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CONVEX HULL DEVIATION AND CONTRACTIBILITY

Grigory M. Ivanov

Abstract. We study the Hausdorff distance between a set and its convex
hull. Let X be a Banach space, define the CHD-constant of the space X
as the supremum of this distance over all subsets of the unit ball in X.
In the case of finite dimensional Banach spaces we obtain the exact upper
bound of the CHD-constant depending on the dimension of the space. We
give an upper bound for the CHD-constant in Lp spaces. We prove that
the CHD-constant is not greater than the maximum of Lipschitz constants
of metric projection operators onto hyperplanes. This implies that for
a Hilbert space the CHD-constant equals 1. We prove a characterization of
Hilbert spaces and study the contractibility of proximally smooth sets in
a uniformly convex and uniformly smooth Banach space.

1. Introduction

Let X be a Banach space. For a set A ⊂ X , we denote by ∂A, intA and

coA the boundary, interior and convex hull of A, respectively. We use 〈p, x〉 to
denote the value of the functional p ∈ X∗ at the vector x ∈ X . For R > 0 and

c ∈ X we denote by BR(c) a closed ball with center c and radius R. We denote

the origin by 0.
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By ρ(x,A) we denote the distance between a point x ∈ X and a set A. We

define the deviation from a set A to a set B as follows:

(1.1) h+(A,B) = sup
x∈A

ρ(x,B).

For the case B ⊂ A, which takes place below, the deviation h+(A,B) coincides

with the Hausdorff distance between the sets A and B.

Given D ⊂ X , the deviation h+(coD,D) is called the convex hull deviation

(CHD) of D. We define the CHD-constant ζX of X as

ζX = sup
D⊂B1(0)

h+(coD,D).

Remark 1.1. Directly from our definition it follows that for any normed

linear space X we have 1 ≤ ζX ≤ 2.

We denote by �np the n-dimensional real vector space endowed with p-norm.

This article presents estimates for the CHD-constant for different spaces and

some of its geometrical applications. In particular, for finite-dimensional spaces

we obtain the exact upper bound of the CHD-constant depending on the dimen-

sion of the space:

Theorem 1.2. Let Xn be a normed linear space, dimXn = n ≥ 2, then

ζXn ≤ 2(n− 1)/n. If Xn = �n1 or Xn = �n∞, then this bound is tight.

Let the sets P and Q be the intersections of the unit ball with two parallel

affine hyperplanes of dimension k, where P is a central section. In Corollary 2.3

we obtain the exact upper bound of the homothety coefficient, that provides

covering of Q by P .

The next theorem gives an estimate for the CHD-constant in the Lp spaces,

1 ≤ p ≤ +∞:

Theorem 1.3. For any p ∈ [1,+∞]

(1.2) ζLp ≤ 2|1/p−1/p′|, where
1

p
+

1

p′
= 1.

Theorem 3.3 shows that the CHD-constant is not greater than the maximum

of the Lipschitz constants of metric projection operators onto hyperplanes. This

implies that for a Hilbert space the CHD-constant equals 1. Besides that, we

prove a characterization of a Hilbert space in terms of the CHD-constant. The

idea of the proof is analogous to the idea used by A.L.Garkavi in [9].

Theorem 1.4. The equation ζX = 1 holds for a Banach space X if and only

if X is a Euclidian space or dimX = 2.

In addition we study the contractibility of a covering of a convex set with

balls.
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Definition 1.5. A covering of a convex set with balls is called admissible if

it consists of a finite number of balls with centres in this set and with the same

radii.

Definition 1.6. A family of balls is called admissible when it is an admissible

covering of the convex hull of its centres.

We say that a covering of a set by balls is contractible when the union of

these balls is contractible. It is easy to show that in two-dimensional and Hilbert

spaces any admissible covering is contractible (see Lemmas 2.4 and 2.5). On the

other hand, using Theorem 1.4, we prove the following statement.

Theorem 1.7. In a three dimensional Banach space X every admissible

covering is contractible if and only if X is a Hilbert space.

For 3-dimensional spaces we consider an example of an admissible covering

of a convex set with four balls that is not contractible. To demonstrate the

usefulness of this technique in Theorem 5.1 we obtain a sufficient condition for

the contractibility of proximally smooth sets in a uniformly convex and uniformly

smooth Banach space.

2. Proof of Theorem 1.2 and some other results

Lemma 2.1. Suppose the set B1(o) \ intBr(o1) is non-empty in an arbitrary

linear normed space. Then it is arcwise connected.

o1

o

z1

z

Figure 1. Illustration for Lemma 2.1. In the notations of the lemma (point
z1 is an arbitrary point of the sphere ∂B1(o)), we have ‖z1 − o1‖ ≤ ‖z1 −
o‖+ ‖o− o1‖ = ‖z − o1‖.

Proof. We suppose that o �= o1, otherwise the statement is trivial. Let z be

the point of intersection of ray o1o and the boundary of the closed ball B1(o) such

that o ∈ [z, o1]. The triangle inequality tells us that B1(o)\ intBr(o1) contains z
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(see Figure 1). We claim that ∂B1(o) \ intBr(o1) is arcwise connected and thus

prove the lemma. It suffices to show that in the two-dimensional case every point

of the set S = ∂B1(o) \ intBr(o1) is connected with z. Suppose on the contrary

that it is not true. Hence, there exists a point d ∈ S unconnected to z. By the

triangle inequality we have that d does not lie on the line oo1. Therefore on both

arcs dz of the unit circle ∂B1(o) we can find points from intBr(o1). One of the

arcs dz lies in the half-plane defined by the line oo1, denote this arc as ω. Let c

be a point from ω ∩ intBr(o1). Then ‖c− o1‖ < r.

There exist points a1, b1 ∈ ω∩∂Br(o1) such that c lies on the arc a1b1 of the

unit circle ∂B1(o). Consider two additional rays oa and ob co-directional with

o1a1 and o1b1 respectively, where a, b ∈ ∂B1(o). Since balls B1(o) and Br(o1) are

similar, we have a1b1 ‖ ab. So, the facts that points a, b, a1, b1 lie on the same

side of the line oo1, oa ∩ o1a1 = ∅, ob ∩ o1b1 = ∅ and that a unit ball is convex,

imply that segments ab and a1b1 lie on the same line. This means that segments

ab and a1b1 belong to the circles ∂B1(o) and ∂Br(o1) respectively. And what is

more, the segment a1b1 belongs to the circle ∂B1(o), hence the point c belongs

to the segment a1b1 and ‖c− o1‖ = r. This contradicts ‖c− o1‖ < r. �

Proof of Theorem 1.2. Denote rn = 2(n− 1)/n. Suppose the inequality

does not hold. It means that there exists a Banach space Xn with dimension

n ≥ 2, a set D ⊂ B1(0) ⊂ Xn and a point o1 ∈ coD such that Brn(o1) ∩D = ∅.
But if o1 ∈ coD, then o1 ∈ co(B1(0) \ intBrn(o1)). According to Lemma 2.1,

the set B = B1(0) \ intBrn(o1) is connected. So, taking into consideration the

generalized Carathéodory theorem ([16], Theorem 2.29), we see that the point

o1 is a convex combination of not more than n points from B. These points,

denoted as a1, . . . , ak, k ≤ n, may be regarded as vertices of a (k−1)-dimensional

simplex A and the point o1 = α1a1+. . .+αkak lies in its relative interior (αi > 0,

α1 + . . .+ αk = 1).

Let cl be the point of intersection of the ray alo1 with the opposite facet of

the simplex A. So, o1 = αlal + (1 − αl)cl. Then

‖o1 − al‖ = (1− αl)‖cl − al‖.

And [cl, al] ⊂ A ⊂ B1(0) implies that ‖al − cl‖ ≤ 2, for all l ∈ 1, k. Therefore

rn < ‖o1−al‖ ≤ 2(1−αl). Thus αl < 1−rn/2 < 1/n, and finally α1+ . . .+αk <

k/n ≤ 1. We reach a contradiction.

Now let us show that the bound is tight for spaces the �n1 , �
n
∞. Consider �n1 .

Let A = {ei}ni=1 be a standard basis for the space �n1 and b = (e1+ . . .+ en)/n ∈
co {e1, . . . , en}. The distance between the point b and an arbitrary point from A

is ‖ai − b‖ = 2(n− 1)/n.

Consider �n∞. Let aij = (−1)δij , where δij is the Kronecker symbol, ai =

(ai1, . . . , ain) and A = {ai}ni=1. Now let b = (a1 + . . .+ an)/n = ((n− 2)/n, . . . ,
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(n− 2)/n) ∈ co {a1, . . . , an}. And the distance from point b to an arbitrary

point from A is ‖ai − b‖ = 2(n− 1)/n. �

So, Theorem 1.2 and the inequality ζX ≥ 1 imply that the CHD-constant of

any 2-dimensional normed space equals 1. Obviously, the CHD-constant of the

infinite dimensional �1 space equals 2.

Clearly, in the definition of the CHD-constant we can consider only sets like

B1(0) \ Br(a). According to Lemma 2.1, such sets are arcwise connected. So,

due to the generalized Carathéodory theorem and the Blashke selection theorem

[15, Theorem 1.3.3], we have:

Remark 2.2. Let X be a Banach space, dimX = n. Then for every d < ζX

there exists a set A that consists of not more than n points and meets the

condition h+(coA,A) = d.

The following is a generalization of a result due to K. Leichtweiss [12].

Corollary 2.3. Let sets P and Q be intersections of the unit ball with two

parallel affine hyperplanes of dimension k, and let the hyperplane containing P

contain 0 as well. Then it is possible to cover Q with the set min {2k/(k + 1) :

ζX}P using a parallel translation.

Proof. Define η = min {2k/(k + 1) : ζX}. Due to the Helly theorem it

suffices to prove that we can cover any k-simplex ∆ ⊂ Q with the set ηP .

Let us consider the k-simplex ∆ ⊂ Q with vertices {x1, . . . , xk+1}. By the

definition of ζX and by Theorem 1.2, for any set of indices I ⊂ 1, (k + 1), we

have co
i∈I

{xi} ⊂ ⋃
i∈I

(Bη(xi) ∩∆). Using the KKM theorem [11], we obtain that

S =
⋂

i∈1,(k+1)

(Bη(xi) ∩∆) �= ∅. Then ∆ ⊂ Bη(s), where s ∈ S ⊂ ∆. �

Let us show that Hilbert and 2-dimensional Banach spaces satisfy the as-

sumptions of Theorem 1.7. We consider the area covered with balls to be shaded.

The balls’ radii may be taken equal to 1. We will complete the proof of Theo-

rem 1.7 in Section 4.

Lemma 2.4. Let X be a Banach space, dimX = 2, then any admissible

covering is contractible.

Proof. Without loss of generality, let us consider an admissible covering of

a convex set V by balls B1(ai), i = 1, n. Let us set S =
⋃

i∈1,n

B1(ai). Since the

unit ball is a convex closed body, the set S is homotopically equivalent to its

nerve [1], in our case it is a finite CW complex. Therefore, S is contractible if

and only if it is connected, simply connected and its homology groups Hk(S) are

trivial for k ≥ 2. Obviously, S is a connected set.
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Let us show that the set S is simply connected and Hk(S) = 0 for k ≥ 2. The

unit circle is a continuous closed line without self-intersections, since the unit

ball is convex. It divides a plane into two parts. A finite set of circles divides

a plane in a finite number of connected components. Let us now shade the unit

balls.

We prove now that the problem is stable with respect to small perturbations

of the norm. To be more precise, if a norm does not meet the conclusions of the

theorem, then there exists a polygon norm, which does not meet them either.

Let us choose a bounded uncovered area U with shaded boundary (area U

may be non-convex). It is possible to put a ball of radius 3ε1, ε1 > 0, inside this

area. There exists ε2, ε2 > 0, such that if B1(ai1) ∩B1(ai2) = ∅ for i1, i2 ∈ 1, n,

then B1+ε2(ai1) ∩B1+ε2(ai2 ) = ∅. Denote ε = min{ε1, ε2}.
Consider the following set:

Bc
1(0) =

⋂
p∈C

{x : 〈p, x〉 ≤ 1},

where C is a finite set of unit vectors from the space X∗ such that C = −C. So,

Bc
1(0) is the unit ball for some norm. For an arbitrary unit functional p we have

that B1(0) ⊂ {x : 〈p, x〉 ≤ 1}, then B1(0) ⊂ Bc
1(0). According to [15, Corollary

2.6.1], it is possible to pick a set C such that h+(Bc
1(0), B1(0)) ≤ ε. Then the

set of balls Bc
1(ai), i = 1, n, is an admissible covering, contains the boundary of

U and it does not cover U entirely. Furthermore the nerve and, consequently,

the homology group of the sets
⋃

i∈1,n

Bc
1(ai) and S coincide.

Now it suffices to show that the statement of the lemma is true in the case of

a polygon norm. In this case the set S and the unit ball are polygons, then S is

a neighbourhood retract in R
2 (see [17], Chapter 3, §Regular Neighbourhoods),

therefore directly from Alexander duality (see [7], Chapter 4, § 6) we obtain that

Hk(S) = 0 for k ≥ 2.

Now we shall prove that S is simply connected. Assume the contrary, that

is, there exist a norm, an admissible covering of a convex set V by balls B1(ai),

i = 1, n, and a non-shaded bounded set U with a shaded boundary. Note that

its boundary appears to be a closed polygonal line without self intersections. Let

A = co {ai : i = 1, n}.
Let x be an arbitrary point of the set U . The union of the balls B1(ai) is

an admissible covering of the set A, thus x �∈ A. Then there exists a line la that

separates x from the set A. This line may serve as a supporting line of the set

A (1). Let l ‖ la be a supporting line of U in a point v such that sets U and A

lie on the same side of the line l (see Figure 2).

(1) By a supporting line of a compact (not necessary convex) set we mean a line that

intersects the set and for which the entire set is contained in one of closed half-spaces defined

by the line.



Convex Hull Deviation and Contractibility 15

A
U

la
l

v

z

Figure 2. Illustration for Lemma 2.4.

The line l divides the plane into two half-planes. Let H+ be the half-plane

that does not contain A, we denote the other half-plane as H− (i.e. A ⊂ H− and

U ⊂ H−). Let points p, q ∈ l lie on different sides from v. We want to choose

all the edges of the polygonal curve ∂U , that contain the point v. We will call

them vbi, i ∈ 1, k: cos∠ pvbi > cos∠ pvbj , i > j.

Since v ∈ ∂U , it follows that there exists a point z such that the interior of

the segment vz lies in U and the ray vz lies between vb1 and vbk. Then, since the

ball is convex, there is no ball B1(ai) that simultaneously covers segments [v, b
′
1]

and [v, b
′
k], where b

′
1, b

′
k are arbitrary interior points of the segments vb1, vbk,

respectively. Therefore the point v is covered by at least two balls, and the

centres ai, aj of these balls are separated by the ray vz in the half-plane H−.
Again, since the ball is convex, the point y = vz ∩ aiaj is not covered by balls

B1(ai), B1(aj), thus ‖ai − aj‖ = ‖y − ai‖+ ‖y − aj‖ > 2, which contradicts the

fact that ai and aj are contained in the ball B1(v). �

Lemma 2.5. Let X be a Euclidean space. Then any admissible covering is

contractible.

Proof. Recall that a closed convex set is contractible and in a Hilbert space

the projection onto a closed convex set is unique. Since a projection onto a convex

set is a continuous function of the projected point, it is enough to prove that

a line segment, which connects a shaded point with its projection onto a convex

hull of centres of an admissible covering, is shaded. Suppose that we have an

admissible set of balls. The convex hull of its center is a polygon. Let us call

it C. If a shaded point a is projected onto the v-vertex of the polygon, then the

segment av is shaded as well. Let a shaded point a, lying in the ball B1(v) from

a set of balls, be projected onto the point b �= v. Let L be a hyperplane passing

through the point b and perpendicular to the line segment [a, b]. It divides the

space into two half-spaces. The one with the point a we call Ha. C is convex,

thus it contains the segment [v, b]. Then it is impossible for the point v to lie
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in Ha, so ∠ abv ≥ π/2, i.e. ‖v−a‖ ≥ ‖v−b‖. Thus, b ∈ B1(v) and, consequently,

ab ⊂ B1(v). �

3. Upper bound for the CHD-constant in a Banach space

Let J1(x) = {p ∈ X∗ : 〈p, x〉 = ‖p‖ · ‖x‖ = ‖x‖}. Let us introduce the

following characteristic of a space:

ξX = sup
‖x‖=1,
‖y‖=1

sup
p∈J1(y)

‖x− 〈p, x〉y‖.

Note that if y ∈ ∂B1(0), p ∈ J1(y), then the vector (x − 〈p, x〉y) is a metric

projection of x onto the hyperplane Hp = {x ∈ X : 〈p, x〉 = 0}. Denote by ξpX
the norm of the linear operator x �→ (x−〈p, x〉y), i.e. ξpX = sup

x �=0
‖x− 〈p, x〉y‖/‖x‖.

For arbitrary vectors a, b ∈ X , we have

‖(a− 〈p, a〉y)− (b− 〈p, b〉y)‖ = ‖(a− b)− 〈p, (a− b)〉y‖ ≤ ξpX‖a− b‖
and by the definition of ξpX this inequality is tight, hence ξpX is the Lipschitz

constant for the metric projection operator onto Hp (here we project along the

vector y). Since the unit ball and its metric projection onto any hyperplane

are convex and centrally symmetric, and (x − 〈p, x〉y) ∈ Hp, we have that this

Lipschitz constant equals to half of the diameter of the unit ball’s projection

onto the hyperplane Hp. Clearly, ξX = sup
‖y‖=1

sup
p∈J1(y)

ξpX . Therefore, ξX is the

maximal value of the Lipschitz constant for metric projection operators onto

a hyperplane. Obviously, 1 ≤ ξX ≤ 2 and ξH = 1 for a Hilbert space H .

Let us use ξX to estimate the CHD-constant of X :

Lemma 3.1. Let y ∈ co [B1(0) \ intBr(y1)] and let p ∈ J1(y). Then there

exists x ∈ B1(0) \ intBr(y1) such that 〈p, x〉 = 〈p, y〉.
Proof. Let B = B1(0) \ intBr(y). Since y ∈ coB, there exist points

a1, . . . , an ∈ B and a set of positive coefficients λ1, . . . , λn, λ1 + . . . + λn = 1,

such that

(3.1) y = λ1a1 + . . .+ λnan.

Let H+
p = {x ∈ X : 〈p, x〉 ≥ 〈p, y〉}. According to Lemma 2.1, the set B is

connected, thus, since B \H+
p is not empty, if the statement of the lemma is not

true, we arrive at B ∩H+
p = ∅. Then 〈p, ai〉 < 〈p, y〉 and formula (3.1) implies

〈p, y〉 = λ1〈p, a1〉+ . . .+ λn〈p, an〉 < 〈p, y〉.
This is a contradiction. �

Lemma 3.2. ζX ≤ sup
‖y‖∈B1(0)

inf
p∈J1(y)

sup
x∈B1(0):

〈p,x−y〉=0

‖x− y‖.
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Proof. Let ε be a positive real number. Then, according to the definition of

the CHD-constant, there exists a set D ⊂ B1(0) such that h+(coD,D) ≥ ζX −ε.

It means that there exists a point y ∈ coD \ {0} such that ρ(y,D) ≥ ζX − 2ε.

Let r = ρ(y,D). So, D ⊂ B1(0) \ intBr(y). Hence, y ∈ co [B1(0) \ intBr(y)].

Now let p ∈ J1(y). According to Lemma 3.1, there exists a vector x ∈
B1(0) \ intBr(y) such that 〈p, x− y〉 = 0 and r ≤ ‖x− y‖. Therefore,

ζX ≤ ρ(y,D) + 2ε = r + 2ε ≤ ‖x− y‖+ 2ε.

Now let ε tend to zero. The lemma is proved. �

Theorem 3.3. ζX ≤ ξX .

Proof. By Lemma 3.2, it is enough to show that

(3.2) ξX = sup
ŷ∈B1(0),

p∈J1(ŷ)

sup
x∈B1(0):

〈p,x−ŷ〉=0

‖x− ŷ‖.

Denote the right-hand side of equality (3.2) as ξ. Note that in the definition

of ξ we can assume that ŷ �= 0 and ‖x‖ = 1. Fix vectors ŷ ∈ B1(0) \ {0} and

x ∈ ∂B1(0) such that for some p ∈ J1(ŷ) we have 〈p, x〉 = 〈p, ŷ〉. Let y = ŷ/‖ŷ‖.
Then ‖y‖ = 1, p ∈ J1(y) and ŷ = 〈p, ŷ〉y = 〈p, x〉y. Therefore, x−〈p, x〉y = x− ŷ.

So, by the definition of ξX , we get ξX ≥ ξ.

Let us show that ξX ≤ ξ. In case ξX = 1 this inequality is trivial. Let ξX > 1.

Fix x, y ∈ ∂B1(0) such that for some p ∈ J1(y) we have ‖x− 〈p, x〉y‖ > 1. Note

that 〈p, x〉 �= 0 and |〈p, x〉| ≤ 1. Let ŷ = 〈p, x〉y. Then x − 〈p, x〉y = x − ŷ and

ŷ ∈ B1(0). Hence, we get ξX ≤ ξ. Equality (3.2) is proven. �

Using Remark 1.1 and Theorem 3.3 we get

Corollary 3.4. If H is a Hilbert space, then ζH = 1.

With the following lemma we can pass to finite subspace limit in the CHD-

constant calculations.

Lemma 3.5. Let X be a separable Banach space and {x1, x2, . . .} be a vector

system in it such that the subspace X̌ = Lin {x1, x2, . . .} is dense in X. Then

(3.3) ζX = lim
n→∞ ζXn , where Xn = Lin {x1, . . . , xn}.

Proof. Let ζ = ζX , and fix a real number ε > 0. Since Xn ⊂ Xn+1 ⊂ X ,

the sequence ζXn is monotone and bounded and, consequently, convergent. Let

ζ2 = lim
n→∞ ζXn . Since Xn ⊂ X it follows that ζ2 ≤ ζ. According to the CHD-

constant definition, there exist a set A ⊂ B1(0) and a point d ∈ coA such that

ρ(d,A) > ζ−ε/2. Since d ∈ coA, there exist a natural number N , points ai ∈ A,

and numbers αi ≥ 0, i ∈ 1, N , α1+. . .+αN = 1, such that d = α1a1+. . .+αNaN .

Then ‖d− ai‖ > ζ − ε/2, i ∈ 1, N .
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Since X̌ = X , it is possible to pick points bi ∈ B1(0) ∩ X̌, i ∈ 1, N , so that

‖ai − bi‖ ≤ ε/4. By the definition of a linear span, for some natural ni we have

bi ∈ Xni . Let M = maxni, i ∈ 1, N . Consider the set B = {b1, . . . , bN} in the

space XM . Let dε = α1b1 + . . .+ αNbN ∈ coB, then

‖dε − d‖ =

∥∥∥∥
N∑
j=1

αj(bj − aj)

∥∥∥∥ ≤
N∑
j=1

αj‖bj − aj‖ ≤ ε

4
,

so, for every i ∈ 1, N , we have

‖dε−bi‖ = ‖(dε−d)+(d−ai)+(ai−bi)‖ ≥ ‖d−ai‖−‖dε−d‖−‖ai−bi‖ ≥ ζ−ε.

Thus ζ − ε ≤ h+(coB,B) ≤ ζXM ≤ ζ2 ≤ ζ, and since ε > 0 was chosen

arbitrarily, ζ = ζ2. �

Let p′ ∈ [1,+∞] be such that 1/p+1/p′ = 1, r = min{p, p′}, r′ = max{p, p′}.

Lemma 3.6. Given p ∈ [1,+∞]. Let xi ∈ Lp, i = 1, . . . , k, be such that

k∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . , k), x0 =

k∑
i=1

αixi.

Then

(3.4)

( k∑
i=1

αi‖xi − x0‖rp
)1/r

≤ 2−1/r′
( k∑

i=1, j=1

αiαj‖xi − xj‖rp
)1/r

and

(3.5)

( k∑
i=1, j=1

αiαj‖xi − xj‖rp
)1/r

≤ 21/r max
1≤i≤k

‖xi‖p.

If 1 ≤ p ≤ 2, then the latter inequality can be strengthened to

(3.6)

( k∑
i=1, j=1

αiαj‖xi − xj‖rp
)1/r

≤ 21/r
(
k − 1

k

)2/p−1

max
1≤i≤k

‖xi‖p.

Proof. Inequality (3.5) follows from Schoenberg’s inequalities [18, Theo-

rem 15.1]:

( k∑
i=1, j=1

αiαj‖xi − xj‖rp
)1/r

≤ 21/r
(

max
1≤i≤k

{1− αi}
)2/r−1

( k∑
i=1

αi‖xi‖rp
)1/r

.

Inequality (3.6) was deduced by S.A. Pichugov and V.I. Ivanov in [14, Asser-

tion 1].
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Using the Riesz–Thorin theorem for spaces with a mixed Lp-norm [18, § 14],
S.A. Pichugov proved the following inequality [13, Theorem 1]:

(3.7)

( k∑
i=1

l∑
j=1

αiβj‖(xi − x0)− (yj − y0)‖rp
)1/r

≤ 2−1/r′
( k∑

i1=1, i2=1

αi1αi2‖xi1 − xi2‖rp +
l∑

j1=1, j2=1

βj1βj2‖yj1 − yj2‖rp
)1/r

,

where
k∑

i=1

αi =
l∑

j=1

βj = 1, αi ≥ 0, i = 1, . . . , k, βj ≥ 0, j = 1, . . . , l, x0 =

k∑
i=1

αixi, y0 =
l∑

j=1

βjyj . Letting yj = 0 and βj = 1/l in (3.7), we obtain inequality

(3.4). �

Proof of Theorem 1.3. Consider the case p ∈ (1;+∞). For spaces Lp and

an arbitrary set of vectors A = {x0, . . . , xk} such that x0 =
k∑

i=1

αixi,
k∑

i=1

αi = 1,

αi ≥ 0, i ∈ 1, k, A ⊂ B1(0) we have

(
min
i∈1,k

‖x0 − xi‖rp
)1/r

≤
( k∑

i=1

αi‖xi − x0‖rp
)1/r

.

Using (3.4) and (3.5), since the set of vectors A was chosen arbitrarily, we get

ζLp ≤ 2(1/r−1/r′) = 2|1/p−1/p′|. And it was shown in the proof of Theorem 1.2

that ζ�n1 = ζ�n∞ = 2(n− 1)/n. Thus, ζL1 = ζL∞ = 2. �

Remark 3.7. If 1 ≤ p ≤ 2, then, using in the proof of Theorem 1.3 inequality

(3.6) instead of (3.5), we arrive at

(3.8) ζ�np ≤
(
2
n− 1

n

)|1/p−1/p′|
.

The following questions remain unanswered:

Question 3.8. Is inequality (3.8) true if p ∈ (2;∞)?

Question 3.9. Is the estimate in inequality (1.2) sharp in the case of p ∈
(1;∞), p �= 2?

4. Characterization of a Hilbert space

In order to prove Theorem 1.4 we need the following lemma, which it a straight-

forward consequence of the KKM theorem [11].

Lemma 4.1. Let X be a Banach space. Suppose the triangle a1a2a3 ⊂ X

satisfies the inequality diam a1a2a3 ≤ 2R and is covered by balls BR(ai), i =

1, 2, 3. Then these balls have a common point lying in the plane of the triangle.
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Taking into account Lemma 4.1, the proof of Theorem 1.4 is very similar to

the one of Theorem 5 from [9].

Proof of Theorem 1.4. Using Theorem 1.2 and Corollary 3.4, it suffices

to prove that a Banach space X , with dimX ≥ 3 and ζX = 1, is a Hilbert space.

According to the well-known results obtained by Fréchet and Blashke–Kakutani,

it is enough to describe only the case when dimX = 3. We need to show that if

ζX = 1, then for every 2-dimensional subspace there exists a unit-norm operator

that projects X onto this particular subspace. Let 0 ∈ L be an arbitrary 2-

dimensional subspace in X , and let c be a point not contained in L. We denote

B2
n(0) = L ∩Bn(0) (it is a ball of radius n ∈ N in space L). For every n ∈ N let

us introduce the following notations:

En = {x ∈ L : ‖c− x‖ ≤ n}, Fn = {x ∈ L : ‖c− x‖ = n}.
If n is big enough, these sets are nonempty. Let x1, x2, x3 be arbitrary points

from En. The CHD-constant of space X equals 1, so the balls B2
n(xi), i = 1, 2, 3,

cover the triangle x1x2x3. According to Lemma 4.1, their intersection is not

empty. According to the Helly theorem, the set

Sn =
⋂

x∈En

B2
n(x)

is non-empty as well.

Let us pick an ∈ Sn, then by construction we have for every x ∈ Fn

(4.1) ‖x− an‖ ≤ ‖x− c‖.
Let us show that ‖x − an‖ ≤ ‖x − c‖ for every x ∈ En. Suppose that for some

x ∈ En

(4.2) ‖x− an‖ > ‖x− c‖.
According to (4.1), we may assume that x ∈ En \ Fn. The set En is bounded

and its boundary relatively to the subspace L coincides with Fn, thus there

exists a point b ∈ Fn such that x is contained in the interval (an, b). Then

an − x = λ(an − b), 0 < λ < 1.

Note that c− x = (c− an) + (an − x) = c− an + λ(an − b), then (4.2) may

be reformulated as ‖c− an + λ(an − b)‖ < λ‖an − b‖. So,
‖c− b‖ = ‖(c− an) + λ(an − b) + (1− λ)(an − b)‖

≤‖(c− an) + λ(an − b)‖+ (1− λ)‖an − b‖
<λ‖an − b‖+ (1 − λ)‖an − b‖ = ‖an − b‖,

and it contradicts (4.1).

Consider the sequence {an}. Note that En ⊂ En+1 and
∞⋃
i=1

Ei = L. So,

starting with a fixed natural k, the inclusion 0 ∈ En, n ≥ k, becomes true, thus
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when x = 0 inequality (4.1) implies ‖an‖ ≤ ‖c‖, n ≥ k, i.e. the sequence {an}
is bounded. It means that this sequence {an} has a limit point a. Then every

point x ∈ L satisfies ‖x − a‖ ≤ ‖x − c‖. Let us now represent every element

z ∈ X in the form

z = tc+ x, x ∈ L, t ∈ R.

The operator P (z) = P (tc+ x) = ta+ x projects X onto L. In addition,

‖P (z)‖ = ‖ta+ x‖ = |t|
∥∥∥∥a+

x

t

∥∥∥∥ ≤ |t|
∥∥∥∥c+ x

t

∥∥∥∥ = ‖tc+ x‖ = ‖z‖.

Hence, ‖P‖ = 1 and taking into consideration the theorem of Blashke and Kaku-

tani we come to a conclusion that X is a Hilbert space. �

Proof of Theorem 1.7. It remains to check that in every Banach space

X that is not a Hilbert one, where dimX = 3, there exist a convex set and an

admissible and non-contractible covering.

To make the proof easier we first present a simple statement from geometry.

Let a hyperplane H divide the space X in two half-spaces H+, H−. Let M be

a bounded set in H . We want to cover the set M with balls

B =

{⋃
Bd(ai) : i ∈ 1, n, n ∈ N

}
.

Let us call such covering (ε, d,H+)-good if h+(B,H−) ≤ ε.

Lemma 4.2. Let X be a Banach space, 3 ≤ dimX < +∞. Let a hyper-

plane H divide X in two half-spaces H+ and H−. Let M be a bounded set

in H. Then, for every ε > 0, d > 0, there exists an admissible set of balls

Bd(ai) : i ∈ 1, N, N ∈ N such that the set B =
⋃

i∈1,N

Bd(ai) may be regarded as

an (ε, d,H+)-good covering of the set M and co (M ∪ {ai}) ⊂ B, i ∈ 1, N .

Proof. Let dimX = n. Without loss of generality we assume that ε < d

and H is the supporting hyperplane for the ball Bd(0) and Bd(0) ⊂ H−. For

any r > 0 and a ∈ X we use Cr(a) to denote an (n− 1)-dimensional hypercube

centered at a that lies in the hyperplane parallel to H , where r is the length

of its edges. Let x ∈ H ∩ Bd(0). Then h+(Bd(εx/‖x‖), H−) ≤ ε. Let D =

Bd(εx/‖x‖) ∩ H . Note that x is an inner point of the set D relatively to H .

In a finite-dimensional linear space all norms are equivalent, so Cr(x) ⊂ D for

some r > 0. As the ball Bd(εx/‖x‖) is centrally symmetric, it contains the

affine hypercube co (Cr(x) ∪ Cr(εx/‖x‖)). Consider next an arbitrary bounded

set M ⊂ H . Since it is bounded, M ⊂ CR(b), where b ∈ H , R > 0. We suppose

that R = kr, k ∈ N. Let us split the hypercube CR(b) into hypercubes with

edges of length r and let bi, i ∈ 1, N , be the centres of these hypercubes. Hence,

from the above arguments, the balls Bd(bi − (d− ε)x/‖x‖) give us the necessary

covering. �
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Let us consider an approach to constructing an admissible and non-contracti-

ble covering of a convex set. Let X be a non-Hilbert Banach space, with

dimX = 3. According to Theorem 1.4, ζX > 1, and by Remark 2.2, there exist

a set A = {a1, a2, a3} ⊂ B1(0) and a point b ∈ coA such that ρ(b, A) = 1+4ε > 1.

According to Theorem 1.2, 0 /∈ H . Consider the balls B1+ε(ai), i ∈ 1, 3, let

B1 = B1+ε(a1) ∪ B1+ε(a2) ∪ B1+ε(a3). It is obvious that b /∈ B1. Since all the

edges of the triangle a1a2a3 lie in B1, facets 0a1a2, 0a1a3, 0a2a3 of the tetrahe-

dron 0a1a2a3 lie in B1. Let H be a plane passing through the points a1, a2, a3.

Let H divide the space X in two half-spaces: H+ and H−. Let 0 ∈ H+.

According to Lemma 4.2 there exists an (ε, 1 + ε,H+)-good covering of the

triangle a1a2a3 with an admissible set of balls that have centres lying in a set

C = {ci : i ∈ 1, N}, N ∈ N. Let B2 =
⋃

i∈1,N

B1+ε(ci). Then the set B = B1 ∪B2

contains all the facets of the tetrahedron oa1a2a3 and does not contain the

interior of the ball Bε(b − 2εb/‖b‖), i.e. the set B is non-contractible. However,

co (A ∪ C) ⊂ B2 ⊂ B, i.e. the union of balls B1+ε(x), x ∈ A∪C, is an admissible

covering for the set co (A ∪ C) we were looking for. �

There remain still some open questions:

Question 4.3. What is the minimal number of balls in an admissible and

non-contractible set of balls for a certain space X? How to express this number

in terms of space characteristics, such as its dimension, modulus of smoothness

and modulus of convexity?

Question 4.4. How to estimate the minimal density (in terms of average

distance between centres or in a some other way) of an admissible covering with

balls for it to be contractible?

According to Lemma 4.1, it takes at least four balls to construct an admissible

non-contractible set of balls in an arbitrary Banach space. The following example

describes the case with precisely four balls.

Example 4.5. Let X = l31, a1 = (−2/3, 1/3, 1/3), a2 = (1/3,−2/3, 1/3),

a3 = (1/3, 1/3,−2/3), a4 = (−1/6,−1/6,−1/6). The set of balls B1(ai), i = 1, 4,

is admissible, however, the complement of the set B =
⋃

i=1,4

B1(ai) has two

connected components (see Figures 3–5).

Proof. (1) Let us show that this set of balls is admissible. Every point

x from the tetrahedron A = a1a2a3a4 may be represented in the form x =

α1a1 + . . .+ α4a4, where α1 + . . .+ α4 = 1, αi ≥ 0, i ∈ 1, 4. Using the equation

α4 = 1− α1 − α2 − α3, we are going to prove an inequality which would detect
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that the point x ∈ A is not contained in the ball B1(a4):

(4.3) 1 < ‖x− a4‖ =

∣∣∣∣−α1 + α2 + α3

2

∣∣∣∣+
∣∣∣∣α1 − α2 + α3

2

∣∣∣∣+
∣∣∣∣α1 + α2 − α3

2

∣∣∣∣.

Figure 3. The balls
B1(a1), B1(a2), B1(a3).

Figure 4. Balls B1(a1),
B1(a2), B1(a3) are brown.
The ball B1(a4) is green.

Figure 5. Balls B1(a1), B1(a2), B1(a3), B1(a4) are green. The tetrahe-
dron a1a2a3a4 is red. The cavity is the blue tetrahedron.

We use inequality (4.3) to estimate the distance between x and the vertex a1:

‖x− a1‖ = ‖α2(a2 − a1) + α3(a3 − a1) + α4(a4 − a1)‖
≤α2‖a2 − a1‖+ α3‖a3 − a1‖+ α4‖a4 − a1‖

=2(α2 + α3) +
3

2
α4 ≤ 2

(
1

4
− 3

4
α4

)
+

3

2
α4 =

1

2
.

Note that if every expression inside the absolute values is positive, then the

right-hand side of (4.3) equals (α1+α2+α3)/2 ≤ 1/2. So, one of them has to be
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negative. Without loss of generality, let α1 ≥ α2+α3. Then the other two expres-

sions are positive and inequality (4.3) can be rewritten: 3α1 − α2 − α3/2 > 1.

Then α1 > 2/3 + (α2 + α3)/3. Using this relation, we arrive at

1− α4 = α1 + α2 + α3 ≥ 2

3
+

4

3
(α2 + α3).

Thus, 1/4− 3α4/4 ≥ α2 + α3. So, we come to a conclusion that the set of balls

is admissible.

(2) Let b1 = (1/3, 1/12, 1/12), b2 = (1/12, 1/3, 1/12), b3 = (1/12, 1/12, 1/3),

b4 = (1/3, 1/3, 1/3), the tetrahedron ∆ = b1b2b3b4. It is easy enough to show

that ∂∆ ⊂ B, but int∆ ∩B = ∅. �

5. About contractibility of proximally smooth sets

Clarke, Stern and Wolenski [5] introduced and studied proximally smooth

sets in a Hilbert space H . A set A ⊂ X is said to be proximally smooth with

constant R if the distance function x �→ ρ(x,A) is continuously differentiable

on the set U(R,A) = {x ∈ X : 0 < ρ(x,A) < R}. Properties of proximally

smooth sets in a Banach space and relations between such sets and akin classes

of sets, including uniformly prox-regular sets, were investigated in [5], [4], [8], [6].

We study a sufficient condition for the contractibility of a proximal smooth set.

G.E. Ivanov showed that if A ⊂ H is proximally smooth (weakly convex in his

terminology) with constant R and A ⊂ Br(o) with r < R, then A is contractible.

The following theorem is a generalization of this result.

Theorem 5.1. Let X be a uniformly convex and uniformly smooth Banach

space. Let A be a closed and proximally smooth with constant R, assume also

that A is contained on a ball of radius r < R/ζX . Then A is contractible.

Proof. Note that the set coA is contractible, so a continuous function

F : [0, 1] × coA → coA such that F (0, x) = x, F (1, x) = x0 for all x ∈ coA

and some x0 ∈ A exists. Due to the CHD-constant definition and inequality

r < R/ζX , the set coA belongs to the R-neighbourhood of the set A. On the

other hand, A is proximally smooth and in accordance with paper [2], the metric

projection mapping π : coA → A is single valued and continuous. Finally, we

define the mapping F̃ : [0, 1] × A → A as follows F̃ (t, x) = π(F (t, x)) for all

t ∈ [0, 1], x ∈ A. The mapping F contracts the set A to the point x0. �
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