria, thus for ε sufficiently small Eε
is composed of a finite number of hyperbolic equilibria. The rate of convergence

of equilibrium points can be obtained as follows.

Theorem 3.2. Let u0
∗ ∈ E0. Then for ε sufficiently small (we still denote

ε ∈ (0, ε0]), there is δ > 0 such that the equation Aεu−f(u) = 0 has only solution

uε∗ ∈
{
u ∈ X1/2

ε :
∥∥u− u0

∗
∥∥
X

1/2
ε
≤ δ
}

. Moreover,

(3.1)
∥∥uε∗ − u0

∗
∥∥
X

1/2
ε
≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2.

Proof. The proof is the same as given in [7]. Here we just need to prove

the estimates (3.1). We have uε∗ and u0
∗ given by

u0
∗ = (A0 + V0)−1

[
f
(
u0
∗
)

+ V0u
0
∗
]

and uε∗ = (Aε + V0)−1[f(uε∗) + V0u
ε
∗],

where V0 = −f ′
(
u0
∗
)
. Thus∥∥uε∗ − u0

∗
∥∥
X

1/2
ε

≤
∥∥(Aε + V0)−1[f(uε∗) + V0u

ε
∗]− (A0 + V0)−1

[
f
(
u0
∗
)

+ V0u
0
∗
]∥∥
X

1/2
ε

≤
∥∥(Aε + V0)−1

[
f(uε∗)− f

(
u0
∗
)

+ V0

(
uε∗ − u0

∗
)
]
∥∥
X

1/2
ε

+
∥∥[(Aε + V0)−1 − (A0 + V0)−1

][
f
(
u0
∗
)

+ V0u
0
∗
]∥∥
X

1/2
ε
.

We can prove that

(Aε+V0)−1−(A0 +V0)−1 =
[
I−(Aε+V0)−1V0

]
(A−1

ε −A−1
0 )
[
I−V0(A0 +V0)−1

]
,

which implies∥∥[(Aε +V0)−1− (A0 +V0)−1
][
f
(
u0
∗
)

+V0u
0
∗
]∥∥
X

1/2
ε
≤ C(‖pε− p0‖L∞(Ω1) + ε)1/2.
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Now we denote zε = f(uε∗) − f(u0
∗) + V0(uε∗ − u0

∗). Since f is continuously

differentiable, for all δ > 0, there is ε sufficiently small such that ‖zε‖
X

1/2
ε
≤

δ
∥∥uε∗ − u0

∗
∥∥
X

1/2
ε
, thus∥∥(Aε + V0)−1zε

∥∥
X

1/2
ε
≤ δ
∥∥(Aε + V0)−1

∥∥
L
(
L2

Ω0
,X

1/2
ε

)∥∥uε∗ − u0
∗
∥∥
X

1/2
ε
.

We choose δ sufficiently small such that δ‖(Aε + V0)−1‖
L
(
L2

Ω0
,X

1/2
ε

) ≤ 1/2, thus

∥∥uε∗ − u0
∗
∥∥
X

1/2
ε
≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2 +

1

2

∥∥uε∗ − u0
∗
∥∥
X

1/2
ε
. �

Corollary 3.3. The family {Eε}ε∈(0,ε0] is continuous at ε = 0. Moreover,

if E0 =
{
u0,1
∗ , . . . , u0,k

∗
}

then for ε sufficiently small, Eε =
{
uε,1∗ , . . . , uε,k∗

}
and∥∥uε,i∗ − u0,i

∗
∥∥
X

1/2
ε
≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2, i = 1, . . . , k.

Remark 3.4. The rate of convergence of eigenvalues, eigenfunctions and

equilibrium points is better than rate of convergence of the nonlinear semigroup.

This fact is related to the estimates that we obtained for the linear semigroup

in the fractional power space and, we will see that the rate of convergence of

attractors of problems (1.4) has a loss with respect to the rate of resolvent

operators. A class of problems where the rate of convergence of the resolvent

operators is the same rate of convergence of the attractors is presented in [11].

4. Rate of convergence of invariant manifolds

In this section we characterize the invariant manifoldsMε locally as a graph

of a Lipschitz function, and we guarantee that Mε approaches to the invariant

manifoldM0 when the parameter ε goes to zero. This result will be fundamental

to reduce the study of the asymptotic dynamics of the problem (1.4) to a finite

dimension.

The spectrum of −Aε, ε ∈ [0, ε0], ordered and counting multiplicity is

given by . . . − λεm < −λεm−1 < . . . < −λε0 < 0 with {ϕεi}∞i=0 the eigenfunc-

tions related. We consider the spectral projection onto the space generated by

the first m eigenvalues, that is, if Γ is an appropriated closed curve in ρ(−A0)

around {−λ0
0, . . . ,−λ0

m−1}, then

Qε =
1

2πi

∫
Γ

(µ+Aε)
−1 dµ, ε ∈ [0, ε0].

We observe that Qε is a projection of finite rank and then there is an isomorphism

from QεX
1/2
ε = span[ϕε0, . . . , ϕ

ε
m−1] onto Rm. Thus we can decompose X

1/2
ε =

Yε ⊕Zε, where Yε = QεX
1/2
ε and Zε = (I −Qε)X1/2

ε and we define A+
ε = Aε|Yε
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and A−ε = Aε|Zε for ε ∈ [0, ε0]. The following estimates are valid (see [11]).∥∥e−A+
ε tz
∥∥
X

1/2
ε
≤Meβt‖z‖

X
1/2
ε
, t ≤ 0, z ∈ Yε,∥∥e−A−ε tz∥∥

X
1/2
ε
≤Me−γt‖z‖

X
1/2
ε
, t ≥ 0, z ∈ Zε,∥∥e−A+

ε t − e−A
+
0 t
∥∥
L
(
L2

Ω0
,X

1/2
ε

) ≤Meβtlε(−t), t ≤ 0,∥∥e−A−ε t − e−A−0 t∥∥
L
(
L2

Ω0
,X

1/2
ε

) ≤Me−γtlε(t), t > 0.

where

lε(t) = min
{
t−1/2, (‖pε − p0‖L∞(Ω1) + ε)1/2t−1

}
,

γ = λ0
m − α(λ0

m)1/2, −β = λ0
m−1 + α(λ0

m−1)1/2

for α > 0 small and M independent of ε and m.

As a consequence of Lemma 3.1, for suitably chosen α, the sum of γ and β,

as a function of m, can be made as large as we wish. The choice of m will be

used as a parameter in the proof of existence of the invariant manifold.

Theorem 4.1. For sufficiently large m and ε small, there is an invariant

manifold Mε for (1.4) given by

Mε =
{
uε ∈ X1/2

ε : uε = Qεu
ε + sε∗(Qεu

ε)
}
, ε ∈ [0, ε0],

where sε∗ : Yε → Zε is a Lipschitz continuous map satisfying

(4.1) |||sε∗ − s0
∗||| = sup

v∈Y0

∥∥sε∗(v)− s0
∗(v)

∥∥
X

1/2
ε
≤ Cτ(ε)| log(τ(ε))|,

where τ(ε) = (‖pε−p0‖L∞(Ω1) +ε)1/2 and C is a constant independent of ε. The

invariant manifold Mε is exponentially attracting and the global attractor Aε of

the problem (1.4) lies in Mε. The flow on Aε is given by

uε(t) = vε(t) + sε∗(v
ε(t)), t ∈ R,

where vε(t) satisfies

v̇ε +A+
ε v

ε = Qεf(vε + sε∗(v
ε(t))).

Proof. The proof is well known in the theory of invariant manifolds (see [9,

Chapter 8]). Here we just need to prove the estimate (4.1).

For given D > 0 and 0 < ∆ we consider the set

Σε =
{
sε : Yε → Zε : |||sε||| ≤ D and ‖sε(v)− sε(ṽ)‖

X
1/2
ε
≤ ∆‖v − ṽ‖

X
1/2
ε

}
.

It is not difficult to see that (Σε, ||| · |||) is a complete metric space with the uniform

convergence topology. We write the solution uε of (1.4) as uε = vε + zε, with

vε ∈ Yε and zε ∈ Zε and since Qε and I −Qε commute with Aε, we can write

(4.2)

vεt +A+
ε v

ε = Qεf(vε + zε) := Hε(v
ε, zε),

zεt +A−ε z
ε = (I −Qε)f(vε + zε) := Gε(v

ε, zε).



Parabolic Problems with Localized Large Diffusion 15

By assumption there is a certain ρ > 0 such that

‖Hε(v
ε, zε)‖

X
1/2
ε
≤ ρ, ‖Gε(vε, zε)‖X1/2

ε
≤ ρ,

‖Hε(v
ε, zε)−Hε(ṽ

ε, z̃ε)‖
X

1/2
ε
≤ ρ(‖vε − ṽε‖X1/2

ε
+ ‖zε − z̃ε‖X1/2

ε
),

‖Gε(vε, zε)−Gε(ṽε, z̃ε)‖X1/2
ε
≤ ρ(‖vε − ṽε‖X1/2

ε
+ ‖zε − z̃ε‖X1/2

ε
),

for all vε, ṽε ∈ Yε and zε, z̃ε ∈ Zε. Also, choosing m suitably large and then ε

small, we have that

ρMγ−1 ≤ D, 0 < γ + β − ρM(1 + ∆),

ρM2(1 + ∆)

γ + β − ρM(1 + ∆)
≤ ∆, ρMγ−1 +

ρ2M2(1 + ∆)β−1

γ + β − ρM(1 + ∆)
≤ 1

2
,

L =

[
ρM +

ρ2M2(1 + ∆)(1 +M)

γ + β − ρM(1 + ∆)

]
, γ − L > 0.

We will divide the proof in three parts.

Part 1. (Existence) Let sε ∈ Σε and vε(t) = vε(t, τ, η, sε) be the solution ofvεt +A+
ε v

ε = Hε(v
ε, sε(vε)) for t < τ,

vε(τ) = η.

We define Φε : Σε → Σε by

Φε(s
ε)(η) =

∫ τ

−∞
e−A

−
ε (τ−r)Gε(v

ε(r), sε(vε(r))) dr.

Then

‖Φε(sε)(η)‖
X

1/2
ε
≤ ρM

∫ τ

−∞
e−γ(τ−r) dr = ρMγ−1 ≤ D.

For sε, s̃ε ∈ Σε, η, η̃ ∈ Yε, vε(t) = vε(t, τ, η, sε) and ṽε(t) = ṽε(t, τ, η̃, s̃ε) we have

vε(t)− ṽε(t) = e−A
+
ε (t−τ)(η − η̃)

+

∫ t

τ

e−A
+
ε (t−r)[Hε(v

ε(r), sε(vε(r)))−Hε(ṽ
ε(r), s̃ε(ṽ ε(r)))] dr.

Thus

‖vε(t)− ṽ ε(t)‖
X

1/2
ε
≤Meβ(t−τ)‖η − η̃‖

X
1/2
ε

+M

∫ τ

t

eβ(t−r)‖Hε(v
ε(r), sε(vε(r)))−Hε(ṽ

ε(r), s̃ε(ṽε(r)))‖
X

1/2
ε

dr

≤Meβ(t−τ)‖η − η̃‖
X

1/2
ε

+ ρM

∫ τ

t

eβ(t−r)[‖vε(r)− ṽε(r)‖
X

1/2
ε

+ ‖sε(vε(r))− s̃ε(ṽε(r))‖
X

1/2
ε

]
dr

≤Meβ(t−τ)‖η − η̃‖
X

1/2
ε

+ ρM

∫ τ

t

eβ(t−r)[(1 + ∆)‖vε(r)− ṽε(r)‖
X

1/2
ε

+ ‖sε(ṽε(r))−s̃ε(ṽε(r))‖
X

1/2
ε

]
dr
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≤Meβ(t−τ)‖η − η̃‖
X

1/2
ε

+ ρM(1 + ∆)

∫ τ

t

eβ(t−r)‖vε(r)− ṽε(r)‖
X

1/2
ε

dr + ρM |||sε − s̃ε|||
∫ τ

t

eβ(t−r) dr

≤Meβ(t−τ)‖η − η̃‖
X

1/2
ε

+ ρM(1 + ∆)

∫ τ

t

eβ(t−r)‖vε(r)− ṽε(r)‖
X

1/2
ε

dr + ρMβ−1|||sε − s̃ε|||eβ(t−τ).

By Gronwall’s inequality,

‖vε(t)− ṽ ε(t)‖
X

1/2
ε
≤
[
M‖η − η̃‖

X
1/2
ε

+ ρMβ−1|||sε − s̃ ε|||
]
e[ρM(1+∆)−β](τ−t).

Thus

‖Φε(sε)(η) − Φε(s̃
ε)(η̃)‖

X
1/2
ε

≤
∫ τ

−∞

∥∥e−A−ε (τ−r)[Gε(vε(r), sε(vε(r)))−Gε(ṽε(r), s̃ε(ṽε(r)))]∥∥X1/2
ε

dr

≤ ρM2(1 + ∆)

γ + β − ρM(1 + ∆)
‖η − η̃‖

X
1/2
ε

+
ρ2M2(1 + ∆)β−1

γ + β − ρM(1 + ∆)
|||sε − s̃ε|||

≤∆‖η − η̃‖
X

1/2
ε

+
1

2
|||sε − s̃ ε|||.

Therefore, making sε = s̃ ε we have that Φε takes Σε into itself and, making

η = η̃ and taking the suppremum in η we have that Φε is a contraction on Σε,

hence there is a unique sε∗ ∈ Σε which is a fixed point of Φε.

Now, let (v ε, z ε) ∈Mε, z
ε = sε∗(v

ε) and let vεs∗(t) be the solution ofvεt +A+
ε v

ε = Hε(v
ε, sε∗(v

ε)) for t < τ,

vε(0) = vε.

Thus, {(vεs∗(t), s
ε
∗(v

ε
s∗(t))}t∈R defines a curve on Mε. But the only solution of

equation

zεt +A−ε z
ε = Gε(v

ε
s∗(t), s

ε
∗(v

ε
s∗(t)))

which stays bounded when t→ −∞ is given by

zεs∗ =

∫ t

−∞
e−A

−
ε (t−r)Gε(v

ε
s∗(t), s

ε
∗(v

ε
s∗(t))) dr = sε∗(v

ε
s∗(t)).

Therefore (vεs∗(t), s
ε
∗(v

ε
s∗(t)) is a solution of (4.2) through (v ε, z ε) and thus Mε

is a invariant manifold for (1.4).

Part 2. (Estimate) Now we will prove the estimate (4.1). For η ∈ Y0, we

have∥∥sε∗(η) − s0
∗(η)

∥∥
X

1/2
ε

≤
∫ τ

−∞

∥∥e−A−ε (τ−r)Gε(v
ε, sε∗(v

ε))− e−A
−
0 (τ−r)G0(v0, s0

∗(v
0))
∥∥
X

1/2
ε

dr
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≤
∫ τ

−∞

∥∥e−A−ε (τ−r)Gε(v
ε, sε∗(v

ε))− e−A
−
ε (τ−r)Gε(v

0, s0
∗(v

0))
∥∥
X

1/2
ε

dr

+

∫ τ

−∞

∥∥e−A−ε (τ−r)Gε(v
0, s0
∗(v

0))− e−A
−
ε (τ−r)G0(v0, s0

∗(v
0))
∥∥
X

1/2
ε

dr

+

∫ τ

−∞

∥∥e−A−ε (τ−r)G0(v0, s0
∗(v

0))− e−A
−
0 (τ−r)G0(v0, s0

∗(v
0))
∥∥
X

1/2
ε

dr.

If we denote the last three integrals for I1, I2 and I3 respectively, we have

I1 ≤ ρM
∫ τ

−∞
e−γ(τ−r)[(1 + ∆)‖vε − v0‖

X
1/2
ε

+ |||sε∗ − s0
∗|||
]
dr

≤ ρM(1 + ∆)

∫ τ

−∞
e−γ(τ−r)‖vε − v0‖

X
1/2
ε

dr + ρM |||sε∗ − s0
∗|||
∫ τ

−∞
e−γ(τ−r) dr

= ρMγ−1|||sε∗ − s0
∗|||+ ρM(1 + ∆)

∫ τ

−∞
e−γ(τ−r)‖vε − v0‖

X
1/2
ε

dr.

For I2 we have

Gε
(
v0, s0

∗(v
0)
)
−G0

(
v0, s0

∗(v
0)
)

= (Qε −Q0)f
(
v0 + s0

∗(v
0)
)
,

and if we denote τ(ε) = (‖pε − p0‖L∞(Ω1) + ε)1/2, then I2 ≤ Cτ(ε). And for I3,

we have

I3 ≤
∫ τ

−∞
lε(τ − r)e−γ(τ−r) dr ≤ Cτ(ε)| log(τ(ε))|,

where we have used the Lemma 3.10 in [5]. Thus

‖sε∗(η)− s0
∗(η)‖

X
1/2
ε
≤ Cτ(ε)| log(τ(ε))|+ ρMγ−1|||sε∗ − s0

∗|||

+ ρM(1 + ∆)

∫ τ

−∞
e−γ(τ−r)‖vε − v0‖

X
1/2
ε

dr.

But∥∥vε(t) − v0(t)
∥∥
X

1/2
ε
≤
∥∥(e−A

+
ε (t−τ) − e−A

+
0 (t−τ))η

∥∥
+

∫ τ

t

∥∥e−A+
ε (t−r)Hε(v

ε, sε∗(v
ε))− e−A

+
ε (t−r)Hε(v

0, s0
∗(v

0))
∥∥
X

1/2
ε

dr

+

∫ τ

t

∥∥e−A+
ε (t−r)Hε(v

0, s0
∗(v

0))− e−A
+
ε (t−r)H0(v0, s0

∗(v
0))
∥∥
X

1/2
ε

dr

+

∫ τ

t

∥∥e−A+
ε (t−r)H0(v0, s0

∗(v
0))− e−A

+
0 (t−r)H0(v0, s0

∗(v
0))
∥∥
X

1/2
ε

dr.

With the same argument used earlier, we have

∥∥vε(t)− v0(t)
∥∥
X

1/2
ε
≤ C

∫ τ

t

lε(r − t)eβ(t−r) dr

+ ρM |||sε∗ − s0
∗|||
∫ τ

t

eβ(t−r) dr + ρM(1 + ∆)

∫ τ

t

eβ(t−r)‖vε − v0‖
X

1/2
ε

dr.
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By Gronwall’s inequality,∥∥vε(t)− v0(t)
∥∥
X

1/2
ε
≤ [Cτ(ε)| log(τ(ε))|+ ρMβ−1|||sε∗ − s0

∗|||]e[ρM(1+∆)−β](τ−t),

thus

‖sε∗(η) − s0
∗(η)‖

X
1/2
ε
≤ Cτ(ε)| log(τ(ε))|+ ρMγ−1|||sε∗ − s0

∗|||

+ ρM(1 + ∆)

∫ τ

−∞
e−γ(τ−r)e[ρM(1+∆)−β](τ−r) dr

·
[
Cτ(ε)| log(τ(ε))|+ ρMβ−1|||sε∗ − s0

∗|||
]

≤Cτ(ε)| log(τ(ε))|+
[
ρMγ−1 +

ρ2M2(1 + ∆)β−1

γ + β − ρM(1 + ∆)

]
|||sε∗ − s0

∗|||

which implies |||sε∗ − s0
∗||| ≤ Cτ(ε)| log(τ(ε))|.

Part 3. (Exponential attraction) It remains to show thatMε is exponentially

attracting and Aε ⊂ Mε. Let (vε, zε) ∈ Yε ⊕ Zε be the solution of (4.2) and

define ξε(t) = zε − sε∗(v
ε(t)) and consider yε(r, t), r ≤ t, t ≥ 0, the solution

through r of yεr +A+
ε y

ε = Hε(y
ε, sε∗(y

ε)) for r ≤ t,
yε(t, t) = vε(t).

Thus,

‖yε(r, t) vε(r)‖
X

1/2
ε

=

∥∥∥∥ ∫ r

t

e−A
+
ε (r−θ)[Hε(y

ε(θ, t), sε∗(y
ε(θ, t)))−Hε(v

ε(θ), zε(θ))
]
dθ

∥∥∥∥
X

1/2
ε

≤ ρM
∫ t

r

eβ(r−θ)[(1 + ∆)‖yε(θ, t)− vε(θ)‖
X

1/2
ε

+ ‖ξε(θ)‖
X

1/2
ε

]
dθ.

By Gronwall’s inequality

(4.3) ‖yε(r, t)− vε(r)‖
X

1/2
ε
≤ ρM

∫ t

r

e−(β−ρM(1+∆))(θ−r)‖ξε(θ)‖
X

1/2
ε

dθ,

for r ≤ t. Now we take t0 ∈ [r, t] and then

‖yε(r, t) − yε(r, t0)‖
X

1/2
ε

=
∥∥e−A+

ε (r−t0)[y(t0, t)− vε(t0)]
∥∥
X

1/2
ε

+

∥∥∥∥∫ r

t0

e−A
+
ε (r−θ)[Hε(y

ε(θ, t), sε∗(y
ε(θ, t)))

−Hε(y
ε(θ, t0), sε∗(y

ε(θ, t0)))] dθ

∥∥∥∥
X

1/2
ε

≤ ρM2eβ(r−t0)

∫ t

t0

e−(β−ρM(1+∆))(θ−t0)‖ξε(θ)‖
X

1/2
ε

dθ

+ ρM

∫ t0

r

eβ(r−θ)(1 + ∆)‖yε(θ, t)− yε(θ, t0)‖
X

1/2
ε

dθ.
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By Gronwall’s inequality

(4.4) ‖yε(r, t)− yε(r, t0)‖
X

1/2
ε
≤ ρM2

∫ t

t0

e−(β−ρM(1+∆))(θ−r)‖ξε(θ)‖
X

1/2
ε

dθ.

In what follows we estimate ξε(t). Since

zε(t) = e−A
−
ε (t−t0)zε(t0) +

∫ t

t0

e−A
−
ε (t−r)Gε(v

ε(r), zε(r)) dr,

we have

ξε(t) − e−A
−
ε (t−t0)ξε(t0) = zε(t)− sε∗(vε(t))− e−A

−
ε (t−t0)[zε(t0)− sε∗(vε(t0))]

=

∫ t

t0

e−A
−
ε (t−r)Gε(v

ε(r), zε(r)) dr − sε∗(vε(t)) + e−A
−
ε (t−t0)sε∗(v

ε(t0))

=

∫ t

t0

e−A
−
ε (t−r)Gε(v

ε(r), zε(r)) dr

−
∫ t

−∞
e−A

−
ε (t−r)Gε(y

ε(r, t), sε∗(y
ε(r, t))) dr

+ e−A
−
ε (t−t0)

∫ t0

−∞
e−A

−
ε (t0−r)Gε(y

ε(r, t0), sε∗(y
ε(r, t0))) dr

=

∫ t

t0

e−A
−
ε (t−r)[Gε(v

ε(r), zε(r))−Gε(yε(r, t), sε∗(yε(r, t)))] dr

−
∫ t0

−∞
e−A

−
ε (t−r)[Gε(y

ε(r, t), sε∗(y
ε(r, t)))−Gε(yε(r, t0), sε∗(y

ε(r, t0)))] dr.

Thus, using (4.3) and (4.4),∥∥ξε(t)− e−A−ε (t−t0)ξε(t0)
∥∥
X

1/2
ε

≤ ρM
∫ t

t0

e−γ(t−r)[‖vε(r)− yε(r, t)‖
X

1/2
ε

+ ‖zε(r)− sε∗(yε(r, t))‖X1/2
ε

]
dr

+ ρM(1 + ∆)

∫ t0

−∞
e−γ(t−r)‖yε(r, t)− yε(r, t0)‖

X
1/2
ε

dr

≤ ρM
∫ t

t0

e−γ(t−r)‖ξε(r)‖
X

1/2
ε

dr

+ ρ2M2(1 + ∆)e−γt
∫ t

t0

e−(β−ρM(1+∆))θ‖ξε(θ)‖
X

1/2
ε

·
∫ θ

−∞
e(γ+β−ρM(1+∆))r dr dθ

+ ρ2M3(1 + ∆)e−γt
∫ t

t0

e−(β−ρM(1+∆))θ‖ξε(θ)‖
X

1/2
ε

·
∫ t0

−∞
e(γ+β−ρM(1+∆))r dr dθ,
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and then

‖ξε(t)− e−A
−
ε (t−t0)ξε(t0)‖

X
1/2
ε

≤
[
ρM − ρ2M2(1 + ∆)

γ + β − ρM(1 + ∆)

] ∫ t

t0

e−γ(t−θ)‖ξε(θ)‖
X

1/2
ε

dθ

+
ρ2M3(1 + ∆)e−γ(t−t0)

γ + β − ρM(1 + ∆)

∫ t

t0

e−(β−ρM(1+∆))(θ−t0)‖ξε(θ)‖
X

1/2
ε

dθ.

Hence

eγ(t−t0)‖ξε(t)‖
X

1/2
ε

≤M‖ξε(t0)‖
X

1/2
ε

+

[
ρM +

ρ2M2(1 + ∆)

γ + β − ρM(1 + ∆)

] ∫ t

t0

eγ(r−t0)‖ξε(r)‖
X

1/2
ε

dr

+
ρ2M3(1 + ∆)

γ − β − ρM(1 + ∆)

∫ t

t0

e−(γ+β−ρM(1+∆))(θ−t0)eβ(θ−t0)‖ξε(θ)‖
X

1/2
ε

dθ

≤M‖ξε(t0)‖
X

1/2
ε

+

[
ρM +

ρ2M2(1 + ∆)(1 +M)

γ + β − ρM(1 + ∆)

] ∫ t

t0

eγ(r−t0)‖ξε(r)‖
X

1/2
ε

dr.

By Gronwall’s inequality

‖ξε(t)‖
X

1/2
ε
≤M‖ξε(t0)‖

X
1/2
ε
e−(γ−L)(t−t0),

and then

‖zε(t)− sε∗(vε(t))‖X1/2
ε

= ‖ξε(t)‖
X

1/2
ε
≤M‖ξε(t0)‖

X
1/2
ε
e−(γ−L)(t−t0).

Now, if uε := Tε(t)u
ε
0 = vε(t) + zε(t), t ∈ R, denotes the solution through at

uε0 = vε0 + zε0 ∈ Aε, then

‖zε(t)− sε∗(vε(t))‖X1/2
ε
≤M‖zε0 − sε∗(vε0)‖

X
1/2
ε
e−(γ−L)(t−t0).

Since {Tε(t)uε0 : t ∈ R} ⊂ Aε is bounded, letting t0 → −∞ we obtain

Tε(t)u
ε
0 = vε(t) + sε∗(v

ε(t)) ∈Mε.

That is Aε ⊂Mε. Moreover, if Bε ⊂ X1/2
ε is a bounded set and uε0 = vε0 + zε0 ∈

Bε, we conclude that Tε(t)u
ε
0 = vε(t) + zε(t) satisfies

sup
uε0∈Bε

inf
w∈Mε

‖Tε(t)uε0 − w‖X1/2
ε
≤ sup
uε0∈Bε

‖zε(t)− sε∗(vε(t))‖X1/2
ε

≤Me−(γ−L)(t−t0) sup
uε0∈Bε

‖zε0 − sε∗(vε0)‖
X

1/2
ε
,

which implies distH(Tε(t)Bε,Mε) ≤ C(Bε)e
−(γ−L)(t−t0). �

Remark 4.2. The C0, C1 and C1,θ convergence of invariant manifolds (see

[8] and [5]) is well known in the theory of invariant manifolds. That is∥∥sε∗ − s0
∗
∥∥
C0(Y0)

,
∥∥sε∗ − s0

∗
∥∥
C1(Y0)

,
∥∥sε∗ − s0

∗
∥∥
C1,θ(Y0)

ε→0−−−→ 0.
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5. Rate of convergence of attractors

In this section we will estimate the continuity of attractors of (1.4) in the

Hausdorff metric by the rate of convergence of resolvent operators obtained in

the Section 3.

The operator Aε, ε ∈ [0, ε0], has compact resolvent and according to [8],

A0 is Sturm–Liouville type, which implies transversality of stable and unstable

manifolds of the equilibrium points. Since we assume hyperbolicity, the limit-

ing problem (1.3) generates a Morse–Smale semigroup in X
1/2
0 and hence the

perturbed problem (1.1) generates a Morse–Smale semigroup in X
1/2
ε .

We saw in the last section how the gap condition implies the existence of the

finite dimensional invariant manifold Mε for (1.4). The invariant manifold con-

tains the attractor Aε and the flow is given by an ordinary differential equation.

That is

uε(t) = vε(t) + sε∗(v
ε(t)), t ∈ R,

where vε(t) satisfies

(5.1) v̇ε +A+
ε v

ε = Qεf(vε + sε∗(v
ε(t))),

and we can consider vε ∈ Rm and Hε(v
ε) = Qεf(vε + sε∗(v

ε(t))) a continuously

differentiable map in Rm. For each ε ∈ [0, ε0], we denote T̃ε = T̃ε(1), where

T̃ε( · ) is the semigroup generated by solution vε( · ) of (5.1) in Rm. We have the

following convergences

(5.2)

∥∥T̃ε − T̃0

∥∥
C1(Rm,Rm)

ε→0−−−→ 0,∥∥T̃ε − T̃0

∥∥
L∞(Rm,Rm)

≤ Cτ(ε)| log(τ(ε))|,

where τ(ε) = (‖pε − p0‖L∞(Ω1) + ε)1/2 and the last estimate is proved as Theo-

rem 2.3.

Since we have a Morse–Smale semigroup in Rm, by using techniques of shad-

owing in [15], we have the following result that was proved in [5].

Theorem 5.1 ([5]). Let T : Rm → Rm be a discrete Morse–Smale semigroup

with a global attractor A. Then there are a positive constant L, a neighbourhood

N (A) of A and a neighbourhood N (T ) of T in the C1(N (A),Rm) topology such

that, for any T1, T2 ∈ N (T ) with attractors A1, A2, respectively, we have

distH(A1,A2) ≤ L ‖T1 − T2‖L∞(N (A),Rm).

Now we are ready to prove the main result of this paper.

Theorem 5.2. Let Aε, ε ∈ [0, ε0], be the attractor for (1.4). Then there is

a positive constant C independent of ε such that

dH(Aε,A0) ≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2| log(‖pε − p0‖L∞(Ω1) + ε)|.
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Proof. We will follow [5]. For each ε ∈ [0, ε0] we denote Tε = Tε(1). Given

uε ∈ Aε, by invariance there is wε ∈ Aε such that uε = Tεw
ε so we can write

wε = Qεw
ε + sε∗(Qεw

ε), where Qεw
ε ∈ Aε with Aε = QεAε the projected

attractor in Rm. Thus∥∥uε − u0
∥∥
X

1/2
ε

=
∥∥Tεwε − T0w

0
∥∥
X

1/2
ε

≤
∥∥Tεwε − Tεw0

∥∥
X

1/2
ε

+
∥∥Tεw0 − T0w

0
∥∥
X

1/2
ε

≤ C(‖pε − p0‖L∞(Ω1) + ε)1/2| log(‖pε − p0‖L∞(Ω1) + ε)|+ C
∥∥wε − w0

∥∥.
But∥∥wε − w0

∥∥ =
∥∥Qεwε −Q0w

0
∥∥
Rm +

∥∥sε∗(Qεwε)− s0
∗(Q0w

0)
∥∥
X

1/2
ε

≤
∥∥Qεwε −Q0w

0
∥∥
Rm

+
∥∥sε∗(Qεwε)− sε∗(Q0w

0)
∥∥
X

1/2
ε

+
∥∥sε∗(Q0w

0)− s0
∗(Q0w

0)
∥∥
X

1/2
ε

≤C
∥∥Qεwε −Q0w

0
∥∥
Rm

+ C(‖pε − p0‖L∞(Ω1) + ε)1/2| log(‖pε − p0‖L∞(Ω1) + ε)|,

which implies

dH(Aε,A0) ≤ dH
(
Aε,A0

)
+C(‖pε−p0‖L∞(Ω1) +ε)1/2| log(‖pε−p0‖L∞(Ω1) +ε)|.

The result follows by (5.2) and Theorem 5.1. �
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