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Dedicated to the memory of Professor Marek Burnat

Abstract. The paper is devoted to the problem of non-stationary motion

of two viscous incompressible fluids separated by a free surface and con-
tained in a bounded vessel. It is assumed that the fluids are subject to

mass forces and capillary forces at the interface. We prove the stability of

a rest state under the assumption that initial velocities are small, a free
interface is close to a sphere at an initial instant of time, and mass forces

decay as t → ∞.

1. Introduction

The paper deals with unsteady motion of a two-phase fluid in a container.

Both phases are assumed to be viscous and incompressible; they are immiscible

and separated by an unknown closed interface on which the surface tension is

taken into account. The motion of a drop in a liquid medium is governed by

the Navier–Stokes system including mass forces, initial and boundary conditions

and, in addition, by the initial configuration of the drop.
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The first results concerning non-stationary two fluids motion with free inter-

face were obtained in the 90s of the last century. In the case of the whole space,

existence and uniqueness theorem for the problem with and without capillary

forces in L2-setting was proved in a finite time interval whose magnitude was

determined by the norms of the data [2], [4], [6]. This result was obtained in

several steps by considering model linear problems [3], [8]. Giga and Takahashi

[11], [24] demonstrated the existence of global weak solutions for the Stokes and

Navier–Stokes equations governing the motion of two immiscible fluids without

including surface tension into consideration.

During the last years, researchers have been studying the problem on a two-

phase liquid flow in the presence of the surface tension in different functional

spaces and indicating various aspects of the problem. In particular, H. Abels [1]

estimated the Hausdorff measure of the interface leaving open the existence of

generalized solutions. Next, Shibata and Shimizu investigated the problem by

operator methods in the anisotropic Sobolev spaces W 2,1
q,p (Ω±), 2 ≤ n < q <∞,

2 < p < ∞, Ω± ⊂ Rn. They proved the solvability of the model diffraction

problems for the Stokes system [16]. The same result for nonlinear interface

problem was obtained in [17] under the assumption that the initial interface was

given by the equation xn = α(x′), x′ ∈ Rn−1. Much attention has been paid to

the problem of evolution of two fluids in a container, specifically, to the problem

of the stability of a rest state (velocity vector field v = 0, the pressure p is

constant in each fluid, the interface is a sphere with arbitrary center bounded

away from the walls of the container). It was shown independently by the authors

in [9] and in the series of papers of J. Prüss with collaborators (in particular,

in [15], [12]), that the state is exponentially stable in the following sense: for

arbitrary initial data close to an equilibrium, the problem has a unique solution

defined for t > 0 that tends exponentially to a rest state which is different, in

general, from the initial one. The proof was based on coercive (i.e. maximal

regularity) estimates for the solution of a linearized problem. In all of the above

mentioned papers, the interface problem was reduced to a non-linear system in

two fixed domains by using the Hanzawa transformation but the arguments were

quite different. It should be noticed that in [9] the problem was studied in the

anisotropic Hölder spaces, while in [15], [12] the basic space was W 2,1
p , p > n+3.

In addition, the existence of a global solution to the problem was also obtained

in the Sobolev spaces for p > n = 3 in [23].

In [7], the global solvability of the problem was proved in the case of non-zero

mass forces exponentially decaying as t → ∞. We mention also papers [5], [6],

where the case of the zero surface tension was considered.

In the present paper, the problem is treated in the Sobolev–Slobodetskĭı

spaces W
2+l,1+l/2
2 , l ∈ (1/2, 1), in the three-dimensional case. We concentrate
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on the proof of the stability of a rest state and construct a solution assuming that

the initial data of the problem are close to this state, i.e. the velocities and mass

forces are small, and the interface is close to the sphere SR0
of the radius R0 such

that the ball bounded by this sphere has the same volume as the inner fluid. We

place the center of this ball to the origin which coincides with the barycenter of

the drop at an initial instant, the interface being defined as a normal perturbation

of SR0(0). We find it reasonable to consider also the unknown interface at the

time instant t > 0 as a normal perturbation of the sphere SR0(h) of the same

radius R0 but with the center placed at the barycenter h(t) of an inner domain.

Therefore, as in our previous papers [9], [10], we introduce a term with the vector

h(t) into the standard Hanzawa transformation of the two-phase domain with

unknown interface into a domain with the interface SR0(0). In our opinion, this

term permits to take interface evolution into account in a more precise way. Next,

we linearize the transformed problem. In Section 2, we study a linear problem

in two domains separated by SR0
and prove maximal regularity estimates for a

solution of the problem first on an arbitrary finite time interval in the standard

spaces and then, under some additional assumptions, on the infinite interval

t > 0 in the spaces with the exponential weight eβt, β > 0. In Section 3, on the

basis of these estimates and of the estimates of nonlinear terms, we construct

a solution at first for t ∈ (0, T0) with an appropriate T0 > 1, then we extend

this solution with respect to t into the interval (T0, 2T0) and so forth step by

step for any t > 0. We show that the velocities and the pressure gradient decay

exponentially to zero as t→∞, and Γt tends to a sphere of radius R0 centered

at h(∞) close to SR0
(0) but, in general, different from SR0

(0).

Moreover, we admit here a more general decay of the vector field of mass

forces. The proofs are constructed in the same manner as in [20], [9], [23] but

the finial estimate of a solution (see Theorem 1.1) is somewhat different from

those in the preceding papers. As before, the idea of constructing a function

of generalized energy [13], [19] is used for obtaining the exponential estimate

instead of an analysis of the spectrum of the linear problem. It is worth noting

that our technique can be generalized to the case of a multi-phase fluid and that

of a dimension n > 3.

We pass to the statement of the problem.

Let two viscous incompressible immiscible fluids be contained in a bounded

vessel Ω ⊂ R3 and separated by a variable interface Γt that is bounded away from

the wall of the container Σ = ∂Ω. It is assumed that Γt is the boundary of the

domain Ω+
t filled with the fluid with the density ρ+ and the dynamical viscosity

µ+ that is surrounded by the other fluid with the density ρ− and the viscosity

µ− occupying the domain Ω−t = Ω \ Ω+
t . It is necessary to find Γt, as well as

the velocity vector fields v(x, t) and the pressure functions p(x, t), x ∈ Ω−t ∪Ω+
t ,
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of both fluids satisfying the interface problem for the Navier–Stokes equations

(1.1)



Dtv + (v · ∇)v − ν±∇2v +
1

ρ±
∇p = f , ∇ · v = 0 in Ω±t , t > 0,

v(x, 0) = v0(x) in Ω±0 , [v]
∣∣
Γt
≡ lim
x→x0∈Γt
x∈Ω+

t

v(x)− lim
x→x0∈Γt
x∈Ω−t

v(x) = 0,

[T(v, p)n]|Γt = σ

(
H +

2

R0

)
n, v|Σ = 0, Vn = v · n,

where Dt = ∂/∂t, ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), ν± = µ±/ρ± is the step function

of the kinematic viscosity, v0 is the initial distribution of the velocity, f is the

vector field of mass forces given in Ω × (0,∞), T(v, p) = −p + µ±S(v) is the

stress tensor, S(v) = (∇v) + (∇v)T is the doubled rate-of-strain tensor, H is

twice the mean curvature of Γt(H < 0 at the points where Γt is convex toward

Ω−t ), σ > 0 is the coefficient of surface tension, n(x, t) is the normal to Γt,

exterior with respect to Ω+
t , [v]|Γt is the jump of v across Γt, Vn is the velocity

of the evolution of Γt in the direction n, R0 = (3|Ω+
0 |/4π)1/3, |Ω+

0 | = mes Ω+
0 .

We suppose that a Cartesian coordinate system {x} is introduced in R3. The

centered dot denotes the Cartesian scalar product.

Summation is implied over repeated indices from 1 to 3 if they are denoted

by Latin letters. We mark the vectors and the vector spaces by boldface letters.

It is assumed that the surface Γ0 is close to the sphere SR0
of radius R0 the

center of which coincides with the center of gravity of Ω+
0 . Without restriction

of generality, we suppose that it is placed at the origin. Then Γ0 can be viewed

as a normal perturbation of SR0
, i.e.

Γ0 = {x ∈ R3 | x = y + r0(y)N(y)}, y ∈ SR0
,

where N(y) = y/|y|, y ∈ SR0
, and r0 is a given small function. We will use

a similar representation formula for the unknown surface Γt, t > 0:

Γt = {x ∈ R3 | x = y + h(t) + r(y, t)N(y)},

where r(y, t) is an unknown function on SR0 . The coordinates of the barycenter

of Ω+
t are given by

(1.2) hi(t) =
1

|Ω+
t |

∫
Ω+
t

xi dx =
1

|Ω+
t |

∫ t

0

∫
Ω+
t

vi(x, τ) dx dτ, i = 1, 2, 3.

We extend N in R3 by the formula N∗(y) = ω(y)y/|y|, where ω(y) is

a smooth function equal to 1 for |y| ≥ 2R0/3 and to zero for |y| ≤ R0/3. For r,

we introduce the extension r∗(y, t) = Er(y, t)Φ(y), where Φ(y) is a smooth cut-

off function equal to 1 in the neighbourhood of SR0 and zero near Σ, while E is
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a fixed extension operator from SR0
into R3. We also require that

∂r∗

∂N

∣∣∣∣
SR0

= 0,

‖r∗‖
W
l′+1/2
2 (R3)

≤ c‖r‖W l′
2 (SR0

), l′ ∈ (0, 2 + l],

and r∗(y, t) = 0 for
∣∣|y| −R0

∣∣ ≥ d0, in particular, for y close to Σ, d0 is a small

positive number (Wm
2 is a Sobolev–Slobodetskĭı space the definition of which

will be given below). It follows that

(1.3) ‖Dtr∗‖W l′+1/2
2 (R3)

≤ c‖Dtr‖W l′
2 (SR0

), l′ ∈ (0, 2 + l].

We define the modified Hanzawa transformation

(1.4) x = y + r∗(y, t)N∗(y) + χ(y)h(t) ≡ er,h(y, t),

where χ(y) is a smooth cutoff function, equal to one for
∣∣|y| − R0

∣∣ ≤ d0/2

and to zero for
∣∣|y| − R0

∣∣ ≥ d0. If r and h(t) are sufficiently small and d0 is

chosen in a proper way, then this mapping is invertible and it establishes one-

to-one correspondences between the ball B+ ≡ {|y| < R0} and Ω+
t , SR0 and Γt,

B− ≡ Ω \ B+ and Ω−t (this is obvious for t = 0 when h(0) = 0, and it remains

true for small h(t)).

We denote by L the Jacobi matrix of transformation (1.4), and we set L =

detL, L̂ = LL−1. Clearly,

L(r,h) =

{
δij +

∂
(
r∗(y, t)N∗i (y)

)
∂yj

+ hi(t)
∂χ(y)

∂yj

}3

i,j=1

.

For y located on SR0
, we have ∇χ = 0 and

L = L(r,0) =

{
δij +

∂
(
r(y, t)Ni(y)

)
∂yj

}3

i,j=1

.

Mapping (1.4) converts (1.1) into

(1.5)



Dtu− ν±∇̃2u− (L−1(Dtr∗N∗ + χḣ) · ∇)u

+(L−1u · ∇)u + 1
ρ± ∇̃q = f̂ , ∇̃ · u = 0 in B±, t > 0,

u(y, 0) = u0(y) in B±,

r(y, 0) = r0(y) on SR0 ,

[u]
∣∣
SR0

= 0, [µ±ΠS̃(u)n]
∣∣
SR0

= 0, u|Σ = 0,

[−q + µ±n · S̃(u)n]
∣∣
SR0

= σ

(
H
(
er,0(y, t), t

)
+

2

R0

)
,∫

Ω

q(y, t) dy = 0,

Dtr −
(
u− 1

|B+|

∫
B+

uL(r,0) dy

)
· n

N · n
= 0 on SR0

,

where
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• u = v(er,h, t), q = p(er,h, t),

• ∇̃ = L−T∇ is the transformed gradient ∇x (“T” means transposition),

• S̃(u) = ∇̃u + (∇̃u)T is the transformed doubled rate-of-strain tensor,

• f̂(y, t) = f(er,h(y, t), t),

• u0(y) = v0(er0,0(y)),

• Πg = g − n(n · g).

The equation for r on SR0 arises from the condition Vn = v·n on the interface

in view of (1.4) and (1.2), since Vn ≡ Dtx ·n = Dtr(N ·n) + ḣ ·n, ḣ ≡ dh/ dt.

System (1.5) can be written in the form



Dtu− ν±∇2u +
1

ρ±
∇q = l1(u, q, r) + f̂ , ∇ · u = l2(u, r) in B±, t > 0,

u(y, 0) = u0(y) in B±,

r(y, 0) = r0(y) on SR0
,

[u]
∣∣
SR0

= 0, [µ±Π0S(u)N ]
∣∣
SR0

= l3(u, r), u|Σ = 0,

[−q + µ±N · S(u)N ]
∣∣
SR0

− σB0r = l4(u, r) + σl5(r),

Dtr −
(
u− 1

|B+|

∫
B+

u dy

)
·N = l6(u, r) on SR0

,∫
Ω

q(y, t) dy = 0,

where

(1.6)

B0r = ∆SR0
r + 2R−2

0 r,

l1(u, q, r) = ν±
(
∇̃2 −∇2

)
u +

1

ρ±
(∇− ∇̃)q

+
(
L−1

(
Dtr∗N∗ + χḣ(t)

)
· ∇
)
u− (L−1u · ∇)u,

l2(u, r) = (I− L̂T )∇ · u = ∇ ·L(u, r), L(u, r) = (I− L̂)u,

l3(u, r) =
[
µ±Π0

(
Π0S(u)N −ΠS̃(u)n

)]∣∣
SR0

,

l4(u, r) =
[
µ±
(
N · S(u)N − n · S̃(u)n

)]∣∣
SR0

,

l5(r) = −
∫ 1

0

(1− s) d2

ds2
L̂T (sr,0)∇ · ns ds, ns =

L̂T (sr,0)N

|L̂T (sr,0)N |
,

l6(u, r) =

(
u− 1

|B+|

∫
B+

u(y′, t) dy′
)(

L̂T (r,0)N

N · L̂T (r,0)N
−N

)
− 1

|B+|

∫
B+

(
L(r,0)− 1

)
u dy

L̂T (r,0)N

N · L̂T (r,0)N
,

Π0g = g −N(N · g), N(y) · L̂T (y, t)N(y) = y · L̂Ty/|y|2.
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The vectors n(x, t) and N(y) are connected by

n(x, t)|x=er,0(y,t) =
L̂T (r,0)N(y)

|L̂T (r,0)N(y)|

∣∣∣∣
SR0

,

moreover, H(er,0, t)+2/R0 = B0r+l5, where B0r is the first variation of H+2/R0

with respect to r and l5 is a nonlinear remainder. By ∆SR0
we denote the

Laplace–Beltrami operator on SR0
, while ns is the normal to the surface

Γt,s = {x ∈ R3 | x = y + sr(y, t)N(y), y ∈ SR0}, s ∈ (0, 1).

Remark 1.1. Equation z = y+ r(y, t)N(y) defines the surface Γt shifted by

the vector −h(t).

We have added the normalization condition
∫

Ω
q dy = 0 for q. It can be taken

also in another form, for instance,

(1.7)

∫
B±

q±(y, t) dy = 0

or ∫
Σ

q(y, t) dS = 0.

Pressure functions satisfying different conditions differ from each other by certain

functions of time. If
∫

Ω
q dy = 0, q̂− satisfies (1.7), say, in the domain B− and q̃

does it on Σ, respectively, then q(y, t) = q̂−(y, t) + ĉ(t) = q̃(y, t) + c̃(t) with

ĉ(t) = |B−|−1

∫
B−

q(ξ, t) dξ, c̃(t) = |Σ|−1

∫
Σ

q(ξ, t) dΣ.

It is easily seen that [q]|SR0
= [q̂−]|SR0

= [q̃]|SR0
.

We notice that the condition |Ω+
t | = 4πR3

0/3 and the fact that the barycenter

of Ω+
t is placed at the origin {y = 0} can be expressed in terms of r as follows:

(1.8)

∫
SR0

(
(R0 + r)3 −R3

0

)
dS = 0,∫

SR0

yj
(
(R0 + r)4 −R4

0

)
dS = 0, j = 1, 2, 3.

We define the Sobolev–Slobodetskĭı spaces which we use in the present paper.

The isotropic space W l
2(Ω), Ω ⊂ Rn, is the space with the norm

‖u‖2W l
2(Ω) =

∑
0≤|j|≤l

‖Dj
xu‖2Ω ≡

∑
0≤|j|≤l

∫
Ω

|Dj
xu(x)|2 dx

if l = [l], i.e. l is an integral number, and

‖u‖2W l
2(Ω) = ‖u‖2

W
[l]
2 (Ω)

+
∑
|j|=[l]

∫
Ω

∫
Ω

|Dj
xu(x)−Dj

yu(y)|2 dx dy

|x− y|n+2λ

if l = [l] + λ, λ ∈ (0, 1). As usual, Dj
xu denotes a (generalized) partial derivative

∂|j|u/∂xj11 . . . ∂xjnn , where j = (j1, . . . , jn) and |j| = j1 + . . .+ jn.



220 I.V. Denisova — V.A. Solonnikov

We introduce the anisotropic spaces

W l,0
2 (QT ) = L2

(
(0, T ),W l

2(Ω)
)
, W

0,l/2
2 (QT ) = W

l/2
2

(
(0, T ), L2(Ω)

)
;

QT = Ω×(0, T ), the squares of norms in these spaces coincide, respectively, with

‖u‖2
W l,0

2 (QT )
=

∫ T

0

‖u( · , t)‖2W l
2(Ω) dt, ‖u‖2

W
0,l/2
2 (QT )

=

∫
Ω

‖u(x, · )‖2
W
l/2
2 (0,T )

dx.

The space W
l,l/2
2 (QT ) ≡ W l,0

2 (QT ) ∩W 0,l/2
2 (QT ) can be supplied with the

norm

‖u‖
W
l,l/2
2 (QT )

≡ ‖u‖W l,0
2 (QT ) + ‖u‖

W
0,l/2
2 (QT )

.

There exist many other equivalent norms in W
l,l/2
2 (QT ); some of them will be

used below.

The Sobolev–Slobodetskĭı spaces of functions given on smooth surfaces, in

particular, on SR0
and on GT = SR0

× (0, T ), T ≤ ∞, are introduced in the

standard way, with the help of local maps and partition of unity.

Moreover, we introduce also the norm

|||u|||(s+l,l/2)
GT

= ‖u‖W s+l,0
2 (GT ) + ‖u‖

W
l/2
2 (0,T ;W s

2 (SR0
))
.

Finally, we set

‖u‖2W l
2(∪B±) ≡ ‖u‖

2
W l

2(B+) + ‖u‖2W l
2(B−), ‖u‖Ω ≡ ‖u‖L2(Ω).

Now, the main result of the paper is stated.

Theorem 1.2 (Global Existence). Let Σ ∈ W
3/2+l
2 , u0 ∈ W 1+l

2 (∪B±),

r0 ∈W 2+l
2 (SR0) with l ∈ (1/2, 1), and the compatibility and smallness conditions

(1.9)
∇ · u0 = l2(u0, r0), [µ±Π0S(u0)N ]|SR0

= l3(u0, r0),

[u0]|SR0
= 0, u0|Σ = 0,

(1.10) ‖u0‖W 1+l
2 (∪B±) + ‖r0‖W 2+l

2 (SR0
) ≤ ε

are satisfied. Moreover, assume that f has finite norms

sup
τ>0
‖Di

xf‖Qτ,τ+T0 , ‖ebtf‖
W
l,l/2
2 (Q∞)

,

where Q∞ = Ω× (0,∞), T0 > 2 is an appropriate fixed number, and

(1.11) ‖ebtf‖
W
l,l/2
2 (Q∞)

≤ ε, b > 0, sup
τ>0
‖Di

xf‖Qτ,τ+T0 ≤ ε, |i| = 1, 2.

Then problem (1.5) has a unique solution (u, q, r), and it satisfies the inequality

(1.12) ‖eatu‖
W

2+l,1+l/2
2 (∪D±∞)

+ ‖eat∇q‖
W
l,l/2
2 (∪D±∞)

+ ‖eatq‖
W

0,l/2
2 (∪D±∞)

+ ‖eatr‖
W

5/2+l,5/4+l/2
2 (G∞)

+ ‖eatDtr‖W 3/2+l,3/4+l/2
2 (G∞)

≤ c1(ε)
{
‖eatf‖

W
l,l/2
2 (Q∞)

+ ‖u0‖W 1+l
2 (∪B±) + ‖r0‖W 2+l

2 (SR0
)

}
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with a certain a < b, D±∞ = B± × (0,∞). c(ε) is a bounded function of ε.

We note that similar results in the Hölder spaces were obtained without and

with mass forces in [9] and [7], respectively.

Theorem 1.2 guarantees solution stability understood in the sense that ve-

locity vector field differs a little from zero as well as pressure function does

a little from a step function for small initial data and mass forces. In addition,

limit interface is a sphere SR0
(h∞) of the radius R0; however, the center h∞ of

limit sphere may be displaced slightly with respect to the origin, the barycenter

of Ω+
0 . This displacement will be evaluated by inequality (3.23) at the end of

Section 3. There will be also given an estimate of the initial distance between

the outer boundary and fluid interface sufficient for preventing the intersection

of the surfaces in the future.

The proof of Theorem 1.2 consists of several steps. It is based on an ex-

ponential energy inequality for a solution of a linear problem, which implies an

exponential decay of a global solution to the problem.

2. Linear problem

Along with (1.5), we consider the linear problem

(2.1)



Dtv − ν±∇2v +
1

ρ±
∇p = f , ∇ · v = f in B±, t > 0,

v(y, 0) = v0(y) in B±,

r(y, 0) = r0(y) on SR0
,

[v]|SR0
= 0, [µ±Π0S(v)N ]|SR0

= b, v|Σ = 0,

[N · T(v, p)N ]|SR0
− σB0r|SR0

= b,

Dtr −
(
v ·N − N

|B+|
·
∫
B+

v(y′, t) dy′
)∣∣∣∣

SR0

= g,∫
Ω

p(y, t) dy = 0.

Theorem 2.1 (Local Solvability of the Linear Problem). Let Σ ∈ W 3/2+l
2 ,

r0 ∈ W 2+l
2 (SR0) with l ∈ (1/2, 1). For arbitrary f ∈ W

l,l/2
2 (∪D±T ), f ∈

W 1+l,0
2 (∪D±T ), f = ∇·F , F ∈W

0,1+l/2
2 (∪D±T ), [FN ]|SR0

= 0, v0 ∈W 1+l
2 (∪B±),

b ∈ W
l+ 1/2,l/2 + 1/4
2 (GT ), b ∈ W

l+ 1/2,0
2 (GT )∩W l/2

2

(
0, T ;W

1/2
2 (SR0

)
)
, g ∈

W
3/2+l,3/4+l/2

2 (GT ), where D±T = B± × (0, T ), GT = SR0
× (0, T ), T <∞, sat-

isfying the compatibility conditions

(2.2)

∇ · v0 = f(y, 0), [µ±Π0S(v0)N ]|SR0
= b(y, 0),

N · b(y, t) = 0, t ≥ 0,

[v0]|SR0
= 0, v0|Σ = 0,
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problem (2.1) has a unique solution (v, p, r): v ∈ W
2+l,1+l/2
2 (∪D±T ), ∇p ∈

W
l,l/2
2 (∪D±T ), r( · , t) ∈W 2+l

2 (SR0) for all t ∈ (0, T ), and

‖v‖
W

2+l,1+l/2
2 (∪D±T )

+ ‖∇p‖
W

l,l/2
2 (∪D±T )

(2.3)

+ ‖p‖
W

0,l/2
2 (∪D±T )

+ ‖r‖
W

5/2+l,5/4+l/2
2 (GT )

+ ‖Dtr‖W 3/2+l,3/4+l/2
2 (GT )

≤ c(T )
{
‖f‖

W
l,l/2
2 (∪D±T )

+ ‖f‖W 1+l,0
2 (∪D±T )

+ ‖F ‖
W

0,1+l/2
2 (∪D±T )

+ ‖b‖
W

l+1/2,l/2+1/4
2 (GT )

+ |||b|||(1/2+l,l/2)
GT

)
+ ‖g‖

W
3/2+l,3/4+l/2
2 (GT )

+ ‖v0‖W 1+l
2 (∪B±) + ‖r0‖W 2+l

2 (SR0
)

}
.

Remark 2.2. From the trace theorem for ρ ∈W 1,1
2 (GT ), it follows that

‖ρ( ·, t)‖
W

1/2
2 (SR0

)
≤ c
{
‖ρ‖W 1,0

2 (GT ) + ‖Dtρ‖GT
}
, t ∈ [0, T ],

which implies

‖r( · , t)‖W 2+l
2 (SR0

) ≤ c
{
‖r‖

W
5/2+l,0
2 (GT )

+ ‖Dtr‖W 3/2+l,0
2 (GT )

}
.

This means that Γt ∈W 2+l
2 for all t ∈ [0, T ].

Proof. Let r1 be a function satisfying the conditions

r1(y, 0) = r0(y),

Dtr1(y, 0) = g(y, 0) +

(
v0(y) ·N(y)− N(y)

|B+|
·
∫
B+

v0(y′) dy′
)
≡ r′0(y)

and the estimates

|||r1|||(5/2+l,l/2)
GT

+ ‖Dtr1‖W 3/2+l,3/4+l/2
2 (GT )

(2.4)

≤ c
{
‖r1‖W 5/2+l,5/4+l/2

2 (GT )
+ ‖Dtr1‖W 3/2+l,3/4+l2

2 (GT )

}
≤ c
{
‖r0‖W 2+l

2 (SR0
) + ‖r′0‖W l+1/2

2 (SR0
)

}
.

Such r1 exits due to Proposition 4.1 in [22] and equivalent normalizations of the

Sobolev–Slobodetskĭı spaces. Then we can write

B0r(y, t) = B0r1(y, t) +

∫ t

0

B0

(
Dt(r(y, τ)− r1(y, τ))

)
dτ

= B0r1(y, t) +

∫ t

0

B0

(
g(y, τ) + v(y, τ) ·N(y)−Dtr1(y, τ)

)
dτ,
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because B0N = 0 in view of the fact that N is an eigenvector of ∆SR0
with the

eigenvalue −2R−2
0 . Hence, (2.1) can be written in the form

(2.5)



Dtv − ν±∇2v + 1
ρ±∇p = f , ∇ · v = f in B±, t > 0,

v(y, 0) = v0(y) in B±,

[v]|SR0
= 0, [µ±Π0S(v)N ]

∣∣
SR0

= b, v|Σ = 0,

[N · T(v, p)N ]
∣∣
SR0

− σN · B0

∫ t

0

v|SR0
dτ

= b′ + σ

∫ t

0

B′ dτ + 2σ

∫ t

0

∇Sv : ∇SN dτ on SR0 ,∫
Ω

p(y, t) dy = 0 for t > 0,

where b′ = b + σB0r1, B′ = B0(g − Dtr1), ∇S is the surface gradient on SR0
;

S : T ≡ SijTij . Problems of this type were studied in [3], where the solvability

of (2.5) without the term 2σ
∫ t

0
∇Sv : ∇SN dτ and the estimate

‖v‖
W

2+l,l+1/2
2 (∪D±T )

+ ‖∇p‖
W

l,l/2
2 (∪D±T )

+ ‖p‖
W

0,l/2
2 (∪D±T )

≤ c(T )
{
‖f‖

W
l,l/2
2 (∪D±T )

+ ‖f‖W 1+l,0
2 (∪D±T )

+ ‖F ‖
W

0,1+l/2
2 (∪D±T )

+ ‖b‖
W

l+1/2,l/2+1/4
2 (GT )

+ |||b′|||(1/2+l,l/2)
GT

+ ‖B′‖
W
l−1/2,l/2−1/4
2 (GT )

+ ‖v0‖W 1+l
2 (∪B±)

}
of a solution were established. Together with (2.4), this inequality implies (2.3)

because the additional term is weak and has no essential influence on the final

result. �

We also consider problem (2.1) with f = 0, f = 0, b = 0, b = 0, g = 0 and

with r0(y) satisfying the orthogonality conditions

(2.6)

∫
SR0

r0(y) dS = 0,

∫
SR0

r0(y)yj dS = 0, j = 1, 2, 3,

obtained by linearization of (1.8). Since∫
SR0

Dtr(y, t) dS =

∫
SR0

v ·N dS =

∫
B+

∇ · v(y, t) dy = 0,∫
SR0

Dtr(y, t)yj dS =

∫
SR0

yjv ·N dS −
∫
B+

vj(y, t) dy = 0,

conditions (2.6) are satisfied also for r(y, t), t > 0 :

(2.7)

∫
SR0

r(y, t) dS = 0,

∫
SR0

r(y, t)yj dS = 0, j = 1, 2, 3.
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Theorem 2.3 (Global Solvability of the Linear Homogeneous Problem).

Problem (2.1) with f = 0, f = 0, b = 0, b = 0, g = 0 and with v0∈W 1+l
2 (∪B±),

r0∈W 2+l
2 (SR0

), l ∈ (1/2, 1), satisfying compatibility conditions (2.2), i.e.

(2.8) ∇ · v0 = 0, [µ±Π0S(v0)N ]|SR0
= 0, [v0]|SR0

= 0, v0|Σ = 0,

and orthogonality conditions (2.6), has a unique solution (v, p, r), such that v ∈
W

2+l,1+l/2
2 (∪D±∞), ∇p ∈W

l,l/2
2 (∪D±∞), r( · , t) ∈ W 2+l

2 (SR0
) for all t ∈ (0,∞),

it is subject to the inequality

(2.9) ‖eβtv‖2
W

2+l,1+l/2
2 (∪D±∞)

+ ‖eβt∇p‖2
W

l,l/2
2 (∪D±∞)

+ ‖eβtp‖2
W

0,l/2
2 (∪D±∞)

+ ‖eβtr‖2
W

5/2+l,5/4+l/2
2 (G∞)

+ ‖eβtDtr‖2W 3/2+l,3/4+l/2
2 (G∞)

≤ c
{
‖v0‖2W 1+l

2 (∪B±)
+ ‖r0‖2W 2+l

2 (SR0
)

}
with a certain β > 0.

We outline the proof of (2.9). At first, weighted L2-estimates of v, r are

obtained.

Proposition 2.4. A solution of (2.1), (2.6) with f = 0, f = 0, b = 0,

b = 0, g = 0 satisfies the inequality

(2.10)
∥∥eβ1tv( · , t)

∥∥2

Ω
+
∥∥eβ1tr( · , t)

∥∥2

W 1
2 (SR0

)
≤ c
{
‖v0‖2Ω0

+ ‖r0‖2W 1
2 (SR0

)

}
,

where β1 > 0, c is independent of t.

Proof. Inequality (2.10) is obtained in the same way as inequality (2.8)

in [9] and even easier because the triple (v, p, r) solves a linear problem. The

proof is based on the energy relation

(2.11)
1

2

d

dt

∥∥√ρ±v∥∥2

Ω
− σ

∫
SR0

v ·NB0r dS +
1

2

∥∥√µ±S(v)
∥∥2

Ω
= 0

which, in view of the last boundary condition in (2.1) and the self-adjointness of

the operator B0, implies

1

2

d

dt

(∥∥√ρ±v∥∥2

Ω
− σ

∫
SR0

rB0r dS

)
+

1

2

∥∥√µ±S(v)
∥∥2

Ω
= 0.

Similarly to (2.11), one can deduce the equality

(2.12)
d

dt

∫
Ω

ρ±v ·W dx−
∫

Ω

ρ±v · DtW dx

+

∫
Ω

µ±

2
S(v) : S(W ) dx− σ

∫
SR0

rB0r dS = 0,
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where W is an auxiliary vector field satisfying the relations (see [9])

∇ ·W (x, t) = 0 in Ω, W ·N |SR0
= r, [W ]|SR0

= 0, W |Σ = 0,

‖W ‖W 1
2(Ω) ≤ c‖r‖W 1/2

2 (SR0
)
,

‖DtW ‖Ω ≤ c‖Dtr‖SR0
≤ c
{
‖v ·N‖SR0

+ ‖v‖Ω
}
.

We multiply (2.12) by a small γ > 0 and add it to (2.11). Taking account of

the fact that the form −
∫
SR0

rB0r dS =
∫
SR0

(|∇Sr|2 − 2R−2
0 r2) dS is positive

definite if r satisfies (2.7) (see [18]) and making use of (2.4) and of the Korn

inequality for v, we show that for the so-called generalized energy [13]

E(t) =
1

2

∥∥√ρ±v∥∥2

Ω
− σ

∫
SR0

rB0r dS + γ

∫
Ω

ρ±v ·W dx,

the estimate

d

dt
E(t) + 2β1E(t) ≤ 0

is valid, where β1 = const > 0. Since E is controlled by c
(
‖v‖2Ω + ‖r‖2

W 1
2 (SR0

)

)
from above and from below if γ is small enough, by the Gronwall lemma, we

have (2.10). �

For obtaining bounds for higher order norms of the solution similar to (2.10),

we invoke a local in time estimate of the solution. Keeping in mind forthcoming

applications, we assume that T > 2.

Proposition 2.5. Let T > 2. The solution of problem (2.1), (2.6) with

f = 0, f = 0, b = 0, b = 0, g = 0 is subject to the inequality

(2.13) ‖v‖
W

2+l,1+l/2
2 (∪D±t0−1,t0

)
+ ‖∇p‖

W
l,l/2
2 (∪D±t0−1,t0

)

+ ‖p‖
W

0,l/2
2 (∪D±t0−1,t0

)
+ ‖r‖

W
5/2+l,5/4+l/2
2 (Gt0−1,t0

)

+ ‖Dtr‖W 3/2+l,3/4+l/2
2 (Gt0−1,t0 )

≤ c
(
‖v‖Qt0−2,t0

+ ‖r‖Gt0−2,t0

)
,

where 2 < t0 ≤ T, D±t1,t2 = B± × (t1, t2), Qt1,t2 = Ω × (t1, t2), Gt1,t2 = SR0 ×
(t1, t2).

Proof. We fix t0 ∈ (2, T ) and multiply (2.13) by a cutoff function ζλ(t),

smooth, monotone, equal to zero for t ≤ t0−2+λ/2 and to one for t ≥ t0−2+λ,

where λ ∈ (0, 1], and such that for ζ̇λ(t) ≡ dζλ(t)/dt and ζ̈λ(t), the inequalities

sup
t∈R

∣∣ζ̇λ(t)
∣∣ ≤ cλ−1, sup

t∈R

∣∣ζ̈λ(t)
∣∣ ≤ cλ−2
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hold. Then, for vλ = vζλ, pλ = pζλ, rλ = rζλ, we obtain

(2.14)



Dtvλ − ν±∇2vλ +
1

ρ±
∇pλ = vζ̇λ, ∇ · vλ = 0 in B±, t > 0,

vλ(y, 0) = 0 in B±,

rλ(y, 0) = 0 on SR0 ,

[vλ]|SR0
= 0, [µ±Π0S(vλ)N ]

∣∣
SR0

= 0, vλ|Σ = 0,

[N · T(vλ, pλ)N ]
∣∣
SR0

− σB0rλ|SR0
= 0,∫

Ω

pλ(y, t) dy = 0,

Dtrλ −
(
vλ ·N −

N

|B+|
·
∫
B+

vλ(y′, t) dy′
)∣∣∣∣

SR0

= rζ̇λ(t).

By Theorem 2.1 applied to system (2.14), estimate (2.3) for vλ, pλ, rλ is valid

whence it follows that

(2.15) ‖v‖
W

2+l,1+l/2
2 (∪D±t1+λ,t0

)
+ ‖∇p‖

W
l,l/2
2 (∪D±t1+λ,t0

)
+ ‖p‖

W
0,l/2
2 (∪D±t1+λ,t0

)

+ ‖r‖
W

5/2+l,5/4+l/2
2 (Gt1+λ,t0

)
+ ‖Dtr‖W 3/2+l,3/4+l/2

2 (Gt1+λ,t0
)

≤ cλ−2
{
‖v‖

W
l,l/2
2 (∪D±

t1+λ/2,t0
)

+ ‖r‖
W

3/2+l,3/4+l/2
2 (Gt1+λ/2,t0

)

}
,

where t1 = t0 − 2.

Now, we apply the interpolation inequalities

‖v‖
W

l,l/2
2 (∪D±

t1+λ/2,t0
)
≤ κ2‖v‖

W
2+l,1+l/2
2 (∪D±

t1+λ/2,t0
)

+ cκ−l‖v‖Qt1+λ/2,t0
,

‖r‖
W

3/2+l,0
2 (Gt1+λ/2)

≤ κ2‖r‖
W

5/2+l,0
2 (Gt1+λ/2,t0

)
+ cκ−3−2l‖r‖Gt1+λ/2,t0

,

‖r‖
W

0,3/4+l/2
2 (Gt1+λ/2)

≤ κ2‖Dtr‖W 0,3/4+l/2
2 (Gt1+λ/2,t0

)
+ cκ−3/2−l‖r‖Gt1+λ/2,t0

,

which leads to

Ψ(λ) ≤ c1κ2λ−2Ψ(λ/2) + c2κ−mλ−2K,

here Ψ(λ) denotes the left-hand side of (2.15), K = ‖v‖Qt1,t0 + ‖r‖Gt1,t0 , m =

3 + 2l. Setting κ = δλ ≤ 1, we obtain

λm+2Ψ(λ) ≤ c1δ22m+2(λ/2)m+2Ψ(λ/2) + c2δ
−mK.

This implies

Ψ(λ) ≤ c3(δ)λ−m−2(K + 2−1K + 2−2K + . . .) ≤ c3λ
−m−2

1− 1/2
K ≤ 2c3λ

−m−2K

if c1δ
22m+2 < 1/2. For λ = 1 this inequality is equivalent to (2.13). �
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Proof of Theorem 2.3. By Theorem 2.1 and Proposition 2.5, one has

e2β(T−j)
{
‖v‖2

W
2+l,1+l/2
2 (∪D±T−j−1,T−j)

(2.16)

+ ‖∇p‖2
W

l,l/2
2 (∪D±T−j−1,T−j)

+ ‖p‖2
W

0,l/2
2 (∪D±T−j−1,T−j)

+ ‖r‖2
W

5/2+l,5/4+l/2
2 (GT−j−1,T−j)

+ ‖Dtr‖2W 3/2+l,3/4+l/2
2 (GT−j−1,T−j)

}
≤ ce2β(T−j)

{
‖v‖2QT−j−2,T−j

+ ‖r‖2GT−j−2,T−j

}
,

for j = 0, . . . , [T ] − 2. Taking the sum of (2.16) from j = 0 to j = [T ] − 2, we

obtain the inequality that implies

(2.17) Y 2
T−[T ]+1,T

(
eβtv, eβtp, eβtr

)
≤ c
∫ T

T−[T ]

e2βt
(
‖v( · , t)‖2Ω + ‖r( · , t)‖2SR0

)
dt,

where

Yt1,t2(u, q, r) = ‖u‖
W

2+l,1+l/2
2 (∪D±t1,t2 )

(2.18)

+ ‖∇q‖
W

l,l/2
2 (∪D±t1,t2 )

+ ‖q‖
W

0,l/2
2 (∪D±t1,t2 )

+ ‖r‖
W

5/2+l,5/4+l/2
2 (Gt1,t2 )

+ ‖Dtr‖W 3/2+l,3/4+l/2
2 (Gt1,t2 )

.

By adding the estimate

Y 2
0,2(v, p, r) ≤ c

{
‖v0‖2W 1+l

2 (∪B±)
+ ‖r0‖2W 2+l

2 (SR0
)

}
to (2.17), choosing β < β1 and making use of (2.10), we arrive at an inequality

equivalent to (2.9). �

3. Nonlinear problem

We start with the construction of a solution to problem (1.5) in a finite time

interval (0, T0) with T0 to be fixed later on.

Theorem 3.1 (Local Solvability of the Nonlinear Problem). Let T0 <∞ and

let compatibility conditions (1.9) of Theorem 1.2 be satisfied. Then there exists

a value ε(T0)� 1 such that problem (1.5) with small data:

(3.1)
‖u0‖W 1+l

2 (∪B±) + ‖r0‖W 2+l
2 (SR0

) + ‖f‖
W

l,l/2
2 (QT0 )

+ ‖∇f‖QT0 ≤ ε,

‖∇f‖
W

l,l/2
2 (QT0 )

≤ ε,

has a unique solution (u, q, r) on the interval (0, T0) and the inequalities

Y0,T0
(u, q, r) ≤ c

{
N(u0, r0) + ‖f‖

W
l,l/2
2 (QT0 )

}
,(3.2)

N(u( · , T0), r( · , T0)) ≤ θN(u0, r0) + c‖f‖
W

l,l/2
2 (QT0 )

,(3.3)

hold, where θ < 1, Y0,T0
is calculated by (2.18) and

N(w, ρ) = ‖w‖W 1+l
2 (∪B±) + ‖ρ‖W 2+l

2 (SR0
).
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The proof of Theorem 3.1 relies on Theorem 2.1 and on the following esti-

mates of the nonlinear terms.

Proposition 3.2. If

(3.4) ‖r( · , t)‖
W

3/2+l
2 (SR0

)
+ ‖Dtr ( · , t)‖

W
1/2+l
2 (SR0

)
+ ‖u( · , t)‖Ω ≤ δ, t ≤ T,

where δ is a certain small positive number, then nonlinear terms (1.6) and

f̂(y, t) ≡ f(er,h(y, t), t) are subject to the inequalities

Z(u, q, r) ≡‖l1(u, r)‖
W

l,l/2
2 (∪D±T )

+ ‖l2(u, r)‖W 1+l,0
2 (∪D±T )(3.5)

+ ‖L(u, r)‖
W

0,1+l/2
2 (QT )

+ ‖l3(u, r)‖
W

1/2+l,1/4+l/2
2 (GT )

+ |||l4(u, r)|||(1/2+l,l2)
GT

+ |||l5(r)|||(1/2+l,l/2)
GT

+ ‖l6(u, r)‖
W

3/2+l,3/4+l/2
2 (GT )

≤ cY 2(u, q, r),

‖f̂‖
W

l,l/2
2 (QT )

≤ c
{
‖f‖

W
l,l/2
2 (QT )

(3.6)

+ ‖∇f‖QT sup
t<T

(
‖Dtr( · , t)‖W l+1/2

2 (SR0
)

+ ‖u( · , t)‖Ω
)}
.

If (u, r) and (u′, r′) satisfy (3.4), then

(3.7)
Z(u− u′, q − q′, r − r′) ≤ cδY (u− u′, q − q′, r − r′),

‖f̂ − f̂
′
‖
W

l,l/2
2 (QT )

≤ cδY (u− u′, q − q′, r − r′),

where

f̂
′

= f(er′,h′(y, t), t), h′ = |B+|−1

∫ t

0

∫
B+

u′(y, τ)L′(y, τ) dy dτ

and L′ is the Jacobian of the transformation er′,h′ .

Proof. Inequality (3.5) is established as in [14]. The inequality

‖f̂‖QT = ‖f(er,h(y, t), t)‖QT ≤ c‖f‖QT

is obtained by the passage to the Eulerian coordinates x = er,h(y, t) under the

integral sign and taking account of the boundedness of the Jacobian L which

follows from (3.4). The estimates∫ T

0

∫
Ω

∫
Ω

|f(er,h(y, t), t)− f(er,h(z, t), t)|2

|y − z|3+2l
dz dy dt

≤ c
∫ T

0

∫
Ω

∫
Ω

|f(x, t)− f(x′, t)|2

|x− x′|3+2l
dx′ dx dt,∫ T

0

dt

∫ t

0

dτ

∫
Ω

|f(er,h(y, t), t)− f(er,h(y, t), t− τ)|2

τ1+l
dy

≤ c
∫ T

0

∫ t

0

∫
Ω

|f(x, t)− f(x, t− τ)|2

τ1+l
dx dτ dt
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are proved in the same manner (for small δ). Finally, assuming that the function

f is extended outside Ω with preservation of class and making use of the relation

f(er,h(y, t), t
)
− f

(
er,h(y, t− τ), t)

=

∫ 1

0

∇f
(
er,h(y, t)− λ

∫ τ

0

(
N∗(y)Dtr∗(y, t− τ ′) + ḣ(t− τ ′)χ(y)

)
dτ ′, t

)
dλ

×
∫ τ

0

(
N∗(y)Dtr∗(y, t− τ ′) + ḣ(t− τ ′)χ(y)

)
dτ ′,

we obtain, in view of (1.3),

∫ T

0

dt

∫ t

0

dτ

τ1+l

∫
Ω

∣∣f(er,h(y, t), t)− f(er,h(y, t− τ), t)
∣∣2 dy

≤ c ‖∇f‖2QT
(

sup
QT

|Dtr∗(y, t)|+ sup
t<T
‖u( · , t)‖Ω

)2

≤ c‖∇f‖2QT
{

sup
t<T
‖Dtr( · , t)‖2W l+1/2

2 (SR0
)

+ sup
t<T
‖u( · , t)‖2Ω

}
.

Inequality (3.7) is proved by applying the above estimates to

f(er,h, t)− f(er′,h′ , t) =

∫ 1

0

∇f(er′,h′ + λ(N∗(y, t)(r − r′)

+(h − h′)χ(y)), t) dλ(N∗(y, t)(r − r′) + (h− h′)χ(y)). �

Proof of Theorem 3.1. We go back to problem (1.5). The solution is

sought in the form

u = u′ + u′′, q = q′ + q′′, r = r′ + r′′,

where (u′, q′, r′) and (u′′, q′′, r′′) are solutions to the problems

(3.8)



Dtu′ − ν±∇2u′ +
1

ρ±
∇q′ = 0, ∇ · u′ = 0 in B±, t > 0,

u′(y, 0) = u′0(y) in B±,

r′(y, 0) = r′0(y) on SR0 ,

[u′]|SR0
= 0, [µ±Π0S(u′)N ]

∣∣
SR0

= 0, u′|Σ = 0,

[−q′ + µ±N · S(u′)N ]
∣∣
SR0

− σB0r
′ = 0,

Dtr′ −
(
u′ − 1

|B+|

∫
B+

u′ dy

)
·N = 0 on SR0

,∫
Ω

q′(y, t) dy = 0,
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(3.9)



Dtu′′ − ν±∇2u′′ +
1

ρ±
∇q′′ = l1(u, q, r) + f̂(y, t),

∇ · u′′ = l2(u, r) in B±, t > 0,∫
Ω

q′′(y, t) dy = 0,

u′′(y, 0) = u′′0(y) in B±,

r′′(y, 0) = r′′0 (y) on SR0
,

[u′′]
∣∣
SR0

= 0, [µ±Π0S(u′′)N ]
∣∣
SR0

= l3(u, r), u′′|Σ = 0,

[−q′′ + µ±N · S(u′′)N ]
∣∣
SR0

− σB0r
′′ = l4(u, r) + σl5(r),

Dtr′′ −
(
u′′ − 1

|B+|

∫
B+

u′′ dy

)
·N = l6(u, r) on SR0 ,

here the nonlinear terms li are given by (1.6).

The couples of initial data (u′0, r
′
0) and (u′′0 , r

′′
0 ) are defined as follows: (u′′0 , r

′′
0 )

should satisfy the relations∫
SR0

r′′0 (y) dS =

∫
SR0

(
r0 −

ϕ(y, r0)

3R2
0

)
dS,∫

SR0

r′′0 (y)yj dS =

∫
SR0

(
r0yj −

ψj(y, r0)

4R3
0

)
dS, j = 1, 2, 3,

[u′′0 ]|SR0
= 0, [µ±Π0S(u′′0)N ]

∣∣
SR0

= l3(u0, r0),

∇ · u′′0 = l2(u0, r0) in B+ ∪B−, u′′0 = 0 on Σ,

where ϕ(y, r) = (R0 + r)3 − R3
0, ψj(y, r) = yj((R0 + r)4 − R4

0) (see (1.8)), and

the inequality

(3.10) ‖u′′0‖W 1+l
2 (∪B±) +‖r′′0‖W 2+l

2 (SR0
) ≤ cε

{
‖u0‖W 1+l

2 (∪B±) +‖r0‖W 2+l
2 (SR0

)

}
.

The functions (u′′0 , r
′′
0 ) can be defined in the following way (cf. [21]):

r′′0 (y) =
IN(y) · y

3|B+|
+

I ·N(y)

|B+|
,

where

I = −
∫
SR0

3r2
0R0 + r3

0

3R2
0

dS,

Ij = −
∫
SR0

yj(6r
2
0R

2
0 + 4r3

0R0 + r4
0)

4R3
0

dS, j = 1, 2, 3.

The vector field u′′0 can be taken in the form u′′0 = u1 + u2, where

∇·u1(y) = l2(u0, r0) = ∇·(I−L̂)u0 = (I−L̂T )∇·u0, [u1]|SR0
= 0, u1|Σ = 0,
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and u−2 = 0, u+
2 = rot Φ(y), where

Φ|SR0
=
∂Φ

∂N

∣∣∣∣
SR0

= 0,

µ+ ∂2Φ

∂N2

∣∣∣∣
SR0

=
(
l3(u0, r0)− [µ±Π0S(u1)N ]

∣∣
SR0

)
×N

∣∣
SR0

.

Since [u0] = 0 and [L] = 0 on SR0 , the sufficient compatibility condition [N ·
(I− L̂)u0]|SR0

= 0 is fulfilled, so it can be shown that u′′0 satisfies (3.10).

The functions u′0 = u0 − u′′0 , r′0 = r0 − r′′0 satisfy orthogonality conditions

(2.6) and compatibility ones (2.8). Consequently, by Theorem 2.3, problem (3.8)

is solvable on an infinite time interval and

(3.11) ‖eβtu′‖
W

2+l,1+l/2
2 (∪D±T )

+ ‖eβt∇q′‖
W

l,l/2
2 (∪D±T )

+ ‖eβtq′‖
W

0,l/2
2 (∪D±T )

+ ‖eβtr′‖
W

5/2+l,5/4+l/2
2 (GT )

+ ‖eβtDtr′‖W 3/2+l,3/4+l/2
2 (GT )

≤ c0
{
‖u′0‖W 1+l

2 (∪B±) + ‖r′0‖W 2+l
2 (SR0

)

}
for all T ≤ ∞ which implies (see Remark 2.2)

(3.12) ‖u′( · , T )‖2
W 1+l

2 (∪B±)
+ ‖r′( · , T )‖2

W 2+l
2 (SR0

)

≤ c1e−2βT
{
‖u′0‖2W 1+l

2 (∪B±)
+ ‖r′0‖2W 2+l

2 (SR0
)

}
.

In order to prove (3.3), we fix T = T0 such that c1e
−βT0 ≤ θ/2 < 1/2 (one

can put θ = e−bT0 with b < β and require T0 to be such that 2c1 < e(β−b)T0).

As for problem (3.9), it is solvable in the case of sufficiently small ε(T0)

in (3.1). Indeed, a solution can be constructed by successive approximations

according to the scheme

(3.13)



Dtu′′m+1 − ν±∇2u′′m+1 +
1

ρ±
∇q′′m+1 = l1(um, qm, rm) + f̂m(y, t),

∇ · u′′m+1 = l2(um, rm) in B±, t > 0,∫
Ω

q′′m+1(y, t) dy = 0,

u′′m+1(y, 0) = u′′0(y) in B±,

r′′m+1(y, 0) = r′′0 (y) on SR0
,

[u′′m+1]
∣∣
SR0

= 0,

[µ±Π0S(u′′m+1)N ]
∣∣
SR0

= l3(um, rm),u′′m+1

∣∣
Σ

= 0,

[−q′′m+1 + µ±N · S(u′′m+1)N ]
∣∣
SR0

− σB0r
′′
m+1

= l4(um, rm) + σl5(rm),

Dtr′′m+1−
(
u′′m+1 −

1

|B+|

∫
B+

u′′m+1 dy

)
·N = l6(um, rm) on SR0

,
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where m = 1, 2, . . ., um = u′ + u′′m, qm = q′ + q′′m, rm = r′ + r′′m, f̂m =

f
(
erm,hm(y, t), t

)
, hm = |B+|−1

∫ t
0

∫
B+ um(y, τ)Lm(y, τ) dy dτ , Lm = L|u=um .

Form = 0, we set q′′0 = 0, while let u′′0(y, t) and r′′0 (y, t) be functions satisfying the

initial conditions u′′0(y, 0) = u′′0(y), r′′0 (y, 0) = r′′0 (y), Dtr′′0 (y, 0) = 0
(
u′′0(y), r′′0 (y)

are constructed above
)

and the inequalities

‖u′′0‖W 2+l,1+l/2
2 (∪D±T0 )

+ ‖r′′0‖W 5/2+l,5/4+l/2
2 (GT0 )

(3.14)

+ ‖Dtr′′0‖W 3/2+l,3/4+l/2
2 (GT0 )

≤ c
{
‖u′′0‖W 1+l

2 (∪B±) + ‖r′′0‖W 2+l
2 (SR0

)

}
≤ c1ε

{
‖u0‖W 1+l

2 (∪B±) + ‖r0‖W 2+l
2 (SR0

)

}
.

Such u′′0 , r′′0 exist in view of inverse trace theorem and (3.10).

If u′′m, q′′m, r′′m are known, then u′′m+1, q′′m+1, r′′m+1 can be found by Theo-

rem 2.1 as a solution of (3.13). In view of (2.3), (3.5) and (3.14),

(3.15) Y ′′m+1 ≡ Y (u′′m+1, q
′′
m+1, r

′′
m+1) ≤ c(T0)

{
‖f̂m‖W l,l/2

2 (QT0 )
+ εN0 + Y

′′2
m

}
,

where

N0 ≡‖u0‖W 1+l
2 (∪B±) + ‖r0‖W 2+l

2 (SR0
),

Y (u, q, r) ≡‖u‖
W

2+l,1+l/2
2 (∪D±T0 )

+ ‖∇q‖
W

l,l/2
2 (∪D±T0 )

+ ‖q‖
W

0,l/2
2 (∪D±T0 )

+ ‖r‖
W

5/2+l,5/4+l/2
2 (GT0 )

+ ‖Dtr‖W 3/2+l,3/4+l/2
2 (GT0 )

,

f̂m ≡f
(
erm,hm(y, t), t

)
,

erm,hm(y, t) ≡ y + r∗m(y, t)N∗(y) + χ(y)hm(t).

We also set

Ym ≡ Y (um, qm, rm), Y ′ ≡ Y (u′, q′, r′),

N (m)(T0) ≡ ‖um( · , T0)‖W 1+l
2 (∪B±) + ‖rm( · , T0)‖W 2+l

2 (SR0
), m ≥ 1.

We show by induction that (3.15) yields an estimate for the norm Y ′′m (and

Ym) uniform on m.

Thus, assume that um, rm satisfy (3.4) with δ so small that by (3.6), (3.11)

‖f̂m‖W l,l/2
2 (QT0 )

≤ cf‖f‖W l,l/2
2 (QT0 )

+ c′f‖∇f‖QT0Y (um, 0, rm)

≤ cf‖f‖W l,l/2
2 (QT0 )

+ c′f‖∇f‖QT0
(
c0N0 + Y ′′m

)
≤ cf‖f‖W l,l/2

2 (QT0 )
+ c2εN0 + c′fεY

′′
m.

Moreover, let

(3.16) Y ′′m ≤ 2c(T0)
(
cf‖f‖W l,l/2

2 (QT0 )
+ (c2 + 1)εN0

)
.
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Then, on one hand, by (3.11),

(3.17) Ym ≤ Y ′ + Y ′′m ≤ cN0 + 2c(T0)
(
cf‖f‖W l,l/2

2 (QT0 )
+ (c2 + 1)εN0

)
≤ cε

which can guarantee the smallness of δ, and on the other hand, by (3.15), (3.16),

Y ′′m+1 ≤ c(T0)
{
cf‖f‖W l,l/2

2 (QT0 )
+ (c2 + 1)εN0 + (c′fε+ Y

′′

m)Y
′′

m

}
≤ 2c(T0)

{
cf‖f‖W l,l/2

2 (QT0 )
+ (c2 + 1)εN0

}
,

provided that

2c(T0)c′fε+ 4c2(T0)
{
cf‖f‖W l,l/2

2 (QT0 )
+ (c2 + 1)εN0

}
≤ 1.

By virtue of (3.14), inequality (3.16) holds for m = 0, hence, it is satisfied

for all m. In addition, from (3.12) and (3.16) it follows that

(3.18) N (m)(T0) ≤ c
(
e−βT0 + c′(T0)ε

)
N0 + c′′(T0)‖f‖

W
l,l/2
2 (QT0 )

≤ θN0 + c′′‖f‖
W

l,l/2
2 (QT0 )

if c
(
e−βT0 + c′(T0)ε

)
N0 ≤ θ. The convergence of (u′′m, q

′′
m, r

′′
m) to a solution

of (3.9) follows from inequalities (2.3) and (3.7). Letting m → ∞ in (3.17),

(3.18), we arrive at (3.2) and (3.3). �

Now we can complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We extend a solution of (1.5) guaranteed by

Theorem 3.1 into the interval t > 0 step by step: first to the interval (T0, 2T0),

then to (2T0, 3T0) and so forth. Let us suppose the solution is already found for

t < kT0. Then it can be defined for t ∈ (kT0, (k + 1)T0) as a solution to the

problem with the initial conditions

u(y, kT0) = u(y, kT0 − 0) ≡ uk(y), r(y, kT0) = r(y, kT0 − 0) ≡ rk(y).

We write transformation (1.4) for t > kT0 as

(3.19) x = y + h(kT0)χ(y) + k(t, k)χ(y) + N∗(y)r∗(y, t),

where h(kT0) is already found and k(t, k) = h(t)−h(kT0). The elements of the

Jacobi matrix of this transformation are given by

Lij =

{
δij + (hi(kT0) + ki(t, k))

∂χ(y)

∂yj
+
∂N∗i r

∗(y)

∂yj

}3

i,j=1

.

Proposition 3.2 can be reformulated as follows.

Proposition 3.3. Let k ∈ N. If inequality (3.4) holds for t > kT0 and

|h(kT0)| ≤ δ, then

Zk(u, q, r) ≤ c{δYk(u, q, r) + Y 2
k (u, q, r)},
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where Zk and Yk are norms (3.5) and (2.18), respectively, computed for t ∈
(kT0, (k + 1)T0). Moreover, f̂ satisfies inequalities (3.6) and (3.7) on this time

interval as well.

Let us consider the case k = 1. From (3.2) and (3.3) it follows that

N1 ≡ N(u1, r1) ≤ Cε,

hence by replacing ε with C−1ε we see that this problem is solvable in the time

interval (T0, 2T0) and the estimates

Y1(u, q, r) ≤ c
{
N1 + ‖f‖

W
l,l/2
2 (QT0,2T0 )

}
,

N2 ≤ θN1 + c‖f‖
W

l,l/2
2 (QT0,2T0 )

≤ Cε,

are satisfied, where Nk = N(uk, rk). The constants in these estimates need not

coincide with the constants in (3.2), (3.3), because of the presence of the extra

term with h(T0) in (3.19), but, as will be shown below, the differences between

these constants are of order δ for all k > 0. If the solution is found for t < kT0

and the inequalities

(3.20)

N2
j ≤ θ2N2

j−1 + c‖f‖2
W
l,l/2
2 (Q(j−1)T0,jT0

)
, θ < 1,

Y 2
j ≤ c

{
N2
j−1 + ‖f‖2

W
l,l/2
2 (Q(j−1)T0,jT0

)

}
, j = 1, . . . , k − 1,

are proved, then

(3.21) N2
j ≤ . . . ≤ θ2jN2

0 + c

j−1∑
i=0

θ2(j−1−i)‖f‖2
W
l,l/2
2 (QiT0,(i+1)T0

)
≤ cθ2(j−1)ε2

with the constants c independent of j (we have used inequalities (1.11) for f).

Since θj → 0 as j → ∞, the right-hand side of (3.21) is less than ε2 for j ≥ j0,

and the replacement of ε with C−1ε can be made only a finite number of times.

The estimate of h(jT0) can be obtained at every step. Let θ1 > θ (θ1 = e−aT0 ,

0 < a < b). We take the sum of (3.20) multiplied by θ−2j
1 . This leads to

k∑
j=0

θ−2j
1 N2

j ≤ N2
0 +

θ2

θ2
1

k∑
j=1

θ−2j+2
1 N2

j−1 + c

k∑
j=1

θ−2j
1 ‖f‖2

W
l,l/2
2 (Q(j−1)T0,jT0

)

≤ θ2
1

θ2
1 − θ2

N2
0 +

cθ2
1

θ2
1 − θ2

k∑
j=1

θ−2j
1 ‖f‖2

W
l,l/2
2 (Q(j−1)T0,jT0

)
.

Hence, by embedding theorem,

|h(kT0)| = 3

4πR3
0

∣∣∣∣ ∫ kT0

0

∫
Ω+
t

v( · , t) dx dt
∣∣∣∣(3.22)

≤ c
√
T0

( k−1∑
j=0

θ−2j
1

∫ (j+1)T0

jT0

‖u( · , t)‖2
W l+1

2 (B+)
dt

)1/2
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≤ c
(
N2

0 +

k−1∑
j=0

θ−2j
1 ‖f‖2

W
l,l/2
2 (QjT0,(j+1)T0

)

)1/2

≤ cε

with the constants c independent of k.

Finally, by passing to the limit as k →∞ in

k∑
j=0

θ−2j
1 Y 2

j (u, q, r) ≤ c
{
N2

0 +

k∑
j=0

θ−2j
1 ‖f‖2

W
l,l/2
2 (QjT0,(j+1)T0

)

}
,

we arrive at an inequality equivalent to (1.12). In addition, the passage to the

limit in (3.22) allows us to estimate the limit position of inner drop barycenter

h(∞):

(3.23) |h(∞)| ≤ c2
{
‖eatf‖

W
l,l/2
2 (Q∞)

+ ‖u0‖W 1+l
2 (∪B±) + ‖r0‖W 2+l

2 (SR0
)

}
≤ 2c2ε.

From (1.12) and embedding theorems, it follows that

max
G∞
|r| ≤ c1

{
‖eatf‖

W
l,l/2
2 (Q∞)

+ ‖u0‖W 1+l
2 (∪B±) + ‖r0‖W 2+l

2 (SR0
)

}
≤ 2c1ε.

It is clear that if 2(c1 + c2)ε is less than the initial distance between the surfaces

Γt and Σ, the intersection of these surfaces will be never possible. �

Let us show that one can construct a solution to problem (1.5) under less

restrictive assumptions on f . We introduce the norms

(3.24)

|||u, q, r||| =
∞∑
j=0

Yj(u, q, r),

|||f ||| =
∞∑
j=0

‖f‖
W
l,l/2
2 (QjT0,(j+1)T0

)
,

|||f |||η =

∞∑
j=0

η−1
j ‖f‖W l,l/2

2 (QjT0,(j+1)T0
)
,

where {ηj}∞0 ∈ (0, 1), ηj+1 ≤ ηj and ηj → 0 as j →∞.

Theorem 3.4. Let u0 ∈W l+1
2 (∪B±), r0 ∈W l+2

2 (SR0
) and let f have finite

norms (3.24). Assume that compatibility conditions (1.9), as well as smallness

conditions (1.10) and the inequalities

sup
τ>0
‖Di

xf‖Qτ,τ+T0 ≤ ε, |i| = 1, 2, |||f |||+ |||f |||η ≤ ε

are satisfied. Then there exists a solution of (1.5) defined for t > 0 and the

estimate

(3.25) |||u, q, r||| ≤ c
{
‖u0‖W l+1

2 (∪B±) + ‖r0‖W l+2
2 (SR0

) + |||f |||
}

holds.
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Proof. We follow the arguments in the proof of Theorem 1.1 presented

above. From the inequalities

Nj ≤ θNj−1 + c‖f‖
W
l,l/2
2 (Q(j−1)T0,jT0

)
,

Yj ≤ c
(
Nj−1 + c‖f‖

W
l,l/2
2 (QjT0,(j+1)T0

)

)
, j ∈ N,

equivalent to (3.20), it follows that

Nj ≤ θjN0 + c

j−1∑
i=0

θj−1−i‖f‖
W
l,l/2
2 (QiT0,(i+1)T0

)
≤ θjN0 + cκj |||f |||η,

where

κj = max
i≤(j−1)

θj−1−iηi ≤ max
(
θ[(j−1)/2], η[(j−1)/2]

)
→ 0 as j →∞,

[k] means the integral part of k. Hence the solution of (1.5) is extendable to the

whole half-axis t > 0 (if h(kT0) is small); moreover, we have

k∑
j=1

Nj ≤
1

1− θ

{
N0 + c

k∑
i=0

‖f‖
W
l,l/2
2 (QiT0,(i+1)T0

)

}
,

k∑
j=0

Yj(u, q, r) ≤ c
{
N0 +

k−1∑
i=0

‖f‖
W
l,l/2
2 (QiT0,(i+1)T0

)

}
.

Using this inequality we estimate h(kT0): |h(kT0)| ≤ c ε and, letting k →∞, we

arrive at (3.25). �
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