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UNIFORM STABILITY

FOR FRACTIONAL CAUCHY PROBLEMS

AND APPLICATIONS

Luciano Abadias — Edgardo Álvarez

Abstract. In this paper we give uniform stable spatial bounds for the re-

solvent operator families of the abstract fractional Cauchy problem on R+.

Such bounds allow to prove existence and uniqueness of µ-pseudo almost
automorphic ε-mild regular solutions to the nonlinear fractional Cauchy

problem in the whole real line. Finally, we apply our main results to the

fractional heat equation with critical nonlinearities.

1. Introduction

In recent years, the study of fractional partial differential equations has grown

considerably because these equations provide a useful framework to deal with

real-world problems in several disciplines as biology, chemistry, economy, en-

gineering, medicine and physics. For example, fractional models describe the

motion of a viscous fluid between moving surfaces ([27]), as well as the diffusion

phenomena in the special types of porous medium ([39]).
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Let A be a linear closed operator with dense domain defined on a Banach

space X and let 0 < α < 1. We consider the nonlinear fractional Cauchy problem

(1.1)

CD
α
t u(t) = Au(t) + f(t, u(t)), t ≥ 0,

u(0) = u0 ∈ X,

where f : R+×X → X is a continuous function and CD
α
t denotes the fractional

Caputo derivative. Under suitable conditions on the operator A (sectoriality),

it generates two operator families, {S(t)}t≥0 and {R(t)}t>0, called the resolvent

and the integral resolvent. The existence and uniqueness of mild solutions of the

problem (1.1) depend on these operator families, see [7], [15], [22] and references

therein. These types of operator families are framed into the theory of solutions

of abstract Volterra integral equations studied in the book of J. Prüss [43]. Also

algebraic, extension and subordination properties of them have been studied in

[2], [3], [6], [7], [13], [28]–[31], [35].

Historically, the importance of the asymptotic behaviour of the resolvent

operator families is shown in many works in the literature. For the first order

case, the uniform stability of a C0-semigroup (etA)t≥0 generated by A is defined

by the exponentially decay

‖etA‖ ≤Me−ta, t ≥ 0,

where M,a are positive constants. This theory has been deeply developed in

a large series of monographs, see [4], [17], [44] among others. Also many authors

have used the uniform stability of semigroups for specific problems. For exam-

ple, Katznelson–Tzafriri type theorems for C0-semigroups appear in the book of

J. Van Neerven [44]. In [38], the stability of two-coupled systems of PDE’s is

shown. Recently, in order to deal with the third order Moore–Gibson–Thompson

equation, the authors study such equation as a first order system whose asso-

ciated operator matrix generates a exponentially stable semigroup on a Hilbert

space, see [26].

In the book [40, Chapter 2, Section 6], A. Pazy shows uniform stable bounds

for C0-semigroups in the spaces constructed via the fractional powers of the

generators. Particularly, when the spectrum of the operator A satisfies that

(1.2) σ(−A) ⊂ {λ ∈ C | <λ > a} with a > 0,

then ‖(−A)βetAx‖ ≤Mt−βe−at‖x‖, for t > 0, β > 0, x ∈ X.

It seems natural to ask about the uniform stability of the resolvent operator

families for the fractional problems. In a general context, C. Lizama and V. Ver-

gara give sufficient conditions to state exponential stability of resolvent families

for the abstract Volterra integral equation, see [32]. Also for the fractional case,



Uniform Stability for Fractional Cauchy Problems and Applications 709

it is known that the resolvent and the integral resolvent satisfy

‖S(t)‖ ≤MEα,1(−atα), ‖R(t)‖ ≤Mtα−1Eα,α(−atα), t > 0,

when condition (1.2) holds for the spectrum of the generator, where Eα,β denotes

the Mittag–Leffler functions. However, to the best of our knowledge, it seems

that the study the uniform stability of the resolvent operator families for the

fractional Cauchy problem on the powers spaces is novel.

Assuming conditions of sectoriality for an operator −A such that 0 ∈ ρ(A)

(resolvent set), we get that uniform stability for the resolvent families is given by

the Prabhakar functions Eγα,β , which constitute a generalization of the Mittag–

Leffler functions. In fact, we obtain that for all x ∈ X

‖S(t)x‖Xβ ≤Mt−αβE1−β
α,1−αβ(−atα)‖x‖,

‖R(t)x‖Xβ ≤Mtα(1−β)−1E1−β
α,α(1−β)(−at

α)‖x‖,

where t > 0. These functions were introduced by T.R. Prabhakar in 1971,

see [41]. Nowadays, they are relevant in the study of fractional relaxation and

diffusion phenomena, see [18], [24].

As an application, the spatial stability allows us to study the existence and

uniqueness of mild solutions to the fractional problem in the whole real line

(1.3) Dα
t u(t) = Au(t) + f(t, u(t)), t ∈ R,

where f : R×X → X is a continuous function with critical nonlinearities. More

precisely, we will show that equation (1.3) has a unique µ-pseudo almost auto-

morphic ε-mild regular solution.

The space of µ-pseudo almost automorphic functions was introduced by Blot

et al. in [10]. In that paper the authors gave a result on existence and uniqueness

of mild solutions for the first order problem. On the other hand, De Andrade

et al. [16] proved the existence and uniqueness of pseudo almost periodic ε-mild

regular solutions to the first order problem in the real line. We point out that

the space of µ-pseudo almost automorphic functions contains the space of pseudo

almost periodic functions.

The paper is organized as follows. In Section 2, we present the Prabhakar

functions and its relation with the Wright functions (Proposition 2.1). Also we

prove that, for some specific parameters, the Prabhakar functions are integrable

on R+ (Proposition 2.3). In Section 3, we recall the notion of the operator

families associated to the fractional Cauchy problem on R+, some properties,

and the subordination generation formulas via C0-semigroups. Mainly, we state

the uniform stability for these operators families on the fractional power spaces

defined by the generator when it has sectorial properties (Theorem 3.6). In

Section 4, we prove existence and uniqueness of µ-pseudo almost automorphic
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ε-mild regular solutions to the fractional problem (1.3) in the real line. We illus-

trate it with an example. Finally, we include basic results about µ-pseudo almost

automorphic functions in Appendix, in order to get a self-contained paper.

2. Mittag–Leffler, Prabhakar and scaled Wright functions

In this section we present some connections between the Prabhakar and

Wright functions which will be useful on the spatial bounds obtained in the

next section.

Let γ > 0, in the following we write gγ(t) := tγ−1/Γ(γ) for t > 0.

The Riemann–Liouville fractional derivative of order 0 < α < 1 of a function

u defined on R+ := [0,∞) is given by

RD
α
t u(t) =

d

dt
(g1−α ∗ u)(t) =

d

dt

∫ t

0

g1−α(t− s)u(s) ds, t > 0,

and the Caputo fractional derivative of order 0 < α < 1 is defined by

CD
α
t u(t) =

(
g1−α ∗

d

dt
u

)
(t) =

∫ t

0

g1−α(t− s)u′(s) ds, t > 0.

It is well known that CD
α
t u(t) = RD

α
t u(t)− t−αu(0)/Γ(1− α) for 0 < α < 1.

Let α, β > 0. The Mittag–Leffler functions are given by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C.

We write Eα(z) := Eα,1(z). They are the solutions of the classical fractional

differential problems

CD
α
t Eα(ωtα) = ωEα(ωtα),

RD
α
t

(
tα−1Eα,α(ωtα)

)
= ωtα−1Eα,α(ωtα),

for 0 < α < 1, under certain initial conditions. Fore more details see [7], [33], [36].

An extension of the Mittag–Leffler functions are the Prabhakar functions

Eγα,β(z) =

∞∑
k=0

(γ)k
k!Γ(αk + β)

zk, z ∈ C, γ > 0,

where (γ)k = γ(γ + 1) . . . (γ + k − 1) = Γ(k + γ)/Γ(γ) denotes de Pochhammer

symbol. They are entire functions. Note that for γ = 1 we recover the classical

Mittag–Leffler functions. The Laplace transform of the above functions is

(2.1)

∫ ∞
0

e−λttβ−1Eγα,β(ωtα) dt =
λαγ−β

(λα − ω)γ
, Reλ > |ω|1/α.

For convenience, we denote

eγα,β(t, ω) := tβ−1Eγα,β(−ωtα), ω ∈ C.
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It is a direct consequence by use of the Laplace transform that

(gδ ∗ eγα,β( · , ω))(t) = eγα,β+δ(t, ω), δ > 0.

These functions eγα,β( · , ω) are locally integrable and completely monotonic under

the conditions

(2.2) 0 < α ≤ 1, 0 < αγ ≤ β ≤ 1, Reω > 0,

see [12]. For more details about Prabhakar functions see [19], [27], [33].

The Wright function, denoted by Wλ,µ, was introduced by E. Maitland

Wright in a series of notes starting from 1933 in the framework of the theory of

partitions, see [45]. This entire function is defined by

Wλ,µ(z) :=

∞∑
n=0

zn

n! Γ(λn+ µ)
, λ > −1, µ ∈ C.

Also, the Wright function can be represented through the following integral rep-

resentation using the Hankel formula for the Gamma function,

Wλ,µ(z) =
1

2πi

∫
Ha

σ−µeσ+zσ
−λ
dσ, λ > −1, µ ≥ 0, z ∈ C,

where Ha denotes the Hankel path defined as a contour that begins at t =

−∞− ia (a > 0), encircles the branch cut that lies along the negative real axis,

and ends up at t = −∞+ ib (b > 0). For more details see [33, Appendix F].

Recently in [3], two-parameter Wright functions, called scaled Wright func-

tions, are introduced in order to establish a general approach to face the subor-

dination formulas for the solutions of the fractional abstract Cauchy problems.

For 0 < α < 1 and β ≥ 0, the scaled Wright functions ψα,β in two variables are

defined by

ψα,β(t, s) := tβ−1W−α,β(−st−α), t > 0, s ∈ C.

Note that using the change of variable z = σ/t, we get the integral representation

ψα,β(t, s) =
1

2πi

∫
Ha

z−βetz−sz
α

dz, t, s > 0.

The functions ψα,β are considered in the literature in some particular cases: for

β = 1 − α, it was introduced in [34, Formula (6.2)] and studied in [33, p. 257]

and [7]; for β = 0 it is the stable Lévy process of order α, see [11] and [47,

Chapter IX]. Several and interesting properties satisfied by these functions are

studied in [3].

The following result generalizes [3, Theorem 3 (iii) and (vi)].

Proposition 2.1. Let 0 < α < 1, β ≥ 0 and γ > 0. Then∫ ∞
0

eωsgγ(s)ψα,β(t, s) ds = tαγ+β−1Eγα,αγ+β(ωtα), ω ∈ C, t > 0.
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Proof. First of all observe that by [3, Theorem 3 (iii) and (vi)] and the

positivity of ψα,β ([3, Theorem 3 (i)]) the integral is convergent. So, it is enough

to prove the result for ω ∈ R. Using Laplace transform for λ > |ω|1/α and

Fubini’s Theorem one gets∫ ∞
0

e−λt
∫ ∞
0

eωsgγ(s)ψα,β(t, s) ds dt

= λ−β
∫ ∞
0

eωsgγ(s)e−λ
αs ds =

λ−β

(λα − ω)γ
.

By the uniqueness of the Laplace transform and (2.1) we conclude the result.�

Remark 2.2. Note that by the above proposition, if 0 < α ≤ 1, , 0 < αγ ≤
β ≤ 1 and a > 0, we have

0 ≤ eγα,β(t, a) ≤
∫ ∞
0

gγ(s)ψα,β−αγ(t, s) ds = gβ(t)→ 0, as t→∞,

where we have applied [3, Theorem 3 (vi)] and ψα,β−αγ(t, s) ≥ 0 (see [3, Theo-

rem 3 (i)]).

The last result of this section shows that for γ = β/α and a > 0, the

Prabhakar functions e
β/α
α,β ( · , a) are not only decreasing, but also integrable on R+

and, in such case, the identity (2.1) is valid for Reλ ≥ 0.

Proposition 2.3. Let 0 < α, β < 1 and a > 0. Then∫ ∞
0

e
β/α
α,β (t, a) dt =

1

aβ/α
.

Proof. The function e
β/α
α,β ( · , a) is non-negative since conditions (2.2) are

satisfied. Then we can apply Fubini’s Theorem and, by Proposition 2.1, we have∫ ∞
0

e
β/α
α,β (t, a) dt =

∫ ∞
0

∫ ∞
0

e−asgβ/α(s)ψα,0(t, s) ds dt

=

∫ ∞
0

∫ ∞
0

e−asgβ/α(s)t−1W−α,0(−st−α) ds dt

=

∫ ∞
0

gβ/α(u)W−α,0(−u)

∫ ∞
0

e−aut
α

tβ−1 dt du

=
1

αaβ/α

∫ ∞
0

u−1W−α,0(−u) du =
1

aβ/α
,

where we have used the Laplace transform of tβ−1 and that∫ ∞
0

u−1W−α,0(−u) du = α

(see [33, (F.33)]). �
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3. Resolvent families

By B(X) we denote the space of all linear and bounded operators on the

Banach space X.

Let A be a linear closed operator with dense domain defined on X. If the

operator A generates a resolvent and an integral resolvent operators families

{S(t)}t≥0 and {R(t)}t>0, respectively, then it is well-known that solutions of the

fractional abstract Cauchy problem for 0 < α < 1,

(3.1)

CD
α
t u(t) = Au(t) + f(t, u(t)), t ≥ 0,

u(0) = u0 ∈ X,

where f : R+ ×X → X is a continuous function, satisfy

(3.2) u(t) = S(t)u0 +

∫ t

0

R(t− s)f(s, u(s)) ds, t ≥ 0.

It can be easily checked by the use of the Laplace transform. Usually, it is not

possible to ensure the existence of strong solution for the fractional differen-

tial problem (3.1) and, therefore, we look for mild solutions for the associated

Volterra integral equation (3.2). In many cases to do this (it depends on the

techniques), it is useful to know the spatial bounds for the operator families that

appear in the integral equation. In this section we will focus on studying such

bounds with stable decay.

Definition 3.1 ([43, Definition 1.3]). A family {S(t)}t≥0 ⊂ B(X) of bounded

linear operators on X is called a resolvent if the following conditions are satisfied.

(a) S(t) is strongly continuous on R+ and S(0) = I.

(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0.

(b) The equation

(3.3) S(t)x = x+

∫ t

0

gα(t− s)AS(s)x ds for all x ∈ D(A), t ≥ 0,

holds.

A resolvent is unique, if it exists. In such case, we call the operator A the

generator of the resolvent (S(t))t≥0. In addition, (gα ∗ S)(t)x ∈ D(A) for all

x ∈ X and t ≥ 0 ([43, Proposition 1.1]).

Definition 3.2. A family {R(t)}t>0 ⊂ B(X) of bounded linear operators

on X is called an integral resolvent if the following conditions are satisfied.

(a) R(t) is strongly continuous on (0,∞) and lim
t→0

R(t)x/gα(t) = x for all

x ∈ X.
(b) R(t)D(A) ⊂ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A) and t > 0.
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(c) The equation

(3.4) R(t)x = gα(t)x+

∫ t

0

gα(t− s)AR(s)x ds for all x ∈ D(A), t > 0,

holds.

Remark 3.3. Definition 3.2 corresponds to a slight modification to the one

given by Prüss [43, Definition 1.6] where (i) is replaced by local integrability

instead of strong continuity and (c) is slightly different. We observe that the

given condition near zero instead of the most common R(0) = cI, with c the value

of a corresponding kernel in zero, allows the treatment of singular kernels gα.

The integral resolvent is unique, if it exists, and A is the generator of the integral

resolvent (R(t))t>0. Also, (gα ∗R)(t)x ∈ D(A) for all x ∈ X and t > 0. See also

Li and Peng [30]. In a general context, both the resolvent and integral resolvent

have been studied in different papers ([1], [2], [30], [31], [35], [43]).

Remark 3.4. It is an easy computation to show that 1 = gα ∗ g1−α. So if

there exists an integral resolvent (R(t))t>0 generated by A, then

(3.5) S(t)x := (g1−α ∗R)(t)x =

∫ t

0

g1−α(t− s)R(s)x ds, x ∈ X, t > 0,

is a resolvent generated by A, too. Indeed, it is clear that the conditions (b) and

(c) of Definition 3.1 are satisfied. Also, let x ∈ X and ε > 0, by Definition 3.2 (a),

there exists δ > 0 such that∥∥∥∥R(s)x− gα(s)x

gα(s)

∥∥∥∥ < ε, s ∈ (0, δ).

So,

‖S(t)x− x‖ =

∥∥∥∥ ∫ t

0

g1−α(t− s)(R(s)x− gα(s)x) ds

∥∥∥∥
< ε

∫ t

0

g1−α(t− s)gα(s) ds = ε, t ∈ (0, δ).

By continuity, we can define S(0) = I. In addition,

(g1−α ∗R)(t)x = x+A(g1−α ∗ gα ∗R)(t)x = x+A

∫ t

0

R(s)x, x ∈ X,

therefore S( · )x = (g1−α ∗R)( · )x ∈ C1(R+, X) for x ∈ D(A). Using (3.3)–(3.5)

we get

RD
α
t R(t)x = AR(t)x, x ∈ D(A),

d

dt
S(t)x = AR(t)x, x ∈ D(A),

CD
α
t S(t)x = AS(t)x, x ∈ D(A).

We recall the following notion of operator theory.
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Definition 3.5 (Sectorial operator). Let B : D(B) ⊂ X → X be a linear

operator. We say that B is sectorial of angle ϑ ∈ [0, π) if σ(B) ⊂ Σϑ and

‖λ(λ−B)−1‖ ≤Mϕ, for λ ∈ C \ Σϕ and for all ϕ ∈ (ϑ, π), where σ(B) denotes

the spectrum of B and Σϑ := {λ ∈ C | λ 6= 0, |arg(λ)| < ϑ} for ϑ ∈ (0, π] and

Σ0 := (0,∞) if ϑ = 0. If b+B is sectorial of angle ϑ with b ∈ R, we say that B

is b-sectorial of angle ϑ.

For more information about the theory of sectorial operators we refer the

reader to the monograph [23].

It is well known that if an operator −A is closed, densely defined and sectorial

of angle ϑ ∈ [0, π/2), then A generates a bounded holomorphic C0-semigroup

(T (t))t≥0 on X. The converse is also true. Moreover, if −A is −a-sectorial of

angle ϑ ∈ [0, π/2) with a > 0, then A generates a uniform stable bounded

holomorphic C0-semigroup, that is,

‖T (t)x‖ ≤Me−at‖x‖.

In such case, the semigroup has the following integral representation formula in

terms of the resolvent operator,

T (t)x =

∫
−a+γ

eλt(λ−A)−1x dλ, t > 0, x ∈ X,

where γ is the complex Hankel’s path given by

γ = γr,ω := {λeiω | λ ≥ r} ∪ {reiϕ | ϕ ∈ (−ω, ω)} ∪ {λe−iω | λ ≥ r},

oriented counterclockwise, with r > 0 and ω ∈ (π/2, π − ϑ). It follows that

(3.6) ‖AT (t)x‖ ≤M e−at

t
‖x‖, t > 0, x ∈ X.

Observe that if −A is closed, densely defined and sectorial of angle ϑ ∈ [0, π/2)

with 0 ∈ ρ(A), then, since the spectrum is closed, we have that the generated C0-

semigroup is uniform stable. For example, the Laplace operator −∆ on L2(0, T ),

with T > 0, is sectorial of angle 0, and the eigenvalues are strictly positive. In

this case, −∆ is −a-sectorial for all 0 < a < λ1, where λ1 is the first eigenvalue

(see [25, Exercise, p. 23]). For more details see [25, Chapter 1].

From now on, we suppose that −A is a −a-sectorial of angle ϑ ∈ [0, π/2)

with a > 0. Then one can define the negative fractional powers of the operator

(−A)−βx =
1

Γ(β)

∫ ∞
0

sβ−1T (s)x ds, β > 0, x ∈ X.

This operator is injective, so we define (−A)β as the inverse of (−A)−β with

domain D((−A)β) = rg(−(A)−β). For each β ≥ 0, we will denote the fractional

spaces Xβ = D((−A)β) with the graph norm ‖x‖Xβ = ‖(−A)βx‖. In such case,

the exponentially stable bounded holomorphic C0-semigroup satisfies

(3.7) ‖T (t)x‖Xβ≤Mg1−β(t)e−at‖x‖, 0 ≤ β < 1,
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and the resolvent operator

‖(−A)β(λ−A)−1‖ ≤M |λ+ a|β−1, λ ∈ −a+ Σπ−ϑ.

For more details see [25, Chapter 1].

In [3], the authors studied subordination formulas to get resolvent and inte-

gral resolvent families via C0-semigroups as particular cases of a general frame-

work of subordination theory. For that purpose, the scaled Wright functions are

needed. If {T (t)}t≥0 is the semigroup generated by A, then

(3.8) S(t)x =

∫ ∞
0

ψα,1−α(t, s)T (s)x ds, R(t)x =

∫ ∞
0

ψα,0(t, s)T (s)x ds,

for t > 0, x ∈ X, are the resolvent and the integral resolvent generated by A.

The following result shows that they are uniformly stable in the fractional spatial

spaces Xβ for 0 ≤ β < 1, that is, lim
t→∞
‖S(t)x‖Xβ = 0 and lim

t→∞
‖R(t)x‖Xβ = 0

for x ∈ X. Moreover, the integral resolvent (R(t))t>0 is integrable on R+. The

proof is a straightforward consequence of (3.8), (3.7) and Proposition 2.1.

Theorem 3.6. Let −A be an −a-sectorial operator of angle ϑ ∈ [0, π/2) with

a > 0, and 0 ≤ β < 1. For x ∈ X, it follows that

(a) ‖S(t)x‖Xβ ≤Me1−βα,1−αβ(t, a)‖x‖, for t > 0.

(b) ‖R(t)x‖Xβ ≤Me1−βα,α(1−β)(t, a)‖x‖, for t > 0.

Remark 3.7. If we take β = 0 in the above result we have

(a) ‖S(t)x‖ ≤MEα,1(−atα)‖x‖, for t > 0.

(b) ‖R(t)x‖ ≤Mtα−1Eα,α(−atα)‖x‖, for t > 0.

The estimate given in part (b) of this remark appears in [37].

Remark 3.8. Observe that Theorem 3.6 is not valid for β = 1. To get the

spatial bounds in this special case, we use (3.6). Indeed, let x ∈ X and t > 0,

one gets

‖R(t)x‖X1 ≤M
∫ ∞
0

ψα,0(t, s)
e−as

s
ds

= Mt−1
∫ ∞
0

W−α,0(−st−α)
e−as

s
ds

= Mαt−1
∫ ∞
0

t−αW−α,1−α(−st−α) e−as ds

= Mαt−1
∫ ∞
0

ψα,1−α(t, s)e−as ds = Mαt−1Eα,1(−atα),

where [33, (F.11)] and [3, Theorem 3 (iii)] have been used. Note that for the

case 0 ≤ β < 1, the spatial bound obtained in Theorem 3.6 implies the integra-

bility of the family (R(t))t>0, however this does not happen for β = 1 because
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t−1Eα,1(−atα) is not integrable at zero. This can be compared to the semigroup

case, see inequalities (3.6) and (3.7).

For the resolvent family {S(t)}t≥0, the subordination formula (3.8) does not

give information to get the spatial bound in case β = 1. Even by the use of the

bound of {R(t)}t>0, we can not obtain the corresponding one for {S(t)}t≥0 with

the relation S = g1−α ∗R since t−1Eα,1(−atα) is not integrable at zero.

From Theorem 3.6 one gets the following generalized spatial bounds.

Corollary 3.9. Let −A be −a-sectorial of angle ϑ ∈ [0, π/2) with a > 0,

and 0 ≤ θ < β ≤ 1. For x ∈ Xβ, we have

(a) ‖S(t)x‖X1+θ ≤Meβ−θα,1−α(1+θ−β)(t, a)‖x‖Xβ , for t > 0.

(b) ‖R(t)x‖X1+θ ≤Meβ−θα,α(β−θ)(t, a)‖x‖Xβ , for t > 0.

Remark 3.10. If−A is−a-sectorial of angle ϑ ∈ [0, π/2) with a > 0, then the

associated exponentially stable bounded holomorphic C0-semigroup {T (t)}t≥0 is

characterized by the strong continuity and its Laplace transform, that is,

(λ−A)−1x =

∫ ∞
0

e−λtT (t)x dt, x ∈ X, Reλ > −a.

For more details see [4]. The same happens for the resolvent and the integral

resolvent, that is, {S(t)}t≥0 and {R(t)}t>0 are characterized by the strong con-

tinuity and their Laplace transforms,

λα−1(λα −A)−1x =

∫ ∞
0

e−λtS(t)x dt, x ∈ X, Reλ > 0,

(λα −A)−1x =

∫ ∞
0

e−λtR(t)x dt, x ∈ X, Reλ ≥ 0.(3.9)

This can be proved by subordination, or by a slightly variation of argument in

[31, Proposition 3.1].

Remark 3.11. In [15] and [22] the authors use the spatial bounds for the

resolvent and integral resolvent families generated by an operator −A which

is sectorial of angle ϑ ∈ [0, π/2), in order to get solutions for (3.1) where f

has critical nonlinearities. It would be interesting to study what happens if we

consider an −a-sectorial operator, with a > 0, of angle ϑ ∈ [0, π/2), and how

this affects to the solutions in the critical case. It seems that the solutions would

behave locally near to the origin as the Prabhakar functions do it.

In this paper our aim is different. We will use the integrability of the integral

resolvent associated to −a-sectorial operators, where a > 0, in order to get

solutions in the spaces of µ-pseudo almost automorphic functions to the fractional

Cauchy problem on the real line with critical nonlinearities.
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4. µ-pseudo almost automorphic ε-mild regular solutions

In what follows we will use the notation and some basic results given in the

Appendix. We encourage the reader to see this section.

Let 0 < α < 1 and A be a linear closed operator with dense domain defined on

a Banach space X. In order to show the relevance of the spatial bounds obtained

in the previous section, we are going to study µ-pseudo almost automorphic

solutions for the fractional problem on the real line

(4.1) Dα
t u(t) = Au(t) + f(t, u(t)), t ∈ R,

assuming that −A is −a-sectorial, with a > 0, of angle ϑ ∈ [0, π/2) and f : R×
X → X is a continuous function with critical nonlinearities. Now, the fractional

derivative of order 0 < α < 1 of a function u : R→ X is given by

Dα
t u(t) =

d

dt
(g1−α ∗ u)(t) =

d

dt

∫ t

−∞
g1−α(t− s)u(s) ds

and it represents the Weyl, Caputo, Riemann–Liouville and Grunwald–Letnikov

derivatives, which coincide under some regularity assumptions – see [42].

Let u : R → X be a solution of (4.1) and we denote by Fu the Fourier

transform of u, that is,

(Fu)(η) =

∫ ∞
−∞

e−iηtu(t) dt, η ∈ R,

whenever the integral converges. In a formal way, if we assume regularity prop-

erties to apply Fourier transform to (4.1), we have that

(Fu)(η) = ((iη)α −A)−1(Ff( · , u( · )))(η), η ∈ R,

since (iη)α ∈ ρ(A) by the −a-sectoriality of −A, with a > 0. Therefore, by the

above comment and (3.9) we state the following definition.

Definition 4.1. Let ε > 0. We say that a function u : R → X1 such that

u ∈ C(R, X1+ε) is an ε-mild regular solution of (4.1) if it satisfies

u(t) =

∫ t

−∞
R(t− s)f(s, u(s)) ds, t ∈ R.

Now, we recall the notion of ε-regular map due to Arrieta and Carvalho [5,

Definition 2] to establish the nonlinearities in the equation (4.1).

Definition 4.2. For ε > 0 we say that a map g is an ε-regular map relative

to the pair (X1, X0) if there exist ρ > 1, γ(ε) with ρε ≤ γ(ε) < 1, and a positive

constant c, such that g : X1+ε → Xγ(ε) and

‖g(x)− g(y)‖Xγ(ε) ≤ c(1 + ‖x‖ρ−1X1+ε + ‖y‖ρ−1X1+ε)‖x− y‖X1+ε

for all x, y ∈ X1+ε.
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In this work we consider the following class of nonlinearities: with ε > 0,

γ(ε), ρ and c are positive constants, the class F(ε, γ(ε), ρ, c) is defined as the

family of functions f such that, for t ∈ R, f(t, · ) is an ε-regular map relative to

the pair (X1, X0), satisfying

(4.2) ‖f(t, x)− f(t, y)‖Xγ(ε) ≤ c(1 + ‖x‖ρ−1X1+ε + ‖y‖ρ−1X1+ε)‖x− y‖X1+ε ,

(4.3) ‖f(t, x)‖Xγ(ε) ≤ c(1 + ‖x‖ρX1+ε),

for all x, y ∈ X1+ε.

Remark 4.3. Suppose that f : R × X1+ε → Xγ(ε) belongs to the class

F(ε, γ(ε), ρ, c). We claim that f satisfies condition (C) in Theorem A.13 (see

Appendix). Indeed, let B be a bounded set of X1+ε. Then there exists M0 > 0

such that ‖y‖X1+ε ≤M0 for all y ∈ B. Therefore

‖f(t, y)‖Xγ(ε) ≤ c(1 + ‖y‖ρX1+ε) ≤ c(1 +Mρ
0 ), (t, y) ∈ R×B.

It follows that f is bounded on R×B.

In the rest of this section we assume that µ ∈M satisfies condition (H) (see

Appendix).

Now, we state a technical lemma of convolution type, which will be used in

the main result of the section.

Lemma 4.4. Let h ∈ PAA(Xγ(ε), µ). Then, for every 0 ≤ θ < γ(ε), we have

H(t) :=

∫ t

−∞
R(t− s)h(s) ds ∈ PAA(X1+θ, µ).

Proof. Let h = f + φ with f ∈ AA(Xγ(ε)) and φ ∈ E(Xγ(ε), µ). Then we

can consider

H(t) := F (t) + Φ(t),

where

F (t) :=

∫ t

−∞
R(t− s)f(s) ds, Φ(t) :=

∫ t

−∞
R(t− s)φ(s) ds.

First, we prove that F ∈ AA(X1+θ). Indeed, since f ∈ AA(Xγ(ε)), then given

a sequence (s′n)n∈N of real numbers, there exists a subsequence (sn)n∈N and

a function g such that

‖f(t+ sn)− g(t)‖Xγ(ε) → 0 (n→∞),

‖g(t− sn)− f(t)‖Xγ(ε) → 0 (n→∞).

This means that, for a given δ > 0, there exists N ∈ N such that ‖f(t + sn) −
g(t)‖Xγ(ε) < δ provided n > N . Let

G(t) :=

∫ t

−∞
R(t− s)g(s) ds.
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Note that

F (t+ sn) =

∫ t

−∞
R(t− s)f(s+ sn) ds.

Then, by Corollary 3.9, we have that for n > N

‖F (t+ sn)−G(t)‖X1+θ ≤
∫ t

−∞

∥∥R(t− s)[f(s+ sn)− g(s)]
∥∥
X1+θ ds

≤M
∫ t

−∞
e
γ(ε)−θ
α,α(γ(ε)−θ)(t− s, a)

∥∥f(s+ sn)− g(s)
∥∥
Xγ(ε)

ds <
Mδ

aγ(ε)−θ
,

where we have used Proposition 2.3. Hence ‖F (t + sn) − G(t)‖X1+θ → 0 as

n → ∞. Analogously we prove that ‖G(t− sn)− F (t)‖X1+θ → 0 as n → ∞. It

follows that F ∈ AA(X1+θ).

The next step consists in proving that Φ ∈ E(X1+θ, µ), that is,

lim
T→∞

1

µ([−T, T ])

∫ T

−T
‖Φ(t)‖X1+θ dµ(t) = 0.

Indeed, by Corollary 3.9 we deduce that

‖Φ(t)‖X1+θ ≤M
∫ ∞
0

e
γ(ε)−θ
α,α(γ(ε)−θ)(s, a)‖φ(t− s)‖Xγ(ε) ds.

Then, by Fubini’s Theorem,

1

µ([−T, T ])

∫ T

−T
‖Φ(t)‖X1+θ dµ(t)

≤
∫ ∞
0

e
γ(ε)−θ
α,α(γ(ε)−θ)(s, a)

(
1

µ([−T, T ])

∫ T

−T
‖φ(t− s)‖Xγ(ε) dµ(t)

)
ds.

Note that, by Corollary 2.3, we get

e
γ(ε)−θ
α,α(γ(ε)−θ)(s, a)

1

µ([−T, T ])

∫ T

−T
‖φ(t− s)‖Xγ(ε) dµ(t)

≤ eγ(ε)−θα,α(γ(ε)−θ)(s, a) sup
σ∈R
‖φ(σ)‖Xγ(ε) ∈ L1(R+).

On the other hand, by the translation invariance of E(Xγ(ε), µ) (see Theo-

rem A.6) one gets

lim
T→∞

1

µ([−T, T ])

∫ T

−T
‖φ(t− s)‖Xγ(ε)dµ(t) = 0, s ∈ R+.

Hence, it follows from Dominated Convergence Theorem that Φ ∈ E(X1+θ, µ),

and we conclude that H ∈ PAA(X1+θ, µ). �

Finally, we present the main result of this section.
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Theorem 4.5. Let f ∈ F(ε, γ(ε), ρ, c) ∩ PAAU (X1+ε, Xγ(ε), µ). If the con-

stant c satisfies

(4.4) McL(r) < aγ(ε)−ε, where L(r) = max{r−1 + rρ−1, 1 + 2rρ−1},

then problem (4.1) has a unique µ-pseudo almost automorphic ε-regular mild so-

lution. Moreover, this solution satisfies u∈PAA(X1+θ, µ), for every 0≤θ<γ(ε).

Proof. Let T : PAA(X1+ε, µ)→ PAA(X1+θ, µ) given by

(Tu)(t) =

∫ t

−∞
R(t− s)f(s, u(s)) ds,

for each 0 ≤ θ < γ(ε). We divide the proof into 3 steps.

Step 1. First we see that T is well-defined. Let u ∈ PAA(X1+ε, µ). Since

f ∈ PAAU (X1+ε, Xγ(ε), µ) and u ∈ PAA(X1+ε, µ) then, by Theorem A.13, we

get f( · , u( · )) ∈ PAA(Xγ(ε), µ), where we have used Remark 4.3. On the other

hand, by Lemma 4.4 we have Tu ∈ PAA(X1+θ, µ).

Step 2. Let u ∈ PAA(X1+ε, µ), we see that Tu : R → X1+θ is bounded and

continuous. Let t ∈ R and h > 0. Then

‖(Tu)(t+ h) − (Tu)(t)‖X1+θ

=

∥∥∥∥∫ t+h

−∞
R(t+ h− s)f(s, u(s)) ds−

∫ t

−∞
R(t− s)f(s, u(s)) ds

∥∥∥∥
X1+θ

=

∥∥∥∥∫ t

−∞
[R(t+ h− s)−R(t− s)]f(s, u(s)) ds

+

∫ t+h

t

R(t+ h− s)f(s, u(s)) ds

∥∥∥∥
X1+θ

≤
∫ ∞
0

∥∥[R(s+ h)−R(s)]f(t− s, u(t− s))
∥∥
X1+θ ds

+

∫ t+h

t

‖R(t+ h− s)f(s, u(s))‖X1+θ ds =: I1 + I2.

We claim that I1 → 0 as h→ 0+. In fact, since (R(t))t>0 is strongly continuous

on X we have that ‖[R(s + h) − R(s)]f(t − s, u(t − s))‖X1+θ → 0 as h → 0+.

Also, by Corollary 3.9 and Proposition 2.3 we have∥∥[R(s+ h) −R(s)]f(t− s, u(t− s))
∥∥
X1+θ

≤Mc

[
e
γ(ε)−θ
α,α(γ(ε)−θ)(s+ h, a) + e

γ(ε)−θ
α,α(γ(ε)−θ)(s, a)

](
1 + sup

σ∈R
‖u(σ)‖ρX1+ε

)
≤ 2Mce

γ(ε)−θ
α,α(γ(ε)−θ)(s, a)

(
1 + sup

σ∈R
‖u(σ)‖ρX1+ε

)
∈ L1(R+),

where we have used that e
γ(ε)−θ
α,α(γ(ε)−θ)( · , a) is decreasing because it is completely

monotonic, see (2.2). It follows from the Dominated Convergence Theorem that
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I1 → 0 as h→ 0+. Now,

I2 ≤Mc

(
1 + sup

σ∈R
‖u(σ)‖ρX1+ε

)∫ t+h

t

e
γ(ε)−θ
α,α(γ(ε)−θ)(t+ h− s, a) ds

= Mc

(
1 + sup

σ∈R
‖u(σ)‖ρX1+ε

)∫ h

0

e
γ(ε)−θ
α,α(γ(ε)−θ)(τ, a) dτ → 0

as h→ 0+. Furthermore,

‖(Tu)(t)‖X1+θ ≤Mc

(
1 + sup

σ∈R
‖u(σ)‖ρX1+ε

)
1

aγ(ε)−θ
.

Step 3. Let

B(r) :=

{
w ∈ PAA(X1+ε, µ) : sup

t∈R
‖w(t)‖X1+ε ≤ r

}
.

We claim that T (B(r)) ⊂ B(r). Indeed, for u ∈ B(r), we have

‖(Tu)(t)‖X1+ε ≤M
∫ t

−∞
e
γ(ε)−ε
α,α(γ(ε)−ε)(t− s, a)‖f(s, u(s))‖Xγ(ε) ds

≤ Mc(1 + rρ)

aγ(ε)−ε
< r.

Next, we prove that T is a contraction. Let u, v ∈ B(r). Then

‖(Tu)(t)− (Tv)(t)‖X1+ε

≤M
∫ t

−∞
e
γ(ε)−ε
α,α(γ(ε)−ε)(t− s, a)‖f(s, u(s))− f(s, v(s))‖Xγ(ε) ds

≤Mc

∫ t

−∞
e
γ(ε)−ε
α,α(γ(ε)−ε)(t− s, a)

(
1 + ‖u(s)‖ρ−1X1+ε + ‖v(s)‖ρ−1X1+ε

)
× ‖u(s)− v(s)‖X1+ε ds

≤ Mc(1 + 2rρ−1)

aγ(ε)−ε
sup
t∈R
‖u(t)− v(t)‖X1+ε .

Therefore T is a contraction. The conclusion follows from the Banach Fixed

Point Theorem. �

Example 4.6. Let Ω ⊂ RN be a bounded domain with smooth boundary.

Let 0 < α < 1, ρ > 1. We consider the following heat equation with Dirichlet

boundary conditions

(4.5)

Dα
t u = Au+ gh(u), in R× Ω,

u = 0 on ∂Ω,

where g ∈ PAA(R, µ), h(u) = u|u|ρ−1 and A = ∆−a, with a > 0 on E0
q := Lq(Ω),

where q = N(ρ− 1)/2 defined on D(A) = W 2,q(Ω) ∩W 1,q
0 (Ω).
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We denote the fractional power spaces associated to A by {Eβq }β∈R. Let

Aβ be the realization of A in Eβq . Then it is well known that −Aβ : D(Aβ) =

Eβ+1
q ⊂ Eβq → Eβq is a −a-sectorial operator. Define Xβ

q := Eβ−1q , β ∈ R.

Let f : R × X
γ(ε)
q → X1+ε

q given byf(t, u) = g(t)u|u|ρ−1. If 1 < q <

N/(N − 2), then by [5, Lemma 8] we have that f is ε-regular map relative

to (X1
q , X

0
q ) for 0 < ε0(q) < ε < N/(N + 2q), with

ε0(q) =
N

N + 2q

(
1− N

2

(
1− 1

q

))
and γ(ε) = ρε.

It can be easily be checked that

f ∈ F(ε, γ(ε), ρ, c) ∩ PAAU (X1+ε
q , Xγ(ε)

q , µ).

If the constants M and c are as in Theorem 4.5 then there exists a unique ε-mild

regular solution u ∈ PAA(X1+θ
q , µ) of (4.5) for every 0 ≤ θ < γ(ε).

Appendix A

In this appendix we provide some definitions and results about the theory of

µ-pseudo almost automorphic functions which are used along the paper, in order

to simplify the reading.

Let X, Y be Banach spaces with norms ‖ · ‖ and ‖ · ‖Y , respectively. We

denote by BC(X) the Banach space of bounded continuous functions from R
to X, equipped with the supremum norm ‖f‖∞ = sup

t∈R
‖f(t)‖.

Definition A.1 ([20]). A continuous function f : R→ X is said almost auto-

morphic if for every sequence of real numbers {s′n}n∈N there exists a subsequence

{sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Example A.2 ([21, Example 2.1]). Let κ : R→ R such that

κ(t) = cos

(
1

2− sinπt− sin t

)
, for t ∈ R.

Then κ is an almost automorphic function, but it is not uniformly continuous

on R.

We recall the notion of µ-pseudo almost automorphic functions in the light

of measure theory given in [10], which is a generalization of the pseudo almost

automorphy.
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Let B be the Lebesgue σ-field of R, M the set of all positive measure µ on

B satisfying µ(R) =∞ and µ([a, b]) <∞ for all a, b ∈ R with a ≤ b.

Definition A.3 ([10, Definition 2.5]). Let µ ∈ M. A function f ∈ BC(X)

is called µ-ergodic if

lim
T→+∞

1

µ([−T, T ])

∫
[−T,T ]

‖f(t)‖ dµ(t) = 0.

We denote by E(X,µ) the set of such functions.

Proposition A.4 ([10, Proposition 2.13]). Let µ ∈ M. Then E(X,µ) is

a Banach space with respect to the supremum norm.

Definition A.5. ([10, Definition 2.6])] Let µ ∈ M. A continuous function

f : R → X is called µ-pseudo almost automorphic if it can be decomposed as

f = g + ϕ, where g ∈ AA(X) and ϕ ∈ E(X,µ). We denote by PAA(X,µ) the

collection of such functions.

Theorem A.6 ([10, Theorem 3.5]). Let µ ∈M satisfy the hypothesis

(H) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ, a ∈ A}) ≤ βµ(A) if A ∈ B satisfies A ∩ I = ∅.
Then E(X,µ) is translation invariant and therefore PAA(X,µ) is also translation

invariant.

Remark A.7. (a) If the measure µ is the Lebesgue measure, then the space

PAA(X,µ) coincides with the space of the pseudo almost automorphic functions

PAA(X) ([46]).

(b) Let ρ(t) > 0 almost everywhere on R for the Lebesgue measure, locally-

Lebesgue integrable on R and
∫
R ρ(t) dt = ∞ . Let µ be the positive measure

defined by

µ(A) =

∫
A

ρ(t) dt, for A ∈ B,

where dt denotes the Lebesgue measure on R. Then PAA(X,µ) coincides with

the space of weighted pseudo almost periodic functions WPAA(X) ([9]).

Theorem A.8 ([10, Theorem 4.9]). Let µ ∈M. Assume that PAA(X,µ) is

translation invariant. Then PAA(X,µ) is a Banach space with the supremum

norm.

Definition A.9 ([8]). A continuous function f : R× Y → X is said almost

automorphic in t uniformly with respect to y in Y if the two following conditions

hold:

(a) f( · , y) ∈ AA(X) for all y ∈ Y.
(b) f is uniformly continuous on each compact K ⊂ Y with respect to the

second variable y.
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We denote by AAU (Y,X) the set of such functions.

Theorem A.10 ([14, Theorem 3.5]). Let f ∈ AAU (Y,X). If u ∈ AA(Y ),

then f( · , u( · )) ∈ AA(X).

Definition A.11 ([10, Definition 5.3]). Let µ ∈ M. A continuous function

f : R × Y → X is called µ-ergodic in t uniformly with respect to y ∈ Y if the

following two conditions hold:

(a) f( · , y) ∈ E(X,µ) for all y ∈ Y .

(b) f is uniformly continuous on each compact set K ⊂ Y with respect to

the second variable y.

Denote by EU (Y,X, µ) the set of such functions.

Definition A.12. ([10, Def. 5.4]) Let µ ∈ M. A continuous function

f : R×Y → X is called µ-pseudo almost automorphic in t uniformly with respect

to y ∈ Y if f = g + φ where g ∈ AAU (Y,X) and φ ∈ EU (Y,X, µ). Denote by

PAAU (Y,X, µ) the set of such functions.

Theorem A.13 ([10, Theorem 5.7]). Let µ ∈ M, f ∈ PAAU (Y,X, µ) and

u ∈ PAA(Y, µ). Assume that the following hypothesis holds:

(C) For all bounded subset B of Y , f is bounded on R×B.

Then t 7→ f(t, u(t)) ∈ PAA(X,µ).
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Instituto Universitario de Matemáticas y Aplicaciones

Universidad de Zaragoza

50009 Zaragoza, SPAIN

E-mail address: labadias@unizar.es

Edgardo Álvarez
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