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CRITICAL BREZIS–NIRENBERG PROBLEM

FOR NONLOCAL SYSTEMS

Luiz F.O. Faria — Olimpio H. Miyagaki — Fábio R. Pereira

Abstract. We deal with the existence of solutions to a critical elliptic

system involving the fractional Laplacian operator. We consider the primi-

tive of the nonlinearity interacting with the spectrum of the operator. The
one side resonant case is also considered. Variational methods are used to

obtain the existence, and our result improves earlier results of the authors.

1. Introduction

Let s ∈ (0, 1), N > 2s and let Ω ⊂ RN be a smooth and bounded domain. In

this paper, we study the existence of solutions to the following fractional system:

(1.1)


(−∆)su = au+ bv +

2p

p+ q
|u|p−2u|v|q + 2ξ1|u|p+q−2u in Ω,

(−∆)sv = bu+ cv +
2q

p+ q
|u|p|v|q−2v + 2ξ2|v|p+q−2v in Ω,

u = v = 0 in RN \ Ω,
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where (−∆)s is the fractional Laplacian operator defined by

(−∆)su(x) := C(N, s) lim
ε↘0

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN ,

where C(N, s) is a suitable positive normalization constant, ξ1, ξ2 > 0 and

p, q > 1 are constants such that p + q = 2∗s := 2N/(N − 2s) denotes the frac-

tional critical Sobolev exponent. By a solution (u, v) to (1.1) we shall always

mean a weak solution. Under suitable assumptions, one can also obtain a solu-

tion in the viscosity and in the strong sense, as described in [17].

It is convenient to rewrite system (1.1) in the vector and matrix forms such

as

(1.2)

(−
−→
∆)sU = AU +∇F (U) in Ω,

U = 0 on RN \ Ω,

where

U t =

(
u

v

)
∈M2×1(R), (−

−→
∆)sU t =

(
(−∆)su

(−∆)sv

)
,

A =

(
a b

b c

)
∈M2×2(R),

F (U) =
2

p+ q

(
|u|p|v|q + ξ1|u|p+q + ξ2|v|p+q

)
,

and ∇ is the gradient operator.

We shall denote by 0 < λ1,s < λ2,s ≤ λ3,s ≤ . . . the sequence of eigenvalues

of the operator (−∆)s with homogeneous Dirichlet boundary datum (that is,

((−∆)s, X(Ω)), where X(Ω) := {u ∈ Hs(RN ) : u = 0 a.e. in RN \ Ω}), and by

µ1 and µ2 the eigenvalues of the symmetric matrix A given above. Without loss

of generality, we may assume µ1 ≤ µ2.

When µ2 < λ1,s, system (1.1) is related to the seminal paper [2], where the

authors showed that the critical growth semi-linear problem

(1.3)


−∆u = λu+ u2∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

admits a solution provided that λ ∈ (0, λ1) and N ≥ 4, λ1 being the first

eigenvalue of −∆ with homogeneous Dirichlet boundary condition and 2∗ =

2N/(N − 2). Furthermore, in dimension N = 3, the same existence result holds

provided that µ < λ < λ1, for a suitable µ > 0. After that, considerable at-

tention has been paid to (1.3) throughout the years. Later on, in 1984, Cerami,
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Fortunato and Struwe obtained in [4] multiplicity results for the nontrivial solu-

tions to

(1.4)

−∆u = λu+ u2∗−1 in Ω,

u = 0 on ∂Ω,

when λ belongs to a left neighbourhood of an eigenvalue of−∆. In 1985, Capozzi,

Fortunato and Palmieri proved in [3] the existence of a nontrivial solution to (1.4)

for all λ > 0 and N ≥ 5 or for N ≥ 4 and λ > 0 different from the eigenvalues of

−∆. We would like to cite [11], [13], [15] for scalar nonlocal case, and [1] for local

system case. For critical fractional equation in the resonant case, we would like

to cite [12] and references therein. For fractional equation with critical exponent

in RN , we would like to cite [7]. For a survey in the critical system case involving

nonlocal operators, see [8].

The aim of this paper is to prove the existence of a nontrivial solution to

(1.1) considering the eigenvalues µ1 ≤ µ2 of the symmetric matrix A, interacting

with the spectrum of the fractional Laplacian operator (−∆)s. In this paper, we

complement the results achieved in [8], proving that system (1.1) (or (1.2)) has

at least a solution via the Linking Theorem when λk,s ≤ µ1 ≤ µ2 < λk+1,s, for

some k ∈ N. In this case, some complications arise due to the presence of the

term

F (u, v) =
2

α+ β

[
|u|p|v|q + ξ1|u|p+q + ξ2|v|p+q

]
that includes either an uncoupled or a coupled nonlinearity. Therefore, it is

necessary to require that the constants ξ1, ξ2 are assumed to be strictly positive.

The resonant case (λk,s = µ1) is also treated here, except for N = 4s. As it

happens in the Laplacian case when n = 4, also in the nonlocal framework there

is a dimension (n = 4s) where resonance creates a problem.

It is important to point out that, with the aid of [6], our results are still valid

for the general case ∇F (u, v) when F is a (p + q)-homogeneous nonlinearity,

which includes a larger class of functions.

The following is the main result of the paper.

Theorem 1.1. Let s ∈ (0, 1), N > 2s, p+q = 2∗s, ξ1, ξ2 > 0, and let Ω ⊂ RN

be a smooth and bounded domain. Suppose λk,s ≤ µ1 ≤ µ2 < λk+1,s, for some

k ∈ N. Then (1.1) admits a nontrivial solution provided that either

(a) N > 4s, or

(b) N = 4s and µ1 6= λj,s for all j ∈ N, or

(c) N < 4s and µ1 is large enough.
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2. Notations and preliminary stuff

For any measurable function u : RN → R the Gagliardo seminorm is de-

fined as

[u]s :=

(
C(N, s)

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

=

(∫
RN
|(−∆)s/2u|2 dx

)1/2

.

The second equality follows by [9, Proposition 3.6] when the above integrals are

finite. The fractional Sobolev space Hs(RN ) is defined as follows:

Hs(RN ) = {u ∈ L2(RN ) : [u]s <∞},

equipped with the norm

‖u‖Hs = (‖u‖2L2(RN) + [u]2s)
1/2,

it is a Hilbert space. We shall consider the closed linear subspace

(2.1) X(Ω) := {u ∈ Hs(RN ) : u = 0 a.e. in RN \ Ω}.

By Theorems 6.5 and 7.1 in [9], the imbedding X(Ω) ↪→ Lr(Ω) is continuous for

r ∈ [1, 2∗s] and compact for r ∈ [1, 2∗s). Due to the fractional Sobolev inequality,

X(Ω) is a Hilbert space with inner product

(2.2) 〈u, v〉X := C(N, s)

∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy,

which induces the norm ‖ · ‖X = [ · ]s. Observe that by Proposition 3.6 in [9], we

have the following identity:

‖u‖2X =
2

C(N, s)
‖(−∆)s/2u‖2L2(RN), u ∈ X(Ω).

Then it is proved that, for u, v ∈ X(Ω),

(2.3)
2

C(N, s)

∫
RN

u(x)(−∆)sv(x) dx =

∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy,

in particular, (−∆)s is self-adjoint in X(Ω).

We shall work in the Hilbert space given by the product space

Y (Ω) := X(Ω)×X(Ω),

equipped with the inner product

〈(u, v), (ϕ,ψ)〉Y := 〈u, ϕ〉X + 〈v, ψ〉X

and the norm

‖(u, v)‖Y := (‖u‖2X + ‖v‖2X)1/2.

The space Lr(Ω)× Lr(Ω) (r > 1) is considered with the standard norm

‖(u, v)‖Lr(RN)×Lr(RN) :=
(
‖u‖rLr(RN) + ‖v‖rLr(RN)

)1/r
.
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Besides, we recall that

(2.4) µ1|U |2 ≤ (AU,U)R2 ≤ µ2|U |2, for all U := (u, v) ∈ R2.

In this paper, we consider the following notation for the product space S×S :=S2.

2.1. The eigenvalue problem. For λ ∈ R, we consider the problem with

homogeneous Dirichlet boundary datum

(2.5)

(−∆)su = λu in Ω,

u = 0 in RN \ Ω.

If (2.5) admits a weak solution u ∈ X(Ω) \ {0}, then λ is called an eigenvalue

and u a λ-eigenfunction. The set of all eigenvalues is referred as the spectrum of

(−∆)s in X(Ω) and denoted by σ((−∆)s). Since K = [(−∆)s]−1 is a compact

operator, problem (2.5) can be written as u = λKu with u ∈ L2(Ω), hence the

following results are true (see [14], [16]):

(i) problem (2.5) admits an eigenvalue λ1,s = minσ((−∆)s) > 0 that can be

characterized as follows:

(2.6) λ1,s = min
u∈X\{0}

∫
RN
|(−∆)s/2u(x)|2 dx∫
RN
|u(x)|2 dx

;

(ii) there exists a non-negative function ϕ1,s ∈ X(Ω), which is an eigenfunc-

tion corresponding to λ1,s, attaining the minimum in (2.6);

(iii) all λ1,s-eigenfunctions are proportional, and if u is a λ1,s-eigenfunction,

then either u(x) > 0 almost everywhere in Ω or u(x) < 0 almost everywhere

in Ω;

(iv) the set of the eigenvalues of problem (2.5) consists of a sequence {λk,s}
satisfying

0 < λ1,s < λ2,s ≤ λ3,s ≤ . . . ≤ λj,s ≤ λj+1,s ≤ . . . , λk,s →∞, as k →∞,

which is characterized by

(2.7) λk+1,s = min
u∈Pk+1\{0}

∫
RN
|(−∆)s/2u(x)|2 dx∫
RN
|u(x)|2 dx

,

where

(2.8) Pk+1 = {u ∈ X(Ω) : 〈u, ϕj,s〉X = 0, j = 1, . . . , k};

(v) if λ ∈ σ((−∆)s) \ {λ1,s} and u is a λ-eigenfunction, then u changes sign

in Ω;

(vi) for each k ∈ N, let ϕk,s be an eigenfunction associated to the eigenvalue

λk,s, then the sequence {ϕk,s} is an orthonormal basis either of L2(Ω) or of X(Ω).
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Remark 2.1. Every eigenfunction of (−∆)s belongs to C0,σ(Ω) for some

σ ∈ (0, 1) (see Theorem 1 of [14] or Proposition 2.4 of [11]).

Remark 2.2. For each k ∈ N we can assume λk,s < λk+1,s. Otherwise, we

can suppose that λk,s has multiplicity p ∈ N, that is

λk−1,s < λk,s = λk+1,s = . . . = λk+p−1,s < λk+p,s.

In this case, we denote λk+p,s = λk+1,s.

Observe that the weak solutions to (1.2) are the critical points of the func-

tional Is : Y (Ω)→ R given by

Is(U) =
C(N, s)

2

∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

− 1

2

∫
Ω

(AU,U)R2 dx−
∫

Ω

F (U) dx,

where

F (U) :=
2

p+ q

[
|u|p|v|q + ξ1|u|p+q + ξ2|v|p+q

]
, for every U = (u, v) ∈ R2.

Remark 2.3 (Properties of homogeneous functions). If G is a C1-function

and α-homogeneous with α ≥ 1, then:

(a) there exists KG > 0 such that

|G(s, t)| ≤ KG(|s|α + |t|α), for s, t ∈ R,

where KG = max {G(s, t) : s, t ∈ R, |s|α + |t|α = 1} is attained in some

(so, to) ∈ R2;

(b) (∇G(s, t), (s, t))R2 = sGs(s, t) + tGt(s, t) = αG(s, t), for all (s, t) ∈ R2;

(c) Gs and Gt are (α− 1)-homogeneous.

Remark 2.4. The nonlinearity F is (p+ q)-homogeneous, i.e.

F (λU) = λp+qF (U), for all U ∈ R2, for all λ ≥ 0.

In this paper, we apply the following generalized Mountain Pass Theorem

[10, Theorem 5.3, Remark 5.5 (iii)]. In what follows, Br denotes a ball centered

at the origin with radius r.

Theorem 2.5. Let Y be a real Banach space with Y = V ⊕W , where V is

finite dimensional. Suppose I ∈ C1(Y,R) and that

(a) there are constants ρ, α > 0 such that I|∂Bρ∩W ≥ α, and

(b) there are constants R1, R2 > ρ and e ∈ ∂B1 ∩W such that I|∂Q ≤ 0,

where Q = (BR1 ∩ V )⊕ {re, 0 < r < R2}.
Then I possesses a (PS)c sequence, where c ≥ α can be characterized as

c = inf
h∈Γ

max
u∈Q

I(h(u)) and Γ = {h ∈ C(Q,Y ) : h = id on ∂Q}.
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Remark 2.6. Here, ∂Q denotes the boundary of Q relatively to the space

V ⊕ span{e}. When V = {0}, this theorem refers to the usual Mountain Pass

Theorem. We recall that if I|V ≤ 0 and I(u) ≤ 0, for all u ∈ V ⊕ span{e} with

‖u‖ ≥ R, then I verifies (b) in Theorem 2.5 for R large.

To conclude this section, define the subspaces

Vk = span {(0, ϕ1,s), (ϕ1,s, 0), . . . , (0, ϕk,s), (ϕk,s, 0)}

and Wk = V ⊥k = (Pk+1)2, for k ∈ N.

3. The geometry of the functional

Associating with problem (1.2) we define the functional Is : Y (Ω)→ R given

by

Is(u, v) =
1

2

∫
RN

(|(−∆)s/2u|2 + |(−∆)s/2v|2) dx

− 1

2

∫
Ω

(A(u, v), (u, v))R2 dx−
∫

Ω

F (u(x), v(x)) dx,

whose Fréchet derivative is given by

(3.1) I ′s(u, v)(φ, ψ)

= C(N, s)

∫
R2N

(u(x)− u(y))(φ(x)− φ(y)) + (v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+2s
dx dy

−
∫

Ω

(A(u, v), (φ, ψ))R2 dx−
∫

Ω

(∇F (u, v), (φ, ψ))R2 dx,

for every (φ, ψ) ∈ Y (Ω).

We shall observe that the weak solutions to problem (1.2) correspond to the

critical points of the functional Is.

Under the hypothesis λk,s ≤ µ1 ≤ µ2 < λk+1,s, for some k ∈ N, we will

show that the functional Is has the geometric structure required by the Linking

Theorem.

Proposition 3.1. Suppose Ω is a smooth bounded domain of RN , p+q = 2∗s
and λk,s ≤ µ1 ≤ µ2 < λk+1,s, for some k ∈ N. Then the functional Is has the

following properties:

(a) there exist α, ρ > 0 such that Is(u, v) ≥ α for all (u, v) ∈ Wk with

‖(u, v)‖Y = ρ;

(b) let F be a finite dimensional subspace of Y (Ω), then there exists R > ρ

such that Is(u, v) ≤ 0, for all (u, v) ∈ F with ||(u, v)||Y ≥ R.

Proof. Let (u, v) ∈Wk. Since

|u(x)|p|v(x)|q ≤ p

p+ q
|u(x)|p+q +

q

p+ q
|v(x)|p+q,
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by (2.4) we have

Is(u, v) ≥ 1

2

(
1− µ2

λk+1,s

)
‖(u, v)‖2Y − C‖(u, v)‖2

∗
s

Y ,

where C > 0 is a constant. This proves (a).

To prove (b), notice that for all (u, v) ∈ F we have

Is(u, v) ≤ 1

2
‖(u, v)‖2Y −

µ1

2
‖(u, v)‖2(L2(RN))2

− 2

2∗s

∫
Ω

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

≤ 1

2
‖(u, v)‖2Y −

2

2∗s
min{ξ1, ξ2}‖(u, v)‖2

∗
s

(L2∗s (RN))2

≤ 1

2
‖(u, v)‖2Y −K‖(u, v)‖2

∗
s

Y ,

for some positive constant K, due to the fact that in any finite dimensional space

all the norms are equivalent. Since 2∗s > 2, we have that Is(u, v) ≤ 0, for all

(u, v) ∈ F with ||(u, v)||Y ≥ R. �

Remark 3.2. By using [16, Proposition 9], for all (u, v) ∈ Vk, we have

(u, v) =

( k∑
i=1

uiei,s,

k∑
i=1

viei,s

)
and ∫

RN
|u|2 dx =

k∑
i=1

u2
i ,

∫
RN
|v|2 dx =

k∑
i=1

v2
i .

Also∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

=

k∑
i=1

(u2
i + v2

i )||ϕi,s||2X =

k∑
i=1

(u2
i + v2

i )λi,s.

Since µ1 ≥ λi,s, for all i = 1, . . . , k, by using (2.4), we get

Is(u, v) ≤ 1

2

k∑
i=1

(u2
i + v2

i )λi,s −
µ1

2

k∑
i=1

(u2
i + v2

i )

− 2

2∗s

∫
RN

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

≤ 1

2

k∑
i=1

(u2
i + v2

i )(λi,s − µ1) ≤ 0.
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In order to prove Theorem 1.1, we shall make use of the following definitions:

(3.2) Ssp+q(Ω) = inf
u∈X(Ω)\{0}

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy(∫

RN
|u(x)|p+q dx

)2/(p+q)
,

(3.3) S̃sp,q(Ω)

= inf
u,v∈X(Ω)\{0}

∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy(∫

RN

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

)2/(p+q)
.

We denote Ss = Ssp+q(Ω), S̃s = S̃sp,q(Ω), if p + q = 2∗s. The following result

can be proved along the same lines as in [1], where the local case is considered.

For completeness we present its proof.

Lemma 3.3. Let Ω be a domain (not necessarily bounded) and p + q = 2∗s.

Then there exists a constant m such that

(3.4) S̃s = mSs.

Moreover, if wo realizes Ss then (sowo, towo) realizes S̃s, for some so, to > 0.

Proof. Let {wn} ⊂ X(Ω) \ {0} be a minimizing sequence for Ssp+q(Ω) and

consider the sequence (ũn, ṽn) = (sown, town), with so, to > 0 to be chosen later.

Substituting (ũn, ṽn) in quotient (3.3), we get

(3.5)

(s2
o + t2o)

∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy

(spot
q
o + ξ1s

p+q
o + ξ2t

p+q
o )2/p+q

(∫
RN
|wn(x)|p+q dx

)2/(p+q)
≥ S̃sp,q(Ω).

Define the function

H(u, v) :=
p+ q

2
F (u, v) = |u|p|v|q + ξ1|u|p+q + ξ2|v|p+q.

Since H(u, v)2/(p+q) is 2-homogeneous, there exists a constant M > 0 satisfying

(3.6) H(u, v)2/(p+q) ≤M(|u|2 + |v|2), for all u, v ∈ R,

where M is the maximum of the function H2/(p+q) attained in some (so, to) (with

so, to ≥ 0) of the compact set {(s, t) : s, t ∈ R, |s|2 + |t|2 = 1}.
Let m = M−1, so we have

(3.7) H(so, to)
2/(p+q) = m−1(s2

o + t2o),
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and consequently, by (3.5), it follows that

(3.8) S̃s ≤ m

∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy(∫

RN
|wn(x)|p+q dx

)2/(p+q)
.

Taking the limit in (3.8), we obtain S̃s ≤ mSs.
In order to prove the reversed inequality, let {(un, vn)} be a minimizing

sequence for S̃s, i.e.∫
R2N

|un(x)− un(y)|2 + |vn(x)− vn(y)|2

|x− y|N+2s
dx dy(

p+ q

2

∫
RN

F (un(x), vn(x)) dx

)2/(p+q)
→ S̃s, as n→∞.

By using the Hölder inequality, we get∫
RN

F (un(x), vn(x)) dx ≤ F
(
‖un‖Lp+q(RN), ‖vn‖Lp+q(RN)

)
,

for each un, vn ∈ Lp+q(RN). Therefore, the above estimate guarantees that

(3.9)

∫
R2N

|un(x)− un(y)|2 + |vn(x)− vn(y)|2

|x− y|N+2s
dx dy(

p+ q

2

∫
RN

F (un(x), vn(x)) dx

)2/(p+q)

≥
Ss
(
‖un‖2Lp+q(RN) + ‖vn‖2Lp+q(RN)

)
(
p+ q

2
F
(
‖un‖Lp+q(RN), ‖vn‖Lp+q(RN)

))2/(p+q)
.

Now, by inequality (3.6),

(3.10) m

(
p+ q

2
F
(
‖un‖Lp+q(RN), ‖vn‖Lp+q(RN)

))2/(p+q)

≤ ‖un‖2Lp+q(RN) + ‖vn‖2Lp+q(RN).

Hence, by (3.9) and (3.10), we have∫
R2N

|un(x)− un(y)|2 + |vn(x)− vn(y)|2

|x− y|N+2s
dx dy(

p+ q

2

∫
RN

F (un(x), vn(x)) dx

)2/(p+q)
≥ mSs.

Therefore, passing to the limit in the above inequality, we have the desired

reversed inequality. �
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From [5, Theorem 1.1], Ss is attained, namely, Ss = Ss(ũ), where

(3.11) ũ(x) = k(µ2 + |x− x0|2)−(N−2s)/2,

for x ∈ RN , k ∈ R \ {0}, µ > 0, fixed x0 ∈ RN . Equivalently,

Ss = inf
u ∈ X(Ω) \ {0}
||u||

L
2∗s (RN)

= 1

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy =

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy,

where u(x) = ũ(x)/||ũ||L2∗s (RN). In what follows, we suppose that, up to a trans-

lation, x0 = 0 in (3.11).

The function

u∗(x) = u

(
x

S
1/(2s)
s

)
, for x ∈ RN ,

is a solution to the problem

(3.12) (−∆)su = |u|2
∗
s−2u in RN ,

verifying the property

(3.13) ||u∗||2
∗
s

L2∗s (RN )
= SN/2ss .

Notice that the family of functions

Uε(x) = ε−(N−2s)/2u∗
(
x

ε

)
, x ∈ RN ,

solves (3.12) and verifies, for all ε > 0,

(3.14)

∫
R2N

|Uε(x)− Uε(y)|2

|x− y|N+2s
dx dy =

∫
RN
|Uε(x)|2

∗
s dx = SN/2ss .

Fix δ > 0, such that B4δ ⊂ Ω, and η ∈ C∞(RN ) a cut-off function such that

0 ≤ η ≤ 1 in RN , η = 1 in Bδ and η = 0 in Bc2δ = RN \B2δ.

Now define the family of nonnegative truncated functions

(3.15) uε(x) = η(x)Uε(x), x ∈ RN ,

and note that uε ∈ X.

Now, we recall some well-known results for the local case. For the nonlocal

case, its proof can be found in [15].

Proposition 3.4. Let ρ > 0 and µ > 0 be as in (3.11). If x ∈ Bcρ, then

(a) |uε(x)| ≤ |Uε(x)| ≤ Cε(N−2s)/2, for all ε > 0,

(b) |∇uε(x)| ≤ Cε(N−2s)/2, for all ε > 0,

(c) for any x ∈ RN and y ∈ Bcδ (B4δ ⊂ Ω) with |x− y| ≤ δ/2, we have

|uε(x)− uε(y)| ≤ Cε(N−2s)/2|x− y|, for all ε > 0,

(d) for any x, y ∈ Bcδ , we have

|uε(x)− uε(y)| ≤ Cε(N−2s)/2 min {1, |x− y|}, for all ε > 0,
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where C is a positive constant which possibly can depend on µ, ρ, s and N .

Proposition 3.5. For s ∈ (0, 1) and N > 2s, we have:

(a)

∫
R2N

|uε(x)− uε(y)|2

|x− y|N+2s
dx dy ≤ SN/2ss +O(εN−2s), as ε→ 0.

(b)

∫
RN
|uε(x)|2 dx ≥


Csε

2s +O(εN−2s) if N > 4s,

Csε
2s| log ε|+O(ε2s) if N = 4s,

Csε
N−2s +O(ε2s) if 2s < N ≤ 4s,

as ε→ 0. Here Cs is a positive constant depending only on s.

(c)

∫
RN
|uε(x)|2

∗
s dx = SN/2ss +O(εN ), as ε→ 0.

Now consider the following minimization problem:

Ss,λ = inf
v∈X(Ω)\{0}

Ss,λ(v),

where

Ss,λ(v) =

∫
R2N

|v(x)− v(y)|2

|x− y|N+2s
dx dy − λ

∫
RN
|v(x)|2 dx(∫

RN
|v(x)|2

∗
s dx

)2/2∗s
.

Arguing as in [2], the following Brezis–Nirenberg estimates for nonlocal setting

were proved in [15, Section 4.2] the first item, while in [13, Corollary 8] the

second.

Proposition 3.6. By considering the above definitions one can deduce that:

(a) For N ≥ 4s, s ∈ (0, 1), we have Ss,λ(uε) < Ss, for all λ > 0 and provided

ε > 0 is sufficiently small.

(b) For 2s < N < 4s, s ∈ (0, 1), there exists λs > 0 such that for all λ > λs,

we have Ss,λ(uε) < Ss, provided ε > 0 is sufficiently small.

Proof. For the sake of the completeness, we give a sketch of the proof. Let

us distinguish the three different cases N > 4s, N = 4s and 2s < N < 4s. By

Proposition 3.5, we infer that

Case N > 4s.

Ss,λ(uε) ≤
S
N/2s
s +O(εN−2s)− λCsε2s

(S
N/2s
s +O(εN ))2/2∗s

≤Ss +O(εN−2s)− λC̃sε2s ≤ Ss + ε2s(O(εN−4s)− λC̃s) < Ss,

if λ > 0, ε > 0 is sufficiently small and C̃s > 0 is a constant.
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Case N = 4s.

Ss,λ(uε) ≤
S
N/2s
s +O(εN−2s)− λCsε2s| log ε|+O(ε2s)(

S
N/2s
s +O(εN )

)2/2∗s
≤Ss +O(ε2s)− λC̃sε2s| log ε| ≤ Ss + ε2s(O(1)− λC̃s)| log ε|) < Ss,

for λ > 0, ε > 0 sufficiently small and C̃s > 0 a constant.

Case 2s < N < 4s.

Ss,λ(uε) ≤
S
N/2s
s +O(εN−2s)− λCsεN−2s +O(ε2s)(

S
N/2s
s +O(εN )

)2/2∗s
≤ Ss + εN−2s(O(1)− λC̃s) +O(ε2s) < Ss,

for all λ > 0 large enough (λ ≥ λs), ε > 0 sufficiently small and C̃s > 0

a constant. �

For our purposes, we need to define the following minimization problem:

S̃s,A = inf
u,v∈X(Ω)\{0}

Ss,A(u, v),

where

Ss,A(u, v) =

(∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

−
∫
RN

(A(u(x), v(x)), (u(x), v(x)))R2 dx

)/
(∫

RN

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

)2/(p+q)

and p+ q = 2∗s.

Proposition 3.7. Let µ1 be given in (2.4).

(a) If N ≥ 4s, s ∈ (0, 1) and µ1 is positive, then S̃s,A < S̃s.

(b) For 2s < N < 4s, s ∈ (0, 1), there exists a constant µs > 0 such that if

µ1 > µs, we have S̃s,A < S̃s.

Proof. From Proposition 3.6, we have

(a) For N ≥ 4s, s ∈ (0, 1), Ss,µ1
(uε) < Ss thanks to the fact that µ1 > 0,

and provided ε > 0 is sufficiently small.

(b) For 2s < N < 4s, s ∈ (0, 1), there exists µs > 0 such that if µ1 > µs, we

have Ss,µ1(uε) < Ss, provided ε > 0 is sufficiently small.
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Let so, to > 0 be obtained in Lemma 3.3. From (2.4) and (3.7), combined

with the above estimate, we infer that

S̃s,A ≤Ss,A(souε, touε)

≤ (s2
o + t2o)

(spot
q
o + ξ1s

p+q
o + ξ2t

p+q
o )2/2∗s

·

∫
R2N

|uε(x)− uε(y)|2

|x− y|N+2s
dx dy − µ1

∫
RN
|uε(x)|2 dx(∫

RN
|uε(x)|2

∗
s dx

)2/2∗s

=mSs,µ1(uε) < mSs = S̃s.

This concludes the proof. �

Remark 3.8. Notice that, by Remark 3.2, we can choose the finite dimen-

sional subspace F of Y (Ω) as

F ≡ Fε = Vk ⊕ span{(z̃ε, 0)},

where Vk = span {(0, ϕ1,s), (ϕ1,s, 0), (0, ϕ2,s), (ϕ2,s, 0), . . . , (0, ϕk,s), (ϕk,s, 0)},
z̃ε = zε/||zε||X , with

zε = uε −
k∑
j=1

(∫
Ω

uεϕj,s dx

)
ϕj,s,

and uε defined in (3.15).

From Proposition 3.1, we can apply Theorem 2.5 to the functional Is with

Q = (BR ∩ Vk)⊕ {r(z̃ε, 0) : 0 < r < R},

which critical level is characterized as

c = inf
h∈Γ

max
(u,v)∈Q

Is(h(u, v)),

where Γ = {h ∈ C(Q,Y ) : h = id on ∂Q}.

4. Palais–Smale condition for the functional

Lemma 4.1. Suppose λk,s ≤ µ1 ≤ µ2 < λk+1,s and let c ∈ R be such that

(4.1) c <
2s

N

(
S̃s
2

)N/2s
.

Then, the functional Is satisfies the (PS)c condition.

Proof. Let (Un) = (un, vn) in Y (Ω) be a (PS)-sequence for Is. In order to

prove Lemma 4.1, we proceed by the following steps.

Step 1. Any (PS)c-sequence is bounded in the space Y (Ω).
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Let (Un) = (un, vn) in Y (Ω) be a (PS)-sequence for Is, then

(4.2) 2Is(Un)− I ′s(Un)(Un)

= 2

(
1− 2

2∗s

)∫
Ω

(
|un|p|vn|q + ξ1|un|p+q + ξ2|vn|p+q

)
dx

≤ c+ o(1)‖Un‖Y .

Using the Young inequality, we obtain

(4.3) ‖(un, vn)‖2(L2(Ω))2 ≤ k1 + k2‖(un, vn)‖2
∗
s

(L2∗s (Ω))2
.

Combining (4.2) and (4.3), we conclude

‖Un‖2Y ≤ 2Is(Un) +
4

2∗s

∫
Ω

(
|un|p|vn|q + ξ1|un|p+q + ξ2|vn|p+q

)
dx(4.4)

+ ‖(un, vn)‖2(L2(Ω))2 ≤ c+ o(1)‖Un‖Y .(4.5)

Therefore, we conclude that the sequence (Un) is bounded.

Step 2. Problem (1.1) admits a solution U ∈ Y (Ω).

Since Un is bounded in Y (Ω), up to a subsequence, still denoted by Un, there

exists U ∈ Y (Ω) such that Un ⇀ U in Y (Ω).

Since Y (Ω) ↪→ L2∗s (Ω) × L2∗s (Ω), we have that Un is bounded in L2∗s (Ω) ×
L2∗s (Ω), and so, up to a subsequence,

Un ⇀ U in L2∗s (Ω)× L2∗s (Ω),(4.6)

Un → U a.e. x in Ω,(4.7)

Un → U in Lr(Ω)× Lr(Ω), for all r ∈ [1, 2∗s).(4.8)

Moreover, by Remark 2.3 (c), there exists a constant K > 0 such that

(4.9) |∇F (Un)| ≤ K[|un|2
∗
s−1 + |vn|2

∗
s−1].

We have that |un|2
∗
s−1 and |vn|2

∗
s−1 are bounded in L2∗s/(2

∗
s−1)(Ω) and conse-

quently |∇F (Un)| is bounded in L2∗s/(2
∗
s−1)(Ω). Therefore, by (4.6), it follows

that

(4.10) ∇F (Un) ⇀ ∇F (U) in L2∗s/(2
∗
s−1)(Ω)× L2∗s/(2

∗
s−1)(Ω).

Since (2∗s/2
∗
s − 1)′ = 2∗s, it is easily seen that, for all Θ ∈ L2∗s (Ω)× L2∗s (Ω),∫

Ω

(∇F (Un),Θ)R2 dx→
∫

Ω

(∇F (U),Θ)R2 dx.

In particular

(4.11)

∫
Ω

(∇F (Un),Θ)R2 dx→
∫

Ω

(∇F (U),Θ)R2 dx, for all Θ ∈ Y (Ω),
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as n → ∞. On the other hand, for any Θ ∈ Y (Ω), we have the convergence to

zero of I ′s(Un)(Θ), i.e.

(4.12) 〈Un,Θ〉Y −
∫

Ω

(AUn,Θ)R2 dx−
∫

Ω

(∇F (Un),Θ)R2 dx→ 0,

so that, passing to the limit in this expression as n→∞ and taking into account

the convergences (4.6), (4.8) and (4.11), we get

〈U,Θ〉Y −
∫

Ω

(AU,Θ)R2 dx−
∫

Ω

(∇F (U),Θ)R2 dx = 0,

for all Θ ∈ Y (Ω), and consequently the Step 2 follows.

Step 3. The following relations hold true:

(a) Is(U) =

(
2∗s
2
− 1

)∫
Ω

F (U) dx ≥ 0.

(b) Is(Un) = Is(U) +
1

2
‖Un − U‖2Y −

∫
Ω

F (Un − U) dx+ o(1).

(c) ‖Un − U‖2Y = 2∗s

∫
Ω

F (Un − U) dx+ o(1).

Proof of (a). Taking Θ = U ∈ Y (Ω) as a test function in (3.1), we get

0 = I ′s(U)U = ‖U‖2Y −
∫

Ω

(AU,U)R2 dx−
∫

Ω

(∇F (U), U)R2 dx.

Therefore,

Is(U) =
1

2

(
‖U‖2Y −

∫
Ω

(AU,U)R2 dx

)
−
∫

Ω

F (U) dx

=
1

2

∫
Ω

(∇F (U), U)R2 dx−
∫

Ω

F (U) dx

=
2∗s
2

∫
Ω

F (U) dx−
∫

Ω

F (U) dx =

(
2∗s
2
− 1

)∫
Ω

F (U) dx.

Proof of (b). By Step 1, the sequence Un is bounded in Y (Ω) ↪→ L2∗s (Ω) ×
L2∗s (Ω), hence Un is bounded in L2∗s (Ω)× L2∗s (Ω). Since Un → U almost every-

where in Ω, by the Brezis–Lieb Lemma (see [7, Theorem 1]), we have

‖Un‖2Y = ‖Un − U‖2Y + ‖U‖2Y + o(1),(4.13)

‖Un‖
2∗s
L2∗s

= ‖Un − U‖
2∗s
L2∗s

+ ‖U‖2
∗
s

L2∗s
+ o(1).(4.14)

Otherwise, by the Brezis–Lieb Lemma for homogeneous functions (Lemma 5

in [6]),

(4.15)

∫
Ω

F (Un) dx =

∫
Ω

F (U) dx+

∫
Ω

F (Un − U) dx+ o(1), as n→∞.
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Therefore, using that Un → U in Lr(Ω) × Lr(Ω), for all r ∈ [1, 2∗s), by the

definition of Is, (4.13)–(4.15), we deduce that

Is(Un) =
1

2
‖Un‖2Y −

1

2

∫
Ω

(AUn, Un)R2 dx−
∫

Ω

F (Un) dx

=
1

2
‖Un − U‖2Y +

1

2
‖U‖2Y −

1

2

∫
Ω

(AU,U)R2 dx

−
∫

Ω

F (U) dx−
∫

Ω

F (Un − U) dx+ o(1)

= Is(U) +
1

2
‖Un − U‖2Y −

∫
Ω

F (Un − U) dx+ o(1).

Proof of (c). By (4.6), (4.10) and Remark 2.3 (a),∫
Ω

(∇F (Un) −∇F (U), Un − U)R2 dx

=

∫
Ω

(∇F (Un), Un)R2 dx−
∫

Ω

(∇F (Un), U)R2 dx

−
∫

Ω

(∇F (U), Un)R2 dx+

∫
Ω

(∇F (U), U)R2 dx

=

∫
Ω

(∇F (Un), Un)R2 dx−
∫

Ω

(∇F (U), U)R2 dx+ o(1)

= 2∗s

∫
Ω

F (Un) dx− 2∗s

∫
Ω

F (U) dx+ o(1).

Therefore, using (4.15), we get

(4.16)

∫
Ω

(∇F (Un)−∇F (U), Un − U)R2 dx = 2∗s

∫
Ω

F (Un − U) dx+ o(1).

On the other hand, by Steps 1 and 2,

o(1) = I ′s(Un)(Un − U) = I ′s(Un)(Un − U)− I ′s(U)(Un − U)

= 〈Un, Un − U〉Y −
∫

Ω

(AUn, Un − U)R2 dx−
∫

Ω

(∇F (Un), Un − U)R2 dx

− 〈U,Un − U〉Y +

∫
Ω

(AU,Un − U)R2 dx+

∫
Ω

(∇F (U), Un − U)R2dx

= 〈Un − U,Un − U〉Y −
∫

Ω

(A(Un − U), Un − U)R2 dx

−
∫

Ω

(∇F (Un)−∇F (U), Un − U)R2 dx.

Hence, from (4.8) and (4.16), it follows that

‖Un − U‖2Y = 2∗s

∫
Ω

F (Un − U) dx+ o(1), as n→∞.
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Now, we can conclude the proof of Lemma 4.1. By Step 3 (c), it follows that

1

2
‖Un − U‖2Y −

∫
Ω

F (Un − U) dx

=

(
1

2
− 1

2∗s

)
‖Un − U‖2Y + o(1) =

s

N
‖Un − U‖2Y + o(1).

Therefore, using the Step 3 (b) and above equality, notice that

Is(U) +
s

N
‖Un − U‖2Y(4.17)

= Is(U) +
1

2
‖Un − U‖2Y −

∫
Ω

F (Un − U) dx+ o(1)

= Is(Un) + o(1) = c+ o(1), as n→∞.

Now, by Step 1, the sequence ‖Un‖Y is bounded in R. So, up to a subsequence,

if necessary, we can assume that

(4.18) ‖Un − U‖2Y → L as n→∞.

Again, as a consequence of Step 3 (c),

(4.19) 2∗s

∫
RN

F (Un − U) dx→ L, as n→∞

and consequently L ∈ [0,∞) and by definition of S̃p,q(Ω) (see 3.3), since Un−U ∈
Y (Ω) \ {(0, 0)}, we have

S̃s := S̃p,q(Ω) ≤ ‖Un − U‖2Y(
2∗s
2

∫
RN

F (Un − U) dx

)2/2∗s
.

Hence, by (4.18) and (4.19), we conclude that

L ≥ 1

2(N−2s)/N
L2/2∗s S̃s,

and consequently,

either L = 0 or L ≥ 1

2(N−2s)/2s
(S̃s)

N/(2s).

If L ≥ (S̃s)
N/(2s)/2(N−2s)/(2s), by (4.17), (4.18) and Step 3 (a), we would get

c = I(U) +
s

N
L ≥ s

N
L ≥ s

N

1

2(N−2s)/(2s)
(S̃s)

N/(2s) =
2s

N

(
S̃s
2

)N/(2s)
,

which contradicts (4.1). Thus L = 0 and therefore, by (4.18), we have

‖Un − U‖2Y → 0 as n→∞

and so the assertion of lemma 4.1 follows. �

The next result can be proved along the same lines as [13, Proposition 12]

and [11, Proposition 7.3].
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Proposition 4.2. Let s ∈ (0, 1), N > 2s and Mε := max
u ∈ Fε

||u||
L
2∗s

= 1

Ss,µ1
(u).

Suppose λk,s ≤ µ1 ≤ µ2 < λk+1,s, for some k ∈ N, then

(a) Mε is achieved by uM ∈ Fε, characterized by uM = ṽ+ tzε, where t > 0,

zε is given in Remark 3.8, and

ṽ = v + t

k∑
i=1

(∫
Ω

uεϕi,s dx

)
ϕi,s,

uε defined in (3.15) and v ∈ span{ϕ1,s, . . . , ϕk,s}.
(b) The following estimate holds for t > 0:

Mε ≤ (λk,s − µ1)‖v‖2L2 + Ss,µ1
(uε)(1 +O(ε(N−2s)/2)‖v‖L2)

+O(ε(N−2s)/2)‖v‖L2 , as ε→ 0.

(c) Mε < Ss, provided

(c1) N > 4s and µ1 6= λk,s, for all k ∈ N.

(c2) N = 4s and µ1 6= λk,s, for all k ∈ N.

(c3) N < 4s and µ1 6= λk,s, for all k ∈ N and µ1 is large enough

(µ1 ≥ λs > 0).

The next result can be proved along the same lines as in [12, Proposition 3.1]

and [11, Proposition 7.3].

Proposition 4.3. Let s ∈ (0, 1) and N > 2s. Suppose µ1 = λk,s ≤ µ2 <

λk+1,s, for some k ∈ N.

(a) Mε is achieved by uM ∈ Fε, characterized by uM = v+Pkṽ+ tũε, where

t > 0, ũε = uε − Pkuε, uε defined in (3.15), PKw denotes the projection

operator of w on the direction ϕk,s, that is,

Pkw =

(∫
Ω

wϕk,s dx

)
ϕk,s,

v =

k−1∑
i=1

(∫
Ω

(ṽ − tuε)ϕi,s dx
)
ϕi,s ∈ span {ϕ1,s, . . . , ϕk−1,s},

and ṽ ∈ span {ϕ1,s, . . . , ϕk−1,s}.
(b) The following estimate holds for t > 0:

Mε ≤ (λk−1,s − µ1 + σ)‖v‖2L2 + Ss,µ1
(uε)(1 +O(ε(N−2s)/2)‖v‖L2)

+O(ε(N−2s)/2)‖v‖L2 ,

as ε→ 0, some σ < µ1 − λk−1,s.

(c) Mε < Ss, provided

(c1) N > 4s.

(c2) N < 4s and µ1 is large enough (µ1 ≥ λs > 0).
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5. End of the proof of Theorem 1.1

To complete the proof of Theorem 1.1, we have to show that condition (4.1)

is satisfied.

Proposition 5.1. According to our previous notation, we have

c <
2s

N

(
S̃s
2

)N/2s
,

where c is the critical level c = inf
h∈Γ

max
(u,v)∈Q

Is(h(u, v)) and Γ = {h ∈ C(Q,Y ) :

h = id on ∂Q}.

Proof. Notice that, for all h ∈ Γ, we have

c = inf
h∈Γ

max
(u,v)∈Q

Is(h(u, v)) ≤ max
(u,v)∈Q

Is(h(u, v)).

Let Fε be as in Remark 3.8 with ε sufficiently small. Since Q ⊂ (Fε)2, taking

h = id and recalling that (Fε)2 is a linear subspace, we obtain

c = inf
h∈Γ

max
(u,v)∈Q

Is(h(u, v)) ≤ max
(u,v)∈Q

Is((u, v))

≤ max
(u, v) ∈ (Fε)2

(u, v) 6= (0, 0)

Is((u, v)) = max
(u, v) ∈ (Fε)2

η 6= 0

Is

(
|η|
(
u

|η|
,
v

|η|

))
= max

(u, v) ∈ (Fε)2

η > 0

Is(η(u, v)) ≤ max
(u, v) ∈ (Fε)2

η ≥ 0

Is(η(u, v)).

Claim. We claim that

max
(u, v) ∈ (Fε)2

η ≥ 0

Is(η(u, v)) <
2s

N

(
S̃s
2

)N/2s
.

To verify this claim, fix U = (u, v) ∈ (Fε)2 such that uv 6= 0, by (2.4), for all

r ≥ 0, we infer

Is(rU) ≤ r2

2

(
‖U‖2Y − µ1‖U‖2(L2)2

)
− 2r2∗s

2∗s

∫
RN

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

=
Ar2

2
− 2Br2∗s

2∗s
:= g(r).

Notice that r0 = (A/(2B))1/(2∗s−2) is the maximum point of g, which maximum

value is given by

2s

N

(
A

2B2/2∗s

)N/2s
.
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Then

max
r≥0

Is(rU)

≤ 2s

N


‖U‖2Y − µ1‖U‖2(L2)2

2

[ ∫
RN

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

]2/2∗s


N/2s

.

Therefore, it is sufficient to show that

M̃ε := max
(u,v)∈(Fε)2

‖U‖2Y − µ1‖U‖2(L2)2

2

[ ∫
RN

(
|u(x)|p|v(x)|q + ξ1|u(x)|p+q + ξ2|v(x)|p+q

)
dx

]2/2∗s

=
1

2
max

(u, v) ∈ (Fε)2∫
RN

(|u|p|v|q + ξ1|u|
p+q

+ ξ2|v|
p+q

) dx = 1

(‖U‖2Y − µ1‖U‖2(L2)2) <
S̃s
2
.

Define

Mε := max
u∈Fε\{0}

‖u‖2X − µ1‖u‖2L2(∫
RN
|u|2

∗
s dx

)2/2∗s
= max

u ∈ Fε∫
RN |u|

2∗s dx = 1

(‖u‖2X − µ1‖u‖2L2).

Taking so, to > 0 as in Lemma 3.3 and uM as in Propositions 4.3 and 4.2, M̃ε

is achieved by function UM = (souM , touM ) . Therefore, from Propositions 4.3

and 4.2, and using (3.7), we can conclude that

M̃ε =
1

2

‖UM‖2Y − µ1‖UM‖2(L2)2[ ∫
RN

(
|souM |p|touM |q + ξ1|souM |p+q + ξ2|touM |p+q

)
dx

]2/2∗s

=
1

2

(s2
o + t2o)

(spot
q
o + ξ1s

p+q
o + ξ2t

p+q
o )2/2∗s

(‖uM‖2X − µ1‖uM‖2L2)(∫
RN
|uM |2

∗
s dx

)2/2∗s

=
1

2
mMε <

1

2
mSs =

1

2
S̃s,

if one of the following conditions holds:

(a) N > 4s and µ1 > 0.

(b) N = 4s and µ1 6= λk,s, for all k ∈ N.

(c) N < 4s and µ1 is large enough (µ1 ≥ λs > 0).

This completes the proof. �
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