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ON DOUBLY NONLOCAL p -FRACTIONAL COUPLED

ELLIPTIC SYSTEM

Tuhina Mukherjee — Konijeti Sreenadh

Abstract. We study the following nonlinear system with perturbations

involving p-fractional Laplacian:

(P)


(−∆)spu+ a1(x)u|u|p−2 = α(|x|−µ ∗ |u|q)|u|q−2u

+β(|x|−µ ∗ |v|q)|u|q−2u+ f1(x) in Rn,
(−∆)spv + a2(x)v|v|p−2 = γ(|x|−µ ∗ |v|q)|v|q−2v

+β(|x|−µ ∗ |u|q)|v|q−2v + f2(x) in Rn,

where n > sp, 0 < s < 1, p ≥ 2, µ ∈ (0, n), p(2 − µ/n)/2 < q < p∗s(2 −
µ/n)/2, α, β, γ > 0, 0 < ai ∈ C(Rn,R), i = 1, 2 and f1, f2 : Rn → R are

perturbations. We show existence of at least two nontrivial solutions for

(P) using Nehari manifold and minimax methods.

1. Introduction and main results

In this article, we consider the following nonlinear system with perturbations

involving p-fractional Laplacian:

(P)


(−∆)spu+ a1(x)u|u|p−2 = α(|x|−µ ∗ |u|q)|u|q−2u

+β(|x|−µ ∗ |v|q)|u|q−2u+ f1(x) in Rn,
(−∆)spv + a2(x)v|v|p−2 = γ(|x|−µ ∗ |v|q)|v|q−2v

+β(|x|−µ ∗ |u|q)|v|q−2v + f2(x) in Rn,
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where p ≥ 2, s ∈ (0, 1), n > sp, µ ∈ (0, n), p(2 − µ/n)/2 < q < p∗s(2 − µ/n)/2,

α, β, γ > 0, 0 < ai ∈ C1(Rn,R), i = 1, 2 and f1, f2 : Rn → R are perturbations.

Here p∗s = np/(n− sp) is the critical exponent associated with the embedding

of the fractional Sobolev space W s,p(Rn). The p-fractional Laplace operator is

defined on smooth functions as

(−∆)spu(x) = 2 lim
ε↘0

∫
|x|>ε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy

which is nonlinear and nonlocal in nature. This definition matches to linear

fractional Laplacian operator (−∆)s, up to a normalizing constant depending

on n and s, when p = 2. The operator (−∆)sp is degenerate when p > 2 and

singular when 1 < p < 2. For more details and motivations and the function

spaces W s,p(Ω), we refer to [9], [17]. Researchers are paying a lot of atten-

tion to the study of fractional and non-local operators of elliptic type due to

concrete real world applications in finance, thin obstacle problem, optimiza-

tion, quasi-geostrophic flow etc. The eigenvalue problem involving p-fractional

Laplace equations has been extensively studied in [7], [8], [32], [34]. The Brezis

Nirenberg type problem involving p-fractional Laplacian has been studied in [31]

whereas existence has been investigated via Morse theory in [30]. Problems in-

volving p-fractional Laplacian have been studied in [26], [27] using the Nehari

manifold. A vast amount of literature can be found for the case p = 2, i.e. frac-

tional Laplacian (−∆)s, which has been actively investigated in recent years.

Separately, we would like to mention work of Servadei and Valdinoci in [42]–[44]

on bounded domains.

The study of fractional Schrödinger equations has attracted attention of

many researchers nowadays. Frölich et al. studied nonlinear Hartree equations

in [19], [20]. In the nonlocal case, using variational methods and the Lusternik–

Schnirelmann category theory, Lü and Xu [35] proved existence and multiplicity

for the equation

ε2s(−∆)su+ V (x)u = ε−α(Wα(x) ∗ |u|p)|u|p−2u in Rn,

where ε > 0 is a parameter, 0 < s < 1, N > 2s, V is a continuous potential, and

Wα is the Riesz potential. Wu in [51] proved the existence of standing waves by

studying the related constrained minimization problems via the concentration–

compactness principle for the following nonlinear fractional Schrödinger equa-

tions with Hartree type nonlinearity

iψt + (−∆)αψ − (| · |−γ ∗ |ψ|2)ψ = 0,

where 0 < α < 1, 0 < γ < 2α and ψ(x, t) is a complex-valued function on Rd×R,

d ≥ 1. Some recent works on Schödinger equations with fractional Laplacian

equation include [16], [21], [41], [45] with no attempt to provide a complete list.
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Existence of solutions for the equation of the type

−∆u+ w(x)u = (Iα ∗ |u|p)|u|p−2u in Rn,

where w is an appropriate function, Iα is the Reisz potential and p > 1 is

chosen appropriately, have been studied in [3], [14], [22], [37], [50]. Very recently,

Ghimenti, Moroz and Schaftingen [23] proved the existence of least action nodal

solution for the above problem taking w ≡ 1 and p = 2. Alves, Figueiredo and

Yang [2] proved existence of a nontrivial solution via the penalization method

for the following Choquard equation:

−∆u+ V (x)u = (|x|−µ ∗ F (u))f(u) in Rn,

where 0 < µ < N , N = 3, V is a continuous real function and F is the primitive

function of f . Alves and Yang also studied the quasilinear Choquard equation

in [4]–[6]. For more results, we also refer to [38]–[40] for interested readers.

Systems of elliptic equations involving fractional Laplacian and homogeneous

nonlinearity have been studied in [25], [24], [29] and p-fractional elliptic systems

have been studied in [11], [12] using the Nehari manifold techniques. Very re-

cently, Guo et al. [28] studied a nonloca l system involving fractional Sobolev

critical exponent and fractional Laplacian. There are not many results on el-

liptic systems with non-homogeneous nonlinearities in the literature. We also

cite [1], [13], [18], [36], [49] as some very recent works on the study of fractional

elliptic systems. We also cite [52] where multiplicity of positive solutions for the

nonhomogeneous Choquard equation has been shown using the Nehari manifold.

Our work is motivated by the work of Tarantello [47] where the author used

the structure of the associated Nehari manifold to obtain the multiplicity of solu-

tions for the following nonhomogeneous Dirichlet problem on bounded domain Ω:

−∆u = |u|2
∗−2u+ f in Ω, u = 0 on ∂Ω.

Concerning the nonhomogeneous system, Wang et. al [48] studied the problem

(P) in the local case s = 1 and obtained partial multiplicity results. In this

paper, we improve their results and establish multiplicity results for f1 and f2
satisfying a weaker assumption (1.1) below. We describe the topology of the

Nehari set and use its structure to obtain solutions which are minimizers of

energy functional on its components. We need the following function spaces:

For i = 1, 2 we introduce the Banach spaces

Yi :=

{
u ∈W s,p(Rn) :

∫
Rn
ai(x)|u|p dx < +∞

}
equipped with the norm

‖u‖pYi =

∫
Rn

∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dx dy +

∫
Rn
ai(x)|u|p dx.
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We define the product space Y = Y1×Y2 which is a reflexive Banach space with

the norm

‖(u, v)‖p := ‖u‖pY1
+ ‖v‖pY2

, for all (u, v) ∈ Y .

Throughout this paper, we assume the following condition on ai, for i = 1, 2:

(A) ai ∈ C(Rn,R), ai > 0 and there exists Mi > 0 such that

µ({x ∈ Rn : ai ≤Mi}) <∞.

Then under condition (A) on ai, for i = 1, 2, we get Yi ↪→ Lr(Rn) continuously

for r ∈ [p, p∗s].

To obtain our result, we assume the following condition on perturbation

terms:

(1.1)

∫
Rn

(f1u+ f2v) < Cp,q

(
2q + p− 1

4pq

)
‖(u, v)‖p(2q−1)/(2q−p)

for all (u, v) ∈ Y such that∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx = 1

and

Cp,q =

(
p− 1

2q − 1

)(2q−1)/(2q−p)(
2q − p
p− 1

)
.

It is easy to see that

2q > p

(
2n− µ
n

)
> p− 1 >

p− 1

2p− 1

which implies
2q + p− 1

4pq
< 1.

So (1.1) implies that

(1.2)

∫
Rn

(f1u+ f2v) < Cp,q‖(u, v)‖p(2q−1)/(2q−p)

which we will use more frequently rather than our actual assumption (1.1). The

importance of the assumption (1.1) instead of (1.2) can be felt in Lemma 3.5.

If f1, f2 = 0, then we always have a solution for (P) that is the trivial solution.

Now, the main results of this paper go as follows.

Theorem 1.1. Suppose

p

2

(
2n− µ
n

)
< q <

p

2

(
2n− µ
n− sp

)
,

µ ∈ (0, n) and (A) holds true. Let 0 6≡ f1, f2 ∈ Lp/(p−1)(Rn) satisfy (1.1) then

(P) has a weak solution which is a local minimum of J on Y . Moreover, if

f1, f2 ≥ 0 then this solution is a nonnegative weak solution.
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Theorem 1.2. Under the hypothesis of Theorem 1.1, (P) has second weak

solution (u1, v1) in Y . Also, if f1, f2 ≥ 0, then the second solution is nonnegative.

This article is organized as follows: In Section 2, we set up our function

space where our weak solution lies and recall some important results especially

the Hardy–Littlewood–Sobolev inequality. In Section 3, we analyze fibering maps

while defining the Nehari manifold and show that minimization of energy func-

tional on suitable subsets of the Nehari manifold gives us the weak solution

to (P). We study the Palais–Smale sequences in Section 4. Finally, we prove our

main theorem in Section 5.

2. Preliminary results

In this section, we state some important known results which will be used

as tools to prove our main results. The key inequality is the following classical

Hardy–Littlewood–Sobolev inequality [33].

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality). Let t, r > 1 and

0 < µ < n with 1/t+ µ/n+ 1/r = 2, f ∈ Lt(Rn) and h ∈ Lr(Rn). There exists

a sharp constant C(t, n, µ, r) > 0, independent of f, h, such that∫
Rn

∫
Rn

f(x)h(y)

|x− y|µ
dx dy ≤ C(t, n, µ, r)‖f‖Lt(Rn)‖h‖Lr(Rn).

Remark 2.2. In general, let f = h = |u|q then by the Hardy–Littlewood–

Sobolev inequality we get that the quantity∫
Rn

∫
Rn

|u(x)|q|u(y)|q

|x− y|µ
dx dy

is finite if |u|q ∈ Lt(Rn) for some t > 1 satisfying

2

t
+
µ

n
= 2.

Since we will be working in the space W s,p(Rn), by fractional Sobolev embedding

theorems (refer [17]), we must have qt ∈ [p, p∗s], where p∗s = np/(n− sp), i.e.

p

2

(
2n− µ
n

)
≤ q ≤ p

2

(
2n− µ
n− sp

)
.

We define

ql :=
p

2

(
2n− µ
n

)
and qu :=

p

2

(
2n− µ
n− sp

)
.

Here, ql and qu are known as lower and upper critical exponents. We constrain

our study to the case

p

2

(
2n− µ
n

)
< q <

p

2

(
2n− µ
n− sp

)
.

The next result is a basic inequality whose proof can be worked out in similar

manner as the proof of Proposition 3.2 in [22, equation (3.3), p. 124].
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Lemma 2.3. For u, v ∈ L2n/(2n−µ)(Rn), we have∫
Rn

∫
Rn

|u(x)|q|v(y)|q

|x− y|µ
dx dy

≤
(∫

Rn

∫
Rn

|u(x)|q|u(y)|q

|x− y|µ
dx dy

)1/2(∫
Rn

∫
Rn

|v(x)|q|v(y)|q

|x− y|µ
dx dy

)1/2

,

where µ ∈ (0, n) and q ∈ [ql, qu].

We now prove following lemma which is a version of the concentration–

compactness principle proved in [15, Lemma 2.18].

Lemma 2.4. Let n > sp. Assume that {uk} is bounded in Y1 and Y2 and it

satisfies

lim
k→∞

sup
y∈Rn

∫
BR(y)

|uk|p dx = 0,

where R > 0 and BR(y) denotes the ball centered at y with radius R. Then

uk → 0 strongly in Lr(Rn) for r ∈ (p, p∗s), as k →∞.

Proof. We prove the result for i = 1, and for i = 2 it follows similarly. Let

r ∈ (p, p∗s), y ∈ Rn and R > 0. By using the Hölder inequality, for each k we get

‖uk‖Lr(BR(y)) ≤ ‖uk‖1−λLp(BR(y))‖uk‖
λ
Lp
∗
s (BR(y))

,

where 1/r = (1− λ)/p+ λ/p∗s. Then

(2.1)

∫
BR(y)

|uk|r dx ≤ ‖uk‖r(1−λ)Lp(BR(y))‖uk‖
rλ
Lp
∗
s (Rn).

We choose a family of balls {BR(yi)} where their union covers Rn and are such

that each point of Rn is contained in at most m of such balls (where m is

a prescribed integer). Now, summing (2.1) over this family, we obtain

‖uk‖rLr(Rn) ≤ m sup
y∈Rn

(∫
BR(y)

|uk|p dx
)r(1−λ)/p

‖uk‖rλLp∗s (Rn).

Using the continuity of the embedding of Y1 in Lp
∗
s (Rn) and our hypothesis, we

get uk → 0 strongly in Lr(Rn) as k →∞. �

The following is a compactness result for the space Yi, i = 1, 2, which will be

used further.

Lemma 2.5. Suppose (A) holds. Then Yi is compactly embedded in Lr(Rn),

for r ∈ [p, p∗s) and i = 1, 2.

Proof. We prove it for Y1 (for Y2 it follows analogously). Let {uk} ⊂ Y1 be

a bounded sequence. Up to a subsequence, we may assume that uk ⇀ u0 weakly

in Y1 as k → ∞. Then uk → u0 in Lrloc(Rn) as k → ∞, for r ∈ [p, p∗s). We first

prove that uk → u0 strongly in Lp(Rn). Suppose ξk := ‖uk‖Lp(Rn) and ξk → ξ



On Doubly Nonlocal p -Fractional Coupled Elliptic System 615

along a subsequence, as k → ∞. So, ξ ≥ ‖u0‖Lp(Rn). We claim that for each

ε > 0, there exists R > 0 such that∫
Rn\BR(0)

|uk|p dx < ε uniformly in k.

If this holds then uk → u0 strongly in Lp(Rn). Because we already have

uk|BR(0) → u0|BR(0) strongly in Lp(BR(0)), as k →∞,

ξ ≥ ‖u0‖Lp(Rn) =
(
‖u0‖pLp(BR(0)) + ‖u0‖pLp(Rn\BR(0))

)1/p
≥ lim
k→∞

‖uk‖Lp(BR(0))

≥ lim
k→∞

‖uk‖Lp(Rn) − lim
k→∞

‖uk‖Lp(Rn\BR(0)) ≥ ξ − ε.

To prove our claim, let us fix ε > 0 and choose constants M,C > 0 such that

M >
2

ε
sup
k
‖uk‖pY1

and C ≥ sup
u∈Y1\{0}

‖uk‖pLpr(Rn)

‖uk‖pY1

.

Let r′ be such that 1/r + 1/r′ = 1. Now condition (A) implies for R > 0 large

enough,

µ({x ∈ Rn \BR(0) : a1(x) < M}) ≤
(

ε

2C supk ‖uk‖
p
Y1

)r′
.

We set A={x ∈ Rn\BR(0) : a1(x) ≥M} and B={x ∈ Rn\BR(0) : a1(x) < M}.
Then, we get ∫

A

|uk|p dx ≤
∫
A

a1(x)

M
|uk|p dx ≤

1

M
‖uk‖pY1

≤ ε

2
.

Also using Hölder’s inequality, we get∫
B

|uk|p dx ≤
(∫

B

|uk|pr dx
)1/r

(µ(B))1/r
′
≤ C‖uk‖pY1

(µ(B))1/r
′
≤ ε

2
.

Therefore we can write∫
Rn\BR(0)

|uk|p dx =

∫
A

|uk|p dx+

∫
B

|uk|p dx ≤ ε

which implies uk → u0 strongly in Lp(Rn). Finally, using Lemma 2.4, it follows

that uk → u0 strongly in Lr(Rn), for r ∈ [p, p∗s). �

For our convenience, if u, φ ∈W s,p(Rn), we use the notation 〈u, φ〉 to denote

〈u, φ〉 :=

∫
Rn

∫
Rn

(u(x)− u(y))|u(x)− u(y)|p−2(φ(x)− φ(y))

|x− y|n+sp
dx dy.
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Definition 2.6. A pair of functions (u, v) ∈ Y is said to be a weak solution

to (P) if

〈u, φ1〉 +

∫
Rn
a1(x)u|u|p−2φ1 dx

+ 〈v, φ2〉+

∫
Rn
a2(x)v|v|p−2φ2 dx− α

∫
Rn

(|x|−µ ∗ |u|q)u|u|q−2φ1 dx

− γ
∫
Rn

(|x|−µ ∗ |v|q)v|v|q−2φ2 dx− β
∫
Rn

(|x|−µ ∗ |v|q)u|u|q−2φ1 dx

− β
∫
Rn

(|x|−µ ∗ |u|q)v|v|q−2φ2 dx−
∫
Rn

(f1φ1 + f2φ2) dx = 0,

for all (φ1, φ2) ∈ Y .

Let us define the energy functional corresponding to (P) as

J(u, v) =
1

p
‖(u, v)‖p − 1

2q

∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + β(|x|−µ ∗ |u|q)|v|q) dx

− 1

2q

∫
Rn

(β(|x|−µ ∗ |v|q)|u|q + γ(|x|−µ ∗ |v|q)|v|q) dx−
∫
Rn

(f1u+ f2v) dx.

It is clear that weak solutions to (P) are critical points of J . We have the

following symmetric property:∫
Rn

(|x|µ ∗ |u|q)|v|q dx =

∫
Rn

∫
Rn

|u(x)|q|v(y)|q

|x− y|µ
dx dy =

∫
Rn

(|x|−µ ∗ |v|q)|u|q dx.

Therefore J can be written as

J(u, v) =
1

p
‖(u, v)‖p

− 1

2q

∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx

−
∫
Rn

(f1u+ f2v) dx.

In the context of the Hardy–Littlewood–Sobolev inequality, i.e. Proposition 2.1,

we get

(2.2)

∫
Rn

∫
Rn

|u(x)|q|u(y)|q

|x− y|µ
dx dy ≤ C‖u‖2q

L2nq/(2n−µ)(Rn),

for any uq ∈ Lr(Rn), r > 1, µ ∈ (0, n) and q ∈ [ql, qu]. Using (2.2), Lemma 2.3

and f1, f2 ∈ Lq/(q−1)(Rn), we conclude that J is well defined. Moreover, it can

be shown that J ∈ C1(Y,R).

3. Nehari manifold and Fibering map analysis

To find the critical points of J , we constraint our functional J on the Nehari

manifold

N = {(u, v) ∈ Y : (J ′(u, v), (u, v)) = 0},
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where

(J ′(u, v), (u, v)) = ‖(u, v)‖p

−
∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx

−
∫
Rn

(f1u+ f2v) dx.

Clearly, every nontrivial weak solution to (P) belongs to N . Denote I(u, v) =

(J ′(u, v), (u, v)) and subdivide the set N into three sets: N± = {(u, v) ∈ N :

±(I ′(u, v), (u, v)) > 0}, N 0 = {(u, v) ∈ N : (I ′(u, v), (u, v)) = 0}. Here

(I ′(u, v), (u, v)) = p‖(u, v)‖p

− 2q

∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx

−
∫
Rn

(f1u+ f2v) dx.

Then N 0 contains the element (0, 0) and N+ ∪ N 0 and N− ∪ N 0 are closed

subsets of Y . In the due course of this paper, we will subsequently give reason

to divide N into above subsets. For (u, v) ∈ Y , we define the fibering map

ϕ : (0,∞)→ R as

ϕ(t) = J(tu, tv) =
tp

p
‖(u, v)‖p

− t2q

2q

∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx

− t
∫
Rn

(f1u+ f2v) dx.

This gives

ϕ′(t) = tp−1‖(u, v)‖p

− t2q−1
∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx

−
∫
Rn

(f1u+ f2v) dx,

ϕ′′(t) = (p− 1)tp−2‖(u, v)‖p

− (2q − 1)t2q−2
∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q

+ γ(|x|−µ ∗ |v|q)|v|q) dx.

It is easy to see that (tu, tv) ∈ N if and only if ϕ′(t) = 0, for t > 0, i.e.

N = {(tu, tu) ∈ Y : ϕ′(t) = 0}.



618 T. Mukherjee — K. Sreenadh

Also, we can check that for (tu, tv) ∈ N , (I ′(tu, tv), (tu, tv)) > or < 0 if and

only if ϕ′′(t) > or < 0 respectively. Therefore, N+, N− and N 0 can also be

written as

N± = {(tu, tv) ∈ N : ϕ′′(t) ≷ 0} and N 0 = {(tu, tv) ∈ N : ϕ′′(t) = 0}.

We fix (u, v) ∈ Y and define

K :=K(u, v) =

∫
Rn

(f1u+ f2v) dx,

L =L(u, v)

:=

∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx.

Lemma 3.1. If f1, f2 ∈ Lp/(p−1)(Rn), then J is coercive and bounded from

below on N . Hence J is bounded from below on N+ and N−.

Proof. Let (u, v) ∈ N , then (J ′(u, v), (u, v)) = 0, i.e.

‖(u, v)‖p −
∫
Rn

(f1u+ f2v) dx = L(u, v).

Using this we obtain

J(u, v) =

(
2q − p

2qp

)
‖(u, v)‖p −

(
2q − 1

2q

)∫
Rn

(f1u+ f2v) dx

≥
(

2q − p
2qp

)
‖(u, v)‖p

−
(

2q − 1

2q

)
‖f1‖Lp/(p−1)(Rn)‖u‖Lp(Rn) + ‖f2‖Lp/(p−1)(Rn)‖v‖Lp(Rn)

≥‖(u, v)‖
((

2q − p
2qp

)
‖(u, v)‖p−1

−
(

2q − 1

2q

)
(Sq,1 + Sq,2) max

{
‖f1‖Lp/(p−1)(Rn), ‖f2‖Lp/(p−1)(Rn)

})
,

where Sq,i denotes the best constant for the embedding Y ↪→ Lp(Rn), i = 1, 2.

This implies that J is coercive and bounded from below on N . �

Thus it is natural to consider a minimization problem on N or its subsets.

For fixed (u, v) ∈ Y we define

m(t) := tp−1‖(u, v)‖p

− t2q−1
∫
Rn

(α(|x|−µ ∗ |u|q)|u|q + 2β(|x|−µ ∗ |u|q)|v|q + γ(|x|−µ ∗ |v|q)|v|q) dx.

Then ϕ′(t) = 0 if and only if m(t) = K. Since p((2n− µ)/n) < 2q and

(2n− µ)/n > 1, we get p<2q which implies lim
t→+∞

m(t)=−∞. Also lim
t→0

m(t)=0
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and it is easy to check that

t0 =

(
(p− 1)‖(u, v)‖p

(2q − 1)L

)1/(2q−p)

is a point of global maximum for m(t). For t > 0 small enough, m(t) > 0.

Altogether, this implies that if we choose K > 0 sufficiently small then m(t) = K

is satisfied in such a way that ϕ′(t) = 0 has two positive solutions t1, t2 such

that 0 < t1 < t0 < t2. Then, according to the sign of ϕ′′(t1) and ϕ′′(t2), we

decide in which subset (i.e. N+, N−, N 0) they lie. Hence the sets N+, N− and

N 0 contain the point of local maximum, local minimum and point of inflexion

of the fibering maps.

We end this section with the following two results.

Lemma 3.2. If f1, f2 ∈ Lp/(p−1)(Rn) are nonzero and satisfy (1.1), then

N 0 = {(0, 0)}.

Proof. To prove that N 0 = {(0, 0)}, we need to show that for (u, v) ∈
Y \ {(0, 0)}, ϕ(t) has no critical point which is a saddle point. Let (u, v) ∈
Y \ {(0, 0)}. From the above analysis, we know that m(t) has a unique point of

global maximum at t0 and

m(t0) =

(
2q − p
2q − 1

)(
p− 1

L(2q − 1)

)(p−1)/(2q−p)

‖(u, v)‖p(2q−1)/(2q−p).

From the analysis of the map m(t) done above, we get that if 0 < K < m(t0),

then ϕ′(t) = 0 has exactly two roots t1, t2 such that 0 < t1 < t0 < t2 and if

K ≤ 0 then ϕ′(t) = 0 has only one root t3 such that t3 > t0. Since ϕ′′(t) = m′(t),

we get ϕ′′(t1) > 0, ϕ′′(t2) < 0 and ϕ′′(t3) < 0. Hence, if 0 < K < m(t0), then

(t1u, t1v) ∈ N+, (t2u, t2v) ∈ N− and if K ≤ 0 then (t3u, t3v) ∈ N−. This

implies {(u, v) ∈ Y : 0 < K < m(t0)} ∩ N± 6= ∅ and {(u, v) ∈ Y : K ≤
0} ∩ N− 6= ∅. As a consequence, N± 6= ∅. We saw that for any sign of K,

critical point of ϕ(t) is either a point of local maximum or local minimum which

implies N 0 = {(0, 0)}. It remains to show that 0 < K < m(t0) holds. But this

is clearly implied by condition (1.1) which we have already assumed. �

Lemma 3.3. Assume f1, f2 ∈ Lp/(p−1)(Rn) satisfy (1.1), then N− is closed.

Proof. Let cl(N−) be the closure ofN−. Since cl(N−) ⊂ N−∪{(0, 0)}, it is

enough to show that (0, 0) 6∈ N− or equivalently dist((0, 0),N−) > 0. We denote

(û, v̂) = (u, v)/‖(u, v)‖ for (u, v) ∈ N−, then ‖(û, v̂)‖ = 1. Let us consider the

fibering map ϕ(t) corresponding to (û, v̂). From the proof of Lemma 3.2, we get

that if K ≤ 0 then ϕ′(t) = 0 has exactly one root t3 > t0 such that (t3û, t3v̂) ∈
N−. If (t3û, t3v̂) = (u, v) ∈ N−, then t3 = ‖(u, v)‖. Also, if 0 < K < m(t0)

then ϕ′(t) = 0 has exactly two roots t1, t2 satisfying t1 < t0 < t2 such that

(t1û, t1v̂) ∈ N+ and (t2û, t2v̂) ∈ N−. Hence if (t2û, t2v̂) = (u, v) ∈ N− then
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t2 = ‖(u, v)‖. Since t2, t3 > t0, we get ‖(u, v)‖ > t0. Using Lemma 2.3, inequality

(2.2), continuous embedding of Y in Lr(Rn) for r ∈ [p, p∗s], 2nq/(2n− µ) ∈ (p, p∗s)

and ‖(û, v̂)‖ = 1, we get that

L ≤C
(
α‖û‖2q

L2nq/(2n−µ)(Rn) + γ‖v̂‖2q
L2nq/(2n−µ)(Rn)(3.1)

+ 2β
(
‖û‖2q

L2nq/(2n−µ)(Rn)
)1/2(‖v̂‖2q

L2nq/(2n−µ)(Rn)
)1/2)

≤C1

(
α‖û‖2qY1

+ γ‖v̂‖2qY2
+ 2β‖û‖qY1

‖v̂‖qY2

)
≤ C2‖(û, v̂)‖2q,

where C1, C2 > 0 are constants independent of û and v̂. This implies L is

bounded from above on the unit sphere of Y . Since ‖û, v̂‖ = 1, from definition

of t0 it follows that

t0 ≥

(
p− 1

(2q − 1) sup
‖(u,v)‖=1

L(u, v)

)1/(2q−p)

:= θ.

Therefore, dist((0, 0),N−) = inf
(u,v)∈N−

{‖(u, v)‖} ≥ θ > 0 and this proves the

lemma. �

Using Lemma 3.1, we can define the following:

Υ+ := inf
(u,v)∈N+

J(u, v) and Υ− := inf
(u,v)∈N−

J(u, v).

If the infimum in the above two equations are achieved, then we can show that

they form a weak solution to our problem (P).

Lemma 3.4. Let (u1, v1) and (u2, v2) be minimizers of J on N+ and N−,

respectively. Then (u1, v1) and (u2, v2) are nontrivial weak solutions to (P).

Proof. Let (u1, v1) ∈ N+ be such that J(u1, v1) = Υ+ and define V :=

{(u, v) ∈ Y : (I ′(u, v), (u, v)) > 0}. So, N+ = {(u, v) ∈ V : I(u, v) = 0}. Using

Theorem 4.1.1 of [10] we deduce that there exists a Lagrangian multiplier λ ∈ R
such that

J ′(u1, v1) = λI ′(u1, v1).

Since (u1, v1) ∈ N+, (J ′(u1, v1), (u1, v1)) = 0 and (I ′(u1, v1), (u1, v1)) > 0. This

implies λ = 0. Therefore, (u1, v1) is a nontrivial weak solution to (P). Similarly,

we can prove that if (u2, v2) ∈ N− is such that J(u2, v2) = Υ− then (u2, v2) is

also a nontrivial weak solution to (P). �

Our next result is an observation regarding the minimizers Υ+ and Υ−.

Lemma 3.5. If 0 6= f1, f2 ∈ Lp/(p−1)(Rn) satisfies (1.1) then Υ− > 0 and

Υ+ < 0.
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Proof. Let (u, v) ∈ Y then from the proof of Lemma 3.2, we know that

if f1, f2 satisfy (1.1) then K < m(t0). In this case, if 0 < K < m(t0) then

corresponding to (u, v), ϕ′(t) = 0 has exactly two roots t1 and t2 such that

t1 < t0 < t2, t1(u, v) ∈ N+ and t2(u, v) ∈ N−. Since ϕ′(t) = ‖(u, v)‖tp−1 −
Lt2q−1 −K, lim

t→0+
ϕ′(t) = −K < 0. Also ϕ′′(t) > 0 for all t ∈ (0, t0). Since t1 is

a point of local minimum of ϕ(t), t1 > 0 and lim
t→0+

ϕ(t) = 0, we get ϕ(t1) < 0.

Therefore,

0 > ϕ(t1) = J(t1u, t1v) ≥ Υ+.

Now we prove that Υ− > 0. From (3.1), we know that L ≤ C2‖(u, v)‖2q. This

implies that there exists a constant C3 > 0 which is independent of (u, v) such

that

(‖(u, v)‖p)2q/(2q−p)

Lp/(2q−p)
≥ C3.

Now, using this and the given hypothesis, we consider ϕ(t0) corresponding to

(u, v) as

ϕ(t0) =
tp0
p
‖u, v‖p − L t

2q
0

2q
−Kt0 =

1

p

(
(p− 1)‖(u, v)‖p

(2q − 1)L

)p/(2q−p)
− L

2q

(
(p− 1)‖(u, v)‖p

(2q − 1)L

)2q/(2q−p)

−K
(

(p− 1)‖(u, v)‖p

(2q − 1)L

)1/(2q−p)

=
(2q − p)(2q + p− 1)

2qp(2q − 1)

(
p− 1

2q − 1

)p/(2q−p)
(‖(u, v)‖p)2q/(2q−p)

Lp/(2q−p)

−K
(
p− 1

2q − 1

)1/(2q−p)
(‖(u, v)‖p)1/(2q−p)

L1/(2q−p)

≥
(

(2q − p)(2q + p− 1)(p− 1)p/(2q−p)

2qp(2q − 1)2q/(2q−p)

)
(‖(u, v)‖p)2q/(2q−p)

Lp/(2q−p)

≥C3

(
(2q − p)(2q + p− 1)(p− 1)p/(2q−p)

2qp(2q − 1)2q/(2q−p)

)
:= M(say).

Hence

Υ− = inf
(u,v)∈Y \{(0,0)}

max
t
J(tu, tv) ≥ inf

(u,v)∈Y \{(0,0)}
ϕ(t0) ≥M > 0,

which completes the proof. �

4. Palais–Smale analysis

In this section, we study the nature of minimizing sequences for the functional

J on the Nehari manifold. First we prove some lemmas which will assert the

existence of Palais–Smale sequence for the minimizer of J on N . The following

lemma is a consequence of Lemma 3.2.
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Lemma 4.1. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) satisfy (1.1). Given (u, v) ∈
N \ {(0, 0)}, there exist ε > 0 and a differentiable function = : B((0, 0), ε) ⊂
Y → R+ := (0,+∞) such that =(0, 0) = 1, =(w1, w2)((u, v)−(w1, w2)) ∈ N and

(4.1) (=′(0, 0), (w1, w2))

=

p(A(w1, w2) +A2(w1, w2))− qR(w1, w2)−
∫
Rn

(f1w1 + f2w2)

(p− 1)‖(u, v)‖p − (2q − 1)L(u, v)
,

for all (w1, w2) ∈ B((0, 0), ε), where

A1(w1, w2) := 〈u,w1〉+

∫
Rn
a1(x)|u|p−2uw1,

A2(w1, w2) := 〈v, w2〉+

∫
Rn
a2(x)|v|p−2vw2,

R(w1, w2) := 2α

∫
Rn

(|x|−µ ∗ |u|q)|u|q−2uw1 + 2γ

∫
Rn

(|x|−µ ∗ |v|q)|v|q−2vw2

+ β

∫
Rn

(|x|−µ ∗ |u|q)|v|q−2vw2 + β

∫
Rn

(|x|−µ ∗ |v|q)|u|q−2uw1.

Proof. Fixing a function (u, v) ∈ N , we define the map F : R× Y → R as

follows:

F (t, (w1, w2)) := tp−1‖(u, v)− (w1, w2)‖

− t2q−1L((u, v)− (w1, w2))−
∫
Rn

(f1(u− w1) + f2(v − w2)).

It is easy to see that F is differentiable. Since F (1, (0, 0)) = (J ′(u, v), (u, v)) = 0

and Ft(1, (0, 0)) = (p − 1)tp−2‖(u, v) − (w1, w2)‖p − (2q − 1)t2q−2L((u, v) −
(w1, w2)) 6= 0 by Lemma 3.2, we apply the Implicit Function Theorem at

the point (1, (0, 0)) to get the existence of ε > 0 and a differentiable function

= : B((0, 0), ε) ⊂ Y → R+ such that

=(0, 0) = 1 and F ((w1, w2),=(w1, w2)) = 0, for all (w1, w2) ∈ B((0, 0), ε).

This implies

0 ==p−1(w1, w2)‖(u, v)− (w1, w2)‖p

−=2q−1(w1, w2)L((u, v)− (w1, w2))−K((u, v)− (w1, w2))

=
1

=(w1, w2)

[
‖=(w1, w2)(u, v)− (w1, w2)‖p

− L(=(w1, w2)((u, v)− (w1, w2)))−K(=(w1, w2)((u, v)− (w1, w2)))
]
.

Since =(w1, w2) > 0 we get =(w1, w2)((u, v)−(w1, w2)) ∈ N whenever (w1, w2) ∈
B((0, 0), ε). Finally, (4.15) can be obtained by differentiating

F ((w1, w2),=(w1, w2)) = 0
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with respect to (w1, w2). �

Let us define Υ := inf
(u,v)∈N

J(u, v).

Lemma 4.2. There exists a constant C1 > 0 such that

Υ ≤ − (2q − p)(2qp− 2q − p)
4pq2

C1.

Proof. Let (û, v̂) ∈ Y be the unique solution to the equations given below

(−∆)spû+ a1(x)|û|p−1û = f1 in Rn,

(−∆)spv̂ + a2(x)|v̂|p−1v̂ = f2 in Rn.

So, since f1, f2 6= 0, ∫
Rn

(f1û+ f2v̂) = ‖(û, v̂)‖p > 0.

Then, by Lemma 3.2, we know that there exists t1 > 0 such that t1(û, v̂) ∈ N+.

Consequently,

J(t1û, t1v̂) = −
(
p− 1

p

)
tp1‖(û, v̂)‖p +

(
2q − 1

2q

)
t2q1 L(û, v̂)

< −
(
p− 1

p

)
tp1‖(û, v̂)‖p +

p(2q − 1)

4q2
tp1‖(û, v̂)‖p

= − (2q − p)(2qp− 2q − p)
4pq2

tp1‖(û, v̂)‖p < 0.

Taking C1 = tp1‖(û, v̂)‖p we get the result. �

We recall the following lemma.

Lemma 4.3 ([46]). Let 0 < θ < n, 1 < r < m < ∞ and 1/m = 1/r − θ/n,

then ∣∣∣∣ ∫
Rn

f(y)

|x− y|n−θ
dy

∣∣∣∣
Lm(Rn)

≤ C‖f‖Lr(Rn),

where C > 0 is a constant.

This implies that the Reisz potential defines a linear and continuous map

from Lr(Rn) to Lm(Rn), where r,m are defined in the above theorem.

Lemma 4.4. For 0 6= f1, f2 ∈ Lp/(p−1)(Rn),

inf
Q

(
Cp,q‖(u, v)‖p(2q−1)/(2q−p) −

∫
Rn

(f1u+ f2v) dx

)
:= δ

is achieved, where Q = {(u, v) ∈ Y : L(u, v) = 1}. Also, if f1, f2 satisfy (1.1),

then δ > 0.
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Proof. Let us define the functional T : Y 7→ R as

T (u, v) = Cp,q‖(u, v)‖p(2q−1)/(2q−p) −
∫
Rn

(f1u+ f2v) dx.

This implies

T (u, v) ≥ Cp,q‖(u, v)‖p(2q−1)/(2q−p)

− (Sq,1 + Sq,2) max
{
‖f1‖Lp/(p−1)(Rn), ‖f2‖Lp/(p−1)(Rn)

}
‖(u, v)‖,

where Sq,i denotes the best constant for the embedding Y ↪→ Lp(Rn), i = 1, 2.

Since p(2q − 1)/(2q − p) > 1, T is coercive. Let {(uk, vk)} ⊂ Q be such that

(uk, vk) ⇀ (u, v) weakly in Y . Then

lim
k→∞

∫
Rn

(f1uk + f2vk) dx =

∫
Rn

(f1u+ f2v) dx,

‖(u, v)‖p(2q−1)/(2q−p) ≤ lim inf
k→∞

‖(uk, vk)‖p(2q−1)/(2q−p).

which implies T (u, v) ≤ lim inf
k→∞

T (uk, vk), i.e. T is weakly lower semicontinuous.

Consider

(4.2)

∫
Rn

(|x|−µ ∗ |uk|q)|uk|q dx−
∫
Rn

(|x|−µ ∗ |u|q)|u|q dx

=

∫
Rn

(|x|−µ ∗ (|uk|q − |u|q))(|uk|q − |u|q) dx

+ 2

∫
Rn

(|x|−µ ∗ |u|q)(|uk|q − |u|q) dx.

Since 2nq/(2n− µ) < p∗s, using Lemma 2.5, we have

(4.3) |uk|q − |u|q → 0 in L2n/(2n−µ)(Rn) as k →∞,

and thus, using Theorem 4.3, we have

(4.4) |x|−µ ∗ (|uk|q − |u|q)→ 0 in L(2n/µ)(Rn) as k →∞.

From (4.3), (4.4) and using Hölder’s inequality in (4.2), we get

(4.5)

∫
Rn

(|x|−µ ∗ |uk|q)|uk|q dx→
∫
Rn

(|x|−µ ∗ |u|q)|u|q dx as k →∞.

Similarly, we get

(4.6)

∫
Rn

(|x|−µ ∗ |vk|q)|vk|q dx→
∫
Rn

(|x|−µ ∗ |v|q)|v|q dx as k →∞.
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It is easy to see that∫
Rn

(|x|−µ ∗ |uk|q)|vk|q dx−
∫
Rn

(|x|−µ ∗ |u|q)|v|q dx

=

∫
Rn

(|x|−µ ∗ (|uk|q − |u|q))(|vk|q − |v|q) dx+

∫
Rn

(|x|−µ ∗ (|uk|q − |u|q))|v|q dx

+

∫
Rn

(|x|−µ ∗ (|vk|q − |v|q))|u|q dx,

which implies that

(4.7)

∫
Rn

(|x|−µ ∗ |uk|q)|vk|q dx→
∫
Rn

(|x|−µ ∗ |u|q)|v|q dx as k →∞.

Thus using (4.5)–(4.7), we get lim
k→∞

L(uk, uk) = L(u, v). Since (uk, vk) ∈ Q for

each k, we get L(u, v) = 1 which implies (u, v) ∈ Q. Therefore Q is weakly

sequentially closed subset of Y . Since Y forms a reflexive Banach space, there

exists (u0, v0) ∈ Q such that

inf
Q
T (u, v) = T (u0, v0).

Furthermore, it is obvious that if f1, f2 satisfy (1.1), then δ ≥ T (u0, v0) > 0.

This establishes the result. �

For (u, v) ∈ Y \ {(0, 0)}, we set

G(u, v) := Cp,q
(‖(u, v)‖p)(2q−1)/(2q−p)

L(u, v)(p−1)/(2q−p)
−K(u, v).

Corollary 4.5. For any ρ > 0, inf
L(u,v)≥ρ

G(u, v) ≥ ρδ.

Proof. For t > 0, if L(u, v) = 1 for (u, v) ∈ Y then using Lemma 4.4 we

have

G(tu, tv) = t
(
Cp,q(‖(u, v)‖p)(2q−1)/(2q−p) −K(u, v)

)
≥ tδ.

This implies for any ρ > 0, inf
L(u,v)≥ρ

G(u, v) ≥ ρδ1/2q which completes the proof.�

In the next result, we show the existence of a Palais–Smale sequence for Υ.

Proposition 4.6. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) be such that (1.1) holds.

Then there exists a sequence (uk, vk) ⊂ N such that

J(uk, vk)→ Υ and ‖J ′(uk, vk)‖Y ∗ → 0 as k →∞,

‖ · ‖Y ∗ denotes the operator norm on the dual of Y , i.e. Y ∗.

Proof. From Lemma 3.1, we already know that J is bounded from below

on N . So by Ekeland’s Variational Principle we get a sequence {(uk, vk)} ⊂ N
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such that

(4.8)


J(uk, vk) ≤ Υ +

1

k
,

J(u, v) ≥ J(uk, vk)− 1

k
‖(uk − u, vk − v)‖ for all (u, v) ∈ N .

By taking k > 0 large enough we have

J(uk, vk) =
(2q − p)

2qp
‖(uk, vk)‖p − (2q − 1)

2qp

∫
Rn

(f1u+ f2v) dx < Υ +
1

k
.

This along with Lemma 4.2 gives

(4.9)

∫
Rn

(f1uk + f2vk) dx ≥ (2q − p)(2qp− 2q − p)
2pq(2q − 1)

C1 > 0.

Therefore uk, vk 6= 0 for all k. From (4.8) and definition of Υ, it is clear that

J(uk, vk)→ Υ < 0 as k →∞. Since {(uk, vk)} ⊂ N , we get

(4.10) ‖(uk, vk)‖p −
∫
Rn

(f1uk + f2vk) dx = L.

Using definition of J and (4.8)–(4.10), we get

Υ+ +
1

k
≥
(

1

p
− 1

2q

)
‖(uk, vk)‖p −

(
1− 1

2q

)∫
Rn

(f1uk + f2vk) dx(4.11)

≥
(

1

p
− 1

2q

)
‖(uk, vk)‖p −

(
1− 1

2q

)
(Sq,1 + Sq,2)

·max
{
‖f1‖Lp/(p−1)(Rn), ‖f2‖Lp/(p−1)(Rn)

}
‖(uk, vk)‖.

This implies {(uk, vk)} is bounded. Now we claim that infk ‖(uk, vk)‖ ≥ η > 0,

for some constant η. Suppose not, then, up to a subsequence, ‖(uk, vk)‖ → 0

as k → ∞. This implies J(uk, vk) → 0 as k → ∞, using (4.11), which is

a contradiction to the first assertion. So there exist constants d1, d2 > 0 such

that

(4.12) d1 ≤ ‖(uk, vk)‖ ≤ d2.

Now we aim to show that ‖J ′(uk, vk)‖Y ∗ → 0 as k → ∞. By Lemma 4.1,

for each k we obtain a differentiable function =k : B((0, 0), εk) ⊂ Y → R+ :=

(0,+∞) for εk > 0 such that =k(0, 0) = 1, =(w1, w2)((uk, vk) − (w1, w2)) ∈ N
for all (w1, w2) ∈ B((0, 0), εk). Choose 0 < ρ < εk and (h1, h2) ∈ Y such

that ‖(h1, h2)‖ = 1. Let (w1, w2)ρ := ρ(h1, h2) then ‖(w1, w2)ρ‖ = ρ < εk and

(θ1, θ2)ρ := =k((w1, w2)ρ)((uk, vk) − (w1, w2)ρ) ∈ N for each k. By Taylor’s
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expansion and (4.8), since (θ1, θ2)ρ ∈ N we get

1

k
‖(uk,vk)− (θ1, θ2)ρ‖ ≥ J(uk, vk)− J((θ1, θ2)ρ)(4.13)

= (J ′((θ1, θ2)ρ), (uk − vk)− (θ1, θ2)ρ) + o(‖(uk, vk)− (θ1, θ2)ρ‖)

= (1−=k((w1, w2)ρ))(J
′((θ1, θ2)ρ), (uk − vk))

+ ρ=k((w1, w2)ρ)(J
′((θ1, θ2)ρ), (h1, h2)).

We observe that

lim
ρ→0

1

ρ
‖(θ1, θ2)ρ − (uk, vk)‖ = ‖(uk, vk)(=′k(0, 0), (h1, h2))− (h1, h2)‖.

Dividing (4.13) by ρ and passing to the limit as ρ→ 0 we derive

(J ′(uk, vk), (h1, h2)) ≤ 1

k
(‖(uk, vk)‖‖=′k(0, 0)‖Y ∗ + 1).

From (4.15) and (4.13), there exists a constant C2 > 0 such that

‖=′k(0, 0)‖Y ∗ ≤
C2

(p− 1)‖uk, vk‖p − (2q − 1)L(uk, vk)
.

It remains to show that

(p− 1)‖uk, vk‖p − (2q − 1)L(uk, vk) = (I ′(uk, vk), (uk, vk))

is bounded away from zero. If possible let, for a subsequence,

|(I ′(uk, vk), (uk, vk))| = o(1)

which implies

(4.14)
(p− 1)‖(uk, vk)‖p − (2q − 1)L(uk, vk) = o(1),

(2q − p)‖(uk, vk)‖p − (2q − 1)K(uk, vk) = o(1).

From (4.13) and (4.14), it follows that there exists a constant d3 > 0 such that

L(uk, vk) ≥ d3, for each k. Since (uk, vk) ∈ N , we have

(p− 1)K(uk, vk)− (2q − p)L(uk, vk) = o(1)

and (4.14) gives(
p− 1

2q − 1
‖(uk, vk)‖p

)(2q−1)/(2q−p)

− L(uk, vk)(2q−1)/(2q−p) = o(1).

Using the above along with Corollary 4.5, we obtain

0 <δd
(p−1)/(2q−p)+1/(2q)
3 ≤ L(uk, vk)(p−1)/(2q−p)G(uk, vk)

≤Cp,q(‖(uk, vk)‖p) 2q − 1

2q − p
−K(uk, vk)L(uk, vk)(p−1)/(2q−p)

≤ 2q − p
p− 1

(
p− 1

2q − 1
‖(uk, vk)‖p

)(2q−1)/(2q−p)

− L(uk, vk)(2q−1)/(2q−p) = o(1)
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which is a contradiction. This proves the claim. Therefore we conclude that

‖J ′(uk, vk)‖Y ∗ → 0, as k → 0,

which proves our lemma. �

Lemma 4.7. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) satisfy (1.1). Given (u, v) ∈
N− \ {(0, 0)}, there exist ε > 0 and a differentiable function =− : B((0, 0), ε) ⊂
Y → R+ := (0,+∞) such that =−(0, 0) = 1, =−(w1, w2)((u, v)−(w1, w2)) ∈ N−

and

(4.15) ((=−)′(0, 0), (w1, w2))

=

p(A(w1, w2) +A2(w1, w2))− qR(w1, w2)−
∫
Rn

(f1w1 + f2w2)

(p− 1)‖(u, v)‖p − (2q − 1)L(u, v)
,

for all (w1, w2) ∈ B((0, 0), ε), where

A1(w1, w2) := 〈u,w1〉+

∫
Rn
a1(x)|u|p−2uw1,

A2(w1, w2) := 〈v, w2〉+

∫
Rn
a2(x)|v|p−2vw2

and

R(w1, w2) := 2α

∫
Rn

(|x|−µ ∗ |u|q)|u|q−2uw1 + 2γ

∫
Rn

(|x|−µ ∗ |v|q)|v|q−2vw2

+ β

∫
Rn

(|x|−µ ∗ |u|q)|v|q−2vw2 + β

∫
Rn

(|x|−µ ∗ |v|q)|u|q−2uw1.

Proof. Fix (u, v) ∈ N− \{(0, 0)}, then obviously (u, v) ∈ N \{(0, 0)}. Now

arguing similarly as in Lemma 4.1, we obtain the existence of ε > 0 and a differ-

entiable function =− : B((0, 0), ε) ⊂ Y → R+ := (0,+∞) such that =−(0, 0) = 1,

=−(w1, w2)((u, v)− (w1, w2)) ∈ N . Because (u, v) ∈ N−, we have

(I ′(u, v), (u, v)) = (2q − p)‖u, v‖p − (2q − 1)

∫
Rn

(f1u+ f2v) dx < 0.

Since I ′ and =− are both continuous, they will not change sign in a sufficiently

small neighbourhood. So if we take ε > 0 small enough then

(I ′(=−(w1, w2)((u, v)− (w1, w2))), (=−(w1, w2)((u, v)− (w1, w2))))

= (2q − p)‖=−(w1, w2)((u, v)− (w1, w2))‖p

− (2q − 1)=−(w1, w2)

∫
Rn

(f1(u− w1) + f2(v − w2)) dx < 0

which proves the lemma. �

Proposition 4.8. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) be such that (1.1) holds.

Then there exists a sequence (ûm, v̂m) ⊂ N− such that

J(ûm, v̂m)→ Υ− and ‖J ′(ûm, v̂m)‖Y ∗ → 0 as m→∞.
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Proof. We note that N− is closed, by Lemma 3.3. Thus by Ekeland’s

Variational Principle we obtain a sequence {(ûm, v̂m)} in N− such that
J(ûm, v̂m) ≤ Υ− +

1

k
,

J(u, v) ≥ J(ûm, v̂m)− 1

k
‖(ûm − u, v̂m − v)‖ for all (u, v) ∈ N−.

By coercivity of J , {ûm, v̂m} forms a bounded sequence in Y . Then using

Lemma 4.7 and following the proof of Proposition 4.6 we conclude the result.

Our next result shows that J satisfies the (PS)c condition i.e. the Palais–

Smale condition for any c ∈ R.

Lemma 4.9. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) be such that (1.1) holds. Then J

satisfies the (PS)c condition. That is, if {(uk, vk)} is a sequence in Y satisfying

(4.16) J(uk, vk)→ c and J ′(uk, vk)→ 0, as k →∞,

for some c ∈ R, then {(uk, vk)} has a convergent subsequence.

Proof. Let {(uk, vk)} be a sequence in Y satisfying (4.16). Using the same

arguments as in Lemma 4.6 (see (4.11)), we can show that {(uk, vk)} is bounded.

There exists (u, v) ∈ Y such that, up to a subsequence, {(uk, vk)} ⇀ (u, v)

weakly in Y as k →∞. Using the compactness of the embedding Y ↪→ Lr(Rn),

for r ∈ [p, p∗s), i.e. Lemma 2.5, we get (uk, vk) → (u, v) strongly in Lr(Rn) for

r ∈ (p, p∗s) as k →∞. From weak continuity of J ′ and (4.16) we get J ′(u, v) = 0.

We claim that {(uk, vk)} → (u, v) strongly in Y . Since lim
k→∞

J ′(uk, vk) = 0,

we consider

ok(1) = 〈uk, (uk − u)〉+ 〈vk, (vk − v)〉(4.17)

+

∫
Rn

(a1uk(uk − u) + a2vk(vk − v))

−
(
α

∫
Rn

∫
Rn

|uk(x)|q−2uk(x)(uk − u)(x)|uk(y)|q

|x− y|µ
dx dy

+ γ

∫
Rn

∫
Rn

|vk(x)|q−2vk(x)(vk − v)(x)|vk(y)|q

|x− y|µ
dx dy

+ β

∫
Rn

∫
Rn

|vk(x)|q−2vk(x)(vk − v)(x)|uk(y)|q

|x− y|µ
dx dy

+ β

∫
Rn

∫
Rn

|uk(x)|q−2uk(x)(uk − u)(x)|vk(y)|q

|x− y|µ
dx dy

)
−
∫
Rn

(f1(uk − u) + f2(vk − v)) dx.

Since q ∈ (ql, qu), p < 2nq/(2n− µ) < p∗s. So, using Proposition 2.1, we get∫
Rn

∫
Rn

|uk(x)|q−2uk(x)(uk − u)(x)|uk(y)|q

|x− y|µ
dx dy(4.18)
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≤
(∫

Rn
(|uk|q−1|uk − u|)2n/(2n−µ)

)(2n−µ)/(2n)

·
(∫

Rn
|uk|2nq/(2n−µ)

)(2n−µ)/(2n)

≤
[(∫

Rn
|uk|2nq/(2n−µ)

)(q−1)/q

·
(∫

Rn
|(uk − u)|2nq/(2n−µ)

)1/q](2n−µ)/(2n)
·
(∫

Rn
|uk|2nq/(2n−µ)

)(2n−µ)/(2n)

=

(∫
Rn
|(uk − u)|2nq/(2n−µ)

)(2n−µ)/(2nq)

·
(∫

Rn
|uk|2nq/(2n−µ)

)(2n−µ)(2q−1)/(2nq)

→ 0

as k →∞. Similarly,

(4.19)

∫
Rn

∫
Rn

vk(x)|p−2vk(x)(vk − v)(x)|vk(y)|p

|x− y|µ
dx dy → 0 as k →∞

and

(4.20)

∫
Rn

∫
Rn

|vk(x)|q−2vk(x)(vk − v)(x)|uk(y)|q

|x− y|µ
dx dy

+

∫
Rn

∫
Rn

|uk(x)|q−2uk(x)(uk − u)(x)|vk(y)|q

|x− y|µ
dx dy → 0 as k →∞.

Using the hypothesis on f1, f2 and Hölder’s inequality, we have

(4.21)

∫
Rn

(f1(uk − u) + f2(vk − v)) dx→ 0 as k →∞.

Combining (4.17)–(4.21), we get

(4.22) ok(1) = 〈uk, (uk−u)〉+ 〈vk, (vk−v)〉+
∫
Rn

(a1uk(uk−u)+a2vk(vk−v)).

Similarly, since J ′(u, v) = 0, we get

ok(1) = 〈u, (uk − u)〉+ 〈v, (vk − v)〉+

∫
Rn

(a1u(uk − u) + a2v(vk − v))

−
(
α

∫
Rn

∫
Rn

|u(x)|q−2u(x)(uk − u)(x)|u(y)|q

|x− y|µ
dx dy

+ γ

∫
Rn

∫
Rn

|v(x)|q−2v(x)(vk − v)(x)|v(y)|q

|x− y|µ
dx dy

+ β

∫
Rn

∫
Rn

|v(x)|q−2v(x)(vk − v)(x)|u(y)|q

|x− y|µ
dx dy



On Doubly Nonlocal p -Fractional Coupled Elliptic System 631

+ β

∫
Rn

∫
Rn

|u(x)|q−2u(x)(uk − u)(x)|v(y)|q

|x− y|µ
dx dy

)
−
∫
Rn

(f1(uk − u) + f2(vk − v)) dx.

Also, reasoning similarly as in (4.18)–(4.21), we get

(4.23) ok(1) = 〈u, (uk − u)〉+ 〈v, (vk − v)〉+
∫
Rn

(a1uk(uk − u) + a2vk(vk − v)).

Finally, (4.22) and (4.23) imply that

lim
k→∞

‖(uk, vk)− (u, v)‖2 = 0

which proves our claim and consequently ends the proof. �

5. Existence of minimizers in N+ and N−

In this section, we show that the minimums are achieved for Υ and Υ−.

Theorem 5.1. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) be such that (1.1) holds. Then

Υ is achieved at a point (u0, v0) ∈ N which is a weak solution to (P).

Proof. From Proposition 4.6, we know that there exists a sequence

{(uk, vk)} ⊂ N

such that J(uk, vk)→ Υ and ‖J ′(uk, vk)‖Y ∗ → 0 as k →∞. Let (u0, v0) be the

weak limit of the sequence {(uk, vk)} in Y . Since (uk, vk) satisfies (4.9), we get

(5.1)

∫
Rn

(f1u0 + f2v0) dx > 0.

Also ‖J ′(uk, vk)‖Y ∗ → 0 as k →∞ implies that

(J ′(u0, v0), (φ1, φ2)) = 0, for all (φ1, φ2) ∈ Y,

i.e. (u0, v0) is a weak solution to (P). In particular (u0, v0) ∈ N . Moreover,

Υ ≤ J(u0, v0) ≤ lim inf
k→∞

J(uk, vk) = Υ

which implies that (u0, v0) is the minimizer for J over N . �

Corollary 5.2. Let (u0, v0) ∈ N be such that Υ = J(u0, v0), then (u0, v0) ∈
N+ and (u0, v0) is a local minimum for J in Y .

Proof. Since (5.1) holds, using Lemma 3.2, we get that there exist t1, t2 > 0

such that (u1, v1) := (t1u0, t1v0) ∈ N+ and (t2u0, t2v0) ∈ N−. We claim that

t1 = 1, i.e. (u0, v0) ∈ N+. If t1 < 1 then t2 = 1 which implies (u0, v0) ∈ N−.

Now J(t1u0, t1v0) ≤ J(u0, v0) = Υ which is a contradiction to (t1u0, t1v0) ∈ N+.
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To show that (u0, v0) is also a local minimum for J in Y , we first notice that for

each (u, v) ∈ Y with K(u, v) > 0 we have

J(t̂u, t̂v) ≥ J(t1u, t1v) whenever 0 < t̂ <

(
(p− 1)‖(u, v)‖p

(2q − 1)L(u, v)

)1/(2q−p)

,

where t1 is corresponding to (u, v). In particular, if (u, v) ∈ N+ then

(5.2) t1 = 1 < t0 =

(
(p− 1)‖(u, v)‖p

(2q − 1)L(u, v)

)1/(2q−p)

.

Using Lemma 4.1, we obtain a differentiable map = : B((0, 0), ε)→ R+ for ε > 0

such that =(w1, w2)((u0, v0) − (w1, w2)) ∈ N whenever ‖(w1, w2)‖ < ε. We

choose ε > 0 sufficiently small so that

(5.3) 1 <

(
(p− 1)‖((u0, v0)− (w1, w2))‖p

(2q − 1)L((u0, v0)− (w1, w2))

)1/(2q−p)

for every (w1, w2) ∈ B((0, 0), ε). By Lemma 4.1 we know that

=(w1, w2)((u0, v0)− (w1, w2)) ∈ N

when (w1, w2) ∈ B((0, 0), ε). Also =(w1, w2)→ 1 as ‖(w1, w2)‖ → 0. So we can

assume =(w1, w2)((u0, v0) − (w1, w2)) ∈ N+ when (w1, w2) ∈ B((0, 0), ε) and

thus whenever

0 < t̂ <

(
(p− 1)‖((u0, v0)− (w1, w2))‖p

(2q − 1)L((u0, v0)− (w1, w2))

)1/(2q−p)

we have

J(t̂((u0, v0)− (w1, w2))) ≥ J(=(w1, w2)((u0, v0)− (w1, w2))) ≥ J((u0, v0)).

Since (5.2) holds, we can take t̂ = 1 and this gives

J((u0, v0)− (w1, w2)) ≥ J(u0, v0) whenever ‖(w1, w2)‖ < ε

which proves the last assertion. �

Proof of Theorem 1.1. The proof follows from Theorem 5.1 and Corol-

lary 5.2 except that we need to show that there exists a nonnegative solution if

f1, f2 ≥ 0. Suppose f1, f2 ≥ 0 then consider the function (|u0|, |v0|). We know

that there exists t1 > 0 such that (t1|u0|, t1|v0|) ∈ N+ and t1|u0|, t1|v0| ≥ 0. It

is easy to see that

‖(u0, v0)‖ ≥ ‖(|u0|, |v0|)‖, L(u0, v0) = L(|u0|, |v0|), K(u0, v0) ≤ K(|u0|, |v0|).

If ϕu,v(t) denotes the fibering map corresponding to (u, v) ∈ Y as introduced

in Section 3, we get ϕ′|u0|,|v0|(1) ≤ ϕ′u0,v0(1) = 0 since t1 is the point of local

minimum of ϕ|u0|,|v0|(t) for

0 < t <

(
(p− 1)‖(|u0|, |v0|)‖p

(2q − 1)L(|u0|, |v0|)

)1/(2q−p)

, t1 ≥ 1.
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Necessarily,

J(t1|u0|, t1|v0|) ≤ J(|u0|, |v0|) ≤ J(u0, v0)

which implies that we can always take u0, v0 ≥ 0 while considering the weak

solution (u0, v0) to (P). �

Next we prove that the infimum Υ− is achieved and the minimizer is another

weak solution to problem (P).

Theorem 5.3. Let 0 6= f1, f2 ∈ Lp/(p−1)(Rn) be such that (1.1) holds, then

there exists (u1, v1) ∈ N− such that Υ− = J(u1, v1).

Proof. Using Lemma 4.8, we know that there exists a sequence {(ûm, v̂m)}⊂
N− such that

J(ûm, v̂m)→ Υ− and J ′(ûm, v̂m)→ 0, as m→∞.

Applying again Lemma 4.9, we get that there exists (u1, v1) ∈ Y such that, up

to a subsequence, (ûm, v̂m)→ (u1, v1) strongly in Y as m→∞. This implies

lim
k→∞

J(ûm, v̂m) = J(u1, v1) = Υ− and (u1, v1) ∈ N−.

Therefore, Lemma 3.4 implies that (u1, v1) is a weak solution to (P). �

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. The existence of the second weak solution (u1, v1)

to (P) is asserted by Theorem 5.3. So we only need to show that we can obtain

a nonnegative weak solution if f1, f2 ≥ 0. Consider the function (|u1|, |v1|), then

there exists t2 > 0 such that (t2|u1|, t2|v1|) ∈ N−. Let

t0 =

(
(p− 1)‖(u1, v1)‖p

(2q − 1)L(u1, v1)

)1/(2q−p)

then, since (u1, v1) ∈ N−, we conclude that

J(u1, v1) = max
t≥t0

J(tu1, tv1) ≥ J(t2u1, t2v1) ≥ J(t1|u1|, t1|v1|).

Therefore it remains true to assume u1, v1 ≥ 0 while considering the weak solu-

tion (u1, v1) in case f1, f2 ≥ 0. �
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