EQUIVALENCE BETWEEN
 UNIFORM $L^{2^{\star}}(\Omega)$ A-PRIORI BOUNDS AND UNIFORM $L^{\infty}(\Omega)$ A-PRIORI BOUNDS FOR SUBCRITICAL ELLIPTIC EQUATIONS

Alfonso Castro - Nsoki Mavinga - Rosa Pardo

Abstract

We provide sufficient conditions for a uniform $L^{2^{\star}}(\Omega)$ bound to imply a uniform $L^{\infty}(\Omega)$ bound for positive classical solutions to a class of subcritical elliptic problems in bounded C^{2} domains in \mathbb{R}^{N}. We also establish an equivalent result for sequences of boundary value problems.

1. Introduction

We consider the existence of $L^{\infty}(\Omega)$ a priori bounds for classical positive solutions to the boundary value problem

$$
\begin{equation*}
-\Delta u=f(u), \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega, \tag{1.1}
\end{equation*}
$$

[^0]where $\Omega \subset \mathbb{R}^{N}, N>2$, is a bounded domain with C^{2} boundary $\partial \Omega$. We provide sufficient conditions on f for $L^{2^{*}}(\Omega)$ a priori bounds to imply $L^{\infty}(\Omega)$ a priori bounds, where $2^{*}=2 N /(N-2)$ is the critical Sobolev exponent. The converse is obviously true without any additional hypotheses.

The existence of a priori bounds for (1.1) has a rich history. In chronological order, $[18],[14],[17],[4],[15],[11],[10]$ and [2] are some of the main contributors to such a development. We refer the reader to [6] where their roles are discussed.

The ideas for the proof of our main Theorem are similar to those used in [6, Theorem 1.1]. In [6] we give sufficient conditions on the nonlinearity to have $L^{\infty}(\Omega)$ a priori bounds, while here we prove the equivalence between the existence of $L^{\infty}(\Omega)$ a priori bounds and the existence of $L^{2^{\star}}(\Omega)$ a priori bounds for subcritical elliptic equations. Unlike the proof in [6], here we do not use Pohozaev or moving planes arguments.

Our main result is the following theorem.
Theorem 1.1. Assume that the nonlinearity $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a locally Lipschitzian function that satisfies:
(H1) There exists a constant $C_{0}>0$ such that

$$
\liminf _{s \rightarrow \infty} \frac{1}{f(s)} \min _{[s / 2, s]} f \geq C_{0}
$$

(H2) There exists a constant $C_{1}>0$ such that

$$
\limsup _{s \rightarrow \infty} \frac{1}{f(s)} \max _{[0, s]} f \leq C_{1}
$$

(F) $\lim _{s \rightarrow+\infty} \frac{f(s)}{s^{2^{\star}-1}}=0$; that is, f is subcritical.

Then the following conditions are equivalent:
(a) there exists a uniform constant C (depending only on Ω and f) such that, for every positive classical solution u of (1.1),

$$
\|u\|_{L^{\infty}(\Omega)} \leq C
$$

(b) there exists a uniform constant C (depending only on Ω and f) such that for every positive classical solution u of (1.1)

$$
\begin{equation*}
\int_{\Omega}|f(u)|^{2 N /(N+2)} d x \leq C \tag{1.2}
\end{equation*}
$$

(c) there exists a uniform constant C (depending only on Ω and f) such that, for every positive classical solution u of (1.1),

$$
\begin{equation*}
\|u\|_{L^{2^{*}}(\Omega)} \leq C \tag{1.3}
\end{equation*}
$$

In [7] and [8] the associated bifurcation problem for the nonlinearity $f(\lambda, s)=$ $\lambda s+g(s)$ with g subcritical is studied. Sufficient conditions guaranteeing that
either for any $\lambda<\lambda_{1}$ there exists at least a positive solution, or that there exists a $\lambda^{*}<0$ and a continuum $\left(\lambda, u_{\lambda}\right), \lambda^{*}<\lambda<\lambda_{1}$, of positive solutions such that

$$
\left\|\nabla u_{\lambda}\right\|_{L^{2}(\Omega)} \rightarrow \infty, \quad \text { as } \lambda \rightarrow \lambda^{*}
$$

are provided. See [8, Theorem 2]. In the case Ω is convex, for any $\lambda<\lambda_{1}$ there exists at least a positive solution, see [7, Theorem 1.2]. In [9] the concept of regions with convex-starlike boundary is introduced and sufficient conditions for the existence of a priori bounds in such regions are established. In [16] the existence of a priori bounds for elliptic systems is provided.

In this paper, we also provide sufficient conditions for the equivalence of the existence of $L^{2^{\star}}(\Omega)$ a priori bound with that of $L^{\infty}(\Omega)$ a priori bound for sequences of boundary value problems. In fact, we prove the following theorem.

Theorem 1.2. Consider the following sequence of BVPs

$$
\begin{equation*}
-\Delta v=g_{k}(v) \quad \text { in } \Omega, \quad v=0 \quad \text { on } \partial \Omega, \tag{1.3}
\end{equation*}
$$

with $g_{k}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ locally Lipschitzian. We assume that the following hypotheses are satisfied
$(\mathrm{H} 1)_{k}$ There exists a uniform constant $C_{1}>0$, such that

$$
\liminf _{s \rightarrow+\infty} \frac{1}{g_{k}(s)} \min _{[s / 2, s]} g_{k} \geq C_{1} .
$$

$(\mathrm{H} 2)_{k}$ There exists a uniform constant $C_{2}>0$ such that

$$
\limsup _{s \rightarrow+\infty} \frac{1}{g_{k}(s)} \max _{[0, s]} g_{k} \leq C_{2} .
$$

Let $\left\{v_{k}\right\}$ be a sequence of classical positive solutions to $(1.3)_{k}$ for $k \in \mathbb{N}$. If

$$
(\mathrm{F})_{k} \quad \lim _{k \rightarrow+\infty} g_{k}\left(\left\|v_{k}\right\|\right) /\left\|v_{k}\right\|^{2^{\star}-1}=0,
$$

then, the following two conditions are equivalent:
(a) there exists a uniform constant C, depending only on Ω and the sequence $\left\{g_{k}\right\}$, but independent of k, such that for every $v_{k}>0$, classical solution to $(1.3)_{k}$

$$
\limsup _{k \rightarrow \infty}\left\|v_{k}\right\|_{L^{\infty}(\Omega)} \leq C
$$

(b) there exists a uniform constant C, depending only on Ω and the sequence $\left\{g_{k}\right\}$, but independent of k, such that for every $v_{k}>0$, classical solution to $(1.3)_{k}$

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\Omega}\left|g_{k}\left(v_{k}\right)\right|^{2 N /(N+2)} d x \leq C . \tag{1.4}
\end{equation*}
$$

(c) there exists a uniform constant C (depending only on Ω and the sequence $\left.\left\{g_{k}\right\}\right)$ such that for every positive classical solution v_{k} of $(1.3)_{k}$

$$
\begin{equation*}
\left\|v_{k}\right\|_{L^{2^{*}}(\Omega)} \leq C \tag{1.5}
\end{equation*}
$$

Hypothesis (H1) $)_{k}$, and (H2) , are not sufficient for the existence of an L^{∞} a priori bound. Atkinson and Pelletier in [1] show that for $f_{\varepsilon}(s)=s^{2^{\star}-1-\varepsilon}$ and Ω a ball in \mathbb{R}^{3}, there exists $x_{0} \in \Omega$ and a sequence of solutions u_{ε} such that $\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}=0$ in $C^{1}\left(\Omega \backslash\left\{x_{0}\right\}\right)$ and $\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}\left(x_{0}\right)=+\infty$. See also Han [13], for non-spherical domains.

Furthermore, hypotheses $(\mathrm{H} 1)_{k},(\mathrm{H} 2)_{k}$, and $(\mathrm{F})_{k}$, are not sufficient for the existence of an L^{∞} a priori bound. In fact, in Section 4 we construct a sequence of BVP satisfying $(\mathrm{H} 1)_{k},(\mathrm{H} 2)_{k}$, and $(\mathrm{F})_{k}$, and a sequence of solutions v_{k} such that $\lim _{k \rightarrow \infty}\left\|v_{k}\right\|_{\infty}=+\infty$. Our example also shows the non-uniqueness of positive solutions.

2. Proof of Theorems 1.1 and 1.2

In this section, we state and prove our main results that hold for general bounded domains, including the non-convex case. We provide a sufficient condition for a uniform $L^{2^{\star}}(\Omega)$ bound to imply a uniform $L^{\infty}(\Omega)$ bound for classical positive solutions of the subcritical elliptic equation (1.1). We also give sufficient conditions such that the $L^{\infty}(\Omega)$ bound of a sequence of classical positive solutions of a sequence of BVPs $(1.3)_{k}$ is equivalent to the uniform $L^{2^{\star}}(\Omega)$ bound of the sequence of reaction functions. The arguments rely on the estimation of the radius R of a ball where the function u exceeds half of its L^{∞} bound, see Figure 1.

All throughout this paper, we assume that $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with C^{2} boundary, and C denotes several constants independent of u, where $u>0$ is any classical solution to (1.1).

Figure 1. A solution, its L^{∞} norm, and the estimate of the radius R such that $u(x) \geq\|u\|_{\infty} / 2$ for all $x \in B\left(x_{0}, R\right)$, where x_{0} is such that $u\left(x_{0}\right)=$ $\|u\|_{\infty}$.

Remark 2.1. By (1.2), elliptic regularity and the Sobolev embeddings imply that

$$
\begin{equation*}
\|u\|_{H_{0}^{1}(\Omega)} \leq\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2} \leq C \tag{2.1}
\end{equation*}
$$

Hence, for any classical solutions to (1.1), we have

$$
\begin{equation*}
\int_{\Omega} u f(u) d x=\|u\|_{H_{0}^{1}(\Omega)}^{2} \leq C \tag{2.2}
\end{equation*}
$$

Proof of Theorem 1.1. Since Ω is bounded (a) implies (b) and (c). From elliptic regularity and condition (1.2), we deduce that $\|u\|_{W^{2,2 N /(N+2)}} \leq C$. It follows using twice the Sobolev embedding that a uniform bound in $W^{2,2 N /(N+2)}$ implies a uniform bound in $H^{1}(\Omega)$ and a uniform bound in $L^{2^{\star}}(\Omega)$, that is,

$$
\begin{equation*}
\|u\|_{L^{2^{*}}(\Omega)} \leq C \tag{2.3}
\end{equation*}
$$

for all classical positive solution u of equation (1.1). Therefore, (b) implies (c).
Now, assume that (c) holds. It follows from the subcriticality condition (F) that $|f(s)|^{2 N /(N+2)} \leq s^{2^{*}}$ for all s large enough. Thus, for any classical solution to (1.1), we have

$$
\int_{\Omega}|f(u)|^{2 N /(N+2)} d x \leq \int_{\Omega}|u|^{2 N /(N-2)} d x+C<C
$$

Thus (b) and (c) are equivalent.
Next, we concentrate our attention in proving that (b) implies (a). Since $2 N /(N+2)=1+1 /\left(2^{\star}-1\right)$, the hypothesis (1.2) can be written

$$
\begin{equation*}
\int_{\Omega}|f(u)|^{1+1 /\left(2^{\star}-1\right)} d x \leq C \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\int_{\Omega}|f(u(x))|^{q} d x \leq \int_{\Omega}|f(u(x))|^{1+1 /\left(2^{\star}-1\right)} \mid & \left.f(u(x))\right|^{q-1-1\left(2^{\star}-1\right)} d x \tag{2.5}\\
& \leq C\|f(u(\cdot))\|_{\infty}^{q-1-1 /\left(2^{\star}-1\right)}
\end{align*}
$$

for any $q>N / 2$.
From the elliptic regularity (see [3] and [12, Lemma 9.17]), it follows that

$$
\begin{equation*}
\|u\|_{W^{2, q}(\Omega)} \leq C\|\Delta u\|_{L^{q}(\Omega)} \leq C\|f(u(\cdot))\|_{\infty}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.6}
\end{equation*}
$$

Let us restrict $q \in(N / 2, N)$. From the Sobolev embeddings, for $1 / q^{*}=1 / q-1 / N$ with $q^{*}>N$ we can write

$$
\begin{equation*}
\|u\|_{W^{1, q^{*}}(\Omega)} \leq C\|u\|_{W^{2, q}(\Omega)} \leq C\|f(u(\cdot))\|_{\infty}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.7}
\end{equation*}
$$

From Morrey's Theorem, (see [3, Theorem 9.12 and Corollary 9.14]), there exists a constant C (depending only on Ω, q and N) such that, for all $x_{1}, x_{2} \in \Omega$,

$$
\begin{equation*}
\left|u\left(x_{1}\right)-u\left(x_{2}\right)\right| \leq C\left|x_{1}-x_{2}\right|^{1-N / q^{*}}\|u\|_{W^{1, q^{*}}(\Omega)} \tag{2.8}
\end{equation*}
$$

Therefore, for all $x \in B\left(x_{1}, R\right) \subset \Omega$,

$$
\begin{equation*}
\left|u(x)-u\left(x_{1}\right)\right| \leq C R^{2-N / q}\|u\|_{W^{2, q}(\Omega)} \tag{2.9}
\end{equation*}
$$

Now, we shall argue by contradiction. Suppose that there exists a sequence $\left\{u_{k}\right\}$ of classical positive solutions of (1.1) such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}\right\|=+\infty, \quad \text { where }\left\|u_{k}\right\|:=\left\|u_{k}\right\|_{\infty} \tag{2.10}
\end{equation*}
$$

Let $x_{k} \in \Omega$ be such that $u_{k}\left(x_{k}\right)=\max _{\Omega} u_{k}$. Let us choose R_{k} such that $B_{k}=$ $B\left(x_{k}, R_{k}\right) \subset \Omega$, and

$$
u_{k}(x) \geq \frac{1}{2}\left\|u_{k}\right\| \quad \text { for any } x \in B\left(x_{k}, R_{k}\right)
$$

and there exists $y_{k} \in \partial B\left(x_{k}, R_{k}\right)$ such that

$$
\begin{equation*}
u_{k}\left(y_{k}\right)=\frac{1}{2}\left\|u_{k}\right\| . \tag{2.11}
\end{equation*}
$$

Let us denote by

$$
m_{k}:=\min _{\left[\left\|u_{k}\right\| / 2,\left\|u_{k}\right\|\right]} f, \quad M_{k}:=\max _{\left[0,\left\|u_{k}\right\|\right]} f
$$

Therefore, we obtain

$$
\begin{equation*}
m_{k} \leq f\left(u_{k}(x)\right) \quad \text { if } x \in B_{k}, \quad f\left(u_{k}(x)\right) \leq M_{k} \quad \text { for all } x \in \Omega \tag{2.12}
\end{equation*}
$$

Then, reasoning as in (2.5), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|f\left(u_{k}\right)\right|^{q} d x \leq C M_{k}^{q-1-1 /\left(2^{\star}-1\right)} \tag{2.13}
\end{equation*}
$$

From the elliptic regularity, see (2.6), we deduce

$$
\begin{equation*}
\left\|u_{k}\right\|_{W^{2, q}(\Omega)} \leq C M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.14}
\end{equation*}
$$

Therefore, from Morrey's Theorem, see (2.9), for any $x \in B\left(x_{k}, R_{k}\right)$

$$
\begin{equation*}
\left|u_{k}(x)-u_{k}\left(x_{k}\right)\right| \leq C\left(R_{k}\right)^{2-N / q} M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.15}
\end{equation*}
$$

Taking $x=y_{k}$ in the above inequality and from (2.11) we obtain

$$
\begin{equation*}
C\left(R_{k}\right)^{2-N / q} M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \geq\left|u_{k}\left(y_{k}\right)-u_{k}\left(x_{k}\right)\right|=\frac{1}{2}\left\|u_{k}\right\| \tag{2.16}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(R_{k}\right)^{2-N / q} \geq \frac{1}{2 C} \frac{\left\|u_{k}\right\|}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}, \tag{2.17}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
R_{k} \geq\left(\frac{1}{2 C} \frac{\left\|u_{k}\right\|}{\left.M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right.}\right)}\right)^{1 /(2-N / q)} \tag{2.18}
\end{equation*}
$$

Consequently,

$$
\int_{B\left(x_{k}, R_{k}\right)} u_{k}^{2^{*}} \geq\left(\frac{1}{2}\left\|u_{k}\right\|\right)^{2^{*}} \omega\left(R_{k}\right)^{N}
$$

where $\omega=\omega_{N}$ is the volume of the unit ball in \mathbb{R}^{N}.
Due to $B\left(x_{k}, R_{k}\right) \subset \Omega$, substituting inequality (2.18), taking into account hypothesis (H2), and rearranging terms, we obtain

$$
\begin{aligned}
\left\|u_{k}\right\|_{2^{2^{*}}(\Omega)}^{2^{*}} & =\int_{\Omega} u_{k}^{2^{*}} \geq\left(\frac{1}{2}\left\|u_{k}\right\|\right)^{2^{*}} \omega\left(\frac{1}{2 C} \frac{\left\|u_{k}\right\|}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{N /(2-N / q)} \\
& \geq\left(\frac{1}{2}\left\|u_{k}\right\|\right)^{2^{*}} \omega\left(\frac{1}{2 C} \frac{\left\|u_{k}\right\|}{\left[f\left(\left\|u_{k}\right\|\right)\right]^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2 / N-1 / q)} \\
& =C\left\|u_{k}\right\|^{2^{\star}-1}\left(\left[\left\|u_{k}\right\|\right]^{2 / N-1 / q} \frac{\left\|u_{k}\right\|}{\left[f\left(\left\|u_{k}\right\|\right)\right]^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2 / N-1 / q)} \\
& =C \frac{\left\|u_{k}\right\|^{2^{\star}-1}}{f\left(\left\|u_{k}\right\|\right)}\left(\frac{\left\|u_{k}\right\|^{1+2 / N-1 / q}}{\left[f\left(\left\|u_{k}\right\|\right)\right]^{1-2 / N-1 /\left(2^{\star}-1\right) q}}\right)^{1 /(2 / N-1 / q)} \\
& \geq C \frac{\left\|u_{k}\right\|^{2^{\star}-1}}{f\left(\left\|u_{k}\right\|\right)}\left(\frac{\left\|u_{k}\right\|^{(N+2)[1 / N-1 /((N+2) q)]}}{\left[f\left(\left\|u_{k}\right\|\right)\right]^{(N-2)[1 / N-1 /((N+2) q)]}}\right)^{1 /(2 / N-1 / q)} .
\end{aligned}
$$

Finally, from (2.10) and the hypothesis (F) we deduce

$$
\begin{aligned}
\int_{\Omega} u_{k}^{2^{*}} & \geq C \frac{\left\|u_{k}\right\|^{2^{*}-1}}{f\left(\left\|u_{k}\right\|\right)}\left(\frac{\left\|u_{k}\right\|^{2^{*}-1}}{f\left(\left\|u_{k}\right\|\right)}\right)^{(N-2)[1 / N-1 /((N+2) q)](2 / N-1 / q)} \\
& =\left(\frac{\left\|u_{k}\right\|^{2^{*}-1}}{f\left(\left\|u_{k}\right\|\right)}\right)^{1+(N-2)[1 / N-1 /((N+2) q)] /(2 / N-1 / q)} \rightarrow \infty \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

which contradicts (2.3). Thus (b) implies (a).
Remark 2.2. One can easily see that condition (1.4) implies that there exists a uniform constant $C_{4}>0$ such that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\Omega} v_{k} g_{k}\left(v_{k}\right) d x \leq C_{4}, \tag{2.19}
\end{equation*}
$$

for all classical positive solutions $\left\{v_{k}\right\}$ to $(1.3)_{k}$.
Proof of Theorem 1.2. Clearly, condition (a) implies (b) and (c). By the elliptic regularity and condition (1.4), we have that $\left\|v_{k}\right\|_{W^{2,2 N /(N+2)}} \leq C$. Therefore, $\left\|v_{k}\right\|_{H^{1}(\Omega)} \leq C$. Hence, by the Sobolev embedding, we deduce that

$$
\begin{equation*}
\left\|v_{k}\right\|_{L^{2^{*}}(\Omega)} \leq C \quad \text { for all } k \tag{2.20}
\end{equation*}
$$

Using similar arguments as in Theorem 1.1 and condition $(\mathrm{F})_{\mathrm{k}}$, one can show that (b) and (c) are equivalent. We shall concentrate our attention in proving that (b) implies (a). All throughout this proof C denotes several constants independent of k.

Observe that $1+1 /\left(2^{*}-1\right)=2 N /(N+2)$. From hypothesis (b), see (1.4), there exists a fixed constant $C>0$, (independent of k) such that

$$
\begin{align*}
\int_{\Omega}\left|g_{k}\left(v_{k}(x)\right)\right|^{q} d x & \leq \int_{\Omega}\left|g_{k}\left(v_{k}(x)\right)\right|^{1+1 /\left(2^{\star}-1\right)}\left|g_{k}\left(v_{k}(x)\right)\right|^{q-1-1 /\left(2^{\star}-1\right)} d x \tag{2.21}\\
& \leq C\left\|g_{k}\left(v_{k}(\cdot)\right)\right\|_{\infty}^{q-1-1 /\left(2^{\star}-1\right)}
\end{align*}
$$

for k big enough, and for any $q>N / 2$. Therefore, from the elliptic regularity, see [12, Lemma 9.17]

$$
\begin{equation*}
\left\|v_{k}\right\|_{W^{2, q}(\Omega)} \leq C\left\|\Delta v_{k}\right\|_{L^{q}(\Omega)} \leq C\left\|g_{k}\left(v_{k}(\cdot)\right)\right\|_{\infty}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.22}
\end{equation*}
$$

for k big enough.
Let us restrict $q \in(N / 2, N)$. From Sobolev embeddings, for $1 / q^{*}=1 / q-1 / N$ with $q^{*}>N$ we can write

$$
\begin{equation*}
\left\|v_{k}\right\|_{W^{1, q^{*}}(\Omega)} \leq C\left\|v_{k}\right\|_{W^{2, q}(\Omega)} \leq C\left\|g_{k}\left(v_{k}(\cdot)\right)\right\|_{\infty}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.23}
\end{equation*}
$$

for k big enough. From Morrey's Theorem, (see [3, Theorem 9.12 and Corollary 9.14]), there exists a constant C only dependent on Ω, q and N such that

$$
\begin{equation*}
\left|v_{k}\left(x_{1}\right)-v_{k}\left(x_{2}\right)\right| \leq C\left|x_{1}-x_{2}\right|^{1-N / q^{*}}\left\|v_{k}\right\|_{W^{1, q^{*}}(\Omega)}, \tag{2.24}
\end{equation*}
$$

for all $x_{1}, x_{2} \in \Omega$ and for any k. Therefore, for all $x \in B\left(x_{1}, R\right) \subset \Omega$

$$
\begin{equation*}
\left|v_{k}(x)-v_{k}\left(x_{1}\right)\right| \leq C R^{2-N / q}\left\|v_{k}\right\|_{W^{2, q}(\Omega)} \tag{2.25}
\end{equation*}
$$

for any k.
From now on, we argue by contradiction. Let $\left\{v_{k}\right\}$ be a sequence of classical positive solutions to $(1.3)_{k}$ and assume that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|v_{k}\right\|=+\infty, \quad \text { where }\left\|v_{k}\right\|:=\left\|v_{k}\right\|_{\infty} \tag{2.26}
\end{equation*}
$$

Let $x_{k} \in \Omega$ be such that $v_{k}\left(x_{k}\right)=\max _{\Omega} v_{k}$. Let us choose R_{k} such that $B_{k}:=$ $B\left(x_{k}, R_{k}\right) \subset \Omega$, and

$$
v_{k}(x) \geq \frac{1}{2}\left\|v_{k}\right\| \quad \text { for any } x \in B_{k}
$$

and there exists $y_{k} \in \partial B_{k}$ such that

$$
\begin{equation*}
v_{k}\left(y_{k}\right)=\frac{1}{2}\left\|v_{k}\right\| . \tag{2.27}
\end{equation*}
$$

Let us denote by

$$
m_{k}:=\min _{\left[\left\|v_{k}\right\| / 2,\left\|v_{k}\right\|\right]} g_{k}, \quad M_{k}:=\max _{\left[0,\left\|v_{k}\right\|\right]} g_{k}
$$

Therefore, we obtain

$$
\begin{equation*}
m_{k} \leq g_{k}\left(v_{k}(x)\right) \quad \text { if } x \in B_{k}, \quad g_{k}\left(v_{k}(x)\right) \leq M_{k} \quad \text { for all } x \in \Omega \tag{2.28}
\end{equation*}
$$

Then, reasoning as in (2.21), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|g_{k}\left(v_{k}\right)\right|^{q} d x \leq C M_{k}^{q-1-1 /\left(2^{\star}-1\right)} \tag{2.29}
\end{equation*}
$$

From the elliptic regularity, see (2.22), we deduce

$$
\begin{equation*}
\left\|v_{k}\right\|_{W^{2, q}(\Omega)} \leq C M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.30}
\end{equation*}
$$

Therefore, from Morrey's Theorem, see (2.25), for any $x \in B_{k}$,

$$
\begin{equation*}
\left|v_{k}(x)-v_{k}\left(x_{k}\right)\right| \leq C\left(R_{k}\right)^{2-N / q} M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \tag{2.31}
\end{equation*}
$$

Particularizing $x=y_{k}$ in the above inequality and from (2.27) we obtain

$$
\begin{equation*}
C\left(R_{k}\right)^{2-N / q} M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)} \geq\left|v_{k}\left(y_{k}\right)-v_{k}\left(x_{k}\right)\right|=\frac{1}{2}\left\|v_{k}\right\| \tag{2.32}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(R_{k}\right)^{2-N / q} \geq \frac{1}{2 C} \frac{\left\|v_{k}\right\|}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}} \tag{2.33}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
R_{k} \geq\left(\frac{1}{2 C} \frac{\left\|v_{k}\right\|}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2-N / q)} \tag{2.34}
\end{equation*}
$$

Consequently, taking into account (2.28),

$$
\int_{B_{k}} v_{k}\left|g_{k}\left(v_{k}\right)\right| d x \geq \frac{1}{2}\left\|v_{k}\right\| m_{k} \omega\left(R_{k}\right)^{N}
$$

where $\omega=\omega_{N}$ is the volume of the unit ball in \mathbb{R}^{N}, see Figure $2(\mathrm{~b})$.
Due to $B_{k} \subset \Omega$, substituting inequality (2.34), and rearranging terms, we obtain

$$
\begin{aligned}
\int_{\Omega} v_{k}\left|g_{k}\left(v_{k}\right)\right| d x & \geq \frac{1}{2}\left\|v_{k}\right\| m_{k} \omega\left(\frac{1}{2 C} \frac{\left\|v_{k}\right\|}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{N /(2-N / q)} \\
& =C m_{k}\left(\left[\left\|v_{k}\right\|\right]^{2 / N-1 / q} \frac{\left\|v_{k}\right\|}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2 / N-1 / q)} \\
& =C m_{k}\left(\frac{\left\|v_{k}\right\|^{1+2 / N-1 / q}}{M_{k}^{1-1 / q-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2 / N-1 / q)} \\
& =C \frac{m_{k}}{M_{k}}\left(\frac{\left\|v_{k}\right\|^{1+2 / N-1 / q}}{M_{k}^{1-2 / N-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2 / N-1 / q)}
\end{aligned}
$$

At this moment, let us observe that from hypothesis (H1) ${ }_{k}$ and (H2) ${ }_{k}$

$$
\begin{equation*}
\frac{m_{k}}{M_{k}} \geq C, \quad \text { for all } k \text { big enough. } \tag{2.35}
\end{equation*}
$$

Hence, taking again into account hypothesis (H2) ${ }_{k}$, and rearranging exponents, we can assert that

$$
\begin{align*}
\int_{\Omega} v_{k}\left|g_{k}\left(v_{k}\right)\right| d x & \geq C\left(\frac{\left\|v_{k}\right\|^{1+2 / N-1 / q}}{M_{k}^{1-2 / N-1 /\left(\left(2^{\star}-1\right) q\right)}}\right)^{1 /(2 / N-1 / q)} \tag{2.36}\\
& \geq C\left(\frac{\left\|v_{k}\right\|^{1+2 / N-1 / q}}{\left.\left[g_{k}\left(\left\|v_{k}\right\|\right)\right]^{1-2 / N-1 /\left(\left(2^{\star}-1\right) q\right)}\right)}\right)^{1 /(2 / N-1 / q)} \\
& \geq C\left(\frac{\left\|v_{k}\right\|^{(N+2)[1 / N-1 /((N+2) q)]}}{\left[g_{k}\left(\left\|v_{k}\right\|\right)\right]^{(N-2)[1 / N-1 /((N+2) q)]}}\right)^{1 /(2 / N-1 / q)}
\end{align*}
$$

Finally, from hypothesis $(\mathrm{F})_{k}$ we deduce

$$
\int_{\Omega} v_{k}\left|g_{k}\left(v_{k}\right)\right| d x \geq C\left(\frac{\left\|v_{k}\right\|^{2^{*}-1}}{g_{k}\left(\left\|v_{k}\right\|\right)}\right)^{(N-2)[1 / N-1 /((N+2) q)] /(2 / N-1 / q)} \rightarrow \infty
$$

as $k \rightarrow \infty$, which contradicts (2.19).

3. Radial problems with almost critical exponent

In this section, we build an example of a sequence of functions $\left\{g_{k}\right\}$ growing subcritically, and satisfying the hypotheses $(\mathrm{H} 1)_{k},(\mathrm{H} 2)_{k}$, and $(\mathrm{F})_{k}$, such that the corresponding sequence of BVP

$$
\begin{cases}\Delta w_{k}+g_{k}\left(w_{k}\right)=0 & \text { in }|x| \leq 1 \tag{3.1}\\ w_{k}(x)=0 & \text { for }|x|=1\end{cases}
$$

has an unbounded (in the $L^{\infty}(\Omega)$-norm) sequence $\left\{w_{k}\right\}$ of positive solutions. As a consequence of Theorem 1.2, this sequence $\left\{w_{k}\right\}$ is also unbounded in the $L^{2^{*}}(\Omega)$-norm.

Let $N \geq 3$ be an integer. For each positive integer $k>2$ let

$$
g_{k}(s)= \begin{cases}0 & \text { for } s<0 \\ s^{(N+2) /(N-2)} & \text { for } s \in[0, k] \\ k^{(N+2) /(N-2)} & \text { for } s \in\left[k, k^{(N+2) /(N-2)}\right] \\ k^{(N+2) /(N-2)}+\left(s-k^{(N+2) /(N-2)}\right)^{(N+1) /(N-2)} \\ & \text { for all } s>k^{(N+2) /(N-2)}\end{cases}
$$

For the sake of simplicity in notation, we write $g_{k}:=g$.
Let $u_{k}:=u$ denote the solution to

$$
\begin{cases}u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+g(u)=0 & \text { for } r \in(0,1] \tag{3.2}\\ u(0)=k^{N /(N-2)} & \text { for } u^{\prime}(0)=0\end{cases}
$$

Let $r_{1}=\sup \left\{r>0: u_{k}(s) \geq k\right.$ on $\left.[0, r]\right\}$. Since $g \geq 0, u$ is decreasing, consequently for $r \in\left[0, r_{1}\right], k \leq u(r) \leq k^{N /(N-2)}$, and

$$
\begin{align*}
-r^{N-1} u^{\prime}(r) & =\int_{0}^{r} s^{N-1} g(u(s)) d s \tag{3.3}\\
& =\int_{0}^{r} s^{N-1} k^{(N+2) /(N-2)} d s=\frac{k^{(N+2) /(N-2)}}{N} r^{N}
\end{align*}
$$

so

$$
\begin{equation*}
u^{\prime}(r)=\frac{k^{(N+2) /(N-2)}}{N} r . \tag{3.4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
u(r)=k^{N /(N-2)}-\frac{k^{(N+2) /(N-2)}}{2 N} r^{2}, \quad \text { for } r \in\left[0, r_{1}\right] \tag{3.5}
\end{equation*}
$$

Thus, $u(r) \geq k^{N /(N-2)} / 2$, for all $0 \leq r \leq r_{0}:=\sqrt{N} / k^{1 /(N-2)}$, and $u\left(r_{0}\right)=$ $k^{N /(N-2)} / 2$.

By well established arguments based on the Pohozaev identity, see [5], we have

$$
\begin{equation*}
P(r):=r^{N} E(r)+\frac{N-2}{2} r^{N-1} u(r) u^{\prime}(r)=\int_{0}^{r} s^{N-1} \Gamma(u(s)) d s \tag{3.6}
\end{equation*}
$$

where
$E(r)=\frac{1}{2}\left(u^{\prime}(r)\right)^{2}+G(u(r)), \quad \Gamma(s)=N G(s)-\frac{N-2}{2} s g(s), \quad G(s)=\int_{0}^{s} g(t) d t$.
For $s \in\left[k, k^{N /(N-2)}\right]$,

$$
\begin{equation*}
\Gamma(s)=-\frac{N+2}{2} k^{2 N /(N-2)}+\frac{N+2}{2} s k^{(N+2) /(N-2)} \geq 0 . \tag{3.7}
\end{equation*}
$$

Hence

$$
\Gamma(u(r)) \geq \frac{N+2}{8} k^{(2 N+2) /(N-2)} \quad \text { for all } r \leq r_{0}, k \geq 4^{(N-2) / 2}
$$

Due to $\Gamma(s)=0$ for all $s \leq k,(3.6)$ and (3.7), for $r \geq r_{0}$,

$$
P(r) \geq P\left(r_{0}\right) \geq \frac{N+2}{8 N} k^{(2 N+2) /(N-2)} r_{0}^{N} \geq \frac{N+2}{8} N^{(N-2) / 2} k^{(N+2) /(N-2)} .
$$

Due to (3.7), for $r \geq r_{0}$, we have

$$
P(r) \geq P\left(r_{0}\right) \geq \frac{N+2}{8} N^{(N-2) / 2} k^{(N+2) /(N-2)}
$$

From (3.5) $u\left(r_{1}\right)=k$ with

$$
r_{1}=\sqrt{2 N\left[\left(\frac{1}{k}\right)^{2 /(N-2)}-\left(\frac{1}{k}\right)^{4 /(N-2)}\right]}=\sqrt{2 N}\left(\frac{1}{k}\right)^{1 /(N-2)}+o\left(\left(\frac{1}{k}\right)^{1 /(N-2)}\right)
$$

From the definition of $g,-u^{\prime}\left(r_{1}\right)=k^{(N+2) /(N-2)} r_{1} / N$ (see (3.4)), which implies

$$
\begin{aligned}
P\left(r_{1}\right) & \geq r_{1}^{N+2} O\left(k^{2(N+2) /(N-2)}\right)-r_{1}^{N} O\left(k^{2 N /(N-2)}\right) \\
& \geq O\left(k^{(N+2) /(N-2)}\right)-O\left(k^{N /(N-2)}\right) \geq O\left(k^{(N+2) /(N-2)}\right) .
\end{aligned}
$$

For $r \geq r_{1}$,

$$
\begin{align*}
-\frac{N-2}{2} r^{N-1} u(r) u^{\prime}(r) & \geq \frac{(N-2) r^{N}}{2 N} u(r) u(r)^{(N+2) /(N-2)} \tag{3.8}\\
& =\frac{(N-2) r^{N}}{2 N} u(r)^{2 N /(N-2)}=r^{N} G(u(r))
\end{align*}
$$

This and Pohozaev's identity imply

$$
\left[\left(u^{\prime}(r)\right]^{2} \geq O\left(k^{(N+2) /(N-2)}\right) \frac{1}{r^{N}} \quad \text { or } \quad-u^{\prime}(r) \geq O\left(k^{(N+2) /(2(N-2))}\right) \frac{1}{r^{N / 2}}\right.
$$

Integrating on $\left[r_{1}, r\right]$ we have

$$
u(r) \leq k-O\left(k^{(N+2) /(2(N-2))}\right)\left(\frac{1}{r_{1}^{(N-2) / 2}}-\frac{1}{r^{(N-2) / 2}}\right)
$$

which implies that there exists k_{0} such that if $k \geq k_{0}$ then $u(r)=0$ for some $r \in\left(r_{1}, 2 r_{1}\right]$. Since (3.8), $r_{1}=r_{1}(k) \rightarrow 0$ as $k \rightarrow \infty$.

Let $v:=v_{k}$ denote the solution to

$$
\begin{cases}v^{\prime \prime}+\frac{N-1}{r} v^{\prime}+g(v)=0, & r \in(0,1] \tag{3.9}\\ v(0)=k^{(N+2) /(N-2)}, & v^{\prime}(0)=0\end{cases}
$$

Let $r_{1}=\sup \left\{r>0: v_{k}(s) \geq k\right.$ on $\left.[0, r]\right\}$. For $v(r) \geq k$, i ntegrating (3.4), we deduce

$$
\begin{align*}
& v(r)=k^{(N+2) /(N-2)}-\frac{k^{(N+2) /(N-2)}}{2 N} r^{2}, \quad \text { for } r \in\left[0, r_{1}\right], \tag{3.10}\\
& v\left(r_{1}\right)=k^{(N+2) /(N-2)}-\frac{k^{(N+2) /(N-2)}}{2 N} r_{1}^{2}=k, \tag{3.11}
\end{align*}
$$

therefore

$$
\begin{equation*}
r_{1}=\sqrt{2 N\left(1-\left(\frac{1}{k}\right)^{4 /(N-2)}\right)}>1 \tag{3.12}
\end{equation*}
$$

therefore $v(r) \geq k$ for all $r \in[0,1]$. So, by continuous dependence on initial conditions, there exists $d_{k} \in\left(k^{N /(N-2)}, k^{(N+2) /(N-2)}\right)$ such that the solution $w=w_{k}$ to

$$
\begin{cases}w^{\prime \prime}+\frac{N-1}{r} w^{\prime}+g_{k}(w)=0, & r \in(0,1] \\ w(0)=d_{k}, & w^{\prime}(0)=0\end{cases}
$$

satisfies $w(r) \geq 0$ for all $r \in[0,1]$, and $w(1)=0$. Since k may be taken arbitrarily large, and as a consequence of Theorem 1.2, we have established the following result.

Corollary 3.1. There exists a sequence of functions $g_{k}: \mathbb{R} \rightarrow \mathbb{R}$ and a sequence $\left\{w_{k}\right\}$ of positive solutions to (3.1), such that each function g_{k} grows subcritically and satisfies the hypotheses $(\mathrm{H} 1)_{k},(\mathrm{H} 2)_{k}$ and $(\mathrm{F})_{k}$ of Theorem 1.2, and the sequence $\left\{w_{k}\right\}$ of positive solutions to (3.1), is unbounded in the $L^{\infty}(\Omega)$ norm. Moreover, this sequence $\left\{w_{k}\right\}$ is also unbounded in the $L^{2^{*}}(\Omega)$-norm.

Let now $v:=v_{k}$ denote the solution to

$$
\begin{cases}v^{\prime \prime}+\frac{N-1}{r} v^{\prime}+g(v)=0, & r \in(0,1] \tag{3.13}\\ v(0)=k, & v^{\prime}(0)=0\end{cases}
$$

Since $\Gamma(s)=0$ for all $s \leq k$, and the solution is decreasing, by Pohozaev's identity

$$
r\left(v^{\prime}(r)\right)^{2}+\frac{N-2}{4 N} r v(r)^{2 N /(N-2)}+\frac{N-2}{2} v(r) v^{\prime}(r)=0, \quad \text { for all } r \in[0,1]
$$

Hence, if $v(\widehat{r})=0$ for some $\widehat{r} \in(0,1]$, then $v^{\prime}(\widehat{r})=0$ and the uniqueness of the solution of the IVP (3.13), implies $v(r)=0$ for all $r \in[0,1]$. Since this contradicts $v(0)=k>0$ we conclude that $v(r)>0$ for all $r \in[0,1]$. Therefore, by continuous dependence on initial conditions, there exists $d_{k}^{\prime} \in\left(k, k^{N /(N-2)}\right)$ such that the solution $z=z_{k}$ to

$$
\begin{cases}z^{\prime \prime}+\frac{N-1}{r} z^{\prime}+g_{k}(z)=0, & r \in(0,1] \\ z(0)=d_{k}^{\prime}, & z^{\prime}(0)=0\end{cases}
$$

satisfies $z(r) \geq 0$ for all $r \in[0,1]$, and $z(1)=0$.
Corollary 3.2. For any $k \in \mathbb{N}$, the BVP (3.1) has at least two positive solutions.

References

[1] F.V. Atkinson and L.A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987), no. 3, 349-365.
[2] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41(1988), no. 3, 253-294.
[3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential equations, Universitext, Springer, New York, 2011.
[4] H. Brezis and R.E.L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977), no. 6, 601-614.
[5] A. Castro and A. Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 101 (1987), no. 1, 57-64.
[6] A. Castro and R. Pardo, A priori bounds for positive solutions of subcritical elliptic equations, Rev. Mat. Complut. 28 (2015), 715-731.
[7] A. Castro and R. Pardo, Branches of positive solutions of subcritical elliptic equations in convex domains, Dynamical Systems, Differential Equations and Applications, AIMS Proceedings, (2015), 230-238.
[8] A. Castro and R. Pardo, Branches of positive solutions for subcritical elliptic equations, Contributions to Nonlinear Elliptic Equations and Systems, Progress in Nonlinear Differential Equations and Their Applications 86 (2015), 87-98.
[9] A. Castro and R. Pardo, A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783-790.
[10] D.G. de Figueiredo, P.-L. Lions and R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), no. 1, 41-63.
[11] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883-901.
[12] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, second ed., 1983.
[13] Z.-C .Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159-174.
[14] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 9 (1972/1973), 241-269.
[15] P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441-467.
[16] N. Mavinga and R. Pardo, A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems, J. Math. Anal. Appl. 449 (2017), no. 2, 1172-1188.
[17] R. Nussbaum, Positive solutions of nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 51 (1975), (1975), no. 2, 461-482.
[18] S.I. PohozaEv, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36-39.

Manuscript received July 30, 2017
accepted October 4, 2017
Alfonso Castro
Department of Mathematics
Harvey Mudd College
Claremont, CA 91711, USA
E-mail address: castro@math.hmc.edu

Nsoki Mavinga

Department of Mathematics and Statistics
Swarthmore College
Swarthmore, PA 19081-1390, USA
E-mail address: mavinga@swarthmore.edu

Rosa Pardo

Departamento de Matemática Aplicada
Universidad Complutense de Madrid
28040-Madrid, SPAIN
E-mail address: rpardo@mat.ucm.es
TMNA : Volume $53-2019-\mathrm{N}^{\mathrm{o}} 1$

[^0]: 2010 Mathematics Subject Classification. Primary: 35B45, 35B33; Secondary: 35B09, 35J60.

 Key words and phrases. A priori estimates; positive solutions; subcritical nonlinearity; radial solutions.

 This work was supported by Spanish Programa Cátedra de Excelencia de la Comunidad de Madrid UCM.

 The first author is supported by a grant from the Simons Foundations (\# 245966 to Alfonso Castro).

 The second author was supported by the AWM-NSF Mentoring Travel Grant 2015.
 The third author is supported by Spanish Ministerio de Ciencia e Innovación (MICINN) under Project MTM2016-75465-P, and by UCM-BSCH, Spain, GR58/08, Grupo 920894.

