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BLOWUP VERSUS GLOBAL

IN TIME EXISTENCE OF SOLUTIONS

FOR NONLINEAR HEAT EQUATIONS

Piotr Biler

In memory of Marek Burnat

Abstract. This note is devoted to a simple proof of blowup of solutions
for a nonlinear heat equation. The criterion for a blowup is expressed in

terms of a Morrey space norm and is in a sense complementary to conditions

guaranteeing the global in time existence of solutions. The method goes
back to H. Fujita and extends to other nonlinear parabolic equations.

1. Introduction

In this paper we consider the Cauchy problem for the simplest example of

a semilinear parabolic equation in Rd, d ≥ 1, p > 1,

ut = ∆u+ |u|p−1u, x ∈ Rd, t > 0,(1.1)

u(x, 0) = u0(x).(1.2)

This problem has been thoroughly studied beginning with [18], [20], [21], and

many fine properties of its solutions are known. For the reference, see the exten-

sive monograph [32] and a recent paper [33].
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The purpose of this note is to give a short proof of nonexistence of global

in time (and sometimes also local in time) positive solutions to problem (1.1)–

(1.2) together with criteria for blowup expressed in terms of the norms of critical

Morrey spaces. Those criteria are, in a sense, complementary to assumptions

guaranteeing the global in time existence of solutions. The idea of the proof

goes back to the seminal paper [18] but the straightforward connection to the

Morrey spaces norms seems to be missed out up to now. An idea in [13, proof

of Theorem 3] in the context of radial solutions of the Keller–Segel model of

chemotaxis is also reminiscent of that. Recently, this approach has been system-

atically developed for (radially symmetric solutions of) the chemotaxis models

with different diffusion operators in [12] as an alternative to other proofs based

on considerations of (new) moments in [5], [6], [8]–[10]. Here, for the nonlinear

heat equation generally we do not use geometric assumptions on solutions such

as radial symmetry. This method classically introduced by [18] is flexible enough,

and extends also to other nonlinear parabolic problems, see remarks at the end

of this paper.

Whenever problem (1.1)–(1.2) admits a singular stationary solution, this

plays an important role in determining when solutions with u0 featuring singu-

larities either lead to global in time solutions or they blow up in a finite time.

The form of this solution is well known, we recall this below.

Theorem 1.1 (Singular stationary solutions). For d ≥ 3 and p > d/(d− 2)

the function

uC(x) = c|x|−2/(p−1)

with the constant

c =

(
2

p− 1

(
d− 2p

p− 1

))1/(p−1)

is a stationary positive (weak and pointwise) solution of equation (1.1).

Proof. The exponent γ = 2/(p− 1) is uniquely determined by the require-

ment γ + 2 = pγ, and the constant c is determined by the relation

(1.3) cp−1 = γ(d− pγ) = γ(d− 2− γ).

Since pγ < d, this is a distributional solution of equation (1.1). �

2. Global in time solutions

A typical example of a global in time existence result is the following.

Theorem 2.1. Suppose that d ≥ 3, p > d/(d− 2), and u0 satisfies the

estimate

0 ≤ u0(x) < δuC(x) = δc|x|−2/(p−1)
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for some δ < 1. Then any solution u ∈ C2(Rd × [0, T ]) of problem (1.1)–(1.2)

with the property lim
|x|→∞

|x|2/(p−1)u(x, t) = 0 satisfied uniformly on [0, T ], exists

globally in time and is bounded by uC

0 ≤ u(x, t) < δuC(x) for each t > 0 and x ∈ Rd.

Proof. This result can be considered as a kind of a comparison principle for

equation (1.1) when a subcritical solution u, 0 ≤ u(x, t) < δuC(x) (continuous

off the origin with a proper decay at infinity) is compared with δuC , and then

this can be continued onto some interval [T, T + h], and further, step by step,

onto the whole half-line [0,∞). For analogous results in chemotaxis theory with

either Brownian or fractional diffusion, see [10], [7].

We sketch the proof skipping some technical details related to the local ex-

istence of solutions with the assumed regularity and decay. Suppose a contrario

that u(x0, t0) = δuC(x0) for some x0 ∈ Rd with minimal |x0| and the least t0 > 0.

Consider the auxiliary function

(2.1) z(x, t) = |x|2/(p−1)u(x, t).

Under the a contrario assumption z(x0, t0) = δc, and if t0 is the first moment

when z(x, t) hits the level δc ∈ R, we have

(2.2) ∇z(x0, t0) = 0, ∆z(x0, t0) ≤ 0,

since x0 is the point where the maximum of z (equal to δc) is attained. Let us

compute

∂

∂t
z(x0, t)

∣∣∣∣
t=t0

= |x0|2/(p−1)(∆u+ up)(2.3)

= |x0|2/(p−1)
(
∆(|x|−2/(p−1)z(x, t0))

∣∣
x=x0

+ |x0|−2/(p−1)z(x0, t0)p
)

=
(
∆z(x0, t0)− cp−1z(x0, t0) + z(x0, t0)p

)
≤ z(x0, t0)(z(x0, t0)p−1 − cp−1) < 0

since

∇(|x|−γz) = |x|−γ∇z − γ|x|−γ−2x z,

∆(|x|−γz) = |x|−γ∆z − 2γ|x|−γ−2x · ∇z + γ(γ + 2− d)z,

relations (2.2) hold, and recall (1.3) to see that γ(γ + 2 − d) = −cp−1. The

inequality

∂

∂t
z(x0, t)

∣∣∣∣
t=t0

< 0

contradicts the assumption that z hits for the first time the constant level δc at

t = t0. �
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Remark 2.2. This kind of result is not, of course, new (cf. [23, Theorem A])

but the proof seems be somewhat novel. Similar pointwise arguments are pow-

erful tools and, as such, they have been used in different contexts as e.g. fluid

dynamics and chemotaxis theory: [14], [16], [17], [22], and free boundary prob-

lems: [15]. If u0 is radially symmetric and u0(x) < δuC(x) for some δ < 1, then

the solution of (1.1)–(1.2) exists globally in time, see [29, Theorem 1.1] and also

[33, Remark 3.1 (iv)]. Related results are in [27, Lemma 2.2], and stability of the

singular solution is studied in [30]. Results for not necessarily radial solutions

starting either below or slightly above the singular solution uC are in [19, Theo-

rem 10.4] (reported in [32, Theorem 20.5]), and in [34, Theorem 1.1]. Note that

solutions of the Cauchy problem (1.1)–(1.2) in the latter case are nonunique.

3. Solutions exploding in a finite time

Our goal here is to show a finite time blowup (Theorem 3.1), and that the

critical size of some functional norm (Remarks 3.4 and 3.5 on Morrey spaces)

of initial data leading to a blowup is asymptotically close to the optimal size of

this norm guaranteeing the existence of a global in time regular positive solution

(Theorem 3.9). The first argument is essentially that of [18]. The considerations

in [20, 21] employed some (quite complicated) moments and energies of solutions

with Gaussian weights but not exactly the quantity (3.5). Finally, Remarks 3.6,

3.10 and 3.11 comment on further properties of solutions of problem (1.1)–(1.2)

related to Morrey spaces.

Theorem 3.1. Suppose that u0 ≥ 0 satisfies the condition

(3.1) sup
T>0

T 1/(p−1)
∥∥eT∆u0

∥∥
∞ >

(
1

p− 1

)1/(p−1)

.

Then, any local in time weak solution u = u(x, t) of the Cauchy problem (1.1)–

(1.2) with p > 1 cannot be continued beyond t = T .

Proof. Note that here we assume merely p > 1. For a fixed T > 0 consider

the weight function G = G(x, t) which solves the backward heat equation with

the unit Dirac measure as the final time condition at t = T

(3.2) Gt + ∆G = 0, G( · , T ) = δ0.

Clearly, we have a solution

(3.3) G(x, t) = (4π(T − t))−d/2 exp

(
− |x|2

4(T − t)

)
,

the unique nonnegative one, satisfying moreover

(3.4)

∫
Rd

G(x, t) dx = 1 for each t ∈ [0, T ).
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We consider t ∈ [0, T ), and define for a solution u of (1.1)–(1.2) which is supposed

to exist on [0, T ) the moment

(3.5) W (t) =

∫
Rd

G(x, t)u(x, t) dx = e(T−t)∆u(t)(0),

where et∆, t > 0, denotes the heat semigroup on Rd defined with the Gauss–

Weierstrass kernel. Evidently, we have

(3.6) W (0) ∈ [0,∞) for u0 ≥ 0 and W (0) ∈ (0,∞) if 0 ≤ u0 6≡ 0

and, moreover,

(3.7) W (0) = eT∆u0(0).

Since G decays exponentially in x as |x| → ∞, the moment W is well defined

(at least) for (weak, pointwise, distributional) solutions u = u(x, t) which are

polynomially bounded in x as |x| → ∞. The evolution of the moment W is

governed by the identity

dW (t)

dt
=

∫
Rd

(Gut +Gtu) dx(3.8)

=

∫
Rd

G(∆u+ up) dx−
∫
Rd

∆Gudx

=

∫
Rd

∆Gudx+

∫
Rd

Gup dx−
∫
Rd

∆Gudx

=

∫
Rd

Gup dx ≥
(∫

Rd

Gudx

)p
,

where the third line means that u is a weak solution, and the last line follows by

the Hölder inequality and property (3.4). Now, the differential inequality

(3.9)
dW (t)

dt
≥ (W (t))p

(with the strict inequality for nonconstant functions u(t)) shows that W (t) in-

creases, and after integrating immediately leads to

W (0)1−p −W (t)1−p ≥ (p− 1)t

for all t ∈ [0, T ), so that

(3.10) W (t) ≥ (W (0)1−p − (p− 1)t)−1/(p−1)

again for all t ∈ [0, T ). Now, passing to the limit t↗ T , it is clear that if

(3.11) W (0) = eT∆u0(0) > ((p− 1)T )−1/(p−1),

then we arrive at a contradiction with property (3.6), so that the solution blows

up not later than t = T . In other words, if the condition

(3.12) T 1/(p−1) eT∆u0(0) >

(
1

p− 1

)1/(p−1)
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is satisfied, then the solution u cannot exist for t = T . By the translational

invariance of equation (1.1), for positive u0 condition (3.12) is equivalent to

inequality (3.1). Note that a different approach to that is in [38, Theorem 1].�

Remark 3.2. Observe that for any positive initial condition u0 6≡ 0 there

is N > 0 such that condition (3.11) is satisfied for Nu0, cf. [38, Corollary 1.1].

Condition (3.11) is also valid for each constant u0 > 0 and suitably large T .

Remark 3.3. It is clear that if d < 2/(p− 1), then each positive u0 6≡ 0

leads to a blowing up solution, as it has been proved in [18, Theorem 1]. Indeed,

sup
T>0

T 1/(p−1)‖eT∆u0‖∞ = lim
T→∞

T 1/(p−1)‖eT∆u0‖∞

= lim
T→∞

T−d/2+1/(p−1)(4π)−d/2
∫
Rd

e−|x|
2/(4T )u0(x) dx

= lim
T→∞

T−d/2+1/(p−1)(4π)−d/2‖u0‖1 =∞,

so a sufficient condition (3.1) for blowup holds. Here, we offer a proof of the anal-

ogous result if d = 2/(p− 1), an alternative to the one given in [37, Theorem 1].

Since condition (3.1) for d/2 = 1/(p− 1) reads

(3.13) (4π)−d/2
∫
Rd

e−|y|
2/(4T )u0(y) dy >

(
1

p− 1

)1/(p−1)

,

and lim
T→∞

W (0) = (4π)−d/2‖u0‖1, it suffices to show that ‖u(t)‖1 becomes large

enough for some t ≥ 0, and replace the initial condition u0 by u(t).

Problem (1.1)–(1.2) for positive solutions can be rewritten in the mild form

as

(3.14) u(t) = et∆u0 +

∫ t

0

e(t−τ)∆u(τ)p dτ.

Let us write the Duhamel formula (3.14) for t = T in a more detailed way as

u(x,T )− eT∆u0(x)(3.15)

=

∫ T

0

∫
Rd

(4π(T − τ))−d/2e−|x−y|
2/4(T−τ)u(y, s)p dy dτ

≥
∫ T

0

(∫
Rd

(4π(T − τ))−d/2

· 1

2

(
e−|x−y|

2/4(T−τ)+ e−|x+y|2/4(T−τ)
)
u(y, τ) dy

)p
dτ

≥
∫ T

0

(∫
Rd

(4π(T − τ))−d/2e−|x|
2/4(T−τ)e−|y|

2/4(T−τ)u(y, τ) dy

)p
dτ

by the Hölder inequality and by the Cauchy inequality

1

2

(
ex·y/2(T−τ) + e−x·y/2(T−τ)

)
≥ 1.
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Now, integrating over x ∈ Rd, we obtain as a consequence of (3.15)

‖u(T )‖1 ≥‖u0‖1 +

∫ T

0

∫
Rd

e−p|x|
2/4(T−τ)W (τ)p dx dτ

≥‖u0‖1 +W (0)p
∫ T

0

(
4π

p

)d/2
(T − τ)d/2 dτ

≥‖u0‖1 +W (0)p T d/2+1 2

d+ 2

(
4π

p

)d2

=‖u0‖1 + c̃
(
T 1/(p−1)W (0)

)p
= ‖u0‖1 + ˜̃c(∫

Rd

e−|y|
2/(4T )u0(y) dy

)p
for some ˜̃c independent of u0. Observe that the norm ‖u(t)‖1 increases in time.

Therefore, by a shift of time, we have

‖u(t+ T )‖1 ≥ ‖u(t)‖1
(
1 + ˜̃c‖u0‖p−1

)
and it is clear that for some t the norm ‖u(t)‖1 becomes large enough in order

to condition (3.1) holds with time shifted from 0 to t, see also (3.13). Therefore,

u(t) blows up in a finite time.

Remark 3.4. Here we discuss some questions related to applicability of Mor-

rey spaces in the analysis of optimal conditions for local in time existence of

solutions as well as for the finite time blowup of solutions. Recall that (homo-

geneous) Morrey spaces over Rd modeled on Lq(Rd), q ≥ 1, are defined by their

norms

(3.16) ||u||Ms
q
≡
(

sup
R>0, x∈Rd

Rd(q/s−1)

∫
{|y−x|<R}

|u(y)|q dy
)1/q

<∞.

Caution. The notation for Morrey spaces used elsewhere might be different,

e.g. Ms
q is denoted by Mq,λ with λ = dq/s in [33].

The most frequent situation is when q = 1 and we consider Ms
1 ≡ Ms. The

spaces Md(p−1)/2(Rd) and M
d(p−1)/2
q (Rd), q > 1, are critical (i.e. invariant by

scalings that conserve equation (1.1)) in the study of equation (1.1), see [33],

and we refer to [3], [9], [7], [25] for analogous examples in chemotaxis theory.

For instance, if the norm ||u0||Md(p−1)/2
q

(for a number q > 1) is small enough,

then a solution of problem (1.1)–(1.2) is global in time, see [33, Proposition 6.1]

(and for the chemotaxis system cf. [3, Theorem 1]). The former result can be

proved directly (while the proof in [33] was by contradiction) using the Picard

iterations of the mapping

N (u)(t) = et∆u0 +

∫ t

0

e(t−τ)∆(|u|p−1u)(τ) dτ,
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un+1 = N (un), n = 1, 2, . . ., with u0 ∈ M
d(p−1)/2
q (Rd) (q > 1, p > 1 + 2q/d)

small enough. They are convergent in the norm

|||u(t)||| = sup
t>0

t(1−q/r)/(p−1)||u(t)||
M

rd(p−1)/(2q)
r

for max{p, q} < r < pq, since |||et∆u0||| < ∞. For useful estimates of the heat

semigroup in Morrey spaces we refer the reader to [35, Theorem 3.8].

Clearly, assumption (2.1) in Theorem 2.1 implies

||u0||Md(p−1)/2 <
cσd

d− 2/(p− 1)
,

and the conclusion (2.1) reads

||u(t)||Md(p−1)/2 <
cσd

d− 2/(p− 1)
.

Remark 3.5. Note that the quantity sup
t>0

t1/(p−1)‖et∆u0‖∞ in (3.1) is equi-

valent to the norm of the Besov space B
−2/(p−1)
∞,∞ (Rd), e.g. [33, Remark 4.2].

Moreover, for positive functions and p > 1+2/d, the quantity (3.1) is equivalent

to the Morrey space norm Md(p−1)/2(Rd), see [25, Proposition 2 B)]. Therefore,

a sufficient condition for blowup of solutions of problem (1.1)–(1.2) becomes

||u0||Md(p−1)/2 � 1.

Remark 3.6. Related results on the local and global existence of solutions

to (1.1)–(1.2), as well as the existence of initial traces (i.e. u0) for nonnegative

solutions (u = u(t) defined on (0, T )) are in [1], [2]. In particular, the estimates

[1, (1.4), Proposition 4.3, p. 380] show that a necessary condition for the existence

of a local in time solution reads: u0 ∈Md(p−1)/2(Rd), and each positive solution

satisfies u(t) ∈Md(p−1)/2(Rd) uniformly on (0, T ). Since these papers have dealt

with general parabolic problems, neither the optimal constants have been derived

in a particular case of (1.1), nor L∞-blowup has been shown for sufficiently large

norm u0 ∈Md(p−1)/2(Rd).

Remark 3.7. Note that at the blowup time T we have lim
t↗T
‖u(t)‖∞ = ∞

but some other norms — in particular ||u(T )||Md(p−1)/2 — can remain bounded,

cf. also [33, Remark 6.1 (iv)].

Taking into account the above remarks on the critical Morrey space, we

formulate the following partial dichotomy result

Corollary 3.8. There exist two positive constants cd and Cd such that, if

p > 1 + 2/d and for some q > 1, then

(a) ||u0||Md(p−1)/2
q

< cd implies that problem (1.1)–(1.2) has a global in time

solution;
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(b) ||u0||Md(p−1)/2 > Cd implies that each solution of problem (1.1)–(1.2) blows

up in a finite time.

Below, we determine two threshold numbers measuring how big must be

either u0 compared to uC or the Morrey norm Md(p−1)/2(Rd) of a radial u0 in

order to a solution of (1.1)–(1.2) blows up in a finite time.

Theorem 3.9. (a) Let d ≥ 3, p > d/(d− 2) (so that d− γ > 0), and define

the threshold number

N = inf{N : solution with the initial datum satisfying u0(x) ≥ NuC(x)

blows up in a finite time}.

Then, the relation N → 1 as d→∞ holds. More precisely,

1 < N ≤ 21/(p−1)

(
d− 2p

p− 1

)−1/(p−1)
Γ(d/2)

Γ(d/2− 1/(p− 1))
(3.17)

≈
(

1− 2p

d(p− 1)

)−1/(p−1)

(3.18)

as d→∞.

(b) Moreover, there exists M > 0 such that if u0 ≥ 0 is radially symmetric

and such that ||u0||Md(p−1)/2 > M, then the solution with u0 as the initial data

blows up in a finite time. A rough estimate from above for the threshold value of

M when p > (d+ 2)/d (i.e. exactly when d− γ > 0) is the following

M≤
(

1

p− 1

)1/(p−1)

(4π)d/2 e(d−γ)/2(2(d− γ))γ−d/2(3.19)

≈
(

1

p− 1

)1/(p−1)

σd

√
π

2

(
d

2
− 1

p− 1

)1/(p−1)+1/2

as d→∞.

Proof. (a) We compute

(3.20) t1/(p−1)(4πt)−d/2
∫
|x|−γ exp

(
− |x|

2

4t

)
dx

= 2−γ−1π−d/2 σd

∫ ∞
0

e−zz(d−γ)/2−1 dz = 2−γ
Γ((d− γ)/2)

Γ(d/2)
,

where we used the fact that the area σd of the unit sphere in Rd is equal to

(3.21) σd =
2πd/2

Γ(d/2)
,

and we obtain (3.17). The asymptotic formula in (3.18) is a consequence of the

Stirling formula for the Gamma function

(3.22) Γ(z + 1) ≈
√

2πz zze−z and
Γ(z + a)

Γ(z)
≈ za as z →∞,



156 P. Biler

see e.g. [36]. Indeed,

(3.23) N ≈ 21/(p−1)

(
d− 2p

p− 1

)−1/(p−1)
Γ(d/2)

Γ(d/2− 1/(p− 1))

≈ 21/(p−1)

(
d− 2p

p− 1

)−1/(p−1)(
d

2

)1/(p−1)

holds, i.e. the discrepancy between the multiples of |x|−2/(p−1) in the initial data

corresponding to global and blowing up solutions converges to 1 as d→∞.

(b) For a radially symmetric function u0 ≥ 0 define its radial distribution

function

M(r) = σd

∫ r

0

u0(%)%d−1 d%,

so that σdu0(r)rd−1 = Mr(r). It is not hard to see that for radial u0 ≥ 0 we

have

||u0||Md(p−1)/2 = sup
R>0

Rγ−d
∫
{|x|<R}

u0(x) dx.

If u0 ∈ Md(p−1)/2(Rd) with ||u0||Md(p−1)/2 =M, then for each ε > 0 there exists

R > 0 such that M(R) ≥ (M− ε)Rd−γ . We need to estimate T 1/(p−1)W (0) =

T 1/(p−1)eT∆u0(0) from below, and we do it in a rough way as

T 1/(p−1)W (0) = T 1/(p−1)

∫ ∞
0

(4πT )−d/2e−r
2/4TMr(r) dr(3.24)

≥ T 1/(p−1)−d/2(4π)−d/2
∫ R

0

e−r
2/4TMr(r) dr

= T 1/(p−1)−d/2(4π)−d/2
(

e−R
2/4TM(R) +

∫ R

0

e−r
2/4T r

2T
M(r) dr

)
≥ T 1/(p−1)−d/2(4π)−d/2(M− ε)Rd−γe−R

2/4T .

Since max
T>0

T 1/(p−1)−d/2 e−R
2/4T is attained when R2/(4T ) = (d− γ)/2 and this

quantity is equal to (R2e/(2(d− γ)))(γ−d)/2, we need to determine when

(4π)−d/2(M− ε)
(

2(d− γ)

e

)(d−γ)/2

>

(
1

p− 1

)1/(p−1)

.

This leads, by (3.21) and (3.22), to

M & 2γ
(

1

p− 1

)1/(p−1)
σd
2

Γ(d/2)

Γ((d− γ)/2 + 1)

√
2π

√
d− γ

2

≈ 2γ
(

1

p− 1

)1/(p−1)

σd

(
d− γ

2

)(γ−1)/2√
π

2
.
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Note that, compared to ||uC ||Md(p−1)/2 = (cσd)/(d− γ), the number M is much

bigger:

M
||uC ||Md(p−1)/2

≈ ((d− γ)/2)(γ+1)/2

((d− pγ)/2)γ/2

√
2π ≈

√
πd,

and, of course, M≤ Cd by the definition of Cd in Corollary 3.8 (b). �

Remark 3.10. It is well known, cf. [24] and [32, Theorem 17.12], that (under

some supplementary assumptions) if

lim
|x|→∞

u0(x)|x|2/(p−1) =∞,

then solutions of (1.1)–(1.2) cannot be global in time. On the other hand, the

authors of [31] showed that for some u0(x) ∼ |x|−2/(p−1) global in time solutions

of (1.1)–(1.2) exist and are unbounded as t→∞.

A very short proof of the former result follows from the observation that such

an initial condition u0 satisfies ||u0||Md(p−1)/2 = ∞, hence condition (3.1) holds.

Indeed, inequality∫
{|x|≤R}

u0(x) dx ≥ C
∫ R

R0

r−γ+d−1 dr ≈ CRd−γ

is satisfied with arbitrarily large constants C and suitably big fixed R0, so that

lim
R→∞

Rγ−d
∫
|x|≤R

u0(x) dx ≥ C.

Remark 3.11. If u0 ≥ 0 is such that

lim sup
t↘0

t1/(p−1)
∥∥et∆u0

∥∥
∞ >

(
1

p− 1

)1/(p−1)

,

then the statement: there exists T > 0 and a solution of problem (1.1)–(1.2) on

(0, T ) is not true. One is tempted to say that there is an instantaneous blowup

of solution with such an initial data, but the correct statement is rather: there

is no continuity property of solutions with respect to (large) initial data in the

space Md(p−1)/2(Rd) when, e.g. the initial data with large Md(p−1)/2(Rd) norms

are truncated on levels growing to infinity. In other words: for large initial data

the problem (1.1)–(1.2) is ill-posed in C([0, T ],Md(p−1)/2(Rd)) for any T > 0.

Extensions and generalizations. The method of proving blowup with the

use of the Gaussian moment (3.5) extends to other nonlinear equations with the

heat operator in the principal part. For instance, the equation

ut = ∆u+Q(x)|u|p−1u
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considered in [26] leads to the following sufficient for blowup of its positive solu-

tions

W (0) ≥ (4π)−d/2
(∫ T

0

(p− 1)(T − t)d(p−1)/2

·
(∫

Rd

Q(x)−1/(p−1) e−|x|
2/4(T−t) dx

)1−p

dt

)−1/(p−1)

.

These integrals can be calculated explicitly, e.g. for Q(x) = |x|β , β ∈ R.

Another example for which sufficient criteria for blowup can be easily estab-

lished with this method is the quasilinear equation

ut = ∆u+∇ ·
(
x|u|p−1u

)
,

and, of course, radially symmetric solutions of the Keller–Segel system in chemo-

taxis theory as it was mentioned before.

Added in proofs. Related results for a nonlinear heat equations with non-

local diffusion operators are in recent papers [4] and [11].
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[30] P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a super-

critical semilinear heat equation, Math. Ann. 327 (2003), 745–771.
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