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Dedicated to the memory of Professor Marek Burnat

ABSTRACT. The paper is devoted to the problem of non-stationary motion
of two viscous incompressible fluids separated by a free surface and con-
tained in a bounded vessel. It is assumed that the fluids are subject to
mass forces and capillary forces at the interface. We prove the stability of
a rest state under the assumption that initial velocities are small, a free
interface is close to a sphere at an initial instant of time, and mass forces
decay as t — oo.

1. Introduction

The paper deals with unsteady motion of a two-phase fluid in a container.
Both phases are assumed to be viscous and incompressible; they are immiscible
and separated by an unknown closed interface on which the surface tension is
taken into account. The motion of a drop in a liquid medium is governed by
the Navier—Stokes system including mass forces, initial and boundary conditions
and, in addition, by the initial configuration of the drop.
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The first results concerning non-stationary two fluids motion with free inter-
face were obtained in the 90s of the last century. In the case of the whole space,
existence and uniqueness theorem for the problem with and without capillary
forces in Lo-setting was proved in a finite time interval whose magnitude was
determined by the norms of the data [2], [4], [6]. This result was obtained in
several steps by considering model linear problems [3], [8]. Giga and Takahashi
[11], [24] demonstrated the existence of global weak solutions for the Stokes and
Navier—Stokes equations governing the motion of two immiscible fluids without
including surface tension into consideration.

During the last years, researchers have been studying the problem on a two-
phase liquid flow in the presence of the surface tension in different functional
spaces and indicating various aspects of the problem. In particular, H. Abels [1]
estimated the Hausdorff measure of the interface leaving open the existence of
generalized solutions. Next, Shibata and Shimizu investigated the problem by
operator methods in the anisotropic Sobolev spaces W;’]} (1), 2<n < q< oo,
2 < p < oo, OF C R™. They proved the solvability of the model diffraction
problems for the Stokes system [16]. The same result for nonlinear interface
problem was obtained in [17] under the assumption that the initial interface was
given by the equation z,, = a(2’), ' € R"~1. Much attention has been paid to
the problem of evolution of two fluids in a container, specifically, to the problem
of the stability of a rest state (velocity vector field v = 0, the pressure p is
constant in each fluid, the interface is a sphere with arbitrary center bounded
away from the walls of the container). It was shown independently by the authors
in [9] and in the series of papers of J. Priiss with collaborators (in particular,
in [15], [12]), that the state is exponentially stable in the following sense: for
arbitrary initial data close to an equilibrium, the problem has a unique solution
defined for ¢t > 0 that tends exponentially to a rest state which is different, in
general, from the initial one. The proof was based on coercive (i.e. maximal
regularity) estimates for the solution of a linearized problem. In all of the above
mentioned papers, the interface problem was reduced to a non-linear system in
two fixed domains by using the Hanzawa transformation but the arguments were
quite different. It should be noticed that in [9] the problem was studied in the
anisotropic Holder spaces, while in [15], [12] the basic space was Wg*l, p>n+3.
In addition, the existence of a global solution to the problem was also obtained
in the Sobolev spaces for p > n = 3 in [23].

In [7], the global solvability of the problem was proved in the case of non-zero
mass forces exponentially decaying as t — co. We mention also papers [5], [6],
where the case of the zero surface tension was considered.

In the present paper, the problem is treated in the Sobolev—Slobodetskil
spaces W22Jrl’1+l/27 [ € (1/2,1), in the three-dimensional case. We concentrate
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on the proof of the stability of a rest state and construct a solution assuming that
the initial data of the problem are close to this state, i.e. the velocities and mass
forces are small, and the interface is close to the sphere Sg, of the radius Ry such
that the ball bounded by this sphere has the same volume as the inner fluid. We
place the center of this ball to the origin which coincides with the barycenter of
the drop at an initial instant, the interface being defined as a normal perturbation
of Sg,(0). We find it reasonable to consider also the unknown interface at the
time instant ¢ > 0 as a normal perturbation of the sphere Sg,(h) of the same
radius Ry but with the center placed at the barycenter h(t) of an inner domain.
Therefore, as in our previous papers [9], [10], we introduce a term with the vector
h(t) into the standard Hanzawa transformation of the two-phase domain with
unknown interface into a domain with the interface Sg,(0). In our opinion, this
term permits to take interface evolution into account in a more precise way. Next,
we linearize the transformed problem. In Section 2, we study a linear problem
in two domains separated by Sg, and prove maximal regularity estimates for a
solution of the problem first on an arbitrary finite time interval in the standard
spaces and then, under some additional assumptions, on the infinite interval
t > 0 in the spaces with the exponential weight e”*, 8 > 0. In Section 3, on the
basis of these estimates and of the estimates of nonlinear terms, we construct
a solution at first for ¢ € (0,7p) with an appropriate Ty > 1, then we extend
this solution with respect to t into the interval (Tp,27,) and so forth step by
step for any ¢t > 0. We show that the velocities and the pressure gradient decay
exponentially to zero as ¢ — oo, and I'; tends to a sphere of radius Ry centered
at h(oo) close to Sg,(0) but, in general, different from Sg,(0).

Moreover, we admit here a more general decay of the vector field of mass
forces. The proofs are constructed in the same manner as in [20], [9], [23] but
the finial estimate of a solution (see Theorem 1.1) is somewhat different from
those in the preceding papers. As before, the idea of constructing a function
of generalized energy [13], [19] is used for obtaining the exponential estimate
instead of an analysis of the spectrum of the linear problem. It is worth noting
that our technique can be generalized to the case of a multi-phase fluid and that
of a dimension n > 3.

We pass to the statement of the problem.

Let two viscous incompressible immiscible fluids be contained in a bounded
vessel Q C R? and separated by a variable interface I'; that is bounded away from
the wall of the container ¥ = 0€Q). It is assumed that I'; is the boundary of the
domain Q" filled with the fluid with the density p* and the dynamical viscosity
T that is surrounded by the other fluid with the density p~ and the viscosity
1~ occupying the domain Q, = Q\ ﬁ It is necessary to find I'y, as well as
the velocity vector fields v(z,t) and the pressure functions p(z,t), * € Q; UQ,
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of both fluids satisfying the interface problem for the Navier-Stokes equations

1
Dtv+(v-V)v—uiV2'u+p—in:f, V-v=0 ithi, t >0,

qy @00 B bl = e - o) =0
zeQt TeQ

2
(T (o, p)rlr, = o<H+ R)n, oo =0, Va=uv-m,
0

where D; = 9/0t, V = (0/0z1,0/0x2,0/0x3), vt = u* /p* is the step function
of the kinematic viscosity, vg is the initial distribution of the velocity, f is the
vector field of mass forces given in Q x (0,00), T(v,p) = —p + p=S(v) is the
stress tensor, S(v) = (Vo) + (Vv)T is the doubled rate-of-strain tensor, H is
twice the mean curvature of I'y(H < 0 at the points where I'; is convex toward
Q;), 0 > 0 is the coefficient of surface tension, n(z,t) is the normal to I',
exterior with respect to €7, [v]|r, is the jump of v across Ty, V;, is the velocity
of the evolution of T'; in the direction n, Ry = (3|Q7|/47)Y/3, |Qf| = mes Q.
We suppose that a Cartesian coordinate system {z} is introduced in R3. The
centered dot denotes the Cartesian scalar product.

Summation is implied over repeated indices from 1 to 3 if they are denoted
by Latin letters. We mark the vectors and the vector spaces by boldface letters.

It is assumed that the surface I'g is close to the sphere Sg, of radius Ry the
center of which coincides with the center of gravity of Qar . Without restriction
of generality, we suppose that it is placed at the origin. Then I'y can be viewed
as a normal perturbation of Sg,, i.e.

To={zcR®|z=y+7r(y)N¥)}, yESr,,

where N(y) = y/|y|, v € Sgr,, and 7o is a given small function. We will use
a similar representation formula for the unknown surface I'y, ¢t > O:

Iy={zeR®|z=y+h(t)+r(y,t)N(y)}

where 7(y,t) is an unknown function on Sg,. The coordinates of the barycenter
of Q) are given by

1 I
(1.2) hi(t) = — x;dx = —/ / vi(x,7)dxdr, 1=1,2,3.
12| Jot Q1 Jo Jot

We extend IV in R?® by the formula N*(y) = w(y)y/|y|, where w(y) is
a smooth function equal to 1 for |y| > 2Ry/3 and to zero for |y| < Ry/3. For r,
we introduce the extension 7*(y,t) = Er(y,t)®(y), where ®(y) is a smooth cut-
off function equal to 1 in the neighbourhood of Sg, and zero near ¥, while £ is
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a fixed extension operator from Sg, into R®. We also require that
or*
ON

:0’

Sk

HT*HWZl'Jrl/?(R?,) S CHT||W21’(SRO)7 ll € (072 + l]a

and r*(y,t) = 0 for Hy| - R0’ > dy, in particular, for y close to X, dy is a small
positive number (WJ* is a Sobolev—Slobodetskil space the definition of which
will be given below). It follows that

(13) ||Dtr*||W21/+1/2(]R3) < CHDtr”WQN(SRO)’ U e (0,24—”
We define the modified Hanzawa transformation

(1.4) r=y+r"(y,t)N"(y) + x(y)h(t) = e n(y, 1),

where x(y) is a smooth cutoff function, equal to one for ||y| — Ro| < do/2
and to zero for ||y| — Ro| > do. If 7 and h(t) are sufficiently small and dq is
chosen in a proper way, then this mapping is invertible and it establishes one-
to-one correspondences between the ball BY = {|y| < Ry} and Q;, Sg, and T,
B~ =Q\ Bt and Q; (this is obvious for + = 0 when h(0) = 0, and it remains
true for small h(t)).

We denote by L the Jacobi matrix of transformation (1.4), and we set L =
det L, L=_LL Clearly,

O(r*(y, t)N} 3
(v NI () ha() 6X(y)}
8yj 8yj
For y located on Sg,, we have Vx = 0 and
A(r(y,t)Ni(y)) }3
Ay,

L(r,h) = {5;? +

i,7=1

L =L(r,0) = {5;’- -

ij=1
Mapping (1.4) converts (1.1) into
Dyu — vEV2u — (L~ HDyr* N* + xh) - V)u

+HL - Vut+ LVg=F, V-u=0 inB* t>0,

u(y,0) = uo(y) in B*,
T(ya O) = TO(y) N on SRU,
(1.5) [UHSRO =0, [MiHS(U)nHSRO =0, ulg=0,

[—q+ Mi" . g(u)n]’SRoz a(H(eT,o(y,t), t) + 13())’
/QQ(yvt) dy = 0,

1
Dyr — (u_|B+| B+uL(r,0)dy> -mzo on Sg,,

where
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’li = v(eT7h3 t)? q = p(er,h, t)7
e V =LV is the transformed gradient V, (“I” means transposition),
S(u) = Vu + (Vu)T is the transformed doubled rate-of-strain tensor,

~

f(yvt) = f(er,h(yvt)a t),
® uo(y) = volery,0(y)),
e llg=g-—n(n-g)

The equation for r on Sg, arises from the condition V;, = v-n on the interface
in view of (1.4) and (1.2), since V,, = Dy -n = Dyr(N -n) +h-n, h = dh/ dt.
System (1.5) can be written in the form

~

Dtu—yiv2u+%Vq:lﬂu,q,r)%—f, V-u=ly(u,r) in B t>0,
u(y,0) = uo(y) in B*,
r(y,0) = ro(y) on Sg,,
ull, =0, BFIS@N|, = l(w.r), uls =0,

[—q+ pF N -S(u)N] ’SRO —oBor = ly(u,r) + ols(r),

1
Dir— | u— —— udy |- N =lg(u,r on Sg,,
(g f ) =t &
q(y,t)dy =0,
Q
where

Bor =Ag,, v+ 2Ry r,
Liu,q,r) =v (V2= V?)u + pii(v —-V)q
+ (LY (Der*N* + xh(t)) - V)u— (L 'u - V)u,
y(u,r) =1 —-LT)WV -u=V-L(u,r), L(u,r)=(I-Lu,
l3(w, ) = [p*To (TS (u) N — TIS(w)n)]|

o
e ) = (N SN S, A
Iy(r) = _/01(1 )L LT (5. 0)7 s, m, = m
*ﬁ . (L(T,O)l)udym,

log=g-N(N-g), N(y) LT(y,t)N(y) =y LTy/|y]*.
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The vectors n(z,t) and N(y) are connected by

L™(r,0)N(y)

LT (r, 0N ()| ls5,

moreover, H (e, 0,t)+2/Ro = Bor+ls, where Byr is the first variation of H+2/Ry
with respect to r and [5 is a nonlinear remainder. By ASRO we denote the

n(ma t) |x=eno(y,t) =

Laplace-Beltrami operator on Sg,, while n is the normal to the surface
Tis={zeR’ |z =y+sr(y,t)N(y), y € Sr,}, s€(0,1).

REMARK 1.1. Equation z = y+r(y,t) N (y) defines the surface T'; shifted by
the vector —h(t).

We have added the normalization condition [, ¢dy = 0 for ¢. It can be taken
also in another form, for instance,

(1.7) | oy =0

/ q(y,t)dS = 0.
b

Pressure functions satisfying different conditions differ from each other by certain
functions of time. If [, gdy =0, ¢~ satisfies (1.7), say, in the domain B~ and ¢
does it on X, respectively, then ¢(y,t) = ¢ (y,t) + ¢(t) = q(y, t) + ¢(t) with

o =151 [ aends 0= 157 [ a0

It is easily seen that [q]|s, = [T |[sr, = [@]lsr, -
We notice that the condition |Q;| = 47 R3/3 and the fact that the barycenter
of Q is placed at the origin {y = 0} can be expressed in terms of r as follows:

/S ((Ro+7)> = Rj) dS =0,

(1.8) fo

/ yi(Ro+1)*—R3)dS =0, j=1,23.
Sre

We define the Sobolev—Slobodetskii spaces which we use in the present paper.
The isotropic space Wk(Q), Q@ C R", is the space with the norm

iy = 3 IDEul= > [ Plu@Pds
o<|j|<i o<|j|<i
if I =[], i.e. I is an integral number, and

lullfvg ) = Nl gy + D /Q/QID?;u(x)fDiu(y)
1

l31=I

5 dxdy
| |z — y[rt+2A

if 1 =[I] 4+, A € (0,1). As usual, DIu denotes a (generalized) partial derivative
OVl /oxlt ... Oxin, where § = (j1,...,7n) and |§] = j1 + ... + jn.



220 1.V. DENISOVA — V.A. SOLONNIKOV

We introduce the anisotropic spaces
W,%(Qr) = La((0.7), W3(). W5 "(Qr) = Wy*((0.7), La());

Qr = 2x(0,T), the squares of norms in these spaces coincide, respectively, with

T
2 _ ) 2 2 _ NIE:
oy = [ I Oyt iy = [ I g

The space Wé’l/z(QT) = W%Qr) n WS’Z/Q(QT) can be supplied with the

norm

||U||W21,l/2(QT) = ||UHW;‘°(QT) + HU||W20J/2(QT)-
There exist many other equivalent norms in WZU/ 2(QT); some of them will be
used below.

The Sobolev—Slobodetskii spaces of functions given on smooth surfaces, in
particular, on Sg, and on Gy = Sg, x (0,T), T < oo, are introduced in the
standard way, with the help of local maps and partition of unity.

Moreover, we introduce also the norm

(s+1,1/2) _
|UIGST = ||UHW2S+L°(GT) + HUHWZZ/Z(O,T;W;(SRO))'
Finally, we set
lllg omsy = Il ey + lulgss ulla = [l ).

Now, the main result of the paper is stated.

THEOREM 1.2 (Global Existence). Let ¥ € Wi/*™ wy € Wit (UB),
ro € W (Sg,) with | € (1/2,1), and the compatibility and smallness conditions

(1.9) V - ug = lz(uo,70), [MiHOS(UO)N“SRo = la(uo, 7o),
' [uol sz, =0, uolz =0,
(1.10) lwollwiriwps) + lIrollwz+i(s,,) <€

are satisfied. Moreover, assume that f has finite norms
i bt
?_1;18 ”Dx-f”Qr‘eroa ||e f”Wzl’l/Q(Qoo)’

where Qs = 2 x (0,00), Ty > 2 is an appropriate fived number, and

b ; .
(1.11) e tf||W2l,L/2(Qx) <e b>0, sup 1Dz fll@rrim, <& il =1,2.
Then problem (1.5) has a unique solution (u,q,r), and it satisfies the inequality
(112) ||eatu||W2z+L,1+z/2(UD§o) + ||e“th||W21,z/z(UD§) + ”eatq”W;’l/z(UDi)

+ ||eat’l"||W25/2+l,5/4+z/2(Goo) + ||eatDt7”||W;/2+L,3/4+z/2(coc)

< 61(6){||e“tf||W2u/2(Qm) + lluollyyi+t g2y + HTOHW;H(SRO)}
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with a certain a < b, DL = B* x (0,00). c¢(¢) is a bounded function of ¢.

We note that similar results in the Holder spaces were obtained without and
with mass forces in [9] and [7], respectively.

Theorem 1.2 guarantees solution stability understood in the sense that ve-
locity vector field differs a little from zero as well as pressure function does
a little from a step function for small initial data and mass forces. In addition,
limit interface is a sphere Sg,(hso) of the radius Ry; however, the center ho, of
limit sphere may be displaced slightly with respect to the origin, the barycenter
of Qa' . This displacement will be evaluated by inequality (3.23) at the end of
Section 3. There will be also given an estimate of the initial distance between
the outer boundary and fluid interface sufficient for preventing the intersection
of the surfaces in the future.

The proof of Theorem 1.2 consists of several steps. It is based on an ex-
ponential energy inequality for a solution of a linear problem, which implies an
exponential decay of a global solution to the problem.

2. Linear problem

Along with (1.5), we consider the linear problem

Dtv—uivgv—i—piin:f, Vv=f in B, t >0,
v(y,0) = vo(y) in B,
r(y,0) = ro(y) on Sg,,

o AEls =0 BETS@N]s, b vl =0,

[N : T(va)N”SRO - O—BOT|SRO =0,

N
Dy — (v-N— = [ w0 dy
- ( - [ o0 >y)

/ p(y,t)dy = 0.
Q

=9,

SR

THEOREM 2.1 (Local Solvability of the Linear Problem). Let ¥ € W;’/QH,
ro € Wit (Sg,) with 1 € (1/2,1). For arbitrary f € Wé’lm(UD%), f e
W, (UDE), f = V-F, F e Wy ™'?(UDF), [Fnlls,, =0, vo € Wy (UB*),
be WYY Gy b e Wy TG nwy (0, T W, P (SR,y)), g €
W23/2+l’3/4+l/2(GT), where DE = B* x (0,T), Gr = Sgr, x (0,T), T < 00, sat-
isfying the compatibility conditions

Vovo= f@0) [pEIS(0)N] s, = b(.0)

(2.2) N -b(y,t)=0, t>0,

[UOHSRO - 07 ’UO‘E - 07
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problem (2.1) has a unique solution (v,p,r): v € W22+l71+l/2(UDjTE)’ Vp €
W, 2 (UDF), r(-.t) € W3 (Sk,) for allt € (0,T), and

(23) HvHWZH«lH/?(UD%) + vaHWé’lﬂ(UD%)
+ Hp”W;’l/z(UD%) T ||T||W25/2+115/4H/2(GT) + HDt’r”W23/2+l13/4+l/2(GT)

<M flwrrzopsy + 1 fllwprroups)
(1/2+l,l/2))

+ HFHWQO’IH/Z(UD%) + ||bHW12+1/2,z/2+1/4(GT) + IblGT
+ HgHWS/zﬂ,s/uz/z(GT) + HUOHW;“(UBi) + ||7"0||W22+L(SR0)}.
REMARK 2.2. From the trace theorem for p € Wy (Gr), it follows that

oGOz sy < Allolwyoar + 1Peoller }, -t € [0,T],
which implies
||7"( . 7t)HW22+l(SRU) < C{||T||W25/2+Z,O(GT) + ||Dt7"HW23/2+1,0(GT)}.
This means that Ty € W2t for all ¢ € [0, 7).
PrROOF. Let 1 be a function satisfying the conditions

r1(y,0) = r0(y),

Dyri(y,0) = g(y,0) + (vo(y) N(y) - J|\1;(f|) ‘/B+ vo(y') dy') =7o(y)

and the estimates
1l
@4) &P Dy,
< C{||r1||W25/2+l,5/4+z/2(GT) + ||Dtr1HW23/2+1,3/4+l2(GT)}
< C{”TOHW;“(SRO) + ”T(I)”WZZHM(SRO)}.

Such 7 exits due to Proposition 4.1 in [22] and equivalent normalizations of the
Sobolev—-Slobodetskii spaces. Then we can write

Bor(y,t) = Bor1(y, t) —|—/0 Bo (Dt(r(y, T) =11 (y,T))) dr

=&hmﬂﬁé&@mﬂ+mm%N@—QHWﬂNﬂ
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because By N = 0 in view of the fact that IN is an eigenvector of A Sry with the
eigenvalue —2R; 2. Hence, (2.1) can be written in the form

Dtv—uivzv—i-p%Vp:f, V-v=f in B, t >0,
v(y,0) = vo(y) in B*,
[UHSRO =0, [MiHOS(v)NHSRO =b, v|g=0,

(2.5) t
: [No']I‘(v,p)NHSR0 70N~BO/O v|gRO dr
¢ 7
= b’+a/ B’dTJrQJ/ Vsv:VsNdr  on Sg,,
0 0

/p(y,t)dyzo for t > 0,
Q

where b/ = b+ oByr1, B’ = Bo(g — Dyr1), Vs is the surface gradient on Sg,;
S: T = S,;T;;. Problems of this type were studied in [3], where the solvability
of (2.5) without the term 2o fot Vsv: VgN dr and the estimate

[olly2stivr2 g pzy + IVPlyyruz oty + Pl y02ps)

gc(T){HfHW;m(UD;) + 1 fllwp+roups)
+ HFHWg‘lH/Z(UD%:) + ||bHWL2+1/2,l/2+1/4(GT)
(1/241,1/2
T

+ |b/|G ) + ||B’||W21_1/2,1,/2_1/4(GT) =+ ”’UOHW;”(UB*)}

of a solution were established. Together with (2.4), this inequality implies (2.3)
because the additional term is weak and has no essential influence on the final
result. O

We also consider problem (2.1) with f =0, f=0,b=0,b=0, g =0 and
with 7 (y) satisfying the orthogonality conditions

(2.6) / ro(y)dS =0, / ro(y)y; dS =0, j=1,2,3,
SR SRg

obtained by linearization of (1.8). Since

Dir(y,t)dS = v-NdS = V-v(y,t)dy =0,
SR SRrg B+

Dyr(y,t)y; dS = / y;v-NdS — / v;(y,t)dy = 0,
Shy B+

Sk

conditions (2.6) are satisfied also for r(y,t), t > 0:

(2.7) / r(y,t)dS =0, / r(y,t)y;dS =0, j=1,2,3.
Sk Sk
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THEOREM 2.3 (Global Solvability of the Linear Homogeneous Problem).
Problem (2.1) with f =0, f =0,b=0,b=0, g =0 and with vOGWejH(UBi),
ro €W2TH(SR,), 1 € (1/2,1), satisfying compatibility conditions (2.2), i.e.

(2.8) V-vy=0, [WF oS (v0) N]|sp, =0, [vo]l s, =0, voly = 0,
and orthogonality conditions (2.6), has a unique solution (v,p,r), such that v €
w2 uDE), vp e WEA(UDZ), r(-,t) € W2 (Sp,) for all t € (0,00),
it is subject to the inequality
(2.9) ”eﬁtv”i‘,gﬂ,uz/z(ul)i) + ||eﬁth”$/Vl2*”2(uD§) + ||eﬁtp||€v2n,z/2(uD£)
+ ||eﬁt7'||$,V25/2+l,5/4+1/2(Gw) + ||eBtDt7’H?/V;/2+z,s/4+l/2(cw)
2 2
= C{””O”W;*’(usi> + H’“Ouwﬁl(sm)}

with a certain 8 > 0.

We outline the proof of (2.9). At first, weighted Lo-estimates of v,r are
obtained.

PROPOSITION 2.4. A solution of (2.1), (2.6) with f =0, f =0, b =0,
b =0, g =0 satisfies the inequality

2 2
(210)  [le#u(-, Dl + (- Oy 5y < {00l + I0l3rg (500 |
where $1 > 0, ¢ is independent of t.

PROOF. Inequality (2.10) is obtained in the same way as inequality (2.8)
in [9] and even easier because the triple (v,p,r) solves a linear problem. The
proof is based on the energy relation

(2.11) %%H\/pivné — a/s v NBordS + %H\/,uiS(v)Hé =0
Ro

which, in view of the last boundary condition in (2.1) and the self-adjointness of
the operator By, implies

1d 1
2dt<“,/pi1;’|?l—a/ rBordS’) —|—§H\/uiS('v)Hé:O.
Sk

Similarly to (2.11), one can deduce the equality

(2.12) i/piv~de7/piv'Dth:c

+
+/ %S(v):S(W)dx—a/ rBor dS =0,
Q

SR
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where W is an auxiliary vector field satisfying the relations (see [9])

V- -Wi(z,t)=0 inQ, W - Nlsy, =T, (Wllsg, =0, Wis =0,

Wlwye) < ellrllyzis,, )

ID:W e < el Derllsq, < c{llv: Nlsq, + vlla}-

We multiply (2.12) by a small v > 0 and add it to (2.11). Taking account of
the fact that the form — stO rBordS = stO(WST’P — 2Ry ?r?)dS is positive
definite if r satisfies (2.7) (see [18]) and making use of (2.4) and of the Korn
inequality for v, we show that for the so-called generalized energy [13]

S(t):%H\/pTEvH;—U/ TBonS+7/QPiv'dev

the estimate

d
— E() +28,E(1) <0

is valid, where 3; = const > 0. Since £ is controlled by ¢(||v[|3 + Hr||%,v1(5R ))
2 0

from above and from below if v is small enough, by the Gronwall lemma, we

have (2.10). O

For obtaining bounds for higher order norms of the solution similar to (2.10),
we invoke a local in time estimate of the solution. Keeping in mind forthcoming
applications, we assume that T" > 2.

PROPOSITION 2.5. Let T > 2. The solution of problem (2.1), (2.6) with
f=0,f=0,b=0,b=0, g=0 is subject to the inequality

(213) ||’UHW§+L,1+1/2(UBtiO_Lto) + ||vaWl2J/2(UDtiO—1,tO)

+ Hp”WzO’l/Z(UDtio,uo) + HTHW§/2“’5/4+’/2(Gt071,t0)

+ ||Dtr||W23/2+l«3/4+l/2(Gt ) < C(H’U”Qto—lto—i_ ”THGzsz,zO)a

o—Ltg

where 2 < to S T‘7 D?i,tz = Bi X (tl,tg), Qtl,tz =0 x (tl,tQ), th,tg = SRO X
(t1,t2).

Proor. We fix ty € (2,7) and multiply (2.13) by a cutoff function (y(t),
smooth, monotone, equal to zero for t < to—2+A/2 and to one for t > g —2+ A,
where A € (0,1], and such that for {(t) = d¢x(t)/dt and (\(t), the inequalities

sup‘@(t)‘ < e sup|§)\(t)| <ea7?
teR teR
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hold. Then, for vy = v{x, px = p(x, ™A = (), We obtain

1 .
DtUAfI/iVQ'U)\+p—in>\:'vQ, V-vy=0 in Bi, t>0,
vA(y,0) =0 in B,
ra(y,0) =0 on Sg,,

vAllsn, =0, [WFTS()N][g, =0, vils =0,
N - T(UA,pA)NHSRO - 0'807“,\|SR0 = 0,

pa(y,t)dy =0,
Q

N
Diry — vy - N — — - vr(y',t)dy
tT A <>\ IB¥] /B+ Ay )y)

(2.14) {1
[

= ra(t).

SRy

By Theorem 2.1 applied to system (2.14), estimate (2.3) for vy, px, ry is valid
whence it follows that

(215) ”UHW§+L'1+Z/2(UD$1+AJO) + HVPHWZQ’LN(UDi_MJO) + HpHWzo'lﬂ(UDtil-;-x,to)

+ HT”W§/2+z,s/4+z/2(Gt1+M0) + “Dtr”W§’/2“‘3/4“/2(Gt1+x,t0)

< c)\_Q{

||U||Wl2’l/2(UD:£1+k ) + ”rHW23/2+L’3/4+[/2(Gt1+>\/2,t0) }7

/2,tg

where t; =ty — 2.
Now, we apply the interpolation inequalities

2 -1
ol 0 S Wzt 10

—3-21
||THW23/2“70(GH+A/2) < %2||7a||W25/2“70 + e P72 Hr||th+>\/2,t0’

(Gty14a/2,10)

+ c%_3/2_l\|r

||r||W§’3/4+l/2(Gt1+>\/2) < J'f2H,Dfr”{/]/20=3’/‘“rl/2 ||Gt1+)\/2,t07

(Gty1x/2,t0)
which leads to
T(N) < 132 A2U(N/2) + coe ™AT?K,
here W()) denotes the left-hand side of (2.15), K = |jvllq,, ,, + 7., ... m =
3 + 2l. Setting » = A < 1, we obtain
AF2W(N) < ¢622mT2(N/2)"T2W(N/2) + 6 K.

This implies

—m—2

BON) < es(ON"2(K + 27K + 272K 4 .. ) < &

2L K <2e3AN 2K
ST o1 =

if ¢1622m*2 < 1/2. For A = 1 this inequality is equivalent to (2.13). O
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PrOOF OF THEOREM 2.3. By Theorem 2.1 and Proposition 2.5, one has
216) T {02 prrsne

+ Va2,

=+
(UDT_; 11-5)

2
LU2(UpE o + ”pHW;’*W(uD%

—j-1.7—;)

+ ||7"||3V;/2+z,5/4+1/2(g ) + HDtrH?/Vj/z“*?’/“”z(GT,J-,LT,J-)}

T—j—1,T—

<Dl L I,
for j =0,...,[T] — 2. Taking the sum of (2.16) from j = 0 to j = [T] — 2, we
obtain the inequality that implies

T
(2'17) Y72’7[T]+1,T (eﬁtv» eﬂtpv eﬁtr) < C/T [T]eQBt(”U( : 7t)||?2 + HT( : vt)||2SRo) dtv
where
(2.18) Yt (u,q,7) = HuHWgﬂ’lﬂn(UDi”)

+ ||VCI||W12J/2(UD;N2) + ||CIHW2W/2(U[)tirN2)

+ ||7‘||W§/2+z,5/4+z/2(th)t2) + ”DtTHW23/2+l’3/4+l/2(Gt1¢2)'
By adding the estimate

Yea(w,p7) < e {0l gy + Iolldyzer s, )}
to (2.17), choosing 8 < 1 and making use of (2.10), we arrive at an inequality
equivalent to (2.9). O
3. Nonlinear problem

We start with the construction of a solution to problem (1.5) in a finite time
interval (0,7y) with Ty to be fixed later on.

THEOREM 3.1 (Local Solvability of the Nonlinear Problem). Let Ty < co and
let compatibility conditions (1.9) of Theorem 1.2 be satisfied. Then there exists
a value e(Tp) < 1 such that problem (1.5) with small data:
ay Tlrress + s, + U, + 197l <

IV Fllwirz g, <€

has a unique solution (uw,q,r) on the interval (0,Ty) and the inequalities

(32) %,TQ(U?Q7T) S C{N(UOJAO) + H‘fHW;’l/z(QTO)}7
(3.3) N(u(-,To),7(-,Tp)) < ON(ug,m0) + CHfHWzQ,z/fz(QTO),

hold, where 0 < 1, Yo 1, is calculated by (2.18) and

N(w, p) = w1 pe) + 1ollwzee sy, )-
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The proof of Theorem 3.1 relies on Theorem 2.1 and on the following esti-
mates of the nonlinear terms.

ProrosiTION 3.2. If
(34) HT( . 7t)||W23/2+l(5R0) + ||Dtr ( : 7t)HW21/2+l(SRO) + Hu( : ,t)HQ <4, t<T,

where § is a certain small positive number, then nonlinear terms (1.6) and
Fy,t) = flern(y,t),t) are subject to the inequalities

(3.5) Z(u,q,7) = [[b(w,m)llyrirepzy + 12w r)llyaeiogpz)

—+ ||L(u T‘)||W0,1+z/2(Q =+ ||l3(’u,,’I“)||W21/2+l,1/4+1,/2(GT)

+ |l4(u T Ig/2+l ,12) + |l ( >|8/2+l,l/2)

T

s ()l 2008700172 ) < €Y 2 (w,q,7),
(3:6) 1Pz o) < I1f o)

1V oz sup (120 (- Dl s, + - D)}
If (u,r) and (u',7") satisfy (3.4), then

Zu—u',q—q¢,r—1r)<cdY(u—u',q—¢,r—7r'),

o~ -~/
Hf - -f ||W12'l/2(QT) S C(SY(’U’ - ’Ll;/7q - q/ar - rl)7

F=sComtunn, W= [ [
and L' is the Jacobian of the transformation e,/ p.
PRrROOF. Inequality (3.5) is established as in [14]. The inequality
1Fllor = I1F (ern(y, ), Ollor < el fllox

is obtained by the passage to the Eulerian coordinates = = e, p(y,t) under the
integral sign and taking account of the boundedness of the Jacobian L which
follows from (3.4). The estimates

‘f €rh y7 ) ) (67“, (th)7t)|2
/ L1, y— P Ayt
|f z,1) L)
/ / / /|3+21 dz’ dx dt,
T t B N2
/ dt/ dT/ ‘f er,h y7 ) ) {:Eler,h(y7t)7t T)| dy
0 0 T

|f(z,t) -7
<c/ // 7-1+l dx dr dt
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are proved in the same manner (for small §). Finally, assuming that the function
f is extended outside 2 with preservation of class and making use of the relation

f(eﬂh(yv t)? t) - f(er,h(y7t - T)v t)
1 T .
/0 Vf (ehh(y, t) — )\/O (N*(y)Dtr*(y,t -7+ h(t— T’)X(y)) dr’, t) d\

< [N @D =)+ i = )
0

we obtain, in view of (1.3),

dt | = | |Flern(y,t),t) = Flern(y,t — 7)) dy
[l

2
< c||VfHéT(gp|Dtr*<y,t>| +sup u(-.4)l)
T

S c”VfH?QT{tsgg H,Dt’l"( at) |?,VQZ+1/2(SRO) + tsgg H’Ll/( ' at)H?Z}

Inequality (3.7) is proved by applying the above estimates to

Flermt) — Flemt) / VF(ernr + AN, 8)(r — 1)
+(h — R)X(®)), ) AN (5, 8)(r — ') + (b — h)x(y)). O

PrOOF OF THEOREM 3.1. We go back to problem (1.5)

. The solution is
sought in the form

/ " ! " / "
u=u +u’, q=q +q", r=r 4+r,

where (u/,¢’, ") and (u”, ¢"”,r"") are solutions to the problems

1
D' — vV + —V¢ =0, V-u' =0 in B, t >0,
P
w'(y,0) = up(y) in B¥,
' (y,0) =15(y) on Spy,

(38) [u/] |SR0 O [UiHOS(uI)N] |SR0 = 07 u/|2 = 07
[~ + =N -S(uw)N]|g — By’ =0,

1
Dy’ — (u’— B /e u'dy) "N =0 on Sg,,

q'(y,t)dy =0,
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1 ~
Dtu// - l/iV2u” + piivq” = ll(“ﬂer) + f(y? t)’
Ve =lh(u,r) in B, t >0,
/ q"(y,t)dy = 0,
Q
o) ¥ W0 =ui) in B,
(y,0) = 1 (v) on 5o,
[UHHSRO =0, [MiHOS(u”)NHSRO =l3(u,7), u|z =0,
[—q" + uTN - S(UN)N”SRO —oBor" = ly(u,r) + ols(r),
1
Dyr” — (u” ~157 /. u' dy) N = lg(u,7) on Sgo,

here the nonlinear terms /; are given by (1.6).
The couples of initial data (ug, r,) and (ug, 7y ) are defined as follows: (ug, ()
should satisfy the relations

r//(y) dS — (T _ @(y7r0)> dS7
/SRO 0 Snq ° 3R3

/ ’/‘g(y)y] dS = (Toyj _ ¢](y77"0)> dS, j — 1,273’
SRU SRO

IR
[uG]lsn, =0, [ ToS(ug)N]|g = l3(uo,70),
0
V"U,g:lg(’u,o,’f‘o) in BJFL_J877 ug:o on 27

where @(y,r) = (Ro +1)* — R, ¥;(y.7) = y;((Ro +1)* — Rj) (see (1.8)), and
the inequality

(3.10) ||ug||wé+’(ugi)+H7’8HW22+1(5R0) < C5{||u0||wé+’(ugi)+||7"0||W22+’(5R0)}-
The functions (u(,r{) can be defined in the following way (cf. [21]):

IN(y)-y , I-N(y)
" _
To (y) - 3|B+| |B+| ’

where

3R2

[ / y;(6rgR3 + 4r§ Ro + r{)
J Sry 4R}

= _/ 3o +76 ;g
Shy

ds, j=1,2,3.

The vector field ug can be taken in the form uj = u; + w2, where

Ve (y) = la(uo, 7o) = V-(I-L)ug = (I-L7)Voug, [u1]]s,, =0, wils =0,
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and uy; = 0, uj = rot ®(y), where

o| 0P 0

S o =Y,

R0 T 9N S

+ 0’2 =(l *IoS(u, )N N
roN? . = (I3(wo,70) — [ ToS(u1) HSRO)X |SR0'

Since [ug] = 0 and [L] = 0 on Sg,, the sufficient compatibility condition [IN -
(I = L)uol|sy, = 0 is fulfilled, so it can be shown that ug satisfies (3.10).

The functions uj = wg — u(, vy, = ro — r{ satisfy orthogonality conditions
(2.6) and compatibility ones (2.8). Consequently7 by Theorem 2.3, problem (3.8)

is solvable on an infinite time interval and
(3.11) ||€Btul||Wg+l,1+L/2(uD;:) + ||€Btvq/||wl2,l/2(UD¥) + ||eﬁtq/||W20vl/2(uD¥)
+ ||65tr/||W25/2+z,5/4+1/2(GT) + He’BtDtT/||W23/2+’*3/4“/2(GT)

< co{ b lwreromey + Il s, b

for all T' < oo which implies (see Remark 2.2)

312 WDy, + G DI s s, |
< e {2y ren ey + Iz s, |-
In order to prove (3.3), we fix T = Tp such that c;e™#70 < 0/2 < 1/2 (one

can put 8 = e~ P70 with b < 3 and require Tj to be such that 2¢; < e(#=?) TO)

As for problem (3.9), it is solvable in the case of sufficiently small ¢(Tp)
n (3.1). Indeed, a solution can be constructed by successive approximations
according to the scheme

Dtum+1 - V:tv unl+1 + qu-i—l l (um7 m, Tm) + fm(yv t)v

Voull = lbUm, ) in B, ¢t >0,
[ sty =o,

Q
U1 (¥,0) = ug(y) in BE,
T1/7/1+1(y7 O) = Tg(y) on SRov

(3.13)
[ Uy t1 |SR 207

[MiHOS( m+1 ‘S = l3(umvrm)’ ug@+1|§; =0,
[ qm-‘rl + M N S( m+l |S - UBOT;;H-I

l4 Umvrm) + 0'15(Tm)

Dtr%ﬂ‘(“ﬁzﬂ |B+|/ m+1 ) =l6(Wm,7m) on Sg,,
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where m = 1,2,..., u,, = v +ul, ¢ = ¢ + 4, rmm = v + 710, }m =
Fermnn @, 1),), B = | BTV [0 [y (. T Lo (y, 7) dy d7, Ly = Llue,, -
For m = 0, we set g = 0, while let uj (y,t) and r{ (y, t) be functions satisfying the
initial conditions ug (y, 0) = u{ (y), r( (y,0) =14 (y), Deri (y,0) =0 (ug(y), o (y)
are constructed above) and the inequalities

(314) ||u8||W§+z,1+z/2(UD¥O) + ||r6/||W25/2+1,5/4+l/2(GT0)

+ ||'Dt7‘6/||W§/2+z,3/4+1/2(GT0)
<cfluflwssope, + Irllwassn,) }

< ere{ ol one) + ol s |-

Such u(, rj exist in view of inverse trace theorem and (3.10).

If w),, qp,, v, are known, then w;, . gy, 1, "1 can be found by Theo-

rem 2.1 as a solution of (3.13). In view of (2.3), (3.5) and (3.14),

(3‘15) 741/+1 = Y(leﬂa q:;erl’rszrl) < C(TO){”.meWlQJ/?(QTU) +eNo + Ym2}v
where
No =lluollwi+upe) + Irollwzricsy,):
Y(u,q,r) = ||u||W§+l,1+l/2(UD¥O) + quHle’l/Q(quib) + ||qHW20,z/2(UD¥O)
+ ||?"HW25/2+L,5/4+1/2(GT0) + HDtT”W;/2+l’3/4“/2(GTO)’
fm = -f(errruhwn (y’t)7t)’
b (U 1) Sy + 105y, )N (y) + X () R (1)
We also set
Y = Y(umanaTm)v Y' = Y(u/, q/7 T‘/),
N(m)(TO) = ||’u,m( . ’TO)HW;“(UBi) =+ ||T‘m( . ’TO)HW;H(SRO)’ m > 1.

We show by induction that (3.15) yields an estimate for the norm Y, (and
Y,) uniform on m.
Thus, assume that w,, 7, satisfy (3.4) with § so small that by (3.6), (3.11)

H‘fm”ng’l/Q(QTo) < Cf”-fHle’l/z(QTo) + c}||v.f||QTOY(um>07rm)
< erllflwiirzgr) T IV Fllor, (coNo +Y77)

S Cf||f||wgl/2(QTo) + c2eNy + ey,
Moreover, let

(3.16) Y < 2¢(Ty) (cf|| Fllgtirgn, + (2 + 1)5N0).
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Then, on one hand, by (3.11),
(3.17) Y, <Y'4+Y/" <Ny + QC(T())(Cf||f||Wz2,l/2(QT0) + (c2 + 1)5N0) <ce

which can guarantee the smallness of ¢, and on the other hand, by (3.15), (3.16),

"

Yitin < eTo){ el lyrin g, )+ (e2 + DeNo + (e + Yo )Y,n }

< QC(TO){cf||f||Wg,l/2(QTO) + (e + 1)5N0},

provided that
20(Th)dje + 4c2(T0){cf||f\|W;,l/2(QTD) + (o + 1)5N0} <1

By virtue of (3.14), inequality (3.16) holds for m = 0, hence, it is satisfied
for all m. In addition, from (3.12) and (3.16) it follows that

(3.18) NU™(Tp) < c(e P + ¢ (Tp)e) No + (T | Fllwiirz oy

1
<ONo+c Hf”Wé'”z(QTO)

if c(e P10 + ¢/(Ty)e)No < 0. The convergence of (ull,,ql,rl) to a solution

of (3.9) follows from inequalities (2.3) and (3.7). Letting m — oo in (3.17),
(3.18), we arrive at (3.2) and (3.3). O

Now we can complete the proof of Theorem 1.2.

PrROOF OF THEOREM 1.2. We extend a solution of (1.5) guaranteed by
Theorem 3.1 into the interval ¢ > 0 step by step: first to the interval (T, 270),
then to (270, 37p) and so forth. Let us suppose the solution is already found for
t < kTp. Then it can be defined for t € (kTy, (k 4+ 1)Tp) as a solution to the
problem with the initial conditions

u(y, kTo) = u(y, kTo — 0) = ux(y),  r(y,kTo) = r(y, kTo — 0) = r&(y).
We write transformation (1.4) for ¢ > kTy as
(3.19) z =y + h(kTo)x(y) + k(t, k)x(y) + N*(y)r*(y, 1),

where h(kT)) is already found and k(¢, k) = h(t) — h(kTp). The elements of the
Jacobi matrix of this transformation are given by

Oxly) , ON;T(y) }
dy; Ay;

Lij = {51‘3‘ + (hi(kTo) + k’i(t, k‘))

ij=1

Proposition 3.2 can be reformulated as follows.

PROPOSITION 3.3. Let k € N. If inequality (3.4) holds for t > kTy and
|h(kTo)| < 6, then

Zk (’LL, q, T) S c{(SYk (U, q, T) + Yk2 (’LL, q, T)}a
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where Zy and Yy, are norms (3.5) and (2.18), respectively, computed for t €
(kTy, (k 4+ 1)To). Moreover, f satisfies inequalities (3.6) and (3.7) on this time
interval as well.

Let us consider the case k = 1. From (3.2) and (3.3) it follows that
Ny = N(uy,7m) < Ce,

hence by replacing & with C~'c we see that this problem is solvable in the time
interval (7p,27T0) and the estimates

Yl(u,q,T) < C{Nl + H-f||W;’l/2(QTO,2TO)}’

Ny < ONp + CH.f”WLQ’l/Q(QTOgTO) = 057

are satisfied, where Ny = N(uy, 7). The constants in these estimates need not
coincide with the constants in (3.2), (3.3), because of the presence of the extra
term with h(7p) in (3.19), but, as will be shown below, the differences between
these constants are of order § for all £ > 0. If the solution is found for t < kT,
and the inequalities

N? <6°NZ | + C”fHIQWQ’“Q(Q(H)TOJTO)’ 6 <1,
(320) Y2 < e N2+ £ =1,...k—1
are proved, then
j—1
(3.21) Nj2 <. SOYNG+ Cz;02(j_1_i)”f||?/vz’;”'/2(QiTo,(z‘+1)To) < 07 De?

with the constants ¢ independent of j (we have used inequalities (1.11) for f).
Since #7 — 0 as j — oo, the right-hand side of (3.21) is less than €2 for j > jo,
and the replacement of £ with C~'¢ can be made only a finite number of times.

The estimate of h(jTp) can be obtained at every step. Let ; > 6 (§; = e~ 270,
0 < a < b). We take the sum of (3.20) multiplied by #; . This leads to

k k k
. 62 . )
=275 A12 2 —2j+2 772 —27 2
291 Nj < Ny + 9?291 Ni4 +CZG1 Hf”Wzl'l/z(Q(j—l)To,jTO)
7=0 j=1 j=1

0%
=62 — 62

N

2 k
5 cfi —2j ) p112
No + 02 — 62 291 ”'fHWQZ"/2(Q<.7'—1>TU,]'T0)'

J=1

Hence, by embedding theorem,

ETo
/ / v(~,t)dxdt‘
0 QF

k=l DT
<ec T0<29;2J /
=0 T

JTo

3
(3.22) |h(kT0)| = R

1/2
2
||u( . ’t)||W21+1(B+) dt)
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. 1/2
< 2 o v -
< C(NO + E 91 ||f||W21’l/2(QjTO,(j+1)TO)) -“

j=0
with the constants ¢ independent of k.
Finally, by passing to the limit as k — oo in

k k
0,7 Y? < ¢d N2 0= £|12
jgo 14y (u,q,r) <cq Ny + Z 1 Hf”Wzl'lm(QjTg,(jﬂ)To) ,

§=0
we arrive at an inequality equivalent to (1.12). In addition, the passage to the
limit in (3.22) allows us to estimate the limit position of inner drop barycenter

h(o0):
(3:23)  |n(o0)] < ea{le® Fllrurs oy + Nuoll it ) + Irollzer s, |
S 2025.

From (1.12) and embedding theorems, it follows that
néix|r| < cl{He“tfHWQI,l/i‘(Qw) + [lwollywi+1 ey + ||TO||W§+1(5RO)} < 2cqe.

It is clear that if 2(c; 4 c2)e is less than the initial distance between the surfaces
T'; and X, the intersection of these surfaces will be never possible. O

Let us show that one can construct a solution to problem (1.5) under less
restrictive assumptions on f. We introduce the norms

oo
llw,q, 7l =D Yj(u,q,7),

Jj=0

(3.24) 111l = Z) [T a—.
p

oo
_ -1
|||f”|77 = an ”f||W2l’l/2(QjT0,(j+1)T0)7

j=0
where {n,}6° € (0,1), nj41 <mn; and n; — 0 as j — oc.
THEOREM 3.4. Let ug € Wit (UB*), ro € Wit?(Sg,) and let f have finite

norms (3.24). Assume that compatibility conditions (1.9), as well as smallness
conditions (1.10) and the inequalities

Slilg\lpifl\QT,T+T0 <e =12, Il +IFlll, <e
T

are satisfied. Then there exists a solution of (1.5) defined for t > 0 and the
estimate

(3.25) e, g7l < e luollyssr sy + Irollssegs,, + IFII}
holds.
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Proor. We follow the arguments in the proof of Theorem 1.1 presented

above. From the inequalities

Nj < ONj1 +cl| Fllyyrirz

Qui-1)Ty.510)’

Vi< C<Nj_1 + C”f”Wzl’L/z(QjToy(jH)To))’ Jen,
equivalent to (3.20), it follows that
j-1
N SONy eSO g oy SO+ 5l
i=0

where

%= ig(lya—xnej_l_im < max (01072 ;1) p0) =0 as = oo,

[k] means the integral part of k. Hence the solution of (1.5) is extendable to the

whole half-axis ¢t > 0 (if h(kTp) is small); moreover, we have

k k
1
5 < gt e Uy 0y o |
j=1 1=0
k k—1
IR AUTER O DYy U
=0 i=0

Using this inequality we estimate h(kTp): |h(kTp)| < ce and, letting k — oo, we
arrive at (3.25). O
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