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NONLINEAR UNILATERAL PARABOLIC PROBLEMS
IN MUSIELAK-ORLICZ SPACES WITH L! DATA

MusTAFA AIT KHELLOU — SIDI MOHAMED DOUIRI — YOUSSEF EL HADFI

ABSTRACT. We study, in Musielak—Orlicz spaces, the existence of solutions
for some strongly nonlinear parabolic unilateral problem with L' data and
without sign condition on nonlinearity.

1. Introduction

Let 2 be a bounded Lipschitz domain of RY (N > 2) and let Q = Q x (0,T),
T > 0. Consider the following nonlinear parabolic problem:

Ot A +getu V)= f i Q
(L.1) w=0 on 90 x (0,7),
u(z,0) = ug(x) in

where A(u) = —diva(z,t,u, Vu) is a Leray—Lions operator defined on D(A) C
Wy L,(Q) — W1 L5(Q) with ¢ and B two complementary Musielak-Orlicz
functions, and ¢ is a nonlinearity satisfying the growth condition

lg(x,t,5,8) < (2,1) + b(s)p(=, [¢]),

where b: R — RT is a continuous nondecreasing function in L!(R) and ¢/(-, -)
is a given nonnegative function in L'(Q).
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On Orlicz spaces, it is well known that the solvability of (1.1) was established
by Donaldson in [12] for g = 0 and by Robert [24] for g = g(z,¢,u) and also by
Elmahi [13] for g = g(z,t, u, Vu) with some conditions on the operator A and
on the N-function.

Without assuming any restriction on the N-function, Elmahi and Mesk-
ine [14] studied problem (1.1) when g = 0. If g = g(z, t, u, Vu) the same authors
showed the existence of solutions for problem (1.1) in the variational case in [15]
and then in [16] when f € L}(Q).

The unilateral problem corresponding to (1.1) was studied in [6] by Azroul
et al. in the case f € L'(Q) and without assuming the sign condition on the
nonlinearity g (see also [22]).

In the framework of variable exponent Sobolev spaces, Bendahmane et al. [7]
proved the existence and uniqueness of renormalized solution for some nonlinear
parabolic problem involving the p(z)-Laplacien. Also an existence result of solu-
tions for a class of doubly nonlinear parabolic equations with variable exponents
was established in [5].

In Musielak—Orlicz spaces, Ahmed oubeid, Benkirane and Sidi El vally [3]
showed the existence of solutions for the nonlinear parabolic problem (1.1) where
the second member f is taken in W% E%(Q). The same problem was studied
in [2] by Ahmed et al. but without assuming the sign condition on the nonlin-
earity.

Our main goal in this paper is to prove, in Musielak—Orlicz spaces, the exis-
tence of solution for the unilateral problem associated to (1.1) under the assump-
tion that the Musielak—Orlicz function ¢ depends only on N — 1 coordinates of
the spatial variable x, this assumption allows us to use a Poincaré inequality
in this type of spaces (see Lemma 2.6). A Poincaré-type inequality was proved
again by Fan [17] but the conditions assumed by the author there are different
from those assumed in this paper (see [17, Theorem 1.2]).

The study of nonlinear partial differential equations in this type of spaces
is strongly motivated by numerous phenomena of physics, namely the problems
related to non-Newtonian fluids of strongly inhomogeneous behavior with a high
ability of increasing their viscosity under a different stimulus, like shear rate,
magnetic or electric field [18].

Further works concerning the Musielak spaces can be found in [17]-[19], [25].

2. Preliminaries

2.1. Musielak—Orlicz function. Let Q be an open subset of RY (N > 2)
and let ¢ be a real-valued function defined in Q x R and satisfying the following
conditions:
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(i) ¢(x, -) is an N-function for all x € §2 (i.e. convex, nondecreasing, con-
tinuous, ¢(z,0) = 0, ¢(z,t) > 0 for all ¢ > 0, lim sup ¢(x,t)/t = 0 and
t—=0 cq

)

(ii) ¢(-,t) is a measurable function for all ¢ > 0.
The function ¢ is called a Musielak—Orlicz function.

For a Musielak—Orlicz function ¢ we put ¢, (t) = ¢(z,t) and we associate its
nonnegative reciprocal function ¢, 1, with respect to t, that is

o5 (p(x, 1) = o(z, 0, ' (1) =t.

For a Musielak function ¢ we put
@(1‘7 5) = Sup (St - @(Iv t))
t>0

P is called the Musielak function complementary to ¢ (or conjugate of ).
The Musielak-Orlicz function ¢ is said to satisfy the Ay-condition if for some
co > 0 and a nonnegative function h, integrable in €2, we have

o(x,2t) < copx,t) + h(z) forallz € Q and all ¢ > 0.

When the above inequality holds only for ¢ > ¢y > 0, ¢ is said to satisfy the
As-condition near infinity.

Let ¢ and 7 be two Musielak—Orlicz functions, we say that ¢ dominates =y
and we write v < ¢, near infinity (resp. globally) if there exist two positive
constants ¢ and tp such that y(x,t) < ¢(z,ct) for almost all € 2 and for all
t > to (resp. for all ¢t > 0, i.e. to = 0).

The notation v << ¢ means that v grows essentially less rapidly than ¢, i.e.
for each ¢ > 0, we have

7(x, ct)
EASY) 90(1'7 t)

REMARK 2.1 ([10]). If v << ¢, then for all € > 0 there exists k() > 0 such

that for almost all z € 2 we have y(z,t) < k(e) p(z, t) for all ¢ > 0.

—0ast— oo.

2.2. Musielak—Orlicz space. The Musielak-Orlicz class K, () (respec-
tively the Musielak—Orlicz space L,(2)) is defined as the set of (equivalence
classes of ) real-valued measurable functions u on 2 such that

0p,0(u) = /Qw(x, lu(z)|) dz < +o0

(respectively, / %) (m, u()\x)|) dx < 400 for some A\ > 0).
Q

We define, in the space L (2), the Luxemburg norm by

lullp.0 = inf{A >0: / ¢<x, |“(~””)|> e < 1}
o X\
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and the Orlicz norm by

Wullleo = sup e | fu(z)v(z)d.
lvllz<t Ja
These two norms are equivalent [21].

The closure in L, (€2) of the set of bounded measurable functions with com-
pact support in €2 is denoted by E,(Q). It is a separable space and (E5(2))* =
L,(€2) [21]. We have E,(Q) = K,(Q) if and only if K,(Q) = L,(Q) if and only
if ¢ satisfies the As-condition for large values of ¢ or for all values of ¢, according
to whether 2 has finite measure or not.

We define W'L,(Q) = {u € L,(Q) : D*u € Ly(Q), for all |a] < 1}
and WIE,(Q) = {u € E,(Q) : D%u € E,(Q), for all |a] < 1}, where a =
(a1,...,an), la] = |a1| + ...+ |an| and D*u denote the distributional deriva-
tives. The space W' L, (1) is called the Musielak-Orlicz—Sobolev space.

Let 9, o(u) = > 0,0(D%) and
la|<1

Hu||<1pQ = inf {)\ >0:0,0 (Z) < 1} for u € W'L,(Q).

The functional [[ul|}, o is a norm on W' L,(Q) and the pair (W'Ly (), [lull}, o)
is a Banach space if ¢ satisfies the following condition [21]:

(2.1) there exists a constant ¢ > 0 such that in?2 o(z,1) > ¢
e

The space WL, (1) is identified to a subspace of the product [] L,(2) =
al<1
IIL,, this subspace is o(IIL,, I1E5)-closed. s
The space Wi L,(Q) is defined as the o(IIL,, [IE5)-closure of the Schwartz
space D(Q) in WL, () and the space W E, () as the (norm) closure of ()
in WL, (Q).
For two complementary Musielak—Orlicz functions ¢ and @, we have [21]:

(i) The Young inequality: rs < o(z,7) + @(z,s) for all r,s > 0, x € Q.
(ii) The Holder inequality:

| fper s

We say that a sequence u, C Ly(2) converges to u € L,(§2) for the modular

lz.0, forallue L,(R), ve Lz(Q).

convergence if there exists a constant A > 0 such that

. Up — U\
J:H;o@vvﬂ( X )—0~

This implies the convergence for o(IIL,,I1L5) (Lemma 4.7 of [10]).
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We say that a sequence of functions u,, converges to u for the modular con-
vergence in W1L,(2) (respectively, in W L, (€2)) if, for some A > 0,

- Up — U
i Q*”v“(A) =0

Let W1 L5(2) (respectively, W1 E5(Q)) denote the space of distributions on
which can be written as sums of derivatives of order < 1 of functions in L
(respectively, E).

LEMMA 2.2 ([4]). Let Q be a bounded Lipschitz domain in RN and let p and
© be two complementary Musielak—Orlicz functions which satisfy the following

conditions:
(a) There exists a constant ¢ > 0 such that ingcp(x, 1) >ec.
kS

(b) There exists a constant A > 0 such that for all z,y € Q with |x—y| < 1/2

we have
(2.2) pl@,?) < tA/1os(/lz=y)  for qll t > 1.
p(y.t) ~ -

(c)

(2.3) / oz, 1) dr < co.
Q

(d) There exists a constant C > 0 such that

(2.4) P(z,1) < C  a.e in Q.

Under these assumptions, D(Q) is dense in L,(§), D(Q) is dense in W L, (2)
and D(Q) is dense in WL, (Q) for the modular convergence.

LEMMA 2.3 ([10]). Let F: R — R be uniformly Lipschitzian, with F(0) = 0.
Let ¢ be a Musielak-Orlicz function and let w € W{Ly(Q). Then F(u) €
W3 Ly(Q). Moreover, if the set D of discontinuity points of F' is finite, we
have

ou
F/
aii Flu) = v O

0 a.e. in {x € Q:u(x) € D}.

a.e. in {x € Q:u(x) ¢ D},

LEMMA 2.4 ([10]). Let F: R — R be uniformly Lipschitzian, with F(0) = 0.
Let o be a Musielak-Orlicz function, then the mapping Tr: W' L, (£2) — WL, (2)
defined by Tr(u) = F(u) is sequentially continuous with respect to the weak*
topology o(IIL,, I1E).

LEMMA 2.5. Let f,,, f € L*(Q2) be such that f, > 0 almost everywhere in 2,

fn — f almost everywhere in 0 and

/an(w) dx — /Qf(x) dx.
Then f, — f strongly in L*(9).
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LEMMA 2.6 ([4]). Let Q be a bounded Lipschitz domain of RN and let ¢ be
a Musielak—Orlicz function satisfying the conditions of Lemma 2.2. Assume also
that the function ¢ depends only on N — 1 coordinates of x. Then there exists
a constant A > 0 depending only on 2 such that

/ oz, |v]) de < / o(x, \|[Vo|)dz  for all v € Wy L,(Q).
Q Q

COROLLARY 2.7 (Poincaré Inequality, [4]). Let Q be a bounded Lipschitz
domain of RN and let ¢ be a Musielak—Orlicz function satisfying the same con-
ditions of Lemma 2.6. Then there exists a constant C' > 0 such that

lvll, < C | V|, forallve W01L<p(Q).

REMARK 2.8 ([2]). The result of Lemma 2.6 remains valid if we assume that
the Musielak function ¢ decreases with respect to one of coordinates of x.

The following example shows that the integral form of the Poincaré inequality

cannot, in general, hold.

EXAMPLE 2.9 ([11]). Let p: (—2,2) — [2, 3] be a Lipschitz continuous expo-
nent that equals 3 in (—2,—1) U (1,2), 2 in (—1/2,1/2) and is linear elsewhere.
Let uy be a Lipschitz function such that uy(£2) = 0, uy = A in (—1,1) and
luy] = Ain (—=2,—1) U (1,2). Then

1/2

2
.0 (1) / ux [P dz / A dx
Op( VNS > Jo1/2 =— 300 asA— 0.

- U 2 - -1
2 (45) / [l [P®) da 2/ AP da
-2 -2

2.3. Inhomogeneous Musielak—Orlicz spaces. Let {2 be a bounded do-
main of RY and Q = Q x [0,7], T > 0. Let ¢ be a Musielak-Orlicz function.
For each o € NV, denote by D2 the distributional derivative on Q of order «

with respect to the variable z € NV,
The inhomogeneous Musielak—Orlicz-Sobolev spaces of order 1 are defined

as follows:
WhL,(Q) = {u € Ly,(Q) : DSu € Ly(Q) for all |af < 1},
W' E,(Q) = {u € E,(Q) : D2u € E,(Q) for all |a| < 1}.

The last space is a subspace of the first one and both are Banach spaces under
the norm
lull = Y 1Dgulleq-
lee|<1
We can easily show that they form a complementary system when €2 is a Lipschitz
domain. These spaces are considered as subspaces of the product space IIL,(Q)
which has N +1 copies. We shall also consider the weak topologies o(IIL,, I1Eg)
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and o(IIL,,IILz). If w € WL, (Q) then the function: ¢ — u(t) = u(t, -) is
defined on (0, 7)) with values in WL, (Q), and if, further, u € W E,(Q) then
this function is a W'E,(Q)-valued and is strongly measurable. Furthermore,
the following imbedding holds: W'*E,(Q) C L'(0,T,W'E,(£2)). The space
Wh*L,(Q) is not in general separable, if u € WH*L,(Q), we can not conclude
that the function u(t) is measurable on (0,7'). However, the scalar function
t e |lut)|lp,0 is in L1(0,T).

The space Wol’wEip(Q) is defined as the (norm) closure in W**E,(Q) of
D(Q). We can show as in [9] that when 2 is a Lipschitz domain, then each ele-
ment u of the closure of ©(Q) with respect to the weak™ topology o(IIL,, I1Eg)
is limit, in W% L, (Q), of some subsequence (u,) C D(Q) for the modular con-
vergence, i.e. there exists A > 0 such that for all |a| < 1, we have

D%, — D&
/@(m,“) drdt —0 asn— co.
Q

This implies that (u,) converges to u in WL, (Q) for the weak topology
o(IIL,,IILg). Consequently
(m)”(an’HEG) _ (M)U(HLWHLG).
This space will be denoted by I/VO1 " L#(Q). Furthermore,
Wy Ep(Q) = Wy Ly (Q) NTIE,.

By using Corollary 2.7, there is a constant ¢ > 0 such that for all u €
W, * L, (Q) one has

Z [DZull,q <c Z Dz ulle,q-

lal<1 lal=1

Thus both sides of the last inequality are equivalent norms on VVO1 P L, (Q). We
have then the following complementary system:

Wy "Lo(Q)  F
Wy Ey(Q) Fy )’

F being the dual space of VVO1 TE,(Q). It is also, except for an isomorphism,
the quotient of IILgz by the polar set (W()l’mE¢(Q))l, and will be denoted by
F =W=1"L(Q) and it is shown that

W’l’zLa(Q) — {f - Z Dl fo: fa € Lz,a(Q)}'
lal<1

This space will be equipped with the usual quotient norm

£ =f Y falza

laf<1
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where the inf is taken on all possible decompositions

f= { Y Difaifac Lw(Q)}-

|| <1

The space Fy is then given by

Fy = {f =Y Difa:fac Ew(Q)}

|| <1

and denoted by W17 E5(Q).

DEFINITION 2.10. We say that u,, — u in W™ 1*L(Q) + L'(Q) for the
modular convergence if we can write
Up = Z Dou® +u? and u= Z Dou® + P
la|<1 la]<1
with u? — u® in L(Q) for the modular convergence for all |a| < 1 and u, — u°
strongly in L*(Q).

REMARK 2.11. We can easily check, using Lemma 2.3, that each uniformly
Lipschitzian mapping F', with F'(0) = 0, acts in inhomogeneous Musielak—Orlicz—
Sobolev spaces of order 1: W'*L,(Q) and Wy L,(Q).

Let us define, for all 4 > 0 and all (z,t) € Q, the time mollification of
a function u € L,(Q), by

(2.5) walaont) = [ o) expluts ) ds,

—0o0

where u(z, s) = u(x, s)X(0,1)(s) is the zero extension of w.

LEMMA 2.12. [3]

(a) If u € Ly(Q), then u, — u in L,(Q) for the modular convergence, as
u — +00.

(b) If ue WH*L,(Q), then u, — u in WLy, (Q) for the modular conver-
gence, as p — +00, and du, /0t = p(u —uy).

LeMMA 2.13 ([3]). Let ¢ be a Musielak-Orlicz function and let u, be a se-
quence in WL, (Q) such that u, converges to u weakly in WY L,(Q) for
o(IIL,, I1E3) and Ou,, /0t =hy+ky, in ©'(Q) with (hy,)y, bounded in W17 L(Q)
and (kp)n bounded in the space M(Q). Then, u, converges to u strongly in
LL Q). If further, u, € Wy™" Lx(Q), then u, converges to u strongly in L'(Q).

loc

LEMMA 2.14. Let Q be o bounded open Lipschitz domain of RY, then
{uem 1o 5 ewrio@ + 1@} < o, 1) 1))

PROOF. It is easily adapted from that given in Lemma 5 of [16]. O
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PROPOSITION 2.15 ([3]). Let (un)n be a bounded sequence in Wy ™" L,(Q)
such that Ou, /Ot is bounded in W~1"L5(Q) + LY(Q). Then u,, is relatively
compact in L'(Q).

LEMMA 2.16 ([3]). Let u € Wy "L, (Q) be such that du/dt € W~ Ls(Q) +
LY(Q) and u > 9 with ¢ € Wol’ng,(Q) N L>(Q). Then, there exists a smooth
function (u;) such that u; > 1, u; —u for the modular convergence in Wol’mLLp(Q)
and Qu; /0t — du/Ot for the modular convergence in W—1*L=(Q) + L' (Q).

3. Assumptions and main result

Let Q be a bounded Lipschitz domain of RN (N > 2) and Q = Q x (0,7),
T > 0. Let ¢ and v be two Musielak—Orlicz functions such that v << ¢ and ¢
satisfies the conditions of Lemma 2.6.

Let A: D(A) € Wy ™" Lo(Q) — W% L5(Q) be a mapping given by A(u) =
—diva(z,t,u, Vu) where a: Q x R x RV — R¥ is a Carathéodory function
satisfying for almost every (z,t) € Q and all s € R, ¢ # ¢* € RY

(3‘1) |a(;v,t,s,§)| < kl(c(xvt) +¢;17(x7 kQ‘SD +¢;1QO(CC, k3|€|))7
(32) (a(z,t,8,8) —a(z,t,5,&)) (€= &) >0,
(3.3) a(@,t,5,€) £ > ap(z,[E]),

where c( -, -) belongs to Ez(2), ¢ >0, k; >0 (i = 1,2,3) and o € RY..
Let g: Q x R x RN — R be a Carathéodory function such that, for almost
every (z,t) € Q and for all s € R, £ € RV,

(3.4) lg(x,t,5,8)| < b(Is]) (¢ (2, ) + o(x, [€]),

where b: R — R* is a continuous nondecreasing function in L!'(R) and ¢/(-, -)
is a given nonnegative function in L!(Q). Finally, assume that

(3.5) feL’(Q) and wuge€ L'Y(Q).

For all s € R and k£ > 0, we define the truncation at height k by
Tk (s) = max(—k, min(k, s)).

We shall prove the following existence theorem

THEOREM 3.1. Assume that (3.1)—(3.5) hold true, then there exists at least
one solution of the unilateral problem corresponding to (1.1) in the following
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SENSE:

u>vy ae inQ, Ti(u) € WyLy(Q), gla,t,u,Vu) € LY(Q),

/Sk ))d:v+/07<g: Tk(u—v)>dt

a(x,t,u, Vu) - VI (u — v) dx dt

Qr
+/ gz, t,u, Vu) Ty (u — v) de dt
(3.6) Qr

< f Ti(u—v) dmdt—|—/ Sk (ug — v(0)) dz,
Q- Q

for allv € Wy" L,(Q) N L>(Q) such that
& W LLQ) + I'(Q)

and v > 1 almost everywhere in Q

and for all k >0, 7€ (0,7T),

where Q, = Q x (0,7),¢ € Wy " E,(Q) N L™(Q) and Si(r) = [y Ti(s) ds.

PROOF. Step 1. A priori estimates. Consider the following approximate
problem:

Un € WOLIL@(Q% Un(z,0) = ug, a.e. in
T
/ <8u",un — v> dt +/ a(x,t,un,vun) . V(un — ) dx dt
0 ot Q
(Pn) +/ gn(x,t,un,Vun)(un —’U) dx dt
Q

/ T (up, — ¥) ™ (up, — v) dedt

/fn up, —v)drdt for all ve Wy Ly(Q)NL=(Q),

where (f,) C D(Q) such that f, — f strongly in L*(Q), ug, C D(£) such that
Uon — ug strongly in LY(Q) and g, (x,t,s,€) = g(z,t,5,€) /(1 + |g(x,t,8,€)|/n).
Since |gn(z,t,5,&)| < |g(z,t,s,&)| and |gn(z,t,8,€)] < n, then there exists,
thanks to [3], at least one solution of the approximate problem (P,,).

For h > [[¢||oc and G(r) = [; (b(s)/c) ds, where o is the constant defined in
formula (3.3), taking v = u,, — exp(G(uy))Tk(un — Th(uy)) as a test function in
the problem (P,), we get

/0 <88utn exp(GWn))Tk(un—Th<un)>>dt
+ [ alasty i Van) - VT, = Thun)) explG ) dads
Q

+/ a(x,t, un, V) - V(exp(G(un))) Tk (un — Th(uy)) dz dt
Q
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+ / gn (@, t, un, Vuy,) exp(G(uy )Tk (un — Th(uy,)) de dt
Q
- n/ (T (i, — 1)) exp(G(ttn)) T (1 — Th (1)) d dt
Q

—/anexp(G’(un))Tk(unTh(un)) dx dt

which gives

T b "
/ <gt xp (G (1tn)) T (1t — Th(un))> dt
0

+ / a(x,t, Un, V) - Vi, exp(G(uy,) dz dt
{h<|un|<h+k}

+ / a(x,t, Un, V) - VunM exp(G (un)) Tk (wn — Th(uy)) da dt
Q (0%

+/ In (T, by U, V) exp(G(un)) Tk (un — Th(uy)) do di
Q

- n/QTn(un — )" exp(G(un)) Tk (tn — Th(uy)) dedt

- /Q £ exp(G () T (tn — T (1)) dl .

Using the coercivity conditions (3.3) and (3.4), we obtain
T/ du,
61 [ (T oGl Tl ~ Tafun) )
0
+ / a(x,t, Un, V) - Vuy, exp(G(uy,)) dz dt
{h<|un|<h+k}
=1 [ T~ )7 exp(Gln) T — T () d s
Q
S/ (|fnl + ' (z,1) exp(G (un)) Tk (tup, — Th(uy)) da dt.
Q
On the other hand, we have
T/ ou,
/ <6t’ exp(G (un)) T (upn — Th(un))> dt
0
- / By (1 (T)) dit — / By (uion) d,
Q Q

where
Bn(r) = [ Tis = Th(o)) exp(Ge) s

Since |G (un)| < [|b]| L1 )/, we have

b
0< / Bion(tion) dz < kexp (””;(R)) uonll () = C k.
Q
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Using the fact that [, Bx,(un(T)) dz > 0 and the coercivity condition (3.3), we
get from (3.7)

a/ oz, [Vuy|) exp(G(uy,)) dz dt
{h<Jun|<h+k}

—-n /Q T (g — )~ exp(G(un) Tk (wn — Th(uy)) dedt < Ck,

thus

—n/ T (g — )~ eXp(G(un))Tk(un _kTh(un)) dxdt < C.

Q

Since

n/QTn(un — )" exp(G(un)) Tk (tn, — Th(uy))dezdt >0
and

exp(G(—00)) < exp(G(un)) < exp(G(+00)),

(3.8)

bl
(G0l < exp (1IEE),

then, by letting k£ tend to infinity and using Fatou’s Lemma, we obtain
(3.9) n/ To(un — )" dedt < C.
Q

Now, taking v = u,, — exp(G(tn))Tk(tn) T X(0,r) as a test function in the approx-
imate problem (P,) with 7 € (0,7'), we get

T o "
/O <gt,exp<G<un)>Tk<un>+x<ow>>dt

—I-/ a(z,t, un, Vuy,) - V(exp(G(un))Th (u,) ") dz dt

-

+ / Gn (@, t, Un, Vuy) exp(G(un)) Tk (un) T da dt

r

- n/ Tr(un — )~ exp(G(un)) T (un)t do dt

T~

= fnexp(G(up))Th(un) ™t da dt,
Q-

then
T
ou,,
(g exp(Glun Tt o
0

+/ a(@,t,un, Vuy,) - VT (un) " exp(G(uy,)) do dt

-

—|—/ a(x,t, un, V) - VunMexp(G(un))Tk(un)+ dx dt
a

-
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- n/ T (un — )~ exp(G(uy)) T (uy)t da dt

-

< / |gn (2, t, Up, Vg )| exp(G(un)) Tk (un) ™t da dt

-

+ / | fnl ei’(li)(G(Un))Tk(un)+ dz dt.

-

Let By (r) = [, Te(s)" exp(G(s)) ds, we have

b
By (r)| < kexp 7H HLl(R) r,
B L

and

[ (% exp @ Tt v Yt = [ Bilun() e~ [ Butuon) o

Then
T b n
/ <8ut ,exp(G(un))Tk(un)+x(0,T)>dt
0

b1
> / Bi(un (7)) dz — kexp (”'g““) luonl s,
Q

which gives

(3.10) /QB;C(un(T)) dx + / a(z,t, un, Vuy) - VT (un) T exp(G(uy)) do dt

-

—|—/ a(x,t, Un, Vi) - VUHMexp(G(un))Tk(un)Jr dx dt
a

-

- n/ T (i — )~ exp(G(un))Th (uy) ™t da dt

.

< / 9 (2 4, V)] exD (G () T )+ it it

bl| 1
—|—/ | fn| exp(G () Tk (uy) " dax dt + K exp <””Z(m>||u0n||,;1(g).

Moreover, since By (u,(7)) > 0, we have

/ a(z,t, un,Vuy,) - VI (un) " exp(G(uy,)) dz dt

T

- n/ T (i — )~ exp(G(un)) T (uy)t do dt

-

: / (fal + ¢ (@,1)) exp(G (un)) T (un) ™ da dt

-

bl e
e esp (2, o
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then

(3.11) / alx, by Up, V) - Vuy, exp(G(uy,)) de dt
{Oﬁunik}

- n/ To(un — )~ exp(G(uy)) Tk (uy) T dx dt

18]
<kexp (a“ (£l @ + 1€ ll @) + llwonll 2 () = CF.

Using (3.9), we have
‘ - n/ To(un — )~ exp(G(uy)) Tk (u,) ' da dt‘

bl| .1
< kexp ('”Z“‘“) n/ Ty (up — )~ da dt = Ck,

-

therefore, inequality (3.11) becomes
/ a(x,t, un, V) - Vuy, exp(G(uy,) dedt < Ck
{0<u, <k}
and, by using (3.8), we obtain
(3.12) / a(z, t, Uy, Vuy,) - Vu, dedt < Ck.
Hence, from (3.3), we get

(3.13) / o, V) da dt < Ch.
{0<u, <k}

On the other hand, if we take v = u, + exp(G(un))Tk(un)” X(0,r) as a test
function in the approximate problem (P,,) and we argue as above, we obtain

(3.14) / a(x,t, uy, Vuy,) - Vu, dedt < Ck
{—k<u, <0}
and so
(3.15) / oz, |Vun|) dz dt < Ch.
{—k<u,<0}
Combining (3.13) and (3.15), we deduce that
(3.16) / o(x, VT (uy)|) dedt = / o(z, |Vuy|) dx dt < Ck.
Q {|un|§k}
Finally,
(3.17) ||Tk(un)||W01'wL¢(Q) <Ck forallmeN,

where C' is a constant independent of n.
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Now, we shall prove that for all £ > h > 0, there exists a constant C' such
that

(3.18) /Q(p(I, VT (un — Th(uyg))|) dedt < Ck.

For k > h > 0 and a real positive  small enough, testing (P,) by the admissible
function v = u, — Nexp(G(up)) Tk (uyn — Th(un))+x(0,r)a we get

+ / a(x, t,un, Vug) - VT (un — Th(un)) T exp(G(uy,)) do dt

+ / a(x,t, up, V) - VUH@ exp(G (un)) Tk (un — Th(uy)) " dz dt

-

- n/ T (tun — )~ exp(G(un)) T (tpn — T (un))t do dt

-

S/ |gn (2, t, Uy, Vg )| exp(G(un)) T (ty — Th(uy)) ™ da dt

T

[ 1l exp(G ) Tl ~ Talua)* .

-

Let B,ih(r) = [y Te(s — Th(s)) " exp(G(s)) ds. Using (3.4) and (3.9), yields

/Q B,j’h(un(r)) dx —|—/ a(z,t,un, V) - VI (tn — Th(un)) "t exp(G(uy)) dz dt

-

= / (Ifnl + ¢ (@,1)) exp(G (un)) Tk (un — Th(un)) " da dt

™

b(u,,
+ kexp ( (a )) <||U0n||L1(Q) + C>,

then, by using the fact that B,j)h > 0, we get

/ a(x, t, un, V) - Vu, exp(G(uy,)) dx dt

18l @
< kexp (a” (£l @ + ¢l + llwon | 1) + C) = Ck
which gives by (3.3),
(3.19) / o(x, |Vuyl|) de dt < Ck,
{h<u,<h+k}

where C' is a positive constant not depending on n, k and h.
Similarly, taking v = u, + nexp(—G(un))Tk(tn — Th(un))” X(0,r) as a test
function in (P,), we obtain

(3.20) / o, |V |) dz dt < Ch.
(—h—k<u,<—h)
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Combining (3.19) and (3.20), we obtain the estimate (3.18).
On the other hand, let £k > h > 0 be large enough. By Lemma 2.6, there
exists a positive constant A such that

/an(x, 1T (un _)\Th(unm) dx dt < /ng(am IVTk(un — Th(uy))|) dedt < Ck,

which implies that

meas{|u, — Th(u,)| > k}

< ;/ go(x k) dx dt
= b (@ k/A) Ju sy T\ A
1

_ C,k
~ inf oz, k/X)

1
21Tk (g, — T (un, S otz /N
S

for all n and for all k > h > 0. We have for all n € N and for all k > h >0
C(k—h)
inf o(z, (k= h)/A)

meas{|u,| > k} < meas{|u, — Th(un)| >k —h} <

Letting k to infinity, we deduce that meas{|u,| > k} — 0 as k — oco. For any
w >0, we have

(3.21) meas{|uy, — up| > p} < meas{|u,| > k}
+ meas{|un,| > k} + meas{| Tk (un) — Tk (um)| > p}.

Since Ty (uy,) is bounded in W, " L,(Q), there exists some vy € Wy ™" L,(Q) such
that Ty (u,) — v weakly in Wol’xL@(Q) for o(IIL,,I1Eg), strongly in E,(Q)
and a.e. in Q. Then, we can assume that Ty (u,,) is a Cauchy sequence in measure
in Q.

Let € > 0. By (3.21) there exists k() > 0 such that

meas{|u, — un,| > p} <e, forall n,m > hy (k(e), n).

This proves that (uy), is a Cauchy sequence in measure in @, thus it converges

almost everywhere to some measurable function u. Then

(3.22)  Ti(un) — Ti(u) weakly in Wy " L,(Q) for o(I1L,, [1Ey),
strongly in E,(Q) and a.e. in Q.

Step 2. Almost everywhere convergence of the gradients. For k € N, let
(vF); € D(Q) such that v¥ — Ty(u) for the modular convergence in Wy L,(Q).
Denoting by x;.s and xs, respectively, the characteristic functions of the sets
Q= {(z.t) € Q: [VI}(v])| < s} and Q° = {(z,t) € Q : [VT}(u)| < s}. We
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will introduce the following function:

1 if [s| < m,
(3.23) hin(s) =sm+1—|s| ifm<|s|<m+1,
0 if |s] >m+1,

where m is a nonnegative real parameter with m > k.
First, we show boundedness of (a(z,t,un, Vuy,)), in (Lz(Q))N. Let 9 €
(E,(Q))N be such that [|9]|,.q = 1. We have

/Q (a(l‘,tTk(un)aka(Un)) - a(m,Tk(un), ;’;)) (VTk(un) _ ;’;) de >0

then

/kia(x,t,Tk(un),VTk(un))ﬂdx
qQ k3
S/ a(x,t, Ty (un), VI (uy)) VTk(uy) dz
Q

el £) i)

<ok | a<x,t7Tk<un>,ﬂ)vmun>dI
Q ks

1 9
+ — [ alx,t,Tp(u,), — | ddzx.
i fa(ernon. 1)

By using Young’s inequality in the last two terms and (3.16) we get

/Q o, t, T (), VT () e

oz la(x, t, Tk (un), 9/ ks)] de
3k

< Clkks + 3k, (1 + kg)/
Q

+3k1k3/ ga(x,|VTk(un)|)dx+3k1/ o(x, |9]) dz
Q Q

(p(x’ la(z, t, Ty (un), ?9/163)|) da.

< Ckks + 3Ckkyks + 3k + 3k (1 + ks) /

Q 3k1

On the one hand, by using (3.1) and convexity of @ we have

(i, (LTI < 2 ptncla) + 2 alT )] + o 9D,

w

On the other hand, since 7 grows essentially less rapidly than ¢ near infinity
there exists C'(k) > 0 such that y(x, k2| Tk (un)|) < v(z, ke k) < C(k)p(z,1) (see
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Remark 2.1), then we obtain by integrating over € and using (2.3),

fofetngon)

< ;</Q<p(a:,c(9c))dm—i—C’(k)/ng(x,l)dx—i-/Qap(:c, |19|)d33) <y,

where C}, is a constant depending on k. We deduce that

/ a(z,t, Ty (un), Vg (u,))9 dx < Cy, for all ¥ € (E,(Q))Y with [|[9]|,.0 = 1,
Q

and thus
lla(z, t, Tk (un), VI (un))llz,q < Ck,

which implies that (a(z,t, Tj(un), VI%(uy)))n is bounded in (Lz(Q))V. Thus,
up to a subsequence, there exists I, € (L(Q))", such that

a(z,t, T (un), Vi (un)) = U in (Lx(Q))Y for o(T1L5, TIE,).

Now, we shall prove that

m—r oo n—oo

(3.24) lim lim sup/ a(x,t, Upn, Vi,)Vu, dzdt = 0.
{m<|un|<m+1}

Taking v = up, + exp(—G(up))T1 (up, — Trn(urn)) ™ as a test function in (P,), we
obtain

- /0T<agf > exp(=G (un)) T (un — Tm(un>>—> dt

+ / a(x, t,un, V) - Vu, exp(—G(uy,)) dx dt
{—(m+1)<u,<—m}
+ n/ Ty — 1)~ exp(— Gt )Tty — T (1))l dt
Q
< [ 150l XD(G )Tt~ T ) dr
Q

+ / 1€ (2, 8)] exp(— Gt ) Tty — Ton (1)) d .
Q
Let i,
B (r) = _/ Ty (5 — Ton(s))™ exp(~G(s)) ds
0
and using the fact that
n/ To(un — )~ exp(—G(un))T1 (un — T (uy))” dxdt >0,

Q

we obtain

/ B (un(T)) dx + / a(x, t,un, V) - Vu, exp(—G(uy,)) dx dt
Q {=(m+1)<u,<-m}
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10l 21 (»)
< —_ 7
exp ( /{|un>m} | fr| dz dt

+/ |C/‘dxdt+/ |u0n|dx>.
{lun|>m} {luon|>m}

Since By, (r) > 0 and ¢/(-, -) € L'(Q), we deduce, by Lebesgue’s Theorem,

(3.25) lim lim sup

/ a(z, t, un, Vun)Vu, dzdt = 0.
MO n—oo J{—(m41)<un<—m}

As above, taking v = u, —exp(G (un)) T (uy — T (un)) ™ as a test function in the

approximate problem (P,,), where u is the constant defined in (2.5), we obtain

(3.26) lim lim Sup/ a(x,t, Un, V)V, drdt = 0.
{m<u,<m+1}

m—00 noo

Thus (3.24) follows from (3.25) and (3.26).
Now, taking v = u, — exp(G (un)) (T (un) — Tk(vf)u)Jrhm(un) as a test func-
tion in the approximate problem (P,), gives

T (7
(3.27) / <f’a;,exp<e<un>><mun>Tk<v§>u>+hm<un>>dt

+/ a(x,t, tn, V) - V(Ti(uy) — Tk(vf)u)
{Tk (un) =Tk (“;'C)MZO}

- exp(G(un)) hm(up) dz dt

—/ exp(G(uy)) a(x,t, un, Vuy,)
{m<u,<m+1}

-V (T (uy) — Tk(vf)u)Jr dx dt

- ’I’L/ m(Tn(un - ¢)_>

Q

- exp(G (up)) Tk (uy) — Tk(v;?)#)+hm(un) dx dt
§/ ' (z,t) exp(G(un)) (Tx (un) — Tk(vf)u)"’hm(un) dx dt

Q

+ / frexp(G(up))(Tk(un) — Tk(v?)u)+hm(un) dx dt.

Q

Note that

— / exp(G(un)) a(z,t,un, Vuy) - Vg, (Tg(u,) — Tk(vf)#)Jr dx dt
{m<un<m+1}

b
< 2kexp (”'LI(R)) / a(x,t, uy, Vuy,) - Vu, dz dt.
o {m<u,<m+1}

From (3.24), we deduce that the third term of (3.27) tends to zero as n,m — co.
On the other hand, since

(T(un) = Th(0),) " = (T(w) — T(vh),) weakly in E,(Q)Vas n — oc,
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(T (u) — Tk(v;-“)u)Jr = (T (u) — Tk(u)#)Jr weakly in EW(Q)NaSj — 00,
(Ti(u) — T (u),)™ —0 weakly in E,(Q)Nas u — oo,

then, by Lebesgue’s Theorem, the right-hand side of (3.27) converges to zero and

‘ — n/QTn(u” — )" exp(G(un))(Tk(uy) — Tk(vf)H)Jrhm(un) dx dt| — 0,

as n,j and p — oo.
Denote by e(n,m, j, 1) various sequences of real numbers such that

lim lim lim lim e(n,m,j,pu) =0.
HU—>00 j—00 M—>00 N—>00

Consequently, (3.27) becomes

T (7
(3.28) / @;,exp(c:(un»(ﬂ(un) —Tk<v§>#>+hm<un>> dt

+ / exp(G(uy)) a(x, t, tn, Vi)
{T% (un)_Tk(vf);LZO}

By Lemma 3.2 of [23], then

(G explGun ) Talin) = i), ) e = o)

Concerning the second term of left-hand side of (3.28), we have

/ exp(G(un)) a(z,t, un, Vuy,)
(T ()T (05),} 20}

V(T () = T(v]) ) B () de dit

_ / exp(G(uun)) (e, t, Ti (tn), VTk(un))
(T (un) =T (v),,} 20}

-V (Tk(un) — Tk(vf)u) hom () dz dt

—/ exp(G(uy)) a(z, t, un, Vuy,)
{Tk(un)_Tk(Uf)uZ(); ‘un|>k}

VT (08 B () de dit.
Observe that

(3.29) exp(G(un))a(x, t, uy, Vuy,)

’ /{Tk (un)_Tk('U;-C)u >0; |un|>k}

VT (08 B (un) da dt
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<C

/ (2, t, Ty (t), Vg1 (1)
{T% (u,,L)ka(v;.‘)u >0; |un|>k}

. |VT]€(U§C)M| dzx dt.

It is easy to see that

/ a2, Ton 1 (1), Vs () VT4 (05) 0] de it = e, 5, ),
{|un|>k}

then

(3.30) / exp(G(un)) ala,t, Ti(un), Vi ()
(T ()~ Ty (v1), 20}
V(T (un) — Tk(”;‘c)u) b (up) do dt < e(n, j, ).

On the other hand, we have

(3.31) exp(G(un)) a(z,t, Tk (un), VI (uy))

/{Tk(un)Tk(v}“)#>0}
-V (Tk(un) — Tk(vf)u) B (uy,) dz dt

>

/ [a(x, t, Tk (un), VI (un))
{Tx (un) =Tk (v¥) . >0}

- a(x, t, Tk (un)v VT (’Uf)uxi)}
VT (un) — VT (vf)uxg] exp(G(uyn)) hm(uy) dx dt

+/ a(x,t,Tk(un),VTk(vf)ng)
{Tk (un) =Tk (v}) >0}
VT (uy) — VTk(vf)#Xg] -exp(G(uy)) b (uy) dedt

-C la(x, t, Tk (un), VI (u)|| VT (Uf)” hom (uy) dz dt.
Q\Qi

Tending n, j, m and p to infinity in the third term on the right-hand side of
(3.31) one easily has

(3.32) — C/ la(x, t, Tk (un), VTk(un))HVTk(vf)M b (uy,) dzz dt
Q@7
= —C/ lg [VTi(u)| dx dt + e(n, j,m, ).
Q\QJ»#
The second term on the right-hand side of (3.31) reads as

(3.33) / a(@,t, T (un), VTk(vF)ux9)
{Tk (un)_Tk(”f)u 20}

[VT(un) = VTu(08),0] - exp(Glun)) P () dar it
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a(z,t, Ti(un), VI(05)x2) VT ()

/{Tk (un) =T (v5), >0}
- exp(G(un)) hm(un) dz dt

-/ s, Telun), T(0h) ) VT (o))
{Tx (un) =Tk (vF) . >0}
- exp(G(un)) hm(uy) dz dt.
Since
exp(G(uy)) a(z, t, T (un), VI (vf)u Xi) P () X{Ty (wn) = Tx (v5) .} >0}
— exp(G(w)) a(w, t, Ty(w), VT3 (0] ) x2) Pn (1) X{Ty (u)~Tx (v5),,} >0}

strongly in Ez(Q)" as n tends to infinity and VT (u,) converges to VT (u)
weakly in L,(Q)N for o(IIL,,I1E5), then

/ exp(G(un)
{Tx (un) =Tk (vF) . >0}
calx, t, Tk (uy,), VTk(vf)#Xg)VTk(un) R (uy,) da dt
-/ exp(G(u)
{To ()~ Ta (v4),, >0}
calz, t, Ty (u), VTk(vf)ng)VTk (w) by (u) dx dt 4 £(n)

and by letting j, s and p tend to infinity, one easily has

/ exp(G(u)) a(z, t, T (u), VTk(Uf)HXg)VTk(u) B (w) d dt
{T (w) =T (v}) >0}

= /Q exp(G(u)) alx,t, Tip(u), VI (w)) VT (uw) by, (u) de dt + e(n, j, s, 1).

Also, for the second term on the right-hand side of (3.33) it is easy to see that

— / exp(G(up))
{Tk(un)—Tk(vfmzo}
a(z,t, Ty (un), VTk(vf)ng)VTk(vf)uxg hom (Uy,) dz dt

=— / exp(G(u)) a(z, t, Ty (u), VI (w)) VT (w) hp(u) de dt + e(n, j, s, @),
Q
which gives by adding the two last equalities

(3.34) / exp(G(un)) a(z,t, Tk(un),VTk(vf)ﬂxg)
{Th (un) =T (v}) >0}

(VT (un) — VTk(U?)MXi;] him(un) dz dt = g(n, j, s, ).
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Combining (3.30)—(3.32) and (3.34) we find
(3.35) exp(G(—oo))/ [a(z, t, T (un), VT (un))
{Tx (un) =Tk (v¥) >0}

—a(x,t, Ti(un), VT (v5)x3)]
VTk(uy) — VTk(’U;C)MXZ,] P (uy,) dz dt

<C Imt1 |VTi(u)| dzdt +e(n, 4, s, p).
Q\Q#

Similarly, by taking v = u, + exp(—G(un))(Tk(un) — Tk (vf)#)*hm(un) as a test
function in the approximate problem (P,,), we get

(3.36) exp(G(—oo))/ [a(x, t, Tk (un), VI (un))
{T% (un) —Th (v5) . <0}

- a(x, t, Tk (un)’ VT (Uf)uxi)]
VT (uy) — VTk(vf)ﬂxg]hm(un) dx dt

<C lm+1| VT (w)| dx dt + e(n, j, s, p).
Q\Q®

Consequently, from (3.35) and (3.36), we get

(3.37) exp(G(—0)) /Q[a(a:7 t, T(un), VIg(uy)) — a(z, t, Tk (uy,), VTk(U;-C),LXZ)]
[ VTe(un) — VTk(vf)uxg]hm(un) dx dt
SC/ lin+1| VT (w)| dx dt + e(n, j, s, 11).
Q\Q®
On the other hand, we have
(3.38) /Q[a(x,t,Tk(un),VTk(un)) —a(x, t, T (un), VI (u)xs))
[VTi(un) = VT () X 5] b (ur) da dit
- /Q[a(x’ t, Tk(un)v VTk(un)) - a(x, t, Tk(un)v VTk(v;'c)#Xg)]

VTe(up) — VTk(vf)uxg] B (uy,) dzx dt

:/Qa(x,th(un),VTk(Uf)HXg)[VTk(un)—VTk(vf)MXg] B (uy,) dz dt
= [ 0 ), VT (97 0t0) 9T )] ) vl

+/Qa(x,t,Tk(Un)aVTk(“n))

VT (vf)uxg — VT (w) uXs] ham () da dt.
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It is not difficult to show that each integral on the right-hand side of (3.38) has
the form e(n, j, u) or e(n, j, s, u), which gives

(3.39) /Q [a(z, t, Ty (un), VT (un)) — a(z, t, T (un), VT (1) xs)]

AV Tk (tn) — VT (1) uXs] B () daz dit

- /Q[a(fm t, Tho(un),V Tio(un)) — a(, t, T (un), VT(05) 2]

(VT (un) = VTe(WF) uX2] han () da dt < e(n, 4, s, o).
Also, using (3.37) and (3.39), we have
(3.40) /Q [a(x, t, Th(un),V Tk (un)) — a(a, t, Tr(un), VT (u)xs)]

AV Tk (tn) — VT (1) uXs) B () d , dt
<C | VT (w)| dz dt + £(n, 7, 5, ).

QAQ\Q°
Now, remark that

(3.41) /Q [a(@, t, T (tn), VT (n)) — a(@, t, Te(un), V(1) xs)]
VT (un) — VT (u)xs] dar dt
= /Q [a(@, t, T () VT (un)) — alz, ¢, T(un), Vi (u)xs)]
(VT () — VT (1) Xs] i (1) det dlt
+ /Q [a(@, t, T (un), VTi(un)) — a(@, t, T (un), VTi(w)xs)]

[VTk(ur) = VT (w)xs] (1 — hop(uy)) dz dt.

Taking into account that 1—h, (uy,) = 01in {|u,| < m} and {|u,| < k} C {Jun| <
m}. For m large enough the second term on the right-hand side of (3.41) can be
written as

(3.42) -/Q[a(gv7 t, Tk(un), VI(un)) — a(z, t, Tk (un), VT (u)xs)]
VT (un) — VT () xs](1 = by (uy)) da dt

= —/Qa(m,t,Tk(un),VTk(un))VTk(u)xs(l — hy(uy)) dz dt

—/Qa(m,t,Tk(un),VTk(u)Xs)VTk(un)(l—hm(un))d:cdt.

Since (a(z,t, Tk (un), VTk(un)))n is bounded in Lx(Q)N and VT (u)xs(1 —
hm (un)) converges strongly to zero in E,(Q)”, then, the first term on the right-
hand side of (3.42) converges to zero as n — o0o.
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The second term converges also to zero as n — oo, because
Cl(ﬂ]‘, ta Tk (un)7 VTk (U)Xs) — a(x, ta Tk (’U,), VTk (u)Xé) Strongly in L?(Q)N7
VT (n) (1 = A (un)) — VT (w) (1 — b (u)) weakly in E,(Q)".

Consequently,

(3.43) lim [a(z,t, Tk (un), VT (uy)) — alx, t, Tr(un), VI (u)xs))

n—oo Q
[VTk(un) — VTe(u)xs](1 — hm(uy)) dzdt = 0.
Combining (3.40), (3.41) and (3.43), we get

/Q[a(wv t, Tk(un)v ka(un)) - a(x, t, Tk(un)7 VTIC(”)XS)]
! [VTk(un) - VTk(u)Xs](]- - hm(un)) dxdt
< C/ ln+1| VT (uw)| dx dt + e(n, j,m, s, ).
Q\Q®

Letting n, j, m, s and p tend to infinity, we conclude

(3.44) /Q[a(m,t,Tk(un), VTi(un)) — a(x, t, T (un), VT (u)xs)]

[VTi(upn) — VT (u)xs]dedt — 0 as n — oo,

and thus, as in the elliptic case (see [8]), there exists a subsequence also denoted
by u, such that

(3.45) Vu, = Vu ae.in Q.

Moreover, by virtue of (3.3), Lemma 2.5 and Vitali’s Theorem, one can deduce
that

o(x, |VTk(un)|) = o(z,|VTk(u)|) strongly in L'(Q).
Now, we will show that w > ¢ almost everywhere in Q.

Turning to inequality (3.9), we have fQ T, (up — )" dedt < C/n and by
using Fatou’s Lemma, we deduce that fQ(u — 1))~ dx dt converges to zero as
n — 0o, then (u—1)~ = 0 almost everywhere in Q. Consequently u > 1 almost
everywhere in Q.

Step 3. Equi-integrability of the nonlinearities. As a consequence of (3.22)
and (3.45), one has g, (x, t, un, Vu,) = g(z,t,u, Vu) almost everywhere in Q, so
it suffices to show that g, (z,t, u,, Vu,) are uniformly equi-integrable in Q. Let

Bulr) = [ explG() [ brxiran dr ds.
0 0
Taking
V= Uy — eXp(G(un))/ b(s)X{s>n} ds
0
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as a test function in the approximate problem (P,,), we get
/ th(u(T))dx —|—/ a(z,t, U, Vg ) Vg b(Un ) X (s>h) exp(G(un)) do dt
Q

Q
b(un)

+/ a(x,t, Un, Vig)Vuy, / b(8)X{s>n} ds dx dt
Q 0

+ [ gnlentien, Vun) exp(Glun)) [ b6 gy dsdade

Q 0

- n/ T (un — )~ exp(G(un))/ ' b(8)X{s>h} dsdx dt
Q 0

< [ Ualexp(Glun) [ bsIxgmn dsdodt+ [ Biluon)do.
Q 0 Q

then
/ a(z,t, Un, Vg ) Vi b(tn ) X (s>n} do dt
Q
< ([ uoras) e (P22 s + 1 lir + ol + )
Since

/ A b(8)X{s>h} ds < / b(s) ds
0 h

and by the coercivity condition (2.1), we get

/ oz, [Vuy|)b(uy,) de dt < C’/ b(s) ds,

{un>h} h

which gives, since b € L!(R),

(3.46) lim sup/ o(x, |Vun|)b(uy,) dx dt = 0.
h—oo neN {un >h}

As above, using

0
V= Uy — exp(—G(un))/ b(8)X{s<—n} ds

Un

as a test function in the approximate problem (P,,), we obtain

(3.47) lim sup/ o(x, |Vug|)b(uy,) dz dt = 0.
{un<—h}

h—00 peN

Combining (3.46) and (3.47), we conclude that

lim sup/ oz, |Vug|)b(uy,) dz dt = 0.
{lun|>h}

h—00 peN

It follows that, for h large enough and for a subset F of Q,

1. n n
|E1|§O E(p(x, [Vun,|)b(uy,) de dt
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< max(b(s)) lim o(x, VT (uy)|) dz dt
|s|<h |E|—0 )

+ lim o(z, | Vun|)b(uy,) dx dt.
[E1=0 J En{|un|>h}

Then ¢(z, |Vuy|)b(uy) is equi-integrable and so
(, [Vun|)b(un) = @(z, [Vu)b(u) in L(Q).

Finally, by (3.4) and Vitali’s Theorem, we conclude the equi-integrability of the
nonlinearities.

Step 5. Passage to the limit. Let ¢ € D(Q) such that ¢ > 1 and taking
v = Uy — Ty (un — @)X (0,r) as a test function in (P,), we obtain

T
/ <8gtn ) Tk) (un - ¢)X(O,T)> dt + / a(ac, ta Unp, vun) : VT/C (un - ¢) dx dt
0

-

+/ In (@, b, Up, Vup ) Ti(uy — @) dwdtfn/ To(un — ) Ti(uy, — @) dadt

. Q-
= Tk (un — @) dzx dt.
QT
Using the fact that —n fQ T (un — )" Tk (un, — @) dzdt > 0, gives

/ a(x, t, Up, V). VT (uy, — ¢) de dt

.

= / a(x, t,un, V“n)'(VTkqube (un) — V(ﬁ)X{|u"’_¢|<k} dx dt

-

:/ a(x,t,u, Vu) - (Vg e) () = VO)X{ju—g|<k} dT dl 4 £(n)

.

:/ a(x,t,u, Vu). VT (u — ¢) dx dt + £(n).

-

Then

[ sutuntr) = s e+ [ (G itwn - o) ot
'

/Q a(@,t, un, V) - (Vo) (Un) = VO)X{|u,—op| <k} dT dt

r

+ / (st V) Tt — )
Q

T

< In Ti(un — @) dx dt +/ Sk(ug — ¢(0)) dz,
Q. Q

which gives, by passing to the limit,

| sututr) = otmyaat [ (50 w0 a
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+/ a(z,t,u, Vu)VT(u — ¢) dx dt+/ gz, t,u, Vu) T (u — ¢) de dt

T T

< /QTf Ti(u— @) dx dt—i—/QSk(uo—(b(O))dm.

Finally, for every v € Wol’ng,(Q) N L>(Q) with v > 1 almost everywhere in Q,
there exists v; € W, " L,(Q) ND(Q) with v; > 1 such that v; converges to v for
the modular convergence in W, "L, (Q) and dv;/dt converges to dv/dt for the
modular convergence in Wal’ng(Q) + L'(Q). Then, u satisfies (3.6) and the
proof of Theorem 3.1 is complete. O
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