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Abstract. Using Mawhin’s coincidence degree theory, we obtain some new

continuation theorems which are designed to have as a natural application

the study of the periodic problem for cyclic feedback type systems. We also
discuss some examples of vector ordinary differential equations with a φ-

Laplacian operator where our results can be applied. Our main contribution

in this direction is to obtain a continuation theorem for the periodic problem
associated with (φ(u′))′ + λk(t, u, u′) = 0, under the only assumption that

φ is a homeomorphism.

1. Introduction

The aim of this paper is to apply Mawhin’s coincidence degree theory in

the study of the periodic boundary value problem for some classes of first order

differential systems of cyclic feedback type. From this point of view, our work

continues the research initiated in [8] and is also partially inspired by the results

in [18] on periodic ODE systems with a φ-Laplacian differential operator.
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Roughly speaking, by a “cyclic system” we usually mean a first order system

of ordinary differential equations where the time evolution of the j-th component

yj(t) mainly depends upon the pair (yj−1(t), yj(t)). Therefore, the components

are ordered in a cyclic manner, so that we consider n ≡ 0 for a system of n

variables. Accordingly, such systems usually take a form

(1.1) y′j = gj(yj−1, yj), j = 1, . . . , n,

where we agree to interpret y0 as yn (cf. [17]). More general models consider

also the case where gj = gj(yj−1, yj , yj+1), which is a typical case of a sys-

tem describing nearest neighbour interactions. The term “feedback” usually

refers to a monotonicity assumption of the form ∂gj(yj−1, yj)/∂yj−1 > 0 or

∂gj(yj−1, yj)/∂yj−1 < 0, which reflects the fact that the variable yj−1 has a posi-

tive or negative effect on the growth of the j-th variable yj . These features ex-

plain the reason why first order differential systems with a cyclic feedback struc-

ture arise in several different contexts, both theoretic and applied. As observed

in [17], such systems naturally appear in the investigation of biological models

(for instance, cellular control systems) as well as in the study of delay-differential

equations or reaction-diffusion equations (after a discretization procedure).

Up to a relabeling of the variables in equation (1.1), namely setting xi :=

yn+1−i, we get an equivalent system of the form

(1.2) x′i = fi(xi, xi+1), i = 1, . . . , n,

with fi = gj for i+ j = n+ 1. In view of the applications that we are going to

present in this article, it will be more convenient for us to consider cyclic systems

of the form (1.2). For many concrete examples, in some of the equations of system

(1.2) there is no dependence of fi upon the i-th variable or such dependence can

be neglected. Two typical examples are the following.

Consider an n-th order differential equation of the form

(1.3) x(n) + h(t, x, x′, . . . , x(n−1)) = 0,

which can be written as

(1.4)

x′i = xi+1, i = 1, . . . , n− 1,

x′n = −h(t, x1, . . . , xn).

In such a case fi(xi, xi+1) = xi+1 for i = 1, . . . , n − 1, so that the first n − 1

equations in the cyclic system (1.2) are strongly simplified. On the other hand,

this example shows that there are cases in which the last equation in (1.2) may

be more complicated than x′n = fn(xn, x1).

In some ODE models for population dynamics it is rather common to en-

counter Kolmogorov systems of the form

(1.5) u′i = uiKi(ui+1), i = 1, . . . , n ≡ 0.
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A typical two-dimensional case is given by the Lotka–Volterra predator-prey equa-

tion u′ = u(a− bv),

v′ = v(−c+ du).

Since we are looking for positive solutions, we can perform the change of variable

xi(t) = log(ui(t)) and transform (1.5) to the equivalent cyclic feedback system

x′i = Ki(exp(xi+1)), i = 1, . . . , n ≡ 0,

which is of the form of (1.2) with fi independent on the variable xi. This latter

model suggests the interest to deal also with the non-autonomous counterpart

of system (1.2), by assuming an explicit dependence of some of the coefficients

on the time variable. This situation naturally occurs in the study of some Kol-

mogorov systems, like the Lotka–Volterra one, in which one can consider a sea-

sonal dependence on the coefficients.

In view of the above remarks, we plan to investigate a class of cyclic feedback

systems related to (1.2) which have a simpler form in the first n− 1 components

but, on the other hand, allow to consider a more general dependence for the last

equation, in order to apply our results to equations of the form (1.4) as well.

With this respect, we study a system of the form

(C )



x′1 = g1(x2),

x′2 = g2(x3),
...

x′n−1 = gn−1(xn),

x′n = h(t, x1, . . . , xn),

where throughout the paper we suppose that g1, . . . , gn−1 are continuous func-

tions and h is T -periodic in the t-variable and satisfies the Carathéodory as-

sumptions.

A powerful topological tool to produce existence and multiplicity results of

periodic solutions is Mawhin’s coincidence degree theory, which allows to apply

a topological degree type approach to problems which can be written as an

abstract operator equation of the form Lx = Nx, where L is a linear non-

invertible operator and N is a nonlinear one acting on a Banach space X. In

order to present the next results, we take

X := CT := {x ∈ C([0, T ],Rm) : x(0) = x(T )},

with the standard sup-norm ‖ · ‖∞.
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In the frame of coincidence degree theory, the main existence result for the

periodic problem

(P)

x′ = F (t, x),

x(0) = x(T ),

where F : [0, T ]×Rm → Rm is a Carathéodory vector field, is Mawhin’s continu-

ation theorem (cf. [21, Théorème 2] or [25, Theorem 4.1]), which reads as follows

(we denote by “degB” the Brouwer degree).

Theorem 1.1. Let Ω ⊆ X be an open bounded set and suppose that:

• for each λ ∈ ]0, 1[ there is no solution of the problemx′ = λF (t, x),

x(0) = x(T ),

with x ∈ ∂Ω;

• the averaged map F# : z 7→ (1/T )
∫ T

0
F (t, z) dt has no zeros on ∂Ω∩Rm

and degB(F#,Ω ∩ Rm, 0) 6= 0.

Then, problem (P) has a solution in Ω.

A second continuation theorem was proposed in [7] and extended to delay-

differential equations (with a different proof) in [1]. It concerns the case in

which the homotopic parameter λ is used to modify the original system to an

autonomous one. More precisely, we suppose that there exists a Carathéodory

vector field F = F (t, x, λ) : [0, T ]× Rm × [0, 1]→ Rm such that

F (t, x, 0) = F0(x), F (t, x, 1) = F (t, x).

The corresponding existence result can be stated as follows (cf. [7, Theorem 2]).

Theorem 1.2. Let Ω ⊆ X be an open bounded set and suppose that:

• for each λ ∈ [0, 1[ there is no solution of the problemx′ = F (t, x, λ)

x(0) = x(T ),

with x ∈ ∂Ω;

• degB(F0,Ω ∩ Rm, 0) 6= 0.

Then, problem (P) has a solution in Ω.

Both these results extend to higher order differential systems of the form

(1.3). In particular, both results and especially Theorem 1.1 have found a great

number of applications to the T -periodic problem associated with the vector

second order differential equation

u′′ + g(t, u, u′) = 0,
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where g : [0, T ]× Rd × Rd → Rd is a Carathéodory function.

The study of ordinary and partial differential equations involving nonlinear

differential operators (like the p-Laplacian, the curvature or the Minkowski oper-

ators), started in the mid-twentieth century, has shown a tremendous growth in

the last decades. Applications of topological degree methods to these equations

strongly motivated the search of new topological tools, such as the continua-

tion theorems for strongly nonlinear operators (see, for instance, [11] for some

pioneering works in this direction). For the periodic boundary value problem as-

sociated with non-autonomous ODEs, Manásevich and Mawhin developed in [18]

new continuation theorems for the second order vector nonlinear equation

(1.6) (φ(u′))′ + g(t, u, u′) = 0.

New applications were also obtained by the same authors in [19], [20] as well as

by Mawhin in [27]. The two main continuation theorems in [18] extend Theo-

rem 1.1 and Theorem 1.2, respectively, to the above periodic problem, consider-

ing, instead of the linear differential operator u 7→ −u′′, the strongly nonlinear

operator u 7→ −(φ(u′))′. The approach in [18] requires that φ : Rd → Rd is

a homeomorphism with φ(0) = 0 satisfying some additional technical growth

conditions (compare with (H1) and (H2) in Remark 3.12). These continuation

theorems concern, respectively, the study of the homotopic equations

(1.7) (φ(u′))
′
+ λg(t, u, u′) = 0, λ ∈ ]0, 1[ ,

(in analogy to Theorem 1.1) or

(φ(u′))
′
+ g̃(t, u, u′, λ) = 0, λ ∈ [0, 1[ ,

with

g̃(t, u, v, 1) = g(t, u, v) and g̃(t, u, v, 0) = g0(u, v)

(in analogy to Theorem 1.2). As far as we know, it seems that the problem

whether the technical conditions (H1) and (H2) considered in [18]–[20], [27] are

necessary or can be removed has not yet been completely solved. Recently, a dif-

ferent point of view has been considered by Lu and Lu in [16] where, for the

mean curvature operator equation, the authors have applied Mawhin’s continu-

ation Theorem 1.1 directly to the first order system

(1.8)

x′1 = φ−1(x2),

x′2 = −g(t, x1, φ
−1(x2)).

To be more precise, we have to remark that in the equation considered in [16] the

function g does not depend on u′ and therefore the treatment can be simplified.

Clearly, the application of Theorem 1.1 to system (1.8) involves the study of the
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parameter-dependent systemx′1 = λφ−1(x2),

x′2 = −λg(t, x1, φ
−1(x2)),

λ ∈ ]0, 1[ ,

which, in turns, corresponds to the equation

(φ(u′/λ))
′
+ λg(t, u, u′/λ) = 0, λ ∈ ]0, 1[ ,

which looks different from (1.7) and, apparently, more complicated.

If we write equation (1.7) as a first order system in R2d, the natural choice

would be that of

(1.9)

x′1 = φ−1(x2),

x′2 = −λg(t, x1, φ
−1(x2)), λ ∈ ]0, 1[.

The advantage in dealing with such a system is that we only require that φ

is a homeomorphism (without the need of other technical conditions on φ, as

considered in [18]). On the other hand, Theorem 1.1 does not apply directly to

(1.9) and this may represent a motivation to try to extend the classical Mawhin’s

continuation theorem to a form in which the homotopic parameter λ appears

only on some components of the differential system. A first aim of the present

paper is to pursue this line of research and, indeed, we will provide a version of

Theorem 1.1 which is suitable for applications to cyclic feedback systems of the

form (C ), via a homotopy of the form (1.9), when applied to (1.8). Our proposal

for a new continuation theorem is in any case within the setting of Mawhin’s

coincidence degree theory and it will be presented as a general theorem for

operator equations of coincidence type that mimics at the abstract level some

typical properties of the cyclic systems.

With this respect, the plan of the paper is the following. In Section 2 we

present an application of the theory of coincidence degree in the setting of a sys-

tem of operator equations, namely as coincidence equations involving operators

defined in product spaces. We assume the reader is familiar with the basics

of Mawhin’s coincidence degree, as presented in some classical works like [12],

[23], [25]. In any case, when necessary, we shall recall some crucial properties.

The key ingredient in our proofs is the reduction formula, a basic tool also in

the original applications of the theory (see [21] and also [28], [30] for some recent

developments), which allows to relate a Leray–Schauder type degree in a normed

space with a Brouwer degree in a finite-dimensional space. Accordingly, our main

results in Section 2 are Theorem 2.6, where we perform an abstract homotopy

of the form (1.9), and the subsequent Lemma 2.8, where we provide a precise

formula for the computation of the degree. Such results have an immediate appli-

cation to the periodic problem and therefore in Section 3 we give some existence

theorems of continuation type for system (C ) which are analogous to Theorem 1.1
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(see Theorems 3.3 and 3.7). In the same section we produce, as a consequence

of our main results, a continuation theorem for φ-Laplacian differential systems

of the form (1.6) which involves the study of (1.7). Our contribution for this

kind of equations is Theorem 3.11 which is exactly Manásevich–Mawhin theorem

[18, Theorem 3.1], with the only difference that with our approach we can avoid

some technical conditions on φ which were assumed in [18]. We also provide an

example of a general type of higher dimensional φ-map where our result can be

applied. In Section 4 we discuss a second type of continuation theorems which

are essentially based on Theorem 1.2. More precisely, we consider the case when

the admissible homotopy transforms a non-autonomous system of the form (C )

into an autonomous one where the coincidence degree can be computed using

the theorems in [1] and [7] (these auxiliary results are recalled in a final appendix

together with a more general version suitable for our applications). Again our

purpose is to show that, when a given system allows an equivalent representation

in the cyclic feedback form, some continuation theorems can be reformulated in

a very effective fashion, thus avoiding some additional technical conditions. Ap-

plications are given again to φ-Laplacian differential systems of the form (1.6)

and our contribution Theorem 4.6 is precisely Manásevich–Mawhin theorem [18,

Theorem 4.1] (without extra assumptions on the φ-operator). Next, in Section 5

we reconsider Hartman–Knobloch theorem, recently extended by Mawhin in [26]

and by Mawhin and Ureña in [31] to p-Laplacian systems, and show that the

arguments in [26], [31] can be effectively applied also to a broader class of differ-

ential operators. Finally, in Section 6 we briefly discuss some possible extensions

to operators which are not defined on the whole space.

We conclude this introductory section presenting a few notation used in the

present paper. In the N -dimensional real Euclidean space RN we denote by

〈 · , · 〉 the standard inner product and by ‖ · ‖RN the corresponding norm. When

no confusion may occur we shall also use the symbol | · | as a simplified no-

tation for the norm. If we consider a homeomorphism φ : A → B, we always

implicitly assume that φ(A) = B. Thus, in particular, for a homeomorphism

φ : RN → RN , we suppose that φ(RN ) = RN . In any fixed (finite or infinite

dimensional) normed space, we denote by B(x0, r) (respectively, B[x0, r]) the

open (respectively, closed) ball of center a point x0 and radius r > 0. We denote

by “degB” the finite-dimensional Brouwer degree and by “degLS” the Leray–

Schauder degree in the context of locally compact operators on arbitrary open

not necessarily bounded sets (cf. [32], [33] for a precise definition). Finally, we

denote by “DL” the coincidence degree extended to locally compact operators

(for the precise definition, cf. [5], [10] and the reference therein).
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2. Coincidence degree theory in product spaces

Throughout the section, when not otherwise specified, i is a generic index

from 1 to n. For i = 1, . . . , n, let Xi, Zi be real normed linear spaces and let

Li : domLi(⊆ Xi)→ Zi

be a linear Fredholm mapping of index zero, i.e. ImLi is a closed subspace of Zi
and dim(kerLi) = codim(ImLi) are finite. We denote by kerLi = L−1

i (0) ⊆ Xi

the kernel of Li, by ImLi ⊆ Zi the image of Li and by cokerLi = Zi/ImLi
the quotient space of Zi under the equivalence relation w1 ∼ w2 if and only if

w1 − w2 ∈ ImLi. Thus cokerLi is a complementary subspace of ImLi in Zi.

From basic results of linear functional analysis, due to the fact that Li is

a Fredholm mapping, there exist linear continuous projections

Pi : Xi → kerLi, Qi : Zi → cokerLi

so that

Xi = kerLi ⊕ kerPi, Zi = ImLi ⊕ ImQi.

We denote by Ki : ImLi → domLi∩kerPi the right inverse of Li, i.e. LiKi(v) =

v for each v ∈ ImLi. Since kerLi and cokerLi are finite-dimensional vector

spaces of the same dimension, once an orientation on both spaces is fixed, we

choose a linear orientation-preserving isomorphism Ji : cokerLi → kerLi.

Let us consider the product spaces

X :=

n∏
i=1

Xi, Z :=

n∏
i=1

Zi,

with the usual norms.

Setting domL :=
n∏
i=1

domLi, we define L : domL(⊆ X)→ Z as

L(u) := (L1(u1), . . . , Ln(un)), u = (u1, . . . , un) ∈ domL, with ui ∈ Xi.

It is obvious to verify that L is a linear Fredholm mapping of index zero. Next,

we observe that

kerL = L−1(0) =

n∏
i=1

kerLi ⊆ X and ImL =

n∏
i=1

ImLi ⊆ Z

are the kernel of L and the image of L, respectively. Finally, we define the map

K : ImL→ domL ∩
n∏
i=1

kerPi as

K(v) := (K1(v1), . . . ,Kn(vn)), v = (v1, . . . , vn) ∈ ImL, with vi ∈ Zi.

It is easy to check that K is the right inverse of L.

Let also define P : X → kerL by P (u) := (P1(u1), . . . , Pn(un)), for u =

(u1, . . . , un)∈X (with ui∈Xi), Q : Z→cokerL by Q(v) :=(Q1(v1), . . . , Qn(vn)),
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for v = (v1, . . . , vn) ∈ Z (with vi ∈ Zi), and J : cokerL → kerL by J(v) :=

(J1(v1), . . . , Jn(vn)), for v = (v1, . . . , vn) ∈ cokerL (with vi ∈ Zi).
Let N : domN(⊆ X)→ Z be a nonlinear L-completely continuous operator,

namely N and K(IdZ − Q)N are continuous, and also QN(B) and K(IdZ −
Q)N(B) are relatively compact sets, for each bounded set B ⊆ domN . For

example, N is L-completely continuous when N is continuous, maps bounded

sets to bounded sets and K is a compact linear operator.

We further define Ni : domN → Zi as

Ni(u) := (πZi ◦N)(u), u ∈ domN,

where πZi : Z → Zi is the standard projection.

In the sequel, to simplify the notation, we will write Lu and Nu in place of

L(u) and N(u), respectively. The same convention will be used also for other

operators.

Now we consider the coincidence equation

Lu = Nu, u ∈ domL ∩ domN,

which can be equivalently written as a system

(2.1)

Liui = Ni(u1, . . . , un), u = (u1, . . . , un) ∈ domL ∩ domN,

i = 1, . . . , n.

From Mawhin’s coincidence degree theory, one can see that system (2.1) is equiv-

alent to the fixed point problem

u = Φ(u), u ∈ domN,

where Φ = ΦN : domN → X is defined as

(2.2) Φ(u) := Pu+ JQNu+K(IdZ −Q)Nu, u ∈ domN.

Hence Φ is of the form Φ = (Φ1, . . . ,Φn), with Φi : domN → Xi given by

Φi(u) := Piui + JiQiNiu+Ki(IdZi
−Qi)Niu, u = (u1, . . . , un) ∈ domN.

Notice that, under the above assumptions, Φ: domN → X is a completely

continuous operator.

As a first step, we state the classical homotopic invariance property of Ma-

whin’s coincidence degree. We present the theory in a slightly simplified version

than the more general one developed in [32], [33] for locally compact operators

(see Remark 2.2 for a more general statement).

We recall that the coincidence degree DL(L−N,Ω) of L and N in Ω is defined

as degLS(IdX − Φ,Ω, 0), for Φ = ΦN as in (2.2).
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Lemma 2.1 (Homotopic invariance). Let L and N be as above and let Ω ⊆
domN be an open (possibly unbounded) set. Suppose that there exists an L-

completely continuous map Ñ : Ω× [0, 1]→ Z such that

Ñ(u, 0) = N̂(u), Ñ(u, 1) = N(u), for all u ∈ Ω,

where N̂ : Ω→ Z. Moreover, suppose that the set

S :=
⋃

ϑ∈[0,1]

{u ∈ Ω ∩ domL : Lu = Ñ(u, ϑ)}

is a compact subset of Ω. Then, the map ϑ 7→ DL(L− Ñ( · , ϑ),Ω) is well-defined

and constant on [0, 1]. In particular, it holds that

DL(L−N,Ω) = DL(L− N̂ ,Ω).

Remark 2.2. In Lemma 2.1 we have stated the homotopy invariance for an

L-completely continuous map Ñ . We stress that the same conclusion holds for

a continuous map Ñ such that the set S is compact and there exists a bounded

open neighbourhood W of S such that W ⊆ Ω and (K(IdZ − Q)Ñ)|[0,1]×W is

a compact map.

Let πXi : X → Xi be the standard projection. If Ω ⊆ X, we define Ωi :=

πXi (Ω). We observe that, if Ω is open in X, then Ωi is open in Xi, for all

i = 1, . . . , n.

Now we recall the Reduction Formula of the Leray–Schauder degree for lo-

cally compact operators, which is a direct consequence of the Commutativity

property (cf. [32, pp. 26–27] and [33, pp. 148–149]). This property will be crucial

in the proof of a subsequent result (cf. Lemma 2.4).

Lemma 2.3 (Reduction Formula). Let X be a normed linear space. Let

U ⊆ X be an open (possibly unbounded) set. Let Ψ: U → X be a continuous

map such that degLS(IdX − Ψ, U, 0) is defined. Let Y ⊆ X be a subspace such

that Ψ(U) ⊆ Y . Then

degLS(IdX −Ψ, U, 0) = degLS(IdY −Ψ|Y , U ∩ Y, 0).

In the statement, we implicitly identify Ψ with j ◦Ψ, where j : Y → X is the

(continuous) inclusion.

The following result is an application of Lemma 2.3.

Lemma 2.4. Let Ω ⊆ X be an open (possibly unbounded) set. Let L be as

above and N̂ : Ω→ Z be an L-completely continuous operator. Suppose that N̂u,

u = (u1, . . . , un) ∈ Ω, has components of the following form:N̂i(ui+1) for i = 1, . . . , n− 1,

N̂n(u1, . . . , un).
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Assume that

ImLi ∩ N̂i(Ωi+1 ∩ kerLi+1) ⊆ {0Zi}, for all i = 1, . . . , n− 1,(2.3)

ImLn ∩ N̂n(Ω ∩ domL) ⊆ {0Zn
}.(2.4)

Moreover, assume that {u ∈ Ω ∩ kerL : N̂u = 0Z} is a compact subset of Ω.

Then

DL(L− N̂ ,Ω) = degB(N ,Ω ∩ kerL, 0),

where N : Ω ∩ kerL→ kerL is defined as

N :=
(
−J1Q1N̂1|Ω2∩kerL2

, . . . ,−Jn−1Qn−1N̂n−1|Ωn∩kerLn
,−JnQnN̂n|Ω∩kerL

)
.

Proof. First of all, we introduce the operator Φ̃ : [0, 1]×Ω→ X of the form

Φ̃(ϑ, u) = Φ̃ϑ(u) = (Φ̃ϑ1 (u), . . . , Φ̃ϑn(u)), with Φ̃ϑi : Ω→ Xi defined asΦ̃ϑi (u) := Piui + JiQiN̂iui+1 + ϑKi(IdZi
−Qi)N̂iui+1, i = 1, . . . , n− 1,

Φ̃ϑn(u) := Pnun + JnQnN̂nu+ ϑKn(IdZn −Qn)N̂nu.

We stress that Φ̃ is the completely continuous operator associated with the co-

incidence equation

Lu = ϑN̂u, u ∈ Ω ∩ domL, ϑ ∈ [0, 1],

in the sense that u ∈ Ω is such that u = Φ̃ϑ(u) for some ϑ ∈ ]0, 1] if and only if

u ∈ Ω ∩ domL and Lu = ϑN̂u.

We claim that the set

S̃ :=
⋃

ϑ∈[0,1]

{
u ∈ Ω : u = Φ̃ϑ(u)

}
is a compact subset of Ω.

Let us fix an arbitrary ϑ ∈ ]0, 1]. If u ∈ Ω is such that u = Φ̃ϑ(u), then, in

particular, from the last equation it holds that

un = Pnun + JnQnN̂nu+ ϑKn(IdZn
−Qn)N̂nu,

so that u ∈ Ω∩domL (un ∈ Ωn∩domLn) and Lnun/ϑ = N̂nu. From hypothesis

(2.4), we easily obtain that un ∈ Ωn ∩ kerLn and N̂nu = 0Zn . Next, considering

the (n− 1)-component of the equality u = Φ̃ϑ(u), we can write

un−1 = Pn−1un−1 + Jn−1Qn−1N̂n−1un + ϑKn−1(IdZn−1
−Qn−1)N̂n−1un,

so that

un−1 ∈ Ωn−1 ∩ domLn−1 and Ln−1
un−1

ϑ
= N̂n−1un.

Taking into account that un ∈ Ωn ∩ kerLn, hypothesis (2.3) (with i = n − 1)

ensures that

un−1 ∈ Ωn−1 ∩ kerLn−1 and N̂n−1un = 0Zn−1 .
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Proceeding in this way (by repeating inductively the same argument), hypothesis

(2.3) ensures that

ui ∈ Ωi ∩ kerLi and N̂iui = 0Zi
, for all i = 1, . . . , n− 1.

Next, let ϑ = 0. If u ∈ Ω is such that u = Φ̃0(u), thenui = Piui + JiQiN̂iui+1, i = 1, . . . , n− 1,

un = Pnun + JnQnN̂nu.

We immediately deduce that ui ∈ Ωi∩kerLi for all i = 1, . . . , n, and so ui = Piui.

Therefore, QiN̂iui+1 = 0Zi , for i = 1, . . . , n − 1, and QnN̂nu = 0Zn . Then,

N̂iui+1 ∈ ImLi, for i = 1, . . . , n− 1, and N̂nu ∈ ImLn. Hence, we obtain that

N̂iui+1 ∈ ImLi ∩ N̂i(Ωi+1 ∩ kerLi+1) = {0Zi
}, for all i = 1, . . . , n− 1,

N̂nu ∈ ImLn ∩ N̂n(Ω ∩ domL) = {0Zn
}.

Then N̂u = 0Z . By the above observations, we have that S̃ ⊆ {u ∈ Ω ∩ kerL :

N̂u = 0Z}. Since the converse inclusion is trivial, we obtain that S̃ = {u ∈
Ω∩ kerL : N̂u = 0Z}. Therefore, by the hypothesis, S̃ is a compact subset of Ω.

The homotopy invariance of the Leray–Schauder degree for locally compact

operators implies that the map ϑ 7→ degLS(IdX − Φ̃ϑ,Ω, 0) is well-defined and

constant on [0, 1]. In particular, it holds that

DL(L− N̂ ,Ω) = degLS(IdX − Φ̃1,Ω, 0) = degLS(IdX − Φ̃0,Ω, 0),

where Φ̃0 = Pu+ JQN̂ : Ω→ kerL.

Finally, we notice that Φ̃0(Ω) ⊆ kerL and recall that kerL is a finite-

dimensional subspace of X. Therefore, we can apply the Reduction Formula

(i.e. Lemma 2.3 with U = Ω, Ψ = Φ̃0 and Y = kerL) and we conclude that

degLS(IdX − Φ̃0,Ω, 0) = degLS(IdkerL − Φ̃0|kerL,Ω ∩ kerL, 0)

= degB(N ,Ω ∩ kerL, 0).

The thesis immediately follows. �

Remark 2.5. We underline that the same conclusion of Lemma 2.4 holds if

in the statement we replace conditions (2.3) and (2.4) with

N̂i(Ωi+1 ∩ kerLi+1) ⊆ cokerLi, for all i = 1, . . . , n− 1,

and N̂n(Ω) ⊆ cokerLn, respectively.

Combining Lemmas 2.1 and 2.4, we obtain the following result.
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Theorem 2.6. Let L be as above and let M : domM(⊆ X) → Z be a non-

linear L-completely continuous operator. Suppose that Mu, u = (u1, . . . , un) ∈
domM , has components of the following form:Mi(ui+1), for i = 1, . . . , n− 1,

Mn(u1, . . . , un).

For ϑ ∈ ]0, 1], consider the following coincidence system:

(Pϑ)

Liui = Mi(ui+1), i = 1, . . . , n− 1,

Lnun = ϑMn(u1, . . . , un).

Let Ω ⊆ domM be an open (possibly unbounded) set. We define

Sϑ := {u ∈ Ω ∩ domL : u is a solution of (Pϑ)}, ϑ ∈ ]0, 1].

Assume that

(a) ImLi ∩Mi(Ωi+1 ∩ kerLi+1) ⊆ {0Zi}, for all i = 1, . . . , n− 1;

(b) there exists a compact set K ⊆ Ω such that Sϑ ⊆ K, for all ϑ ∈ ]0, 1];

(c) the set S0 := {u ∈ Ω ∩ kerL : QMu = 0} is compact.

Then

DL(L−M,Ω) = degB(M,Ω ∩ kerL, 0),

where M : Ω ∩ kerL→ kerL is defined as

M :=
(
−J1Q1M1|Ω2∩kerL2

, . . . ,

− Jn−1Qn−1Mn−1|Ωn∩kerLn
,−JnQnMn|Ω∩kerL

)
.

Proof. For ϑ ∈ [0, 1], we define the auxiliary coincidence system

(Aϑ)

Liui = Mi(ui+1), i = 1, . . . , n− 1,

Lnun = ϑMnu+ (1− ϑ)QnMnu

and the set S ′ϑ := {u ∈ Ω ∩ domL : u is a solution of (Aϑ)}. First of all, we

observe that S ′ϑ = Sϑ, for all ϑ ∈ ]0, 1], namely u is a solution of (Aϑ) if and

only if u is a solution of (Pϑ). Indeed, if u is a solution of (Aϑ), applying

the projection Qn to the last equation of (Aϑ), we obtain QnMnu = 0; then

clearly u solves (Pϑ). On the other hand, if u is a solution of (Pϑ), applying

the projection Qn to the last equation of (Pϑ), we obtain ϑQnMnu = 0 (with

ϑ 6= 0); then we deduce that u solves (Aϑ). Secondly, we notice that

(2.5) S ′0 ⊆ S0.

Indeed, if u is a solution of (A0), then Lnun = QnMnu. Hence, un ∈ kerLn and

QnMnu = 0. Therefore, using condition (a), we find that u ∈ kerL and also

QMu = 0. In this manner (2.5) is proved.
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Let M̃ : Ω× [0, 1]→ Z be the continuous homotopy with componentsMi(ui+1) for i = 1, . . . , n− 1,

ϑMnu+ (1− ϑ)QnMnu,

where u = (u1, . . . , un) ∈ Ω and ϑ ∈ [0, 1]. We observe that M̃(u, 1) = Mu and

M̃(u, 0) has QnMnu as last component (which is finite-dimensional).

We divide the proof into two steps.

Step 1. We claim that DL(L−M,Ω) = DL(L− M̃( · , 0),Ω). We first notice

that, from condition (b) and the above remark, we have S ′ϑ ⊆ K, for all ϑ ∈ ]0, 1].

Recalling also (2.5) together with condition (c), we find that⋃
ϑ∈[0,1]

{u ∈ Ω ∩ domL : Lu = M̃(u, ϑ)} =
⋃

ϑ∈[0,1]

S ′ϑ

is a compact subset of Ω, since closed and contained in the compact set K ∪ S0.

Therefore we can apply Lemma 2.1. The claim is thus proved.

Step 2. We claim that DL(L− M̃( · , 0),Ω) = degB(M,Ω ∩ kerL, 0). We are

going to apply Lemma 2.4 to the L-completely continuous operator N̂ : Ω → Z

defined in this way: the components of N̂u, u = (u1, . . . , un) ∈ Ω, have the

following form:N̂i(ui+1) := Mi(ui+1), for i = 1, . . . , n− 1,

N̂n(u1, . . . , un) := QnMn(u1, . . . , un).

Clearly condition (2.3) of Lemma 2.4 corresponds to condition (a). Moreover,

hypothesis (2.4) is satisfied, since by the definition of N̂n it holds that N̂n(Ω) ⊆
cokerLn (see also Remark 2.5). Next, we observe that the set {u ∈ Ω ∩
kerL : Mu = 0} is a compact subset of Ω, since it is closed and contained in

the compact set {u ∈ Ω ∩ kerL : QMu = 0} = S0 (by condition (c)). Finally,

applying Lemma 2.4, the claim follows.

From Steps 1 and 2 the proof of the theorem is concluded. �

Remark 2.7. In Theorem 2.6 we define a homotopy M̃(u, ϑ) transforming

only the last equation of the systems. We underline that the same result is valid

considering homotopies of the formMi(ui+1) for i = 1, . . . , k − 1,

ϑMi(u1, . . . , un) for i = k, . . . , n.

Anyway, in our presentation we prefer to state the results as in Theorem 2.6 in

order to present a version which is suitable for the application in Section 3.
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The classical Mawhin’s continuation theorem (cf. [22, Proposition 2.1]) deals

with an open and bounded set Ω such that for each λ ∈ ]0, 1[ the equation

Lu = λNu has no solutions in ∂Ω and, moreover,

(2.6) degB(−JQN |Ω∩kerL,Ω ∩ kerL, 0) 6= 0.

Under these assumptions, there exists a solution u ∈ Ω to the coincidence equa-

tion Lu = Nu. Clearly, in the same situation (i.e. when Ω is open and bounded),

we could state an analogous existence result for the system

(P1)

Liui = Mi(ui+1), i = 1, . . . , n− 1,

Lnun = Mn(u1, . . . , un),

using Theorem 2.6, via the homotopy described in (Pϑ). In such a case, we

should suppose, instead of (2.6), that

(2.7) degB(M,Ω ∩ kerL, 0) 6= 0

holds (where M is defined as in Theorem 2.6).

Actually the above new existence result can be stated also for an open and

possibly unbounded set Ω. Precisely, assuming all the hypotheses of Theorem 2.6

and in addition that (2.7) holds, we can immediately conclude that there exists

a solution u ∈ Ω to the coincidence system (P1).

In order to make such new existence theorems useful for the applications, we

need first to provide more explicit conditions in order to evaluate the Brouwer

degree associated with the mapM. Therefore, we conclude this section with a re-

sult that allows us to compute the degree of a map having the same structure as

M in Theorem 2.6. To this aim, we first introduce the following notation. Keep-

ing for the rest of the section the hypotheses of Theorem 2.6, for i = 1, . . . , n−1,

let us define the maps ηi : Ωi+1 ∩ kerLi+1 → kerLi as

ηi(w) := −JiQiMiw, w ∈ Ωi+1 ∩ kerLi+1,

and the map ηn : Ω̃1 → kerLn as

ηn(w) := −JnQnMn(w, 0, . . . , 0), w ∈ Ω̃1,

where Ω̃1 := {w ∈ kerL1 : (w, 0, . . . , 0) ∈ Ω}.
We will also assume some additional conditions which simplify the statement

of the next result and which are natural for the applications presented in Section 3

and Section 4. In more detail, in Lemma 2.8 we assume this crucial hypothesis

(h1) dim(kerLi) = d, for all i = 1, . . . , n.

Accordingly, for i = 1, . . . , n, it is not restrictive to identify kerLi with Rd.
Consequently, condition (h1) ensures that dim(cokerLi) = d, for all i = 1, . . . , n.

Moreover, we also identify cokerLi with Rd, for all i = 1, . . . , n. Under this

position, without loss of generality, for all i = 1, . . . , n, we take Ji = IdRd as
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a linear orientation-preserving isomorphism from Rd to Rd. With this in mind,

in the sequel, by an abuse of notation, we will write −QiMi in place of −JiQiMi.

Under this convention, we state the following result.

Lemma 2.8. Let L, M and Ω be as in Theorem 2.6. LetM : Ω∩kerL→ kerL

be defined as

M(u) := (η1(u2), . . . , ηn−1(un),−JnQnMn|Ω∩kerLu), u ∈ Ω ∩ kerL.

Moreover, assume that the degree degB(M,Ω∩ kerL, 0) is well-defined and sup-

pose that the following conditions hold:

(h1) dim(kerLi) = d, for all i = 1, . . . , n;

(h2) 0Xi ∈ Ωi ∩ kerLi, for all i = 2, . . . , n;

(h3) {w ∈ Ωi+1 ∩ kerLi+1 : ηi(w) = 0Xi} = {0Xi+1}, for all i = 1, . . . , n− 1.

Then

degB(M,Ω ∩ kerL, 0)

= (−1)d(n+1) degB(ηn, Ω̃1, 0) ·
n−1∏
i=1

degB(ηi,Ωi+1 ∩ kerLi+1, 0).

Proof. Let Ω̃ := Ω̃1×(Ω2∩kerL2)×. . .×(Ωn∩kerLn) and let η : Ω̃→ kerL

be defined as

η(u) = (η1(u2), . . . , ηn−1(un), ηn(u1)), u = (u1, . . . , un) ∈ Ω̃.

Notice that, by the definition of the operator M (cf. Theorem 2.6), the map η

is well-defined in Ω̃.

Step 1. We claim that degB(M,Ω ∩ kerL, 0) = degB(η, Ω̃, 0).

For the proof of this step we shall make a homotopy which will require the

convexity of the set Ωi, for i = 2, . . . , n. In this context, adding this additional

assumption is not restrictive, because in view of hypotheses (h2) and (h3), if

necessary, we could replace the sets Ωi with sufficiently small open balls with

center in 0 and the degree will not change by the excision property.

We introduce the operator M̃ : [0, 1]× (Ω∩ kerL)→ kerL of the form M̃ =

(M̃1, . . . , M̃n), with M̃i : [0, 1]× (Ω ∩ kerL)→ kerLi defined asM̃i(ϑ, u) := ηi(ui+1), i = 1, . . . , n− 1,

M̃n(ϑ, u) := −QnMn(u1, ϑu2, . . . , ϑun).

We stress that M̃ is a completely continuous operator.

We claim that the set

S̃ :=
⋃

ϑ∈[0,1]

{
u ∈ Ω ∩ kerL : M̃(ϑ, u) = 0

}
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is a compact subset of Ω∩kerL. Let us fix an arbitrary ϑ ∈ [0, 1]. If u ∈ Ω∩kerL

is such that M̃(ϑ, u) = 0, then ηi(ui+1) = 0, i = 1, . . . , n− 1,

−QnMn(u1, ϑu2, . . . , ϑun) = 0.

From the first (n−1) equations and hypothesis (h3), we immediately obtain that

ui = 0Xi
, for all i = 2, . . . , n, and hence the last equation reads as follows:

ηn(u1) = −QnMn(u1, 0, . . . , 0) = 0Xn
.

We conclude that

S̃ =
{

(w, 0, . . . , 0) ∈ Ω : w ∈ kerL1

}
=
{
u ∈ Ω ∩ kerL :Mu = 0

}
is a compact subset of Ω ∩ kerL (since degB(M,Ω ∩ kerL, 0) is well-defined).

The homotopic invariance of the Brouwer degree implies that

ϑ 7→ degB(M̃(ϑ, · ),Ω ∩ kerL, 0)

is well-defined and constant on [0, 1]. In particular, it holds that

degB(M,Ω ∩ kerL, 0) = degB(M̃(0, · ),Ω ∩ kerL, 0) = degB(η,Ω ∩ kerL, 0).

We observe that η(w) = 0 with w ∈ Ω ∩ kerL if and only if w = (w1, 0, . . . , 0)

with w1 ∈ Ω̃1, if and only if η(w) = 0 with w ∈ Ω̃. This in turn implies that

degB(η,Ω ∩ kerL, 0) = degB(η, Ω̃, 0)

and so the claim is proved.

Step 2. Let η̃ : Ω̃→ kerL be defined as

η̃(u) = (ηn(u1), η1(u2), . . . , ηn−1(un)), u = (u1, . . . , un) ∈ Ω̃.

Clearly η̃(u) = Pη(u), for all u ∈ Ω̃, where

P =



0 0 · · · 0 Id
Id 0 · · · 0 0

0
. . .

. . .
...

...
...

. . . Id 0 0

0 · · · 0 Id 0


∈ Rdn×dn

is a permutation matrix with determinant det(P ) = (−1)d(n+1), where Id :=

IdRd . Therefore, using the definition of the Brouwer degree of a composition of

maps, we obtain

degB(η̃, Ω̃, 0) = degB(Pη, Ω̃, 0) = sign(det(P )) degB(η, Ω̃, 0)

= (−1)d(n+1) degB(η, Ω̃, 0).
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Now, the multiplicativity property of the Brouwer degree (cf. [6, Theorem 11.3])

gives

degB(η̃, Ω̃, 0) = degB(ηn, Ω̃1, 0) ·
n−1∏
i=1

degB(ηi,Ωi+1 ∩ kerLi+1, 0).

From Steps 1 and 2, we have

degB(M,Ω ∩ kerL, 0) = degB(η, Ω̃, 0)

= (−1)d(n+1) degB(ηn, Ω̃1, 0) ·
n−1∏
i=1

degB(ηi,Ωi+1 ∩ kerLi+1, 0)

and the lemma follows. �

3. Periodic solutions to cyclic feedback systems:

homotopy to the averaged nonlinearity

In this section we show an application of the theory presented in Section 2

to the T -periodic problem (for T > 0) associated with the differential system

(C )



x′1 = g1(x2),

x′2 = g2(x3),
...

x′n−1 = gn−1(xn),

x′n = h(t, x1, . . . , xn),

which has been considered in the introduction. Throughout this section, we

assume that, for i = 1, . . . , n − 1, the maps gi : Rm → Rm are continuous and

h : [0, T ]× Rm × . . .× Rm → Rm is an L1-Carathéodory function. A T -periodic

solution of (C ) is a vector function x = (x1, . . . , xn) such that, for every i =

1, . . . , n, xi : [0, T ]→ Rm is an absolutely continuous function such that xi(0) =

xi(T ) and moreover x(t) satisfies (C ) for almost every t ∈ [0, T ]. It is a well-

known fact that, if we suppose that R 3 t 7→ h(t, s1, . . . , sn) is a T -periodic

map, then any T -periodic solution according to our definition can be extended

on the whole real line to an absolutely continuous solution of (C ) such that

x(t+ T ) = x(t) for all t ∈ R.

Remark 3.1. In order to simplify our presentation, we have confined our-

selves to the case in which the right-hand side of system (C ) is defined on the

whole space Rmn. However, the abstract results in Section 2 are suited to be

applied also to the case in which one or more components of the vector field

in (C ) are defined only on some open subsets of the involved Euclidean spaces.

In particular, we will state Lemma 3.2 and the subsequent results by assum-

ing Ω ⊆ domM , where M will be the Nemytskĭı operator associated to the
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right-hand side of (C ), so that they are applicable to the most general situation.

Clearly, in our simplified setting the hypothesis Ω ⊆ domM will be equivalent

to consider as Ω just an open subset of C([0, T ],Rmn).

In order to enter the setting presented in Section 2 and to write the system

in the form

Lx = Mx, x ∈ domL ∩ domM,

we will adapt to our situation the classical treatment in [23]. For i = 1, . . . , n,

let Xi := C([0, T ],Rm) be the space of continuous functions xi : [0, T ] → Rm,

endowed with the sup-norm

‖xi‖∞ := max
t∈[0,T ]

|xi(t)|,

and let Zi := L1([0, T ],Rm) be the space of integrable functions zi : [0, T ]→ Rm,

endowed with the norm

‖zi‖L1 :=

∫ T

0

|zi(t)| dt.

In this manner, we have X = C([0, T ],Rmn) and Z = L1([0, T ],Rmn) (with the

standard norms).

For i = 1, . . . , n, we consider the linear differential operator Li : domLi → Zi
defined as

(Lixi)(t) := x′i(t), t ∈ [0, T ],

where domLi is determined by the functions of Xi which are absolutely contin-

uous and satisfy the periodic boundary condition

(3.1) xi(0) = xi(T ).

Therefore, Li is a Fredholm map of index zero, kerLi and cokerLi are made up

of the constant functions in Rm and

ImLi =

{
zi ∈ Zi :

∫ T

0

zi(t) dt = 0

}
.

As projectors Pi : Xi → kerLi and Qi : Zi → cokerLi associated with Li, for

i = 1, . . . , n, we choose the average operators

Pixi = Qixi :=
1

T

∫ T

0

xi(t) dt.

Notice that kerPi is given by the continuous functions with mean value zero.

Next, let Ki : ImLi → domLi ∩ kerPi be the right inverse of Li, which is the

operator that to any function zi ∈ Zi with
∫ T

0
zi(t) dt = 0 associates the unique

solution xi(t) of

x′i = zi(t), with

∫ T

0

xi(t) dt = 0,

which clearly satisfies the boundary condition (3.1). Finally, we take the identity

map in Rm as a linear orientation-preserving isomorphism Ji : cokerLi → kerLi.
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Now we consider as a nonlinear operator M : domM = X → Z the Nemytskĭı

operator induced by the functions gi and h, namely the operator M has the

following components:Mi(xi+1)(t) := gi(xi+1(t)), i = 1, . . . , n− 1,

Mn(x1, . . . , xn)(t) := h(t, x1(t), . . . , xn(t)),

where x = (x1, . . . , xn) ∈ domM and t ∈ [0, T ]. From the above hypotheses it

follows that M is an L-completely continuous operator.

Finally, we introduce the averaged vector field h# : Rmn → Rm defined by

h#(s) :=
1

T

∫ T

0

h(t, s1, . . . , sn) dt, s = (s1, . . . , sn) ∈ Rmn.

We also define ĝ : Rmn → Rmn as

ĝ(s) := (g1(s2), . . . , gn−1(sn), h#(s)), s = (s1, . . . , sn) ∈ Rmn.

Note that, according to the above positions, it turns out that ĝ = JQM |kerL.

For consistency with the setting described above, we will deal with open

subsets in the space C([0, T ],Rmn) of continuous functions, since we have included

the periodic boundary conditions in the domain domL. On the other hand, we

stress that all the theorems presented in the following (and in Section 4) could be

equivalently stated by considering open sets directly in the space CT of continuous

and T -periodic functions, as done for the theorems in the introduction.

We are now in a position to state our first result, which is a direct consequence

of Theorem 2.6.

Lemma 3.2. Let Ω ⊆ domM be an open (possibly unbounded) set. Suppose

that the following conditions hold.

(c1) There exists a compact set K ⊆ Ω containing all the possible T -periodic

solutions of

(Cϑ)



x′1 = g1(x2),

x′2 = g2(x3),
...

x′n−1 = gn−1(xn),

x′n = ϑh(t, x1, . . . , xn),

for any ϑ ∈ ]0, 1].

(c2) The set ĝ−1(0) ∩ Ω is compact.

Then DL(L−M,Ω) = (−1)mn degB(ĝ,Ω ∩ Rmn, 0).

Proof. According to the above positions, we have

−JiQiMi(si+1) = −gi(si+1),
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for all si+1 ∈ Ωi+1 ∩ kerLi+1, all i = 1, . . . , n− 1, and

−JnQnMn(s) = −h#(s), for all s ∈ Ω ∩ kerL.

In order to apply Theorem 2.6, we have to verify that hypotheses (a)–(c) of that

theorem are satisfied. Clearly (a) holds, since the only constant function with

zero mean value is the null function. On the other hand, (b) and (c) are direct

consequences of (c1) and (c2), respectively, in the functional analytic setting that

we have introduced at the beginning of the section. Then

DL(L−M,Ω) = degB(−ĝ,Ω ∩ Rmn, 0)

and thus the conclusion follows. �

From Lemma 3.2 we immediately obtain the following existence result. The

obvious proof is omitted.

Theorem 3.3. Let Ω ⊆ domM be an open (possibly unbounded) set. Suppose

that (c1) and (c2) hold. If

degB(ĝ,Ω ∩ Rmn, 0) 6= 0,

then there exists at least a T -periodic solution of (C ) in Ω.

Theorem 3.3 relies on the evaluation of the Brouwer degree of ĝ. We show now

how to compute this degree in terms of that relative to h#, via Lemma 2.8. To

this end, given an open set Ω ⊆ domM , we recall the definition of Ωi := πXi (Ω).

We also set O1 := {ω ∈ Rm : (ω, 0, . . . , 0) ∈ Ω} (which corresponds to the set Ω̃1

of Lemma 2.8) and Oi := Ωi ∩ Rm, for i = 2, . . . , n.

Finally, we introduce the map h∗ : Rm → Rm

h∗(ω) := h#(ω, 0, . . . , 0), ω ∈ Rm.

Then, we have the following result.

Proposition 3.4. Let Ω ⊆ domM be an open (possibly unbounded) set.

Suppose that

(c3) 0 ∈ Oi, for each i = 2, . . . , n;

(c4) gi(0) = 0, for each i = 1, . . . , n− 1;

(c5) gi(ω) 6= 0 for every ω ∈ Oi+1 \ {0}, for each i = 1, . . . , n− 1;

(c6) the set (h∗)−1(0) ∩ O1 is compact.

Then, degB(ĝ,Ω ∩ Rmn, 0) is well-defined and the following formula holds:

degB(ĝ,Ω ∩ Rmn, 0) = (−1)m(n+1) degB(h∗,O1, 0) ·
n−1∏
i=1

degB(gi,Oi+1, 0).
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Proof. As a first step, we observe that degB(ĝ,Ω ∩ Rmn, 0) is well-defined

if condition (c2) holds. Now, using (c3), (c4) and (c5), we immediately deduce

ĝ−1(0) ∩ Ω = {(ω, 0, . . . , 0) ∈ Ω ∩ Rmn : ω ∈ (h∗)−1(0)}.

Hence (c2) is valid if and only if (c6) is satisfied.

As a second step, we assume that degB(ĝ,Ω ∩ Rmn, 0) is well-defined. Us-

ing the above positions, it is straightforward to check that the assumptions of

Lemma 2.8 are satisfied with dimension d = m in (h1), (h2) and (h3) following

from (c3) and from (c4), (c5), respectively. �

From now on, in the next results, we will assume all the hypotheses of Propo-

sition 3.4. In this manner, condition (c6) will ensure that both the degrees

degB(ĝ,Ω ∩ Rmn, 0) and degB(h∗,O1, 0) are well-defined.

Combining Theorem 3.3 and Proposition 3.4, we obtain the following.

Corollary 3.5. Let Ω ⊆ domM be an open (possibly unbounded) set. As-

sume (c1), (c3)–(c6). If degB(gi,Oi+1, 0) 6= 0, for all i = 1, . . . , n − 1, and

degB(h∗,O1, 0) 6= 0, then there exists at least a T -periodic solution of (C ) in Ω.

The above corollary can be further simplified if we assume the following

hypothesis which is rather natural in our framework:

(c∗) 0 ∈ Oi+1 and gi|Oi+1 : Oi+1 → gi(Oi+1) ⊆ Rm is a homeomorphism with

gi(0) = 0, for all i = 1, . . . , n− 1.

Notice that (c∗) implies (c3)–(c5) and, moreover, for every i = 1, . . . , n − 1,

degB(gi,Oi+1, 0) = ±1 (the sign depending on the fact that gi is an orientation-

preserving or orientation-reversing homeomorphism). As a consequence, the

following result holds.

Corollary 3.6. Let Ω ⊆ domM be an open (possibly unbounded) set. As-

sume (c1), (c6) and (c∗). If degB(h∗,O1, 0) 6= 0, then there exists at least a T -

periodic solution of (C ) in Ω.

From now on we deal with an open and bounded set Ω with Ω ⊆ domM .

In order to present the previous results in this special case, we need to slightly

modify some of the hypotheses previously introduced. We will only state the

results, omitting the proofs which require only obvious changes in the previous

arguments. The following theorem is a continuation result which is a variant of

Theorem 3.3.

Theorem 3.7. Let Ω be an open and bounded set with Ω ⊆ domM . Suppose

that the following conditions hold.

(c′1) For each ϑ ∈ ]0, 1[ there is no T -periodic solution of (Cϑ) with x ∈ ∂Ω.

(c′2) ĝ−1(0) ∩ ∂Ω = ∅.
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If degB(ĝ,Ω∩Rmn, 0) 6= 0, then there exists at least a T -periodic solution of (C )

in Ω.

We underline that Proposition 3.4 is still valid in this special framework by

replacing hypothesis (c5) and (c6) with the following ones, respectively.

(c′5) gi(ω) 6= 0 for every ω ∈ Oi+1 \ {0}, for each i = 1, . . . , n− 1.

(c′6) (h∗)−1(0) ∩ ∂O1 = ∅.
In particular, we recall that condition (c′6) guarantees that degB(h∗,O1, 0) is

well-defined. Then, from Theorem 3.7, together with the modification of Propo-

sition 3.4 described above, we have the next result (analogous to Corollary 3.5).

Corollary 3.8. Let Ω be an open and bounded set with Ω ⊆ domM .

Assume (c′1), (c3), (c4), (c′5) and (c′6). If degB(gi,Oi+1, 0) 6= 0, for all i =

1, . . . , n − 1, and degB(h∗,O1, 0) 6= 0, then there exists at least a T -periodic

solution of (C ) in Ω.

In the same spirit of Corollary 3.6, introducing the hypothesis

(c′∗) 0 ∈ Oi+1 and gi|Oi+1
: Oi+1 → gi(Oi+1) ⊆ Rm is a homeomorphism with

gi(0) = 0, for all i = 1, . . . , n− 1,

we can state the following.

Corollary 3.9. Let Ω be an open and bounded set with Ω ⊆ domM . As-

sume (c′1), (c′6) and (c′∗). If degB(h∗,O1, 0) 6= 0, then there exists at least a

T -periodic solution of (C ) in Ω.

We conclude this section by showing a possible application where the hy-

pothesis (c′∗) is automatically satisfied. To this end, we consider the periodic

problem associated with the n-th order differential system for u(t) ∈ Rm

(3.2) (ϕn−1((. . . (ϕ2((ϕ1(u′))
′
))
′
. . . )

′
))
′
+ k(t, u, u′, . . . , u(n)) = 0,

where, for each i = 1, . . . , n − 1, ϕi : Rm → Rm is a homeomorphism with

ϕi(0) = 0. Our study generalizes previous investigations in [8] in the scalar case

(m = 1). Equation (3.2) can be equivalently written as a cyclic feedback type

system in Rmn of the form

(3.3)



x′1 = ϕ−1
1 (x2),

x′2 = ϕ−1
2 (x3),

...

x′n−1 = ϕ−1
n−1(xn),

x′n = h(t, x1, . . . , xn),

where h(t, s1, s2, . . . , sn) := −k(t, s1, ϕ
−1
1 (s2), . . . , ϕ−1

n−1(sn)).
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Observe that h(t, s1, 0, . . . , 0) = −k(t, s1, 0, . . . , 0) and hence

h∗(ω) = − 1

T

∫ T

0

k(t, ω, 0, . . . , 0) dt.

From Corollary 3.9 we directly obtain the following result (the definition of the

open sets Oi is the same as above). The obvious proof is omitted.

Theorem 3.10. Let Ω ⊆ C([0, T ],Rmn) be an open and bounded set such that

0 ∈ Oi for all i = 2, . . . , n. Suppose that

(a) for each ϑ ∈ ]0, 1[ there is no T -periodic solutions of

x′1 = ϕ−1
1 (x2),

x′2 = ϕ−1
2 (x3),

...

x′n−1 = ϕ−1
n−1(xn),

x′n = ϑh(t, x1, . . . , xn),

with x ∈ ∂Ω;

(b) h∗(ω) 6= 0, for every ω ∈ ∂O1 and degB(h∗,O1, 0) 6= 0.

Then there exists at least a T -periodic solution x(t) of (3.3) in Ω.

An important case of system (3.2) is given by the second order φ-Laplacian

equation

(3.4) (φ(u′))′ + k(t, u, u′) = 0,

where φ : Rm → Rm is a homeomorphism with φ(0) = 0 and k : [0, T ] × Rm ×
Rm → Rm is an L1-Carathéodory function. System (3.4) plays an important

role in several mathematical models and therefore our next goal is to get some

applications to this class of systems. With this respect, it will be convenient to

introduce the following notation. We denote by C1
T the space of continuously

differentiable functions u : [0, T ]→ Rm satisfying the boundary condition

(3.5) u(0) = u(T ), u′(0) = u′(T ).

In this space, we take as a norm

‖u‖C1 := max {‖u‖∞, ‖u′‖∞},

which is equivalent to the more standard norm ‖u‖∞ + ‖u′‖∞.

We also set

k∗(ω) :=
1

T

∫ T

0

k(t, ω, 0) dt, ω ∈ Rm.

As mentioned in the introduction, a relevant continuation theorem for system

(3.4), involving the homotopic equation

(3.6) (φ(u′))′ + λk(t, u, u′) = 0,
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was achieved by Manásevich and Mawhin in [18] under some additional hypothe-

ses on the homeomorphism φ. In this setting, one could observe that equation

(3.4) is equivalent to the first order cyclic system in R2m

(3.7)

x′1 = φ−1(x2),

x′2 = h(t, x1, x2),

where h(t, x1, x2) := −k(t, x1, φ
−1(x2)) and, analogously, (3.6) can be written as

(3.8)

x′1 = φ−1(x2),

x′2 = λh(t, x1, x2),

so that the continuation theorem [18, Theorem 3.1] could be derived as a corol-

lary of Theorem 3.10, without any further condition on φ. However, a deeper

inspection shows that the situation is not so simple. Indeed, in [18] the condi-

tion on the homotopic equation (3.6) requires no solutions on the boundary of an

open and bounded set in the C1
T -norm. Due to the fact that this norm is strictly

finer that the sup-norm that we consider for our approach, it seems not obvious

how to include the results in [18] in our setting (except for very special cases

of Ω). We propose below a possible way to overcome this difficulty and thus

recover Manásevich–Mawhin continuation theorem [18, Theorem 3.1], without

additional hypotheses on φ.

Theorem 3.11. Let U be an open and bounded set in C1
T such that the fol-

lowing conditions hold:

(a) For each λ ∈ ]0, 1[ the problem

(φ(u′))
′
+ λ k(t, u, u′) = 0, u(0) = u(T ), u′(0) = u′(T ),

has no solution on ∂U .

(b) The equation k∗(ω) = 0 has no solution on ∂U ∩ Rm and

degB(k∗,U ∩ Rm, 0) 6= 0.

Then, problem (3.4)–(3.5) has at least a solution in U .

Proof. If there exists a solution in ∂U , we are done. Then, for the rest of

the proof, we assume that problem (3.4)–(3.5) has no solution in ∂U . We split

our argument into three steps.

Step 1. Compactness. We claim that the set

K :=
⋃

λ∈]0,1]

{
u ∈ U : (φ(u′))′ + λ k(t, u, u′) = 0

}
is a compact subset of U . To this end, let (λn, un) ∈ ]0, 1]× U be such that

(φ(u′n))′ + λn k(t, un, u
′
n) = 0.
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By assumption, U is bounded, therefore there is a constant r > 0 such that

‖u‖∞ ≤ r and ‖u′‖∞ ≤ r, for each u ∈ U . Then, from the Carathéodory

conditions we deduce that there exists a measurable function ρ ∈ L1([0, T ]) such

that ‖k(t, un(t), u′n(t))‖Rm ≤ ρ(t), for almost every t ∈ [0, T ]. We also introduce

the uniformly continuous functionR(t) :=
∫ t

0
ρ(ξ) dξ, for t ∈ [0, T ]. The sequence

(u′n)n is equicontinuous. Indeed,

u′n(t) = φ−1(vn(t)), where vn(t) := φ(u′n(0))− λn
∫ t

0

k(ξ, un(ξ), u′n(ξ)) dξ,

and vn is uniformly bounded on [0, T ] by the constant

r1 := max {‖φ(z)‖Rm : ‖z‖Rm ≤ r}+R(T ).

The uniform continuity of the map φ−1 : Rm → Rm restricted to the closed ball

B[0, r1] ⊆ Rm implies that for each ε > 0 there is a δ = δε > 0 such that

‖φ−1(z) − φ−1(y)‖Rm < ε for all z, y ∈ B[0, r1] with ‖z − y‖Rm < δ. On the

other hand, given δ > 0 there is η = ηδ > 0 such that |R(t) −R(s)| < δ for all

t, s ∈ [0, T ] with |t− s| < η. Thus, given ε > 0, we have that

‖u′n(t)− u′n(s)‖Rm = ‖φ−1(vn(t))− φ−1(vn(s))‖Rm < ε

whenever ‖vn(t)− vn(s)‖Rm < δ. On the other hand,

‖vn(t)− vn(s)‖Rm =

∥∥∥∥λn ∫ t

s

k(ξ, un(ξ), u′n(ξ)) dξ

∥∥∥∥
Rm

≤
∣∣∣∣∫ t

s

‖k(ξ, un(ξ), u′n(ξ))‖Rm dξ

∣∣∣∣ ≤ ∣∣∣∣∫ t

s

ρ(ξ) dξ

∣∣∣∣ = |R(t)−R(s)|.

Thus we conclude that ‖u′n(t) − u′n(s)‖Rm < ε for |t − s| < η, for every n. The

Ascoli–Arzelà theorem guarantees that, up to a subsequence, un → ũ ∈ U in the

C1
T -norm and we have also λn → λ̃ ∈ [0, 1]. By the assumption of no solutions

on the boundary, we know that if λ̃ ∈ ]0, 1] we must have ũ ∈ U . We study now

separately the case in which λ̃ = 0. In this case, by the same computations as

above and the dominated convergence theorem, we find that φ(ũ′(t)) = φ(ũ′(0))

for all t ∈ [0, T ], so that (recalling that ũ ∈ U satisfies (3.5)), ũ is constant, that

is ũ(t) = ω̃ for some ω̃ ∈ U ∩Rm. Finally, the second hypothesis in the theorem

ensures that ω̃ ∈ U . The claim is proved.

Step 2. A special case for the domain. Suppose that there exist two open

bounded sets U1,U2 ∈ C([0, T ],Rm) with 0 ∈ U2 such that U =
{
u ∈ C1

T :

u ∈ U1, u
′ ∈ U2

}
. We write (3.4) as an equivalent first order cyclic system

in R2m of the form (3.7) with h(t, x1, x2) := −k(t, x1, φ
−1(x2)).

In the Banach space X := C([0, T ],R2m) we define the set

Ω := U1 × φ(U2) = {x = (x1, x2) ∈ X : x1 ∈ U1, φ
−1(x2) ∈ U2}.

Clearly the set Ω is open and bounded in X.
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With these positions, we can easily check that the first hypothesis of the

theorem implies that system (3.8) has no T -periodic solution x ∈ ∂Ω, for any λ ∈
]0, 1[, actually for any λ ∈ ]0, 1], because we have started the proof by assuming

that (3.4) has no solution on the boundary. We are therefore in the setting

of Theorem 3.10 with its first condition satisfied. Also the second condition in

Theorem 3.10 holds, because it follows directly from the second hypothesis of the

present theorem. Then, we can apply Theorem 3.10 and we obtain that there

exists at least a T -periodic solution x(t) = (x1(t), x2(t)) of (3.3) in Ω. Actually,

we have x ∈ Ω (since we have started our proof by assuming that there are no

solutions on the boundary). Defining u(t) := x1(t) for t ∈ [0, T ], we immediately

conclude that u = x1 ∈ U1, u′ = φ−1(x2) ∈ U2, then u ∈ U , and u(t) satisfies

(3.4) and (3.5).

Step 3. General case. Let U ∈ C1
T be an open and bounded set. From Step 1,

K is a compact subset of U . Therefore, for each point w ∈ K there is an open ball

B(w, rw) ⊆ U , in the C1
T -norm, which is a set of the product form as the one in

Step 2. Indeed, u ∈ B(w, rw) if and only if ‖u−w‖∞ < rw and ‖u′−w′‖∞ < rw.

By a standard compactness argument, we have

K ⊆
⋃̀
α=1

Uα,

with Uα ⊆ U an open (and bounded) set of the form

(3.9) Uα :=
{
u ∈ C1

T : u ∈ Uα1 , u′ ∈ Uα2
}
,

where Uα1 ,Uα2 ⊆ C([0, T ],Rm) are open (bounded) sets.

We notice that, since degB(k∗,U ∩Rm, 0) 6= 0, there exists at least a constant

solution in K and therefore at least one of the sets Uα contains an element of

the form ω ∈ U ∩ Rm. This in turn means that at least one of the Uα2 contains

the element 0.

Next, we define the set

Ω :=
⋃̀
α=1

Ωα, where Ωα := Uα1 × φ(Uα2 ).

Clearly the set Ω is open and bounded in X. Moreover, if u ∈ ∂Ω then there

exists at least an index α ∈ {1, . . . , `} such that u ∈ ∂Ωα. From the above

remark, we also have that 0 ∈ φ(Uα2 ) for at least an index α ∈ {1, . . . , `}.
Finally, arguing as in Step 2, it is easy to check the validity of all the hypothe-

ses of Theorem 3.10 and thus we obtain that there exists at least a T -periodic so-

lution x(t) = (x1(t), x2(t)) of (3.3) in Ω (actually, x ∈ Ω). Defining u(t) := x1(t)

for t ∈ [0, T ], we immediately conclude that there is an index α ∈ {1, . . . , `} such

that u = x1 ∈ Uα1 , u′ = φ−1(x2) ∈ Uα2 . Then u ∈ U , and u(t) satisfies (3.4)

and (3.5). �
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Remark 3.12. In [18]–[20], Manásevich and Mawhin consider a class of con-

tinuous functions φ : Rm → Rm satisfying

(H1) for every x1, x2 ∈ Rm, x1 6= x2, 〈φ(x1)− φ(x2), x1 − x2〉 > 0;

(H2) there exists a function α : [0,+∞[ → [0,+∞[, with α(s) → +∞ as s →
+∞, such that 〈φ(x), x〉 ≥ α(|x|)|x| for all x ∈ Rm.

From these two conditions it follows that the map φ : Rm → Rm is a homeomor-

phism such that φ(0) = 0. Clearly our hypotheses cover the case considered in

[18]–[20] and, moreover, it is more general as explained below and in Figure 1.

Under our conditions we can deal with a continuous function built in the

following manner. For i = 1, . . . , n, let hi : R → R be a homeomorphism such

that hi(0) = 0. LetM∈ GLn(R) be an invertible matrix in Rm×m. The function

φ : Rm → Rm defined as 
u1

...

un

 7→ M

h1(u1)

...

hn(un)


is a homeomorphism. Figure 1 shows another type of homeomorphism φ : R2 →
R2 which does not satisfy conditions (H1) and (H2).

Figure 1. The figure shows an example of a homeomorphism φ : R2 →
R2 which does not satisfy conditions (H1) and (H2). We con-

sider a function φ = (φ1, φ2) defined as φ1(x, y) := (3x + y3)3/40,

φ2(x, y) := (sin(2(x− y5)3) + 2(x− y5)3)/10. We illustrate how the

square [−1, 1]× [−1, 1] ⊆ R2 (on the left) is mapped by the function

φ (figure on the right). For example the points (−1, 2), (5, 6) do not

satisfy (H1) and the point (−2,−2) does not satisfy (H2).
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4. Periodic solutions to cyclic feedback systems:

homotopy to an autonomous system

In this section we continue the study of the differential system (C ) introduced

in Section 3. We keep all the basic assumptions for (C ) considered therein, as

well as the abstract framework for the coincidence degree. As an application,

we give a continuation theorem which involves a homotopy between (C ) and the

autonomous differential system

(C 0
0 )



x′1 = g1(x2),

x′2 = g2(x3),
...

x′n−1 = gn−1(xn),

x′n = h0(x1, . . . , xn),

where h0 : Rm × . . .×Rm → Rm is a continuous function. In detail, we consider

an auxiliary function h̃ : [0, T ] × Rm × . . . × Rm × [0, 1] → Rm, satisfying the

L1-Carathéodory conditions and such that

(4.1)
h̃(t, x1, . . . , xn, 1) = h(t, x1, . . . , xn),

h̃(t, x1, . . . , xn, 0) = h0(x1, . . . , xn).

Consistently with the previous notation, since M is the Nemytskĭı operator as-

sociated with h, we denote by M̃ the corresponding operator associated with h̃.

We also introduce the autonomous vector field

ĝ0(s) := (g1(s2), . . . , gn−1(sn), h0(s)), s = (s1, . . . , sn) ∈ Rmn.

In the next results, when we write Ω ⊆ dom M̃ (or Ω ⊆ dom M̃), we in

fact consider only the case of Ω ⊆ X = C([0, T ],Rmn). However, in principle,

the same results could be applied (using Theorem A.3) also to a more general

situation, as explained in Remark 3.1 (see also Section 6).

We are now in a position to state our first result, which is a direct consequence

of [7, Theorem 1] and of the homotopic invariance of the coincidence degree

(cf. Lemma 2.1).

Lemma 4.1. Let Ω be an open and bounded set with Ω ⊆ dom M̃ . Suppose

that the following condition holds.
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(a′1) For each λ ∈ [0, 1] there is no T -periodic solution of

(C 0
λ )



x′1 = g1(x2),

x′2 = g2(x3),
...

x′n−1 = gn−1(xn),

x′n = h̃(t, x1, . . . , xn, λ),

with x ∈ ∂Ω.

Then DL(L−M,Ω) = (−1)mn degB(ĝ0,Ω ∩ Rmn, 0).

From this result the next one follows immediately (see [7, Theorem 2] and

Theorem 1.2 in the introduction).

Theorem 4.2. Let Ω be an open and bounded set with Ω ⊆ dom M̃ . Suppose

that the following conditions hold.

(a) For each λ ∈ [0, 1[ there is no T -periodic solution of (C 0
λ ) with x ∈ ∂Ω.

(b) degB(ĝ0,Ω ∩ Rmn, 0) 6= 0.

Then there exists at least a T -periodic solution of (C ) in Ω.

In this manner, we reduce part of our problem to the study of the degree

of ĝ0 and for this purpose we can take advantage of the conditions considered

in the previous section. We can thus produce results analogous to Corollary 3.8

and Corollary 3.9. With this respect, it is convenient to introduce the function

h∗0 : Rm → Rm defined as

h∗0(ω) := h0(ω, 0, . . . , 0), ω ∈ Rm.

The analogue of Corollary 3.9 is the following result, where the open sets Oi are

defined as in the previous section.

Corollary 4.3. Let Ω be an open and bounded set with Ω ⊆ dom M̃ . As-

sume (a′1) and also the following conditions

(a′6) (h∗0)−1(0) ∩ ∂O1 = ∅;
(a′∗) 0 ∈ Oi+1 and gi|Oi+1

: Oi+1 → gi(Oi+1) ⊆ Rm is a homeomorphism with

gi(0) = 0, for all i = 1, . . . , n− 1.

If degB(h∗0,O1, 0) 6= 0, then there exists at least a T -periodic solution of (C )

in Ω.

All the results presented in this section can be stated also in the case of an

open possibly unbounded set Ω ⊆ dom M̃ . For this aim, one have to follow the

scheme presented in Section 3 and a modification of [1, Theorem 1] for open (not

necessarily bounded) sets, which is discussed in Appendix A. In particular, the

analogue of Theorem 4.2 is the following result (corresponding to Theorem 3.3).
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Theorem 4.4. Let Ω ⊆ domM be an open (possibly unbounded) set. Suppose

that the following conditions hold.

(a) There exists a compact set K ⊆ Ω containing all the possible T -periodic

solutions of (C 0
λ ) for any λ ∈ [0, 1].

(b) degB(ĝ0,Ω ∩ Rmn, 0) 6= 0.

Then there exists at least a T -periodic solution of (C ) in Ω.

Now, at this point, we can repeat (almost step by step) the results obtained in

Section 3 for system (3.2). The only difference is that the continuation theorem

will make use of a homotopy leading system (3.3) to an autonomous system of

the form 

x′1 = ϕ−1
1 (x2),

x′2 = ϕ−1
2 (x3),

...

x′n−1 = ϕ−1
n−1(xn),

x′n = h0(x1, . . . , xn).

In this setting, the analogue of Theorem 3.10 is the next result, where the func-

tion h̃ is defined as in (4.1).

Theorem 4.5. Let Ω ⊆ C([0, T ],Rmn) be an open and bounded set such that

0 ∈ Oi for all i = 2, . . . , n. Suppose that

(a) for each λ ∈ [0, 1[ there is no T -periodic solutions of

x′1 = ϕ−1
1 (x2),

x′2 = ϕ−1
2 (x3),

...

x′n−1 = ϕ−1
n−1(xn),

x′n = h̃(t, x1, . . . , xn, λ),

with x ∈ ∂Ω;

(b) h∗0(ω) 6= 0, for every ω ∈ ∂O1 and degB(h∗0,O1, 0) 6= 0.

Then there exists at least a T -periodic solution x(t) of (3.3) in Ω.

The proof is omitted as it is a direct consequence of Corollary 4.3.

As in the final part of Section 3, we propose an application to the second

order φ-Laplacian equation (3.4). In the present case, instead of equation (3.6),

we consider the system

(4.2) (φ(u′))′ + k̃(t, u, u′, λ) = 0,
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where k̃ : [0, T ] × Rm × Rm × [0, 1] → Rm is an L1-Carathéodory function such

that

k̃(t, x1, x2, 1) = k(t, x1, x2), k̃(t, x1, x2, 0) = k0(x1, x2),

with k0 : Rm × Rm → Rm an autonomous field.

Now we are in a position to prove the following continuation theorem which

corresponds to [18, Theorem 4.1] (but without any additional assumption on the

homeomorphism φ).

Theorem 4.6. Let U be an open and bounded set in C1
T such that the following

conditions hold:

(a) For each λ ∈ [0, 1[ the problem

(φ(u′))′ + k̃(t, u, u′, λ) = 0, u(0) = u(T ), u′(0) = u′(T ),

has no solution on ∂U .

(b) The Brouwer degree degB(k0( · , 0),U ∩ Rm, 0) 6= 0.

Then, problem (3.4)–(3.5) has at least a solution in U .

Proof. If there exists a solution in ∂U , we are done. Then, for the rest of the

proof, we assume that problem (3.4)–(3.5) has no solution in ∂U . We split our

argument into three steps, which are the same as in the proof of Theorem 3.11.

Step 1. Compactness. The set

K :=
⋃

λ∈]0,1]

{
u ∈ U : (φ(u′))′ + k̃(t, u, u′, λ) = 0

}
is a compact subset of U . To check this claim we just repeat (with obvious

changes) the proof of Step 1 of Theorem 3.11.

Step 2. A special case for the domain. Suppose that there exist two open

bounded sets U1,U2 ∈ C([0, T ],Rm) with 0 ∈ U2 such that

U =
{
u ∈ C1

T : u ∈ U1, u
′ ∈ U2

}
.

We write (4.2) as an equivalent first order cyclic system in R2m of the formx′1 = φ−1(x2),

x′2 = h̃(t, x1, x2, λ),

where h̃(t, x1, x2, λ) := −k̃(t, x1, φ
−1(x2), λ).

In the Banach space X := C([0, T ],R2m) we define the open and bounded set

Ω := U1 × φ(U2) =
{
x = (x1, x2) ∈ X : x1 ∈ U1, φ

−1(x2) ∈ U2

}
.
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We can now apply Theorem 4.5 (analogously as we applied Theorem 3.10 in

Step 2 in the proof of Theorem 3.11) and obtain the existence of at least a T -

periodic solution (x1(t), x2(t)) ∈ Ω ofx′1 = φ−1(x2),

x′2 = h(t, x1, x2),

for h(t, x1, x2) := −k(t, x1, φ
−1(x2)). Then, the first component u := x1 of such

a solution is a solution of (3.4) with u ∈ U .

Step 3. General case. Let U ∈ C1
T be an open and bounded set. Recalling

Step 1, we know that K is a compact subset of U and we cover it by a finite

number of open sets Uα as in (3.9). From this point on, the proof follows the

same lines as those of Step 3 in the proof of Theorem 3.11 and we are done. �

5. Periodic solutions to Hartman-type perturbations

of the φ-Laplacian operator

As an application of the previous continuation results, we propose a further

variant of the Hartman–Knobloch theorem for the T -periodic problem associated

with the vector second order differential equation

(5.1) (φ(u′))′ + f(t, u) = 0,

where f : [0, T ] × Rm → Rm is a continuous function and φ : Rm → Rm is

a homeomorphism with φ(0) = 0.

A classical result of Hartman [13] guarantees the existence of a solution for

the two-point (Dirichlet) boundary value problem associated with

(5.2) u′′ + f(t, u) = 0,

by assuming the existence of a constant R > 0 such that

(5.3) 〈f(t, ξ), ξ〉 ≤ 0, for all t ∈ [0, T ], for all ξ ∈ Rm with ‖ξ‖Rm = R.

Under the same conditions, Knobloch in [14] obtained an existence result for the

periodic problem and with a Lipschitzian f (see also [35], dealing with a continu-

ous f). Both Hartman and Knobloch results apply also to more general systems

of the form

(5.4) u′′ + f(t, u, u′) = 0,

under suitable growth conditions on u′ of Bernstein–Nagumo type. For sim-

plicity, we do not pursue our study in this direction and refer to [9], [24] for

interesting surveys and information on this topic.

In [26], Mawhin extended the theorems for equation (5.2) to systems of the

form (5.1) for a p-Laplacian differential operator, namely for φ(ξ) = ψp(ξ), where

(5.5) ψp(ξ) := |ξ|p−2ξ, if ξ ∈ Rm \ {0}, ψp(0) = 0,
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for p > 1 (see also [27]). The corresponding results for system (5.4) were gener-

alized to the p-Laplacian operator by Mawhin and Ureña in [31].

We plan now to present a version of Knobloch theorem for system (5.1).

Our result will involve a class of nonlinear differential operators which are not

included in those studied in [18], [27]. In any case, we shall borrow some ar-

guments already developed in [26] and [31] in the case of φ = ψp. Thus our

computations are in debt of those performed in the above quoted papers; indeed

we show that they can be reproduced in our more general setting, by virtue of

the continuation theorems developed in the previous sections.

In the following lemma we obtain an a priori bound for the derivative of the

solution to a parameter-dependent equation of the form

(5.6) (φ(u′))′ + f̃(t, u, λ) = 0,

where f̃ : [0, T ]×Rm× [0, 1]→ Rm is a continuous function. Using the continuity

of f̃ , for any constant d > 0 we define

Cd := max
{
‖f(t, ξ, λ)‖Rm : t ∈ [0, T ], ξ ∈ B[0, d], λ ∈ [0, 1]

}
.

Lemma 5.1. Let us suppose that

lim
|ξ|→+∞

〈φ(ξ), ξ〉 = +∞.

Then, for every d > 0 there exists Md > 0 such that ‖u′‖∞ < Md, whenever u(t)

is a T -periodic solution u(t) of (5.6), for some λ ∈ [0, 1], with ‖u‖∞ ≤ d.

Proof. Let u(t) be a T -periodic solution of (5.6) with ‖u‖∞ ≤ d. We divide

the proof into two steps.

Step 1. We claim that there exist a point t0 ∈ [0, T ] and a constant Ld > 0

such that ‖u′(t0)‖Rm ≤ Ld.
By multiplying equation (5.6) by u(t) and by integrating in [0, T ], we obtain

−
∫ T

0

〈(φ(u′(t)))′, u(t)〉 dt =

∫ T

0

〈f̃(t, u(t), λ), u(t)〉 dt

and thus

1

T

∫ T

0

〈φ(u′(t)), u′(t)〉 dt =
1

T

∫ T

0

〈f̃(t, u(t), λ), u(t)〉 dt ≤ dCd.

By the mean value theorem, there exists t0 ∈ [0, T ] such that

〈φ(u′(t0)), u′(t0)〉 ≤ dCd.

From the hypothesis of the lemma, there exists Ld > 0 such that if ‖ξ‖Rn > Ld
then 〈φ(ξ), ξ〉 > dCd. Therefore we conclude that ‖u′(t0)‖Rn ≤ Ld.

Step 2. By integrating (5.6) in [t0, t], for t ∈ [0, T ], we deduce

φ(u′(t)) = φ(u′(t0))−
∫ t

t0

f̃(s, u(s), λ) ds
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and thus

‖φ(u′(t))‖Rm ≤ ‖φ(u′(t0))‖Rm + TCd.

Next, by defining Kd := sup {‖φ(ξ)‖Rm : ξ ∈ Rm, ‖ξ‖Rm ≤ Ld}, we have

‖φ(u′(t))‖Rm ≤ Kd + TCd, for all t ∈ [0, T ],

and hence

u′(t) ∈ φ−1(B[0,Kd + TCd]), for all t ∈ [0, T ].

Now, it is sufficient to take as Md > 0 any real number such that

φ−1(B[0,Kd + TCd]) ⊆ B(0,Md). �

The following existence result holds.

Theorem 5.2. Let A : Rm \ {0} → ]0,+∞[ be a continuous function and let

(5.7) φ(ξ) := A(ξ)ξ, if ξ ∈ Rm \ {0}, φ(0) = 0.

Suppose that φ : Rm → Rm is a homeomorphism. If there exists R > 0 such that

Hartman’s condition (5.3) holds, then there exists at least a T -periodic solution

u(t) of (5.1) such that ‖u(t)‖Rm ≤ R for all t ∈ [0, T ].

Proof. We shall propose two different proofs. The first one is based on

Theorem 4.6 and is partially inspired by the approach introduced by Mawhin

in [26]. The second one will be only sketched and is based on Theorem 3.11,

following the approach in [31].

We introduce a function f̃(t, ξ, λ) such that

f̃(t, ξ, 1) = f(t, ξ), f̃(t, ξ, 0) = −ξ, t ∈ [0, T ], ξ ∈ Rm,

and

(5.8) 〈f̃(t, ξ, λ), ξ〉 < 0,

for all t ∈ [0, T ], all ξ ∈ Rm with ‖ξ‖Rm = R, for all λ ∈ [0, 1[. In view of

Hartman’s condition (5.3), a suitable choice of f̃ could be

f̃(t, ξ, λ) = λf(t, ξ)− (1− λ)ξ.

Since φ : Rm → Rm is a homeomorphism, it follows that |φ(ξ)| → +∞ as

|ξ| → +∞. Then, by the structure of φ we have chosen, we have that A(ξ)|ξ| →
+∞ as |ξ| → +∞. Hence, 〈φ(ξ), ξ〉 = A(ξ)|ξ|2 → +∞ as |ξ| → +∞. Therefore,

the hypothesis of Lemma 5.1 is satisfied and thus there exists a constant MR > 0

such that ‖u′‖∞ < MR for any T -periodic solution u(t) of (5.6) (for some λ ∈
[0, 1]) such that ‖u‖∞ ≤ R.

We are going to apply Theorem 4.6 to the set

(5.9) U := {u ∈ C1
T : ‖u‖∞ < R, ‖u′‖∞ < MR}.
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First, we prove that the T -periodic problem associated with (5.6), for λ ∈ [0, 1[,

has no solution on ∂U . As already observed, from Lemma 5.1 we deduce that

every solution u ∈ U satisfies ‖u′‖∞ < MR. Therefore, to prove our claim

we have only to verify that if u ∈ U is a T -periodic solution of (5.6) for some

λ ∈ [0, 1[, then ‖u‖∞ < R.

By contradiction, assume that there exists a T -periodic solution u(t) of (5.6)

(for some λ ∈ [0, 1[) such that ‖u‖∞ = R. Then, there exists t∗ ∈ [0, T ] such that

‖u(t∗)‖Rm = R, with t∗ a point of maximum for ‖u(t)‖Rm . By the T -periodicity

of the map t 7→ ‖u(t)‖2Rm , we have that t∗ is a critical point and therefore (by

differentiating) 〈u′(t∗), u(t∗)〉 = 0. Next, we observe that, if u′(t∗) = 0, then

φ(u′(t∗)) = 0, while, if u′(t∗) 6= 0, then (by the particular form of φ)

〈φ(u′(t∗)), u(t∗)〉 = A(u′(t∗))〈u′(t∗), u(t∗)〉 = 0.

From the equality

d

dt
〈φ(u′(t)), u(t)〉 = −〈f̃(t, u(t), λ), u(t)〉+ 〈φ(u′(t)), u′(t)〉

and condition (5.8), we obtain that

d

dt
〈φ(u′(t)), u(t)〉

∣∣∣∣
t=t∗

> 0.

We thus have proved that the function v(t) := 〈φ(u′(t)), u(t)〉 is such that v(t∗) =

0 and v′(t∗) > 0. We deduce the existence of ε > 0 such that

v(t) < 0, for all t ∈ ]t∗ − ε, t∗[,

v(t) > 0, for all t ∈ ]t∗, t∗ + ε[.

Both the above inequalities are meaningful also if t∗ = 0 or if t∗ = T , because,

in this case, |u(0)| = |u(T )| = ‖u‖∞ = R and also v(0) = v(T ). More precisely,

if such a situation occurs, we read the first inequality for t∗ = T and the second

one for t∗ = 0. The special form of φ implies that

〈u′(t), u(t)〉 < 0, for all t ∈ ]t∗ − ε, t∗[,

〈u′(t), u(t)〉 > 0, for all t ∈ ]t∗, t∗ + ε[.

Then, since
d

dt
‖u(t)‖2Rm = 2 〈u′(t), u(t)〉,

we obtain that t = t∗ cannot be a maximum point for the function ‖ · ‖Rm ,

a contradiction.

The second hypothesis of Theorem 4.6 follows directly from the fact that

f̃(t, ξ, 0) = −ξ

and, clearly, the degree degB(−IdRm ,U ∩ Rm, 0) is nonzero.

The theorem is thus proved as an application of Theorem 4.6.
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The same theorem can be proved also using Theorem 3.11. We give just

a sketch of the proof. As in [31] we suppose that Hartman’s condition (5.3)

holds with a strict inequality, namely

(5.10) 〈f(t, ξ), ξ〉 < 0, for all t ∈ [0, T ], for all ξ ∈ Rm with ‖ξ‖Rm = R.

Then, using the same argument as above, we prove that system (5.6) for

f̃(t, ξ, λ) := λf(t, ξ)

satisfies the following condition: for each λ ∈ ]0, 1[ there are no (T -periodic)

solutions on the boundary of U (where U is defined as in (5.9)). Moreover,

consistently with the notation in Theorem 3.11, we have

k∗(ω) :=
1

T

∫ T

0

f(t, ω) dt, ω ∈ Rm,

and, by (5.10), we obtain 〈k∗(ω), ω〉 < 0 for all ω ∈ ∂B(0, R) = ∂U ∩Rm. Hence,

degB(k∗,U ∩ Rm, 0) = degB(−IdRm ,U ∩ Rm, 0) = (−1)m 6= 0.

At this point Theorem 3.11 implies the existence of at least a T -periodic solution

of (5.1) with ‖u‖∞ ≤ R (and also ‖u′‖∞ ≤MR).

Since the result is obtained under the strict inequality (5.10) in Hartman’s

condition, it remains to prove the theorem within the original inequality (5.3).

To achieve this latter step, we approximate the vector field with functions of the

form f(t, ξ) − εξ (with ε → 0+) and use the a priori bounds for the solutions.

We skip this part since it has been already fully developed in [31]. �

Remark 5.3. Obviously any vector p-Laplacian differential operator defined

through a homeomorphism ψp, defined as in (5.5) for p > 1, satisfies the assump-

tion of φ in Theorem 5.2. On the other hand, it is possible to provide simple

examples of homeomorphisms satisfying (5.7) which do not belong to the class

of the ψp-functions considered in (5.5). For instance, the map

(5.11) φ(ξ) := (arctan |ξ|)ξ, ξ ∈ Rm,

fits well for Theorem 5.2 and is not in the p-Laplacian class.

The homeomorphism defined in (5.11) is a special case of a class of maps of

the form

(5.12) φ(ξ) := γ(|ξ|)ξ, if ξ ∈ Rm \ {0}, φ(0) = 0,

with γ(s) a positive continuous function defined for s > 0. Such class of operators

is clearly included in that of the form (5.7) and it has been considered in [15] for

the singular case, namely for φ defined on an open ball B(0, a) and, consequently,

for γ(s) with 0 < s < a < +∞.

A natural question which raises in this context is whether the homeomor-

phisms φ of the form (5.7) (and thus, in particular, (5.12)) belong to the class of
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nonlinear operators introduced by Manásevich and Mawhin in [18] and satisfying

conditions (H1) and (H2) recalled in Remark 3.12. With this respect, we observe

that (H2) is always satisfied, since 〈φ(x), x〉 = |φ(x)| |x| ≥ α(|x|)|x| for the map

α(s) defined as

α(s) := min {|φ(x)| : |x| = s}, s ≥ 0,

and such that α(s)→ +∞ as s→ +∞.

Concerning condition (H1) we claim that the homeomorphisms defined by

(5.12) satisfy this condition. Indeed, for the proof of (H1) we proceed as follows.

First of all, we notice that a homeomorphism of the form (5.12) transforms any

radial line {ϑ−→v : ϑ ≥ 0} homeomorphically onto itself (where −→v ∈ Sm−1 is an

arbitrary unit vector). Hence (by the positivity of γ) we immediately deduce

that the map ζ : R+ → R+ defined by ζ(s) := γ(s)s for s > 0 and ζ(0) = 0 is an

increasing homeomorphism of R+ onto itself. Then, to conclude, we just repeat

(with minor modifications) the proof already given by Manásevich and Mawhin

in [18, Example 2.2] for the vector p-Laplacian, that is

〈φ(x1)− φ(x2), x1 − x2〉

= γ(|x1|)|x1|2 + γ(|x2|)|x2|2 − γ(|x1|)〈x1, x2〉 − γ(|x2|)〈x1, x2〉

≥ γ(|x1|)|x1|2 + γ(|x2|)|x2|2 − γ(|x1|)|x1||x2| − γ(|x2|)|x1||x2|

= (ζ(|x1|)− ζ(|x2|))(|x1| − |x2|) ≥ 0.

Therefore, we have that 〈φ(x1)− φ(x2), x1 − x2〉 = 0 implies |x1| = |x2|. Then,

either x1 = x2 = 0 or |x1| 6= 0 and 〈φ(x1)− φ(x2), x1 − x2〉 = γ(|x1|)|x1 − x2|2,

so that we conclude again that x1 = x2. Hence (H1) is proved.

On the other hand, we claim that there are homomorphisms φ of the form

(5.7) which do not satisfy condition (H1). Before presenting our example, we

first introduce a class of homeomorphisms satisfying (5.7) which strictly includes

the p-Laplacian class.

Let A : Sm−1 → R+
0 be a continuous map, where Sm−1 = ∂B(0, 1) is the

(m−1)-dimensional sphere in the Euclidean space Rm. Let also p > 1 be a fixed

real number. We define

(5.13) φ(ξ) := |ξ|p−2A
(
ξ

|ξ|

)
ξ, if ξ ∈ Rm \ {0}, φ(0) = 0,

which is of the form (5.7) for A(ξ) := |ξ|p−2A(ξ/|ξ|). It is straightforward

to check that maps of the form (5.13) are one-to-one, surjective and continu-

ous, therefore, by Brouwer invariance of domain theorem, are homeomorphisms

of Rm.

We give now an example of a planar homeomorphism of the form (5.13)

which does not satisfy condition (H1). It is not difficult to extend the example

to any dimension m ≥ 2. For simplicity, we restrict to the case p = 2. First of
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all, we observe that, given two nontrivial vectors x1 6= x2 and for vi := xi/|xi|
(i = 1, 2), we have

〈φ(x1)− φ(x2), x1 − x2〉 = 〈A(v1)x1 −A(v2)x2, x1 − x2〉

=A(v1)|x1|2 +A(v2)|x2|2 − (A(v1) +A(v2))〈x1, x2〉

=A(v1)|x1|2 +A(v2)|x2|2 − (A(v1) +A(v2))|x1||x2| cosβ.

The inner product is clearly positive when 〈x1, x2〉 = 0. We show now how to

find vectors where it can get negative values. We take as A : S1 → R+
0 any

continuous map such that A(1) = 1 and A(eiπ/4) = 6. Then, for the vectors

x1 = (1, 0), x2 = ρ

(√
2

2
,

√
2

2

)
, with ρ =

7
√

2

24
,

the above formula (with β = π/4) yields

〈φ(x1)− φ(x2), x1 − x2〉 = − 1

48
< 0.

This shows the effectiveness of Theorems 3.11 and 4.6 which allow to extend the

Hartman–Knobloch theorem to a broader class of operators not included in [18]

and [27].

6. Concluding remarks

In this paper all the applications of the abstract results to differential systems

have been considered in the context of vector fields which are globally defined

on the Euclidean space Rm (cf. system (C )) or have an inverse that is globally

defined (cf. (3.3)). However, there are some significant cases of maps which have

as their natural domain/image an open (and possibly bounded) subset of Rm. In

the one-dimensional case, typical examples in this direction arise from the study

of the mean curvature operator

u 7→ u′√
1 + (u′)2

or of the Minkowski operator

u 7→ u′√
1− (u′)2

,

which may be described by means of homeomorphisms φ : I → J , with I = R
and J = ]−1, 1[, or I = ]−1, 1[ and J = R, respectively (see, for instance, [4],

[34] and the references therein). Higher dimensional versions of these operators

are usually studied as well.

As already observed in Remark 3.1 and underlined many times along the

paper, our abstract setting has been devised in order to deal with these general

cases, too. Indeed, all our results in the previous sections could be reformulated

(by suitably adapting the hypotheses) in terms of operators which are not defined
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on the whole space. Instead of discussing again with the needed details all the

theorems and lemmas presented above, we just illustrate how to deal with the

autonomous system

(6.1) (φ(u′))′ + k(t, u, u′) = 0,

when φ (or φ−1) and k are not defined on the whole space.

Let A,B,G ⊆ Rm be nonempty open connected sets with A,B containing the

zero element 0Rm . Let k : [0, T ]×G ×A → Rm be an L1-Carathéodory function

and let φ : A → φ(A) = B be a homeomorphism with φ(0) = 0.

As before, we deal with the T -periodic problem associated with equation

(6.1). We recall that a T -periodic solution of (6.1) is a continuously differentiable

function u : [0, T ]→ Rm such that u(0) = u(T ) and satisfying

• u(t) ∈ G, for all t ∈ [0, T ];

• u′(t) ∈ A, for all t ∈ [0, T ];

• t 7→ φ(u′(t)) is absolutely continuous;

• u(t) satisfies (6.1), for almost every t ∈ [0, T ].

Writing equation (6.1) as an equivalent cyclic feedback system in R2m in the

class (C )

(6.2)

u′ = φ−1(y),

y′ = −k(t, u, φ−1(y)),

we can enter the setting presented in Section 2 with the choice of X, Z and L

described at the beginning of Section 3 (with n = 2) and with M the Nemytskĭı

operator associated with the right-hand side of system (6.2). In this case, M

has as a domain the set of continuous pairs of functions (x1, x2) ∈ X such that

x1(t) ∈ G and x2(t) ∈ B for all t ∈ [0, T ].

We notice that our semi-abstract results such as Theorem 3.7 or Theorem 4.2

can be restated without changes (in view of the hypothesis Ω ⊆ domM , or

Ω ⊆ dom M̃ , respectively). As a consequence, we can provide versions of Theo-

rem 3.11 and Theorem 4.6 in this more general context. For these versions we

must be careful in the choice of the open and bounded set U ⊆ C1
T considered in

these theorems. Indeed, we need to check that

U ⊆ {u ∈ C1
T : u(t) ∈ G, u′(t) ∈ A, for all t ∈ R}.

In this framework we could also extend the continuation theorems of Benevieri,

do Ó and de Medeiros obtained in the one-dimensional case in [3] and in higher

dimension in [2] in the Manásevich–Mawhin setting. Finally, we refer to [29] for

an exhaustive treatment of second-order differential systems of the form (6.1)

and for a complete panorama of the related research done in the last decades.
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Appendix A. Coincidence degree results for autonomous equations

In this appendix we deal with the T -periodic boundary value problem asso-

ciated with the autonomous equation

(A.1) x′ = f0(x),

where f0 : A0 → Rd is a continuous function defined on the open (and not

necessarily bounded) set A0 ⊆ Rd.
Let X := C([0, T ],Rd) be the Banach space of the continuous functions from

[0, T ] to Rd, endowed with the sup-norm, and let Z := L1([0, T ],Rd) be the

space of integrable functions from [0, T ] to Rd, endowed with the L1-norm. Let

domL ⊆ X be the set of absolutely continuous functions satisfying the periodic

boundary condition x(0) = x(T ). We define the linear differential operator

L : domL→ Z as

(Lx)(t) := x′(t), t ∈ [0, T ],

which is a Fredholm mapping of index zero. Let

domM0 := {x ∈ X : x(t) ∈ A0, for all t ∈ [0, T ]}0.

We define M0 : domM0 → Z as the Nemytskĭı operator induced by the function

f0(s), namely

(M0u)(t) = f0(u(t)), t ∈ [0, T ].

With this position, the T -periodic boundary value problem associated with (A.1)

can be written as an equivalent coincidence equation

(A.2) Lx = M0x, x ∈ domL ∩ domM0.

In this context the following theorem holds.

Theorem A.1. Let A0 = Rd. Let Ω ⊆ X be an open bounded set. Assume

that there is no u ∈ ∂Ω such that u′ = f0(u). Then

DL(L−M0,Ω) = (−1)d degB(f0,Ω ∩ Rd, 0).

The above result was proved by Capietto, Mawhin and Zanolin in [7] using

Mawhin’s coincidence degree and an approximation argument based on Kupka-

Smale theorem. A generalization of Theorem A.1 to the neutral functional dif-

ferential equation d
dt (Dxt) = g(xt) was obtained by Bartsch and Mawhin in [1]

using the topological degree for S1-equivariant maps. The main result in the ar-

ticle of Bartsch and Mawhin (cf. [1, Theorem 1]) concerns a vector field defined

on the whole space, however its proof is based on a “local” result [1, Theorem 2],

which, if adapted to our situation, allows to prove easily the following version of

Theorem A.1.
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Theorem A.2. Let Ω ⊆ X be an open bounded set with Ω ⊆ domM0.

Assume that there is no u ∈ ∂Ω such that u′ = f0(u). Then

DL(L−M0,Ω) = (−1)d degB(f0,Ω ∩ Rd, 0).

The next theorem is a generalization of the above results, dealing with an

open (possibly unbounded) set Ω ⊆ X.

Theorem A.3. Let Ω ⊆ domM0 be an open (possibly unbounded) set such

that the set of the (T -periodic) solutions of (6.1) in Ω is a compact subset of Ω.

Then

DL(L−M0,Ω) = (−1)d degB(f0,Ω ∩ Rd, 0).

Proof. Let K be the set of the (T -periodic) solutions of (6.1) in Ω. We

stress that K is a compact subset of Ω (by hypothesis). Then, we can find an

open bounded set Ω0 such that K ⊆ Ω0 ⊆ cl(Ω0) ⊆ Ω and so, by the excision,

DL(L−M0,Ω) = DL(L−M0,Ω0).

Since there is no u ∈ ∂Ω0 such that u′ = f0(u), we apply Theorem A.2 and

get DL(L −M0,Ω0) = (−1)d degB(f0,Ω0 ∩ Rd, 0). We conclude observing that

degB(f0,Ω0 ∩Rd, 0) = degB(f0,Ω∩Rd, 0) (due to the excision property and the

fact that K ⊆ Ω0 ⊆ Ω). �
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