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EXISTENCE OF SOLUTIONS

FOR NONLINEAR p-LAPLACIAN DIFFERENCE EQUATIONS

Lorena Saavedra — Stepan Tersian

Abstract. The aim of this paper is the study of existence of solutions

for nonlinear 2nth-order difference equations involving p-Laplacian. In the

first part, the existence of a nontrivial homoclinic solution for a discrete
p-Laplacian problem is proved. The proof is based on the mountain-pass

theorem of Brezis and Nirenberg. Then, we study the existence of multi-

ple solutions for a discrete p-Laplacian boundary value problem. In this
case the proof is based on the three critical points theorem of Averna and

Bonanno.

1. Introduction

Consider the fourth-order p-Laplacian difference equation

(1.1) ∆2(ϕp2(∆2u(k − 2)))− a∆(ϕp1(∆u(k − 1)))

+ V (k)ϕq(u(k)) = λf(k, u(k))

where p > 1, ϕp(t) = |t|p−2t, V : Z → R is a T -periodic positive function for T

a fixed integer and f : Z × R → R is a given function with growth conditions.
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The above equation is a discretization of a fourth order p-Laplacian equation

studied by authors in [18], where the existence of solution for a periodic problem

involving p-Laplacian differential equation is considered. The partial cases where

p1 = p2 = 2 are known as stationary extended Fisher–Kolmogorov equation (see

Peletier and Troy [17], [19] and references therein).

The theory of nonlinear difference equations is widely used in the study of

discrete models in different fields of science. Recently, the problems for differ-

ence equations are treated by topological and variational methods. Topological

methods for higher order difference equations using Green’s functions and fixed

point theorems are used in [2], [3]. The variational methods coupled with crit-

ical point theory have been extensively applied to the solvability of problems

for difference equations during the last decade. We refer the reader to [1], [12],

[20] and references therein. A survey on applications of critical point theory to

existence results for difference equations is given in [7]. Periodic and homoclinic

orbits for 2nth order difference equations are studied in [8] using linking theorem

and in [9] by mountain-pass and symmetric mountain-pass theorems.

This paper is divided in two parts. The first part is based on the mountain-

pass theorem of Brezis and Nirenberg [5]. Following the steps of [6], we obtain

the existence of a nontrivial homoclinic solution of equation (1.1), i.e. a nonzero

solution u, such that lim
|k|→+∞

|u(k)| = 0.

In the second part, we obtain the existence of at least three solutions for the

difference equation with p1 = p2 = q and the Dirichlet boundary conditions, by

generalizing a result given in [10] to the problem

−∆(ϕp(∆u(k − 1))) = λf(k, u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0.

Such a result is obtained by applying [10, Theorem 2.1], which is a modification

of the theorem of Averna and Bonanno (see [4]), to our boundary value problem.

In both cases, we show how our result should be modified for higher order

problems.

The study of p-Laplacian difference equations has been developed in the

literature. In addition to the previously mentioned [6], [10], we refer to [13],

where the following problem is studied:

∆(ϕp(∆u(k − 1))) + a(t) f(k, u(k)) = 0, k ∈ [1, T + 1],

∆u(0) = u(T + 2) = 0,

where a(t) is a is a positive function. Moreover, in [21], the existence of three

positive solutions of this problem is studied.
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Recently, in [11], it was proved the existence of at least three solutions of the

problem

∆2(ϕp(∆
2u(k − 2))) + αϕp(u(k)) = λf(k, u(k)), k ∈ [1, T ],

u(0) = ∆u(−1) = ∆2u(T ) = 0,

∆(ϕp(∆
2u(T − 1))) = µg(u(T + 1)),

where α, λ and µ are real parameters, f and g are continuous.

Moreover, we refer to [14], [16] and [20], where the existence of homoclinic

solution for different discrete second order problems is studied. Finally, in [15]

there is studied the existence of periodic solutions for a higher order difference

equation involving the p-Laplacian. In addition to its particular interest sepa-

rately, we study these two problems together to point out the differences on the

generalization of a result for a second order problem to higher order. In the first

case, we will see that the hypotheses on the function f are not modified in order

to obtain the results for higher order. However, for the boundary value problems,

the hypotheses should be modified to increase the order of the problem and also

the used arguments suffer more modifications than in the homoclinic case.

This paper is structured in two parts: Sections 2 and 3. We introduce the

considered problems in the beginning of these parts. Then, we construct the re-

lated variational formulation. After some preliminaries, the existence solutions

results are proved. Finally, we give examples to the results obtained. In Sec-

tion 4, we show, as a remark, how the results will look like for n ≥ 3. Finally, in

Section 5, we comment on the obtained results.

2. Homoclinic solutions

This section is focused on the study of the existence of homoclinic solutions

for the following problem:

(2.1)

∆2(ϕp2(∆2u(k − 2)))− a∆(ϕp1(∆u(k − 1)))

+V (k)ϕq(u(k)) = λf(k, u(k)),

lim
|k|→+∞

|u(k)| = 0,

where a > 0 is fixed, pi ≥ q > 1 for i = 1, 2 and

∆u(k) = u(k + 1)− u(k),(2.2)

∆iu(k) = ∆i−1u(k + 1)−∆i−1u(k), if i ≥ 2,(2.3)

are the forward difference operators.

We suppose that V is a T -periodic positive function for a fixed integer T and

denote

0 < V0 = min{V (0), . . . , V (T − 1)} and V1 = max{V (0), . . . , V (T − 1)}.
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Let us define the potential function F : Z× R→ R as follows:

F (k, t) =

∫ t

0

f(k, s) ds.

Moreover, let f : Z× R→ R verify the following assumptions:

(F1) For each k ∈ Z, f(k, · ) : R→ R is a continuous function. Moreover, for

each t ∈ R, f( · , t) : Z→ R is a T -periodic function.

(F2) The potential function F satisfies the Ambrosetti–Rabinowitz type con-

dition:

There exists µ ∈ R, such that µ > pi, for i = 1, 2, and

µF (k, t) ≤ tf(k, t), for all k ∈ Z, t 6= 0.

(F3) There exists s > 0 such that F (k, t) > 0, for all k ∈ Z, for all t ≥ s > 0.

(F4) Uniformly, for k ∈ Z, f(k, t) = o(|t|q−1) as |t| → 0.

Define φp(t) = |t|p/p. It is trivial that φ′p(t) = ϕp(t) for every p > 1. Let

`q =

{
(u(k))k∈Z

∣∣∣∣ ∑
k∈Z
|u(k)|q <∞

}
be the considered Banach space with the norm |u|qq =

∑
k∈Z
|u(k)|q and J : `q → R

be the functional

J(u) = Φ(u)− λ
∑
k∈Z

F (k, u(k)),

where

Φ(u) =
∑
k∈Z

(
φp2(∆2u(k − 2)) + aφp1(∆u(k − 1)) + V (k)φq(u(k))

)
.

We have the following result:

Lemma 2.1. Let the function f satisfy assumptions (F1) and (F4). Then the

functional J : `q → R is well defined and C1. Moreover, its critical points are

solutions of problem (2.1).

Proof. Let us see first that the functional J is well defined. In order to do

that, we use the following elementary inequality:

(2.4) (x+ y)p ≤ 2p−1(xp + yp),

which is fulfilled for every non-negative x, y and p > 1.

Applying (2.4) for p2 > 1 twice, we have:∑
k∈Z

φp2(∆2(u(k − 2)))

≤ 1

p2

∑
k∈Z

4p2−1(|u(k)|p2 + 2|u(k − 1)|p2 + |u(k − 2)|p2) =
4p2

p2

∑
k∈Z
|u(k)|p2 .
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Now, since p2 ≥ q, it is well known that `q ⊂ `p2 and for u ∈ `q, we conclude

that ∑
k∈Z

φp2(∆2(u(k − 2))) ≤ 4p2

p2

∑
k∈Z
|u(k)|p2 < +∞.

Analogously, let us apply inequality (2.4) for p1. We have, taking into account

that u ∈ `q ⊂ `p1 :∑
k∈Z
|∆u(k − 1)|p1 ≤ 2p1

p1

∑
k∈Z
|u(k)|p1 < +∞.

Moreover, ∑
k∈Z

V (k)|u(k)|q ≤ V1

∑
k∈Z
|u(k)|q < +∞.

Finally, for all δ ∈ (0, 1), there exists N > 0 sufficiently large such that |u(k)|q <
δ < 1 if |k| > N . Moreover, under assumption (F4), we have

∃δ ∈ (0, 1) such that F (k, u(k)) < |u(k)|q < δ < 1, |k| > N.

Thus,
∑
k∈Z

F (k, u(k)) < +∞ and J is a well-defined functional in `q. For all

v ∈ `q, we have:

〈J ′(u), v〉 =
∑
k∈Z

(
ϕp2(∆2u(k − 2)) ∆2v(k − 2) + aϕp2(∆u(k − 1)) ∆v(k − 1)

)
+
∑
k∈Z

V (k)ϕq(u(k)) v(k)− λ
∑
k∈Z

f(k, u(k)) v(k).

By direct calculations, we obtain∑
k∈Z

ϕp2(∆2u(k − 2)) ∆2v(k − 2) =
∑
k∈Z

∆2(ϕp2(∆2u(k − 2))) v(k),

∑
k∈Z

ϕp2(∆u(k − 1)) ∆v(k − 1) =−
∑
k∈Z

∆(ϕp2(∆u(k − 1))) v(k).

Hence,for all v ∈ `q,

〈J ′(u), v〉 =
∑
k∈Z

(
∆2(ϕp2(∆2u(k − 2)))− a∆(ϕp2(∆u(k − 1)))

)
v(k)

+
∑
k∈Z

V (k)ϕq(u(k)) v(k)− λ
∑
k∈Z

f(k, u(k)) v(k).

So, we can obtain the partial derivatives as follows:

∂J(u)

∂u(k)
= ∆2(ϕp2(∆2u(k − 2)))− a∆(ϕp2(∆u(k − 1)))

+ V (k)ϕq(u(k))− λf(k, u(k)),

which are continuous functions. Following the arguments of Iannizotto and Ter-

sian [14], Propositions 5–7, one can prove that the functional J is continuously

differentiable and its critical points of J are the solutions of (2.1). �



156 L. Saavedra — S. Tersian

Now, let us recall the mountain-pass theorem of Brezis and Nirenberg [5],

which we use to obtain the homoclinic solutions of (2.1) and (4.1).

Let X be a Banach space with norm ‖ · ‖ and I : X → R be a C1-functional.

We say that I satisfies the (PS)c condition if every sequence (xk) ⊂ X such that

(2.5) I(xk)→ c, I ′(xk)→ 0,

has a convergent subsequence in X. Let us denote by a (PS)c-sequence every

sequence (xk) ⊂ X that verifies (2.5).

Theorem 2.2 (Mountain-pass theorem, Brezis and Nirenberg [5]). Let X be

a Banach space with norm ‖ ·‖, I ∈ C1(X,R) and suppose that there exist r > 0,

α > 0 and e ∈ X such that ‖e‖ > r and

(a) I(x) ≥ α if ‖x‖ = r,

(b) I(e) < 0.

Let c = inf
γ∈Γ

{
max
t∈[0,1]

I(γ(t))
}
≥ α, where

Γ = {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = e}.

Then, there exists a (PS)c-sequence for I. Moreover, if I satisfies the (PS)c
condition, then c is a critical value of I, that is, there exists u0 ∈ X such that

I(u0) = c and I ′(u0) = 0.

Let us consider the following norm in `q:

‖u‖q :=

(
1

q

∑
k∈Z

V (k) |u(k)|q
)1/q

.

From the assumption on V , we have that it is an equivalent norm to | · |q, since

we have:
V0

q
|u|qq ≤ ‖u‖qq ≤

V1

q
|u|qq.

Now, we have the following result, which can be proved in the same way as

[6, Lemma 2.3]:

Lemma 2.3. Suppose that assumptions (F1)–(F4) are verified. Then, there

exist ρ > 0, α > 0 and e ∈ `q such that ‖e‖ > ρ and

(a) J(u) ≥ α if ‖u‖ = ρ.

(b) J(e) < 0.

We obtain the following result.

Lemma 2.4. Assume that (F1)–(F4) are verified. Then, there exists c > 0

and an `q-bounded (PS)c sequence for J .
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Proof. From Lemma 2.3 and Theorem 2.2, we can ensure that there exists

a (PS)c-sequence for J , (um) ⊂ `q, i.e. (2.5) is verified for I = J , where c has

been introduced in Theorem 2.2.

Now, we have to prove that the sequence (um) is bounded in `q. We have,

〈J ′(um), um〉 =
∑
k∈Z

(
|∆2um(k − 2)|p2 + a|∆um(k − 1)|p1 + V (k) |um(k)|q

)
−
∑
k∈Z

λf(k, um(k))um(k), .

Now, using (F2) and taking into account that µ > pi ≥ q > 1 for i = 1, 2, using

the same arguments as in [6, Lemma 2.4] we conclude that

µJ(um)− 〈J ′(um), um〉 ≥ (µ− q)‖um‖qq.

Thus, (um) is a bounded sequence in `q. �

Now, we can prove the main result of this part:

Theorem 2.5. Suppose that a > 0, the function V : Z → R is positive and

T -periodic and assumptions (F1)–(F4) are fulfilled. Then, for λ > 0, problem

(2.1) has a non-trivial homoclinic solution u ∈ `q, which is a critical point of the

functional J : `q → R.

Proof. The proof is analogous to the proof of [6, Theorem 1.1]. We only

have to take into account that q/pi ≤ 1 for i = 1, 2, thus all the arguments

represented there remain valid for such a problem. �

Example 2.6. Let r > pi ≥ q > 1 for i = 1, 2 and b : Z → R a positive

T -periodic function. Consider f(k, t) = b(k)ϕr(t). Let us verify that such f

satisfies (F1)–(F4).

(F1) Obviously f is continuous as a function of t and T -periodic as a function

of k,

(F2) F (k, t) = b(k) Φr(t). There exists r ∈ R, such that r > pi ≥ q > 1, for

i = 1, 2, such that

rF (k, t) = b(k) |t|r = tb(k) t |t|r−2 = tf(k, t), for all k ∈ Z, t 6= 0.

(F3) F (k, t) > 0, for all k ∈ Z, for all t > 0.

(F4) Since r > q, we have:

lim
|t|→0

f(k, t)

|t|q−1
= lim
|t|→0

b(k) t |t|r−q−1 = 0.

Then, for V , b : Z→ R two positive T -periodic functions the problem

∆2(ϕp2(∆2u(k − 2)))− a∆(ϕp1(∆u(k − 1))) + V (k)ϕq(u(k)) = λb(k)ϕr(u(k)),

lim
|k|→+∞

|u(k)| = 0,
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where r > pi ≥ q > 1 for i = 1, 2, has a non-trivial homoclinic solution for every

λ > 0.

3. Boundary value problems

In this part we study the existence of multiple solutions for the following

boundary value problem:

(3.1) ∆2(ϕq(∆
2u(k − 2)))− a∆(ϕq(∆u(k − 1)))

+ V (k)ϕq(u(k))− λf(k, u(k)) = 0, k ∈ [1, T ],

(3.2) u(0) = u(T + 1) = ∆u(−1) = ∆u(T ) = 0,

where a > 0, T is a fixed positive integer, [1, T ] = {1, . . . , T}, the difference

operators have been introduced in (2.2)–(2.3) and ϕq has been defined in the

previous section for 1 < q < +∞.

Moreover, we consider V : [1, T ]→ R as a positive function. We can consider

it as a restriction to the discrete interval [1, T ] of the T -periodic function V intro-

duced in the first part of the paper. We also denote V0 = min{V (1), . . . , V (T )}
and V1 = max{V (1), . . . , V (T )}. Finally, let f : [1, T ]× R → R be a continuous

function.

As in the first part, we obtain the existence result by means of variational

methods. In order to obtain our variational approach, we consider the following

T -dimensional Banach space:

(3.3) X =
{
u : [−1, T +2]→ R | u(0) = u(T +1) = ∆u(−1) = ∆u(T +1) = 0

}
,

coupled with the following norm:

‖u‖X =

( T+2∑
k=1

|∆2(k − 2)|q + a

T+1∑
k=1

|∆u(k − 1)|q +

T∑
k=1

V (k) |u(k)|q
)1/q

.

We have the following result, in terms of the norm ‖ · ‖X .

Lemma 3.1. For every u ∈ X, the following inequality holds:

max
k∈[1,T ]

|u(k)| ≤ ρ‖u‖X ,

where

(3.4) ρ =
(T + 1)(T + 2)(q−1)/q

(4q + 2qa(T + 1)(T + 2)q−1 + V0(T + 1)q(T + 2)q−1)1/q
.

Proof. First, we have:

(3.5) max
k∈[1,T ]

|u(k)|q ≤
T∑
k=1

|u(k)|q ≤ 1

V0

T∑
k=1

V (k) |u(k)|q.
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Secondly, taking into account the boundary conditions (3.2), for every u ∈ X

and all j = 1, . . . , T , we have

T+1∑
k=1

|∆u(k − 1)| =
j∑

k=1

|u(k)− u(k − 1)|+
T+1∑
k=j+1

|u(k − 1)− u(k)|(3.6)

≥
j∑

k=1

(|u(k)| − |u(k − 1)|) +

T+1∑
k=j+1

(|u(k − 1)| − |u(k)|)

= 2|u(j)| − |u(0)| − |u(T + 1)| = 2|u(j)|.

Analogously, for every u ∈ X and all j = 1, . . . , T , we obtain

(3.7)

T+2∑
k=1

|∆2u(k − 2)| ≥ 2|∆u(j − 1)|.

Now, combining (3.6) with the discrete Hölder inequality, we have

max
k∈[1,T ]

|u(k)| ≤ 1

2

T+1∑
k=1

|∆u(k − 1)|(3.8)

≤ 1

2
(T + 1)(q−1)/q

( T+1∑
k=1

|∆u(k − 1)|q
)1/q

.

Using (3.6) and (3.7), we have:

max
k∈[1,T ]

|u(k)| ≤ 1

2

T+1∑
k=1

|∆u(k − 1)| ≤ 1

2
(T + 1) max

k∈[1,T+1]
|∆u(k − 1)|q(3.9)

≤ T + 1

4

T+2∑
k=1

|∆2u(k − 2)|

≤ (T + 1)(T + 2)(q−1)/q

4

( T+2∑
k=1

|∆2u(k − 2)|q
)1/q

.

Thus, from (3.5), (3.8) and (3.9), we obtain(
4q

(T + 1)q(T + 2)q−1
+

a2q

(T + 1)q−1
+ V0

)
max
k∈[1,T ]

|u(k)|q ≤ ‖u‖qX ,

and the result is proved, taking into account that

4q

(T + 1)q(T + 2)q−1
+

a2q

(T + 1)q−1
+ V0 =

1

ρq
. �

Now, let us consider J1 : X → R, the functional

J1(u) = Φ1(u)− λ
T∑
k=1

F (k, u(k)), where F (k, t) =

∫ t

0

f(k, s) ds
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for every (k, t) ∈ [1, T ]× R and

Φ1(u) =

T+2∑
k=1

φq(∆
2u(k − 2)) + a

T+1∑
k=1

φq(∆u(k − 1)) +

T∑
k=1

V (k)φq(u(k)).

Remark 3.2. Observe that Φ1(u) = ‖u‖qX/q, hence trivially Φ1 is coercive,

that is, lim
‖u‖X→+∞

Φ1(u) = +∞.

We have the analogous result to Lemma 2.1 for this case.

Lemma 3.3. The functional J : X → R is C1-differentiable and its critical

points are solutions of (3.1).

Let us denote Ψ1(u) = −
T∑
k=1

F (k, u(k)). Let E be a finite dimensional Ba-

nach space and consider J : E → R the functional J(u) = Φ(u) + λΨ(u), where

Φ, Ψ: X → R are of class C1(E) and Φ is coercive.

Remark 3.4. Realize that J1(u) = Φ1(u) + λΨ1(u) satisfies this condition.

For every r > inf
E

Φ, let us define:

ψ1(r) := inf
u∈Φ−1((−∞,r))

Ψ(u)− inf
Φ−1((−∞,r])

Ψ

r − Φ(u)
,

ψ2(r) := inf
u∈Φ−1((−∞,r))

sup
v∈Φ−1([r,+∞))

Ψ(u)−Ψ(v)

Φ(v)− Φ(u)
,

Now, we are under conditions of applying [10, Theorem 2.1] to our problem.

Theorem 3.5 ([10, Theorem 2.1]). Assume that:

(a) there exists r > inf
E

Φ such that ψ1(r) < ψ2(r),

(b) for each λ ∈ (1/ψ2(r), 1/ψ1(r)) we have lim
‖u‖E→+∞

J(u) = +∞.

Then, for each λ ∈ (1/ψ2(r), 1/ψ1(r)), J has at least three critical points.

Let us define, for c, d > 0,

Θ(c) :=
1

cq

T∑
k=1

sup
|s|≤c

F (k, s) > 0,

Λ(d) :=
1

dq

T∑
k=1

(
F (k, d)− sup

|s|≤c
F (k, s)

)
> 0.

Now, we can state the main result of this section:

Theorem 3.6. Assume that there exist four positive constants b, c, d, and p,

such that c < d and p < q verifying:

(d1) Θ(c) <
Λ(d)

(4 + 2a+ TV1) ρq
, where ρ has been introduced in (3.4).
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(d2) F (k, t) ≤ b(1 + |t|p) for all (k, t) ∈ [1, T ]× R.

Then, for every λ ∈ ((4 + 2a+ TV1)/(qΛ(d)), 1/(qρqΘ(c))), problem (3.1)–(3.2)

admits at least three solutions which are critical points of J1.

Proof. We just need to find r > infX Φ such that the hypotheses of Theo-

rem 3.5 are verified. Let

r =
cq

qρq
.

Taking into account the relationship between Φ1 and the norm ‖ · ‖X , we have:

ψ1(r) = inf
‖u‖X<(qr)1/q

Ψ1(u)− inf
‖u‖X≤(qr)1/q

Ψ1(u)

r − Φ1(u)

≤ 1

r
inf

‖u‖X≤(qr)1/q
Ψ(u) =

1

r
sup

‖u‖X≤(qr)1/q

T∑
k=1

F (k, u(k)).

Now, from Lemma 3.1, if ‖u‖X ≤ (qr)1/q, then for all k ∈ [1, T ]:

|u(k)| ≤ ρ(qr)1/q = c,

thus

ψ1(r) ≤ 1

r

T∑
k=1

sup
|u(k)|≤c

F (k, u(k)) = qρqΘ(c).

Now, let us see that cq < ρq(4 + 2a + V0) dp. In order to do that, let us choose

k∗ ∈ [1, T ], such that V (k∗) = V0, and consider:

vc(k) :=

c if k = k∗,

0 if k 6= k∗,

from Lemma 3.1, since c < d, we have:

cq ≤ ρq‖vc‖qX = ρq(4 + 2a+ V0) cq < ρq(4 + 2a+ V0) dq.

Now, consider vd ∈ X, such that:

vd(k) :=

d if k ∈ [1, T ],

0 otherwise.

We have

‖vd‖qX =

(
4 + 2a+

T∑
k=1

V (k)

)
dq ≥ (4 + 2a+ V0)dq >

(
c

ρ

)q
= qr.

Hence,

ψ2(r) = inf
‖u‖X<(qr)1/q

sup
‖v‖X≥(qr)1/q

Ψ1(u)−Ψ1(v)

Φ1(v)− Φ1(u)
≥ inf
‖u‖X<(qr)1/q

Ψ1(u)−Ψ1(vd)

Φ1(vd)− Φ1(u)
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= q inf
‖u‖X<(qr)1/q

T∑
k=1

F (k, d)−
T∑
k=1

F (k, u(k))

(
4 + 2a+

T∑
k=1

V (k)

)
dp − ‖u‖qX

≥ q

T∑
k=1

F (k, d)−
T∑
k=1

sup
|s|≤c

F (k, u(k))

(
4 + 2a+

T∑
k=1

V (k)

)
dp

.

Now, taking into account that
T∑
k=1

V (k) ≤ TV1, we have

ψ2(r) ≥ q Λ(d)

4 + 2a+ TV1
.

Thus, from condition (d1), we conclude ψ2(r) > qρqΘ(c) ≥ ψ1(r). By other

hand, from condition (d2), we have:

J1(u) =
‖u‖qX
q
− λ

T∑
k=1

F (k, u(k)) ≥
‖u‖qX
q
− λ

T∑
k=1

(1 + |u(k)|s).

Using again Lemma 3.1, we conclude

J1(u) ≥
‖u‖qX
q
− λTb− λTρp‖u‖pX ,

which, since p < q, ensures that lim
‖u‖X→+∞

J1(u) = +∞. Therefore, by applying

Theorem 3.5 the result is proved. �

Example 3.7. Let T = 8 and V (k) = 6(k+ 6)2 for each k ∈ [1, T ]. Then, in

this case V0 = 294 and V1 = 1176. Moreover, consider f(k, t) = kg(t), where

g(t) =

et if t ≤ 14,

e14 if t > 14,

then, F (k, t) = k2G(t), where

G(t) =

et if t ≤ 14

e14(t− 13) if t > 14.

So, we can see that F (k, t) ≤ 8e14(1 + |t|p) for all p > 1.
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Let us choose c = 3, d = 14 and q = 3. We have:

Θ(3) :=
1

33

8∑
k=1

sup
|s|≤3

F (k, s) =
4

3
e3,(3.10)

Λ(14) :=
1

143

8∑
k=1

(
F (k, 14)− sup

|s|≤3

F (k, s)
)

=
9

686
(e14 − e3).(3.11)

Now, consider the problem:

(3.12) ∆2(ϕ3(∆2u(k − 2)))− 10∆(ϕ3(∆u(k − 1)))

+ 6(k + 6)2ϕ3(u(k))− λkg(u(k)) = 0, k ∈ [1, 8],

coupled with the boundary conditions (3.2). In this case,

ρ3 =
18225

5376166
u 0.0038996 <

1

294
u 0.0034.

Moreover, we have

Λ(14)

(4 + 20 + 8 · 1176) ρ3
=

2688083

655123140
(e14 − e3) u 493.44 >

4

3
e3 u 26.78.

Then, we can apply Theorem 3.6 to conclude that for each

λ ∈
(

718928

3(e14 − e3)
,

2688083

36450 e3

)
= (0.2, 3.67),

problem (3.12) has at least three solutions.

4. Higher order problems

In this section, we want to show how our previously obtained results could

be generalized for n ≥ 3. First, we consider the homoclinic problem:

(4.1)

∆n(ϕpn(∆nu(k − 2))) +

n−1∑
i=1

(−1)iai∆
n−i(ϕpn−i

(∆n−iu(k − 1)))

+(−1)nV (k)ϕq(u(k)) + (−1)n+1λf(k, u(k)) = 0,

lim
|k|→+∞

|u(k)| = 0,

where V, f, ϕp and ∆j have been previously introduced, µ > pi ≥ q > 1 and

ai ≥ 0 for all j ∈ {1, . . . , n}, with an = 1. In this case, with small modifications

on the arguments, we obtain the generalization of Theorem 2.5.

Theorem 4.1. Suppose that ai > 0 for i = 1, . . . , n − 1, V : Z → R is

a positive and T -periodic function and assumptions (F1)–(F4) are fulfilled. Then,

for λ > 0, problem (4.1) has a non-trivial homoclinic solution u ∈ `q, which is

a critical point of the functional J : `q → R.
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Clearly, the functions introduced in Example 2.6 are still valid for this gen-

eralized case with r > pi for i = 1, . . . , n.

Now, we consider the boundary generalized boundary value problem. Let

ai > 0 for i = 1, . . . , n − 1. We will show an existence result for the 2nth-order

problem:

∆n(ϕq(∆
nu(k − 2))) +

n−1∑
i=1

(−1)iai∆
n−i(ϕq(∆

n−iu(k − 1)))(4.2)

+(−1)nV (k)ϕq(u(k)) + (−1)n+1λf(k, u(k)) = 0,

u(0) = ∆u(−1) = ∆2u(−2) = . . . = ∆n−1u(1− n) = 0,(4.3)

u(T + 1) = ∆u(T + 1) = ∆2u(T + 1) = . . . = ∆n−1u(T + 1) = 0.(4.4)

Such a result is obtained with slight modifications on the arguments used for

fourth order. Let ρ given by the expression:

(4.5)

n∏
j=1

(T + j)

/
(

2qn(T + n) +

n−1∑
i=1

ai2
q(n−i)(T + n− i)

n∏
j=n−i+1

(T + j)q + V0

n∏
j=1

(T + j)q
)1/q

.

Remark 4.2. Realize that the constant defined in (3.4) is a particular case of

the previous one for n = 2. Its general expression seems complicated. However,

it can be calculated for each particular problem. Moreover, from its expression

it can be seen that it is clearly bounded as follows:

ρ ≤

n∏
j=1

(T + j)

(
V0

n∏
j=1

(T + j)q
)1/q

=

(
1

V0

)1/q

.

We can state the equivalent to Theorem 3.6 for problem (4.2)–(4.4) as follows:

Theorem 4.3. Assume that there exist four positive constants b, c, d, and p,

such that c < d and p < q verifying:

(d1) Θ(c) < Λ(d)
/(

2n +
n−1∑
i=1

2n−iai + TV1

)
ρq, where ρ has been introduced

in (4.5).

(d2) F (k, t) ≤ b (1 + |t|p) for all (k, t) ∈ [1, T ]× R.

Then, for every

λ ∈
(

1

qΛ(d)

(
2n +

n−1∑
i=1

2n−iai + TV1

)
,

1

qρqΘ(c)

)
,

problem (4.2)–(4.4) admits at least three solutions.



Existence of Solutions for Nonlinear p-Laplacian Difference Equations 165

Now, let us consider a higher order example, for instance let us choose n = 4.

Example 4.4. Let us choose T, V (k) and f(k, t) as in Example 3.7. For the

choice c = 3, d = 14 and q = 3, (3.10)–(3.11) are still true. Now, consider the

problem:

(4.6) ∆4(ϕ3(∆4u(k − 4)))−∆3(ϕ3(∆3u(k − 3)))

+ 2∆2(ϕ3(∆2u(k − 2)))− 3∆(ϕ3(∆u(k − 1)))

+ 6(k + 6)2ϕ3(u(k))− λkg(u(k)) = 0,

for k ∈ [1, 8], coupled with the boundary conditions (4.3)–(4.4) for n = 4. Ob-

serve that ai = i for i = 1, 2, 3. In this case, the expression of ρ is more

complicated than with n = 2, we have

ρ3 =

4∏
j=1

(8 + j)3

12 · 212 +

3∑
i=1

i23(4−i)(12− i)
4∏

j=5−i
(8 + j)3 + 294

3∏
j=1

(8 + j)3

=
1091586375

321251750258
u 0.003398 <

1

294
.

Moreover, we have

Λ(14)(
24 +

3∑
i=1

i 24−i + 8 · 1176

)
ρ3

=
42833567

1047915804474
(e14 − e3) u 491.556 >

4

3
e3.

Then, we can apply Theorem 4.3 to conclude that for each

λ ∈
(

6479956

27(e14 − e3)
,

428335667

5821794 e3

)
= (0.2, 3.66),

problem (4.6) has at least three solutions.

Remark 4.5. Finally, we realize that the bound given in (4.2) is a good one

for the both considered examples. Indeed, we have

lim
T→+∞

ρq =
1

V0
.

5. Conclusions and remarks

This final section is devoted to showing some of conclusions which we deduce

from this work and several remarks which can be used in future to improve the

results shown here.

The first thing that we want to point out is the differences between the

two studied problems. Both problems are a generalization of previously known
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results for second order problems, however the main difficulties which we found

are as follows:

In the first problem, related to the existence of homoclinic solution, the main

difficulty of the generalization remains in proving that the constructed functional

is well defined and the hypotheses needed for f are the same on the different

orders. Moreover, the obtained approach is applicable to higher order problems.

On the other hand, if we focus on the boundary value problem studied in

Section 3, we can see directly that the obtained hypotheses are different for each

order.

Furthermore, in such a generalization we need to consider the same index q

in all the q-Laplacians considered. This fact is due to the construction of the

Banach space and the corresponding norm in order to obtain the bound given

in Lemma 3.1. Thus, if we can construct a suitable norm in X which allows us

to obtain a similar result for different values of q, the result might be extended

for such cases.

In [15] there are studied higher order periodic problems by means of the

Linking Theorem. It can also be interesting to study such problems or to study

problems with different boundary conditions by using the Averna and Bonnano

theorem. It would be necessary to construct the correspondent Banach space

coupled with the norm and see if we can obtain the appropriate bounds which

give the existence results.

Finally, we have not studied the problem by means of using topological meth-

ods and fixed point theorems. Maybe, by using a different technique the obtained

interval for λ could be different.
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