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EXISTENCE OF THREE NONTRIVIAL SOLUTIONS

FOR A CLASS OF FOURTH-ORDER ELLIPTIC EQUATIONS

Chun Li — Ravi P. Agarwal — Zeng-Qi Ou

Abstract. The existence of three nontrivial solutions is established for

a class of fourth-order elliptic equations. Our technical approach is based
on Linking Theorem and (∇)-Theorem.

1. Introduction and main results

We consider the fourth-order elliptic equation

(1.1)

∆2u+ c∆u = µu+ f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN (N > 4) is a bounded smooth domain, c ∈ R and f : Ω×R→ R.

∆ is the Laplace operator and ∆2 is the biharmonic operator.

Let 0 < λ1 < . . . < λk < . . . be the distinct eigenvalues of −∆ in H1
0 (Ω).

The eigenvalue problem

(1.2)

∆2u+ c∆u = µu in Ω,

u = ∆u = 0 on ∂Ω,
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has distinct eigenvalues µi = λi(λi − c), i = 1, 2, . . . We will always assume

c < λ1. The Hilbert space E = H2(Ω) ∩ H1
0 (Ω) is equipped with the inner

product

〈u, v〉 =

∫
Ω

(∆u∆v − c∇u∇v) dx.

So, the norm on E is given by

‖u‖ =

(∫
Ω

(|∆u|2 − c|∇u|2) dx

)1/2

.

A weak solution of problem (1.1) is u ∈ E such that

(1.3)

∫
Ω

(∆u∆v − c∇u∇v − µuv) dx−
∫

Ω

f(x, u)v dx = 0

for all v ∈ E.

If i > 1, we denote

Hi−1 =
⊕
j≤i−1

ker(∆2 + c∆− µj), H0
i = ker(∆2 + c∆− µi)

and H⊥i is the orthogonal complement of Hi in E, moreover, dimHi < +∞. Let

P : E → H0
i and Q : E → Hi−1 ⊕ H⊥i be the orthogonal projections. For any

i ≥ 1, we have the following inequalities

(1.4)
‖u‖2 ≤ µi‖u‖2L2 for all u ∈ Hi,

‖u‖2 ≥ µi+1‖u‖2L2 for all u ∈ H⊥i .

For convenience, we introduce some notations. Let

S+
i (ρ) = {u ∈ H⊥i : ‖u‖ = ρ}, B+

i (ρ) = {u ∈ H⊥i : ‖u‖ ≤ ρ},

Ti−1,i(R) = {u ∈ Hi−1 : ‖u‖ ≤ R} ∪ {u ∈ Hi : ‖u‖ = R}.

In recent years, fourth-order problems have been studied by many authors

(see [2], [3], [10]–[12], [23]–[25]). In [2], Lazer and McKenna pointed out that the

problem (1.1) furnishes a model to study travelling waves in suspension bridges

if f(x, u) = b((u + 1)+ − 1), where u+ = max {u, 0} and b ∈ R. Since then,

more general nonlinear fourth-order elliptic boundary value problems have been

studied. In [10, 11], Micheletti and Pistoia proved that the problem

(1.5)

∆2u+ c∆u = f(x, u) in Ω,

u = ∆u = 0 on Ω,

admits two or three solutions by the variational method. In [24], Zhang proved

the existence of weak solutions for the problem (1.5) when f(x, u) is sublinear

at ∞. In [25], Zhang and Li showed that the problem (1.5) has at least two

nontrivial solutions by means of Morse theory and local linking.
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Recently, the (∇)-Theorem (see [7]) of Marino and Saccon is widely used to

study the multiplicity of solutions for differential equations and variational in-

equalities (see [4]–[9], [12]–[19], [21]–[23]). In [4], Magrone, Mugnai and Servadei

used the Linking Theorem and (∇)-Theorem to overcome the lack of the Palais–

Smale condition, and proved the existence of three distinct nontrivial solutions

for a class of semilinear elliptic variational inequalities involving a superlinear

nonlinearity. In [21], [22], Wang proved that some nonlinear Schrödinger equa-

tions have at least three nontrivial solutions by means of the Linking Theorem

and (∇)-Theorem. In [15], Mugnai studied the Dirichlet problem

(1.6)

−∆u− λu = g(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth subset of RN , N ≥ 3, and a Carathéodory function

g : Ω × R → R is superlinear and subcritical in the usual senses. By using

the Linking Theorem and (∇)-Theorem, Mugnai proved the existence of three

nontrivial solutions for the problem (1.6).

In this paper, we shall study the multiplicity of nontrivial solutions for the

problem (1.1). The technical approach is based on the Linking Theorem and

(∇)-Theorem. Our main result is the following.

Theorem 1.1. Assume that the nonlinearity f ∈ C(Ω×R,R). Let F (x, t) =∫ t
0
f(x, s) ds, suppose that the following conditions hold:

(f1) There are constants k0 > 0 and 1 < s < (N + 4)/(N − 4) such that

|f(x, t)| ≤ k0(1 + |t|s) for all (x, t) ∈ Ω× R.

(f2) f(x, t) = o(|t|) as t→ 0 uniformly in x ∈ Ω.

(f3) There exist constants β > max{N(s − 1)/4, s}, k1 > 0 and L > 0 such

that

f(x, t)t− 2F (x, t) > 0 for all (x, t) ∈ Ω× R \ {0},

f(x, t)t− 2F (x, t) ≥ k1|t|β for all x ∈ Ω, |t| ≥ L.

(F1) F (x, t)/t2 → +∞ as |t| → ∞ uniformly in x ∈ Ω.

(F2) F (x, t) ≥ 0 for all (x, t) ∈ Ω× R.

Then, for all i ≥ 2, there is δi > 0 such that for µ ∈ (µi − δi, µi), the problem

(1.1) has at least three nontrivial solutions.

By the Sobolev theorem, E is continuously embedded in Lθ(Ω) for 1 ≤ θ ≤
2N/(N − 4). If 1 ≤ θ < 2N/(N − 4), the embedding is compact. There exists

a positive constant K such that

(1.7) ‖u‖Lθ ≤ K‖u‖ for all u ∈ E,
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for θ = 1, 2, s+ 1, 2N/(N − 4) = 2∗∗, where ‖ · ‖Lθ denotes the norm of Lθ(Ω).

Define a functional

(1.8) ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx for all u ∈ E.

It is easy to see that ϕµ ∈ C1(E,R) under conditions of Theorem 1.1 and it is

well known that a critical point of the functional ϕµ in E corresponds to a weak

solution of the problem (1.1).

2. Proof of the main results

Here, we recall two variational theorems for the reader’s convenience. The

first one is a classical Linking Theorem, and the second one, called (∇)-Theorem,

is a recent result in variational theory of mixed type, with assumptions on the

values of the functional on some suitable sets and on the value of its gradient.

Theorem 2.1 (Classical Linking Theorem, [1], [20]). Let X be a real Banach

space with X = X1 ⊕X2, with dimX1 <∞. Suppose I ∈ C1(X,R) satisfies the

(PS)-condition, and

(a) there are constants ρ and α > 0 such that I|∂Bρ∩X2 ≥ α, and

(b) there is an e ∈ ∂B1 ∩X2 and R > ρ such that if Q = (BR ∩X1)⊕ {re :

0 < r < R}, then I|∂Q ≤ 0.

Then I possesses a critical value c ≥ α which can be characterized as

c = inf
h∈Γ

max
u∈Q

(I(h(u))),

where Γ = {h ∈ C(Q,X) |h = id on ∂Q}.

Definition 2.2. Let X be a Hilbert space, I : X → R be a C1 functional,

M a closed subspace of X, a, b ∈ R ∪ {−∞,+∞}. We say that the condition

(∇)(I,M, a, b) holds if there is γ > 0 such that

inf {‖PM∇I(u)‖ : a ≤ I(u) ≤ b, dist(u,M) ≤ γ} > 0,

where PM : X →M is the orthogonal projection of X onto M .

Theorem 2.3 (∇-Theorem, [7]). Let X be a Hilbert space and Xi, i = 1, 2, 3,

three subspaces of X such that X = X1⊕X2⊕X3, and dimXi <∞ for i = 1, 2.

Denote by Pi the orthogonal projection of X onto Xi. Let I : X → R be a C1,1

functional and ρ, ρ′, ρ′′, ρ1 be constants such that ρ1 > 0, 0 ≤ ρ′ < ρ < ρ′′.

Define

Γ = {u ∈ X1 ⊕X2 : ρ′ ≤ ‖P2u‖ ≤ ρ′′, ‖P1u‖ ≤ ρ1} and T = ∂X1⊕X2Γ,

S23(ρ) = {u ∈ X2 ⊕X3 : ‖u‖ = ρ} and B23(ρ) = {u ∈ X2 ⊕X3 : ‖u‖ ≤ ρ}.

Assume that a′ = sup I(T ) < inf I(S23(ρ)) = a′′. Let a and b be such that

a′ < a < a′′ and b > sup I(Γ). Assume that (∇)(I,X1 ⊕X3, a, b) holds and that
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(PS)c holds at any c in [a, b]. Then I has at least two critical points in I−1([a, b]).

Moreover, if inf I(B23(ρ)) > −∞, a1 < inf I(B23(ρ)) and (PS)c holds at any c

in [a1, b], then I has another critical level in [a1, a
′].

Lemma 2.4. Assume that conditions (f1)–(f3) hold. Then, for any δ with

min {µi+1 − µi, µi − µi−1} > δ > 0, for some ε0 > 0 such that µ ∈ [µi−δ, µi+δ],
the unique critical point u of ϕµ constrained on Hi−1 ⊕H⊥i such that ϕµ(u) ∈
[−ε0, ε0], is the trivial one.

Proof. Assume by contradiction that there exist δ>0, {µn}⊂ [µi − δ, µi+δ],
and {un} ⊂ Hi−1 ⊕H⊥i \{0} such that, for all v ∈ Hi−1 ⊕H⊥i ,

ϕµn(un) =
1

2

∫
Ω

(|∆un|2 − c|∇un|2 − µnu2
n) dx(2.1)

−
∫

Ω

F (x, un) dx→ 0,

〈ϕ′µn(un), v〉 =

∫
Ω

(∆un∆v − c∇un∇v − µnunv) dx(2.2)

−
∫

Ω

f(x, un)v dx = 0.

Here, going if necessary to a subsequence, we can assume that µn → µ ∈ [µi− δ,
µi + δ] as n→∞. From (f3), there exists a positive constant k2 such that

(2.3) f(x, t)t− 2F (x, t) ≥ k1|t|β − k2 for all (x, t) ∈ Ω× R.

Let v = un in (2.2), by (2.3), one has

2ϕµn(un)− 〈ϕ′µn(un), un〉 =

∫
Ω

(f(x, un)un − 2F (x, un)) dx(2.4)

≥ k1

∫
Ω

|un|β dx− k2|Ω|.

We deduce from (2.1), (2.2) and (2.4) that there exists a positive constant L1

such that

(2.5)

∫
Ω

|un|β dx < L1 for all n.

Choose vn ∈ Hi−1 and wn ∈ H⊥i so that un = vn + wn, for all n. And let

v = wn − vn in (2.2), we get

(2.6)

∫
Ω

(|∆wn|2 − c|∇wn|2) dx−
∫

Ω

(|∆vn|2 − c|∇vn|2) dx

− µn
∫

Ω

(w2
n − v2

n) dx =

∫
Ω

f(x, un)(wn − vn) dx.
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As for the first line in (2.6), by (1.4), one has∫
Ω

(|∆wn|2 − c|∇wn|2) dx− µn
∫

Ω

w2
n dx(2.7)

−
∫

Ω

(|∆vn|2 − c|∇vn|2) dx+ µn

∫
Ω

v2
n dx

=

∫
Ω

(|∆wn|2 − c|∇wn|2) dx− µn
µi+1

µi+1

∫
Ω

w2
n dx

−
∫

Ω

(|∆vn|2 − c|∇vn|2) dx+
µn
µi−1

µi−1

∫
Ω

v2
n dx

≥
(

1− µn
µi+1

)
‖wn‖2 +

(
µn
µi−1

− 1

)
‖vn‖2.

It follows from (2.6) and (2.7) that there exists k3 > 0, independent of n, such

that

(2.8) k3‖un‖2 ≤
∫

Ω

f(x, un)(wn − vn) dx for all n ∈ N.

We have

β >
N

4
(s− 1) and

N

4
(s− 1) <

2N

N + 4
s <

2N

N − 4
.

First, we consider the case N(s− 1)/4 < β < 2Ns/(N + 4). Put

α =
2sN − (N + 4)β

2N − (N − 4)β
,

one has 0 < α < 1. Let p = β/(s−α) > 1, we can obtain from Hölder’s inequality

and (1.7) that∫
Ω

|un|s|wn − vn| dx =

∫
Ω

|un|s−α|un|α|wn − vn| dx(2.9)

=

∫
Ω

|un|β/p|un|α|wn − vn| dx

≤
(∫

Ω

(|un|β/p)p dx
)1/p(∫

Ω

(|un|α|wn − vn|)q dx
)1/q

≤L1/p
1

(∫
Ω

(|un|qα)2∗∗/(qα) dx

)α/2∗∗(∫
Ω

(|wn − vn|q)2∗∗/q dx

)1/2∗∗

≤L1/p
1 ‖un‖αL2∗∗ ‖wn − vn‖L2∗∗ ≤ L1/p

1 Kα+1‖un‖α‖wn − vn‖

for all n, where q = p/(p− 1) = 2∗∗/(α + 1). By (f1), (2.5), (2.8) and (2.9), for

all n, one has

k3‖un‖2 ≤
∣∣∣∣ ∫

Ω

f(x, un)(wn − vn) dx

∣∣∣∣ ≤ ∫
Ω

|f(x, un)||wn − vn| dx(2.10)

≤ k0

∫
Ω

(|un|s|wn − vn|+ |wn − vn|) dx
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≤ k0L
1/p
1 Kα+1‖un‖α‖wn − vn‖+ k0K‖wn − vn‖

≤ 2k0L
1/p
1 Kα+1‖un‖α+1 + 2k0K‖un‖.

On the other hand, if β satisfies

2N

N + 4
s ≤ β < 2N

N − 4
,

then 1 ≤ β/(β − s) ≤ 2N/(N − 4). So, we get

(2.11) ‖u‖Lβ/(β−s) ≤ K‖u‖, u ∈ E.

By (f1) and (2.11), we obtain

k3‖un‖2 ≤
∣∣∣∣ ∫

Ω

f(x, un)(wn − vn) dx

∣∣∣∣(2.12)

≤ k0

∫
Ω

(|un|s|wn − vn|+ |wn − vn|) dx

≤ k0

(∫
Ω

(|un|s)β/s dx
)s/β
·
(∫

Ω

|wn − vn|β/(β−s) dx
)(β−s)/β

+ k0K‖wn − vn‖

≤ k0K‖un‖sLβ · ‖wn − vn‖+ k0K‖wn − vn‖

≤ 2k0K‖un‖sLβ · ‖un‖+ 2k0K‖un‖

for all n. Note that β ≥ 2Ns/(N+4) and N > 4 imply that β > s. So, it follows

from (2.5), (2.10) and (2.12) that {un} is bounded in E. There is a subsequence

of {un}, still denoted by {un} and u ∈ E such that un ⇀ u weakly in E, un → u

strongly in Lθ(Ω) for all θ ∈ (1, 2∗∗) and un(x) ⇀ u(x) for almost every x ∈ Ω.

Let v = un in (2.2), by (2.1) and Fatou’s lemma, we get

0 = lim
n→∞

2ϕµn(un)− 〈ϕ′µn(un), un〉 = lim
n→∞

∫
Ω

(f(x, un)un − 2F (x, un)) dx

≥
∫

Ω

lim inf
n→∞

(f(x, un)un − 2F (x, un)) dx ≥
∫

Ω

(f(x, u)u− 2F (x, u)) dx.

Then, (f3) and the above expression imply that u = 0. Since ‖un‖2 = ‖vn‖2 +

‖wn‖2, from (1.7), (2.8) and Hölder’s inequality we have

k3‖un‖2 ≤
(∫

Ω

|f(x, un)|(1+s)/s dx

)s/(s+1)(∫
Ω

|wn − vn|1+s dx

)1/(1+s)

≤ 2K‖un‖
(∫

Ω

|f(x, un)|(1+s)/s dx

)s/(s+1)

,

that is

(2.13) k3‖un‖ ≤ 2K

(∫
Ω

|f(x, un)|(1+s)/s dx

)s/(s+1)

.
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If un → 0, then (f2) and (2.13) would show

1 ≤ lim
n→∞

K

k3‖un‖

(∫
Ω

|f(x, un)|(1+s)s dx

)s/(s+1)

= 0,

which is a contradiction. So, there should exist α1 > 0 such that ‖un‖ ≥ α1 for

all n. Then, we can obtain from (f2) and (2.13) that

k3α1 ≤ lim
n→∞

K

(∫
Ω

|f(x, un)|(1+s)/sdx

)s/(s+1)

= 0.

This is a contradiction. �

Lemma 2.5. Assume that conditions (f1) and (f3) hold, µ ∈ (µi−1, µi+1) and

{un} ⊂ E is such that {ϕµ(un)} is bounded, Pun → 0 and Qϕ′µ(un)→ 0. Then

{un} is bounded in E.

Proof. By contradiction, we assume that ‖un‖ → ∞ as n → ∞. Let

un = Pun +Qun, by (f1) and Hölder’s inequality, there exists a constant k4 > 0

such that∣∣∣∣ ∫
Ω

f(x, un)Pun dx

∣∣∣∣ ≤ ∫
Ω

|f(x, un)||Pun| dx

≤ k0

∫
Ω

(|Pun|+ |un|s|Pun)|) dx ≤ k0‖Pun‖∞
(

1 +

∫
Ω

|un|sdx
)

≤ k0‖Pun‖∞
(

1 + |Ω|(β−s)/β
(∫

Ω

(|un|s)β/s dx
)s/β)

≤ k4‖Pun‖∞(1 + ‖un‖sLβ ).

So, we can obtain from (2.4) and the above expression that

2ϕµ(un)− 〈Qϕ′µ(un), un〉 = 2ϕµ(un)− 〈ϕ′µ(un), un〉+ 〈Pϕ′µ(un), un〉

=

∫
Ω

(f(x, un)un − 2F (x, un)) dx

+

∫
Ω

(|∆Pun|2 − c|∇Pun|2 − µ|Pun|2) dx−
∫

Ω

f(x, un)Pun dx

≥ k1

∫
Ω

|un|βdx− k2|Ω|+ ‖Pun‖2 − µ‖Pun‖2L2 − k4‖Pun‖∞(1 + ‖un‖sLβ ).

Since 1 < s < β, dim(H0
i ) < ∞ and ‖Pun‖∞ → 0 as n → ∞, the above

inequality implies that

(2.14)
‖un‖sLβ
‖un‖

→ 0 as n→∞.

Let Qun = vn + wn, vn ∈ Hi−1, wn ∈ H⊥i . On one hand, from (2.9), for

N

4
(s− 1) < β <

2N

N + 4
s and α =

2sN − (N + 4)β

2N − (N − 4)β
,
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we can obtain by Hölder’s inequality and (1.7) that

(2.15)

∫
Ω

|un|s|vn| dx ≤ Kα+1‖un‖α‖vn‖
(∫

Ω

|un|β dx
)1/p

and

(2.16)

∫
Ω

|un|s|wn| dx ≤ Kα+1‖un‖α‖wn‖
(∫

Ω

|un|β dx
)1/p

for all n, where p = β/(s− α) > 1 and q = p/(p− 1) = 2∗∗/(α+ 1). So, we can

get from (f1), (1.4), (1.7) and (2.15) that

〈Qϕ′µ(un),−vn〉 = −‖vn‖2 + µ

∫
Ω

v2
ndx+

∫
Ω

f(x, un)vn dx

≥
(
− 1 +

µ

µi−1

)
‖vn‖2 +

∫
Ω

f(x, un)vn dx

≥ µ− µi−1

µi−1
‖vn‖2 − k0

∫
Ω

(|vn|+ |un|s|vn|) dx

≥ µ− µi−1

µi−1
‖vn‖2 − k0K

α+1‖un‖α‖vn‖
(∫

Ω

|un|β dx
)1/p

− k0‖vn‖L1

≥ µ− µi−1

µi−1
‖vn‖2 − k0K‖vn‖(1 +Kα‖un‖β/pLβ

‖un‖α)

for all n. So, from (2.14), one has

(2.17)
‖vn‖
‖un‖

→ 0 as n→∞.

From (f1), (1.4), (1.7) and (2.16), we have

〈Qϕ′µ(un), wn〉 = ‖wn‖2 − µ
∫

Ω

w2
n dx−

∫
Ω

f(x, un)wn dx

≥
(

1− µ

µi+1

)
‖wn‖2 −

∫
Ω

f(x, un)wn dx

≥ µi+1 − µ
µi+1

‖wn‖2 − k0

∫
Ω

(|wn|+ |un|s|wn|) dx

≥ µi+1 − µ
µi+1

‖wn‖2 − k0K
α+1‖un‖α‖wn‖

(∫
Ω

|un|β dx
)1/p

− k0‖wn‖L1

≥ µi+1 − µ
µi+1

‖wn‖2 − k0K‖wn‖(1 +Kα‖un‖β/pLβ
‖un‖α)

for all n. By (2.14), we get

(2.18)
‖wn‖
‖un‖

→ 0 as n→∞.

On the other hand, if
2N

N + 4
s ≤ β < 2N

N − 4
,



340 C. Li — R.P. Agarwal — Z.-Q. Ou

we can get

(2.19)

∫
Ω

|un|s|vn| dx ≤ K‖un‖sLβ‖vn‖

and

(2.20)

∫
Ω

|un|s|wn| dx ≤ K‖un‖sLβ‖wn‖

for all n. It follows from (f1), (1.4), (1.7) and (2.19) that

〈Qϕ′µ(un),−vn〉 ≥
µ− µi−1

µi−1
‖vn‖2 − k0K‖vn‖(1 +Kα‖un‖sLβ )

for all n. Combining (2.14) and the above expression, we get

(2.21)
‖vn‖
‖un‖

→ 0 as n→∞.

We conclude from (f1), (1.4), (1.7) and (2.20) that

〈Qϕ′µ(un), wn〉 ≥
µi+1 − µ
µi+1

‖wn‖2 − k0K‖wn‖(1 + ‖un‖sLβ )

for all n. The above expression and (2.14) imply that

(2.22)
‖wn‖
‖un‖

→ 0 as n→∞.

It is easy to see that

(2.23)
‖Pun‖
‖un‖

→ 0 as n→∞.

Then, we can get from (2.17), (2.18), (2.21)–(2.23) that

1 =
‖un‖
‖un‖

≤ ‖vn‖+ ‖Pun‖+ ‖wn‖
‖un‖

→ 0

as n→∞, which is a contradiction. Hence, {un} must be bounded. �

Lemma 2.6. Assume that conditions (f1)–(f3) hold. Then, for any δ with

min {µi+1 − µi, µi − µi−1} > δ > 0 and for some ε > 0, µ ∈ [µi − δ, µi + δ], and

for any a, b ∈ (0, ε) with a < b, the condition (∇)(ϕµ, Hi−1 ⊕H⊥i , a, b) holds.

Proof. Assume by contradiction that there exists δ > 0 such that for all

ε0 > 0, there exist µ ∈ [µi − δ, µi + δ] and a, b ∈ (0, ε0) such that a < b and the

condition (∇)(ϕµ, Hi−1 ⊕H⊥i , a, b) does not hold.

Take ε0 > 0 as given by Lemma 2.4. There exists {un} in E such that

d(un, Hi−1⊕H⊥i )→ 0, ϕµ(un) ∈ (a, b) and Qϕ′µ(un)→ 0. So, from Lemma 2.5,

{un} is bounded. We can assume that un ⇀ u.

Taking into account that Qϕ′µ(un) = un−Pun+(∆2+c∆)−1(µun+f(x, un)),

where f(x, un) → f(x, u) in L1+1/s(Ω) by (f1) and (∆2 + c∆)−1 : E → E is

a compact operator. We have un → u and u = 0 is a critical point of ϕµ
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constrained on Hi−1⊕H⊥i by Lemma 2.4. But 0 < a ≤ ϕµ(un) for all n and the

continuity of ϕµ imply a contradiction. �

Lemma 2.7. Assume that (f1), (f2) and (F2) hold. Then, for any µ ∈
(µi−1, µi), there are R, ρ with R > ρ > 0 such that

supϕµ(Ti−1,i(R)) < inf ϕµ(S+
i−1(ρ)).

Proof. For any u ∈ Hi−1 and µ ∈ (µi−1, µi), by (F2), one has

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx(2.24)

≤ µi−1 − µ
2µi−1

‖u‖2 ≤ 0.

By (F1), there exists L2 > 0 such that

(2.25) F (x, t) ≥ (µi − µ)t2 − L2

for all (x, t) ∈ Ω× R. So, from (1.4) and (2.25), we have

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx

≤ µi − µ
2µi

‖u‖2 − (µi − µ)‖u‖2L2 + L2|Ω| ≤
µ− µi

2µi
‖u‖2 + L2|Ω|

for any u ∈ Hi. We obtain from the above expression that

(2.26) ϕµ(u)→ −∞ as ‖u‖ → ∞.

Moreover, by (f1) and (f2), for ε = (µi − µ)/2 > 0, there exists L3(ε) > 0 such

that

(2.27) F (x, t) ≤ ε

2
|t|2 + L3|t|s+1 for all (x, t) ∈ Ω× R.

For any u ∈ H⊥i−1, µ ∈ (µi−1, µi), by (1.7) and (2.27), we have

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx(2.28)

≥ 1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx− ε

2

∫
Ω

u2 dx− L3

∫
Ω

|u|s+1 dx

≥ µi − µ− ε
2µi

‖u‖2 − L3‖u‖s+1
Ls+1 ≥

µi − µ
4µi

‖u‖2 − L3K
s+1‖u‖s+1.

Since s+ 1 > 2, from (2.24), (2.26) and (2.28), there are R > 0 and ρ > 0 such

that

sup Iλ(Ti−1,i(R)) < inf Iλ(S+
i−1(ρ)). �

Lemma 2.8. Assume that condition (F2) holds, then for any ε > 0 and for

any R1 > 0, there is δ′i > 0 such that for any µ ∈ (µi − δ′i, µi), one has

supϕµ(Bi(R1)) < ε,

where Bi(R1) = {u ∈ Hi : ‖u‖ ≤ R1}.
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Proof. By (F2) and µ < µi, for any u ∈ Hi, we have

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx ≤ µi − µ
2µi

‖u‖2.

Hence, it is easy to see that the conclusion holds. �

From Lemmas 2.7 and 2.8, we can choose a ∈ (0, inf ϕµ(S+
i−1(ρ))) and b >

supϕµ(Bi(R)) such that 0 < a < b < ε0. Then the condition (∇)(ϕµ, Hi−1 ⊕
H⊥i , a, b) from Lemma 2.6 holds.

Proof of Theorem 1.1. The argument will be divided into two steps.

Step 1. Two critical points are obtained. First of all, from Lemmas 2.6–

2.8, the condition (∇)(ϕµ, Hi−1 ⊕H⊥i , a, b) holds. According to Theorem 2.3, if

we can prove that the (PS) condition holds, there are two critical points u1, u2

such that ϕµ(ui) ∈ [a, b], i = 1, 2. From the proof of Lemma 2.5, if for any (PS)

sequence {un} of ϕµ, one has ‖Pun‖/‖un‖ → 0 as n→∞, then {un} is bounded.

Moreover, by (f1), a standard argument implies that the (PS) condition holds.

By (f3), there exist k5 > 0 and k6 > 0 such that

f(x, t)t− 2F (x, t) ≥ k5|t| − k6 for all (x, t) ∈ Ω× R,

which implies that

2ϕµ(un)− 〈ϕ′µ(un), un〉

=

∫
Ω

(f(x, un)un − 2F (x, un)) dx ≥
∫

Ω

(k5|un| − k6) dx

≥
∫

Ω

(k5|Pun| − k5|vn| − k5|wn| − k6) dx ≥ k7‖Pun‖ − k8(‖vn‖+ ‖wn‖+ 1),

where k7, k8 are two positive constants. Combining (2.17), (2.18), (2.21), (2.22)

with the above expression, we have ‖Pun‖/‖un‖ → 0 as n→∞.

Step 2. The third critical point is obtained. By Theorem 2.1 it suffices to

prove that there are δ′′i > 0 and R2 > ρ1 > 0 such that for any µ ∈ (µi− δ′′i , µi),

(2.29) inf ϕµ(S+
i (ρ1)) > supϕµ(Ti,i+1(R2)).

Hence, there is a critical point u of ϕµ such that ϕµ(u) > inf ϕµ(S+
i (ρ1)). For

u ∈ H⊥i , by (2.27), one has

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx

≥ 1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx− ε

2

∫
Ω

u2 dx− L3

∫
Ω

|u|s+1 dx

≥ µi+1 − µ− ε
2µi+1

‖u‖2 − L3‖u‖s+1
Ls+1 ≥

µi+1 − µ
4µi+1

‖u‖2 − L3K
s+1‖u‖s+1.
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Since s+ 1 > 2, there are ρ1 > 0 and α > 0 such that

(2.30) inf ϕµ(S+
i (ρ1)) ≥ α.

Moreover, for any u ∈ Hi, by (F2), one has

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx ≤ µi − µ
2µi

‖u‖2.

There are δ′′i > 0 and R2 > 0 such that µ ∈ (µi − δ′′i , µi). From the above

expression we have ϕµ(u) < α for all ‖u‖ ≤ R2. It follows from (F1) that there

exists L4 > 0 such that

(2.31) F (x, t) ≥ (µi+1 − µ)t2 − L4 for all (x, t) ∈ Ω× R.

For any u ∈ Hi+1 and µ ∈ (µi − δ′′i , µi), by (2.31), we get

ϕµ(u) =
1

2

∫
Ω

(|∆u|2 − c|∇u|2 − µu2) dx−
∫

Ω

F (x, u) dx

≤ µi+1 − µ
2µi+1

‖u‖2 − (µi+1 − µ)‖u‖2L2 + L4|Ω| ≤ −
µi+1 − µ

2µi+1
‖u‖2 + L4|Ω|.

Hence, we have

(2.32) ϕµ(u)→ −∞ as ‖u‖ → ∞.

Therefore, from (2.30) and (2.32), the conclusion (2.29) holds. By Theorem 2.1,

there is a critical point u of ϕµ such that ϕµ(u) > α. Finally, we take δi =

min {δ′i, δ′′i } where δ′i is given in Lemma 2.8 and Theorem 1.1 is proved. �
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