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THREE ZUTOT

Eli Glasner — Benjamin Weiss

Abstract. Three topics in dynamical systems are discussed. First we

deal with cascades and solve two open problems concerning, respectively,

product recurrence, and uniformly rigid actions. Next we provide a new
example that displays some unexpected properties of strictly ergodic actions

of non-amenable groups.

Introduction

We collect in this paper three short notes (1). They are independent of each

other and are collected here just because they occurred to us in recent discus-

sions. The first two actually solve some open problems concerning, respectively,

product recurrence, and uniformly rigid actions admitting a weakly mixing fully

supported invariant probability measure. The third provides a new interesting

example that displays some unexpected properties of strictly ergodic actions of

non-amenable groups.

1. On product recurrence

A dynamical system here is a pair (X,T ) where X is a compact metric space

and T a self-homeomorphism. The reader is referred to [4] for most of the notions

used below and for the necessary background.
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(1) Zuta is minutia (or miniature) in Hebrew; zutot is the plural, minutiae.
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In [4, Theorem 9.11, p. 181], Furstenberg has shown that a point x of a dy-

namical system (X,T ) is product-recurrent (i.e. has the property that for every

dynamical system (Y, S) and a recurrent point y ∈ Y , the pair (x, y) is a re-

current point of the product system X × Y ) if and only if it is a distal point

(i.e. a point which is proximal only to itself). In [2], Auslander and Furstenberg

posed the following question: if (x, y) is recurrent for all minimal points y, is x

necessarily a distal point? Such a point x is called a weakly product recurrent

point. This question is answered in the negative in [11].

It turns out (see also [3, Theorem 4.3]) that a negative answer was already at

hand for Harry Furstenberg when he and Joe Auslander posed this question. In

fact, many years earlier, he proved a theorem according to which an F-flow (2) is

disjoint from every minimal system [4]. As a direct consequence of this theorem,

if X is an F-flow, x a transitive point in X, Y any minimal system and y any

point in Y , then the pair (x, y) has a dense orbit in X × Y . In particular, (x, y)

is a recurrent point of the product system X × Y . Thus a transitive point x in

an F-flow is weakly product recurrent. Since such a point is never distal, one

concludes that x is indeed weakly product recurrent but not distal.

In [11, Question 5.3] the authors pose the following natural question:

Problem 1.1. Is every minimal weakly product recurrent point a distal

point?

(This was also repeated in [3, Question 9.2].)

In this note we show that, here again, the answer is negative. The counter

example is based on a result of [5] concerning POD systems and on the existence

of doubly minimal systems (see [13] and [14]). A minimal dynamical system

(X,T ) is called proximal orbit dense (POD) if it is totally minimal and for any

distinct points u and v in X, there exists 0 6= n ∈ Z such that Γn = {(Tnx, x) :

x ∈ X} is contained in OT×T (u, v), the orbit closure of (u, v) in the product

system X ×X.

A minimal (X,T ) is called doubly minimal [14] (or a system having topo-

logically minimal self-joinings in the sense of del Junco [13]) if the only orbit

closures of T × T in X × X are the graphs Γm = {(Tmx, x) : x ∈ X}, m ∈ Z,

and all of X ×X. Clearly a doubly minimal system is POD. In [5], the authors

prove the following striking property of POD systems:

Theorem 1.2. If (Y, S) is POD then any minimal (X,T ) that is not an

extension of (Y, S) is disjoint from it.

For the reader’s convenience we reproduce the short proof:

(2) Recall that a dynamical system (X,T ) is an F-flow if it is (i) totally transitive (i.e.

every power Tn, n 6= 0, is transitive) and (ii) the periodic points are dense in X. E.g. every

weakly mixing finite type subshift is an F-flow.
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Proof. Suppose Y is not a factor of X and let M be a minimal subset of

Y × X. Since X is not an extension of Y , there exist y, y′ ∈ Y with y 6= y′

and x ∈ X such that (y, x), (y′, x) ∈ M . From the POD property it follows

that for some z ∈ X and n 6= 0 the points (y, z) and (Tny, z) are both in M .

This implies that (Tn × idX)M ∩ M 6= ∅ and, as M is minimal, it follows

that (Tn × idX)M = M . Finally, since Y is totally minimal we deduce that

M = Y ×X, as required. �

We will strengthen this property for doubly minimal systems as follows:

Theorem 1.3. If (Y, S) is doubly minimal and (X,T ) is any minimal system

then the orbit closure of any point (y, x) ∈ Y ×X is either all of Y ×X or it is

the graph Γπ = {(π(x), x) : x ∈ X} of some factor map π : X → Y .

Proof. Let Y be a doubly minimal system. In particular, Y is weakly

mixing and has the POD property. Let X be a minimal system. By [5], either

X and Y are disjoint or Y is a factor of X. In the first case the product system

Y ×X is minimal.

So we now assume that there is a factor map π : X → Y . We consider an

arbitrary point (y0, x1) ∈ Y × X and denote y1 = π(x1). We will denote the

acting transformation on both X and Y by the letter T .

Case 1. y1 = Tny0 for some n ∈ Z. In this case the orbit closureOT×T (y0, x1)

has the form Γπ◦T−n = {(π(x), Tnx) : x ∈ X}, and is isomorphic to X.

Case 2. y1 6∈ O(y0). Recall that by double minimality we have in this case

that OT×T (y0, y1) = Y × Y . Also note that, as the union of the graphs
⋃
n∈Z

Γn,

where Γn = {(x, Tnx) : x ∈ X} is dense in X ×X, the union of {(π(x), Tnx) :

x ∈ X} is dense in Y ×X.

Let (u, v) be an arbitrary point in Y ×X and fix ε > 0.

(i) Choose a point w ∈ X and m ∈ Z such that (π(w), Tmw)
ε∼ (u, v).

(ii) Choose a sequence ni ∈ Z such that

Tni(y0, y1)→ (π(w), Tmπ(w)).

We can then assume that for some point z ∈ X

Tni(y0, x1)→ (π(w), z), with π(z) = Tmπ(w).

(iii) Choose a sequence kj ∈ Z such that

T kjz → Tmw, whence T kjπ(z) = T kjTmπ(w)→ Tmπ(w),

and T kjπ(w)→ π(w).
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Now

lim
j

lim
i
T kjTni(y0, x1) = lim

j
T kj (π(w), z) = (π(w), Tmw)

ε∼ (u, v).

Since ε > 0 is arbitrary we conclude that (u, v) ∈ OT×T (y0, x1), hence

OT×T (y0, x1) = Y ×X. �

As a corollary of this theorem and the fact that there are weakly mixing

doubly minimal systems ([13] and [14]) we get a negative answer to Problem 1.1.

First note that a minimal weakly mixing system does not admit a distal

point. One way to see this is via the fact that in a minimal weakly mixing

system X, for every point x ∈ X there is a dense Gδ subset X0 ⊂ X such that

for every x′ ∈ X0 the pair (x, x′) is proximal; see [4, Theorem 9.12], or [1] for an

even stronger statement.

Theorem 1.4. There exists a minimal dynamical system Y which is weakly

mixing (hence, in particular, does not have distal points) yet it has the property

that for every minimal system X every pair (y, x) ∈ Y ×X is recurrent.

Proof. Let Y be a weakly mixing doubly minimal system and X a minimal

system. By [5], either X and Y are disjoint or Y is a factor of X. In the first

case the product system Y ×X is minimal and, in particular, every pair (y, x)

is recurrent.

In the second case we have, by Theorem 1.3, that either

OT×T (y, x) = Γπ = {(π(z), z) : z ∈ X},

for a factor map π : X → Y ; or, again, OT×T (y, x) = Y × X. In both cases

(y, x) is recurrent. This is clear in the first case, as then (y, x) = (π(x), x). In

the second case, as the orbit closure is the entire product space Y × X, if the

point (y, x) were isolated, it would follow that also y is an isolated point of the

nontrivial minimal weakly mixing system Y , which is an absurd claim. �

2. Uniform rigidity

Recall that a topological dynamical system (X,T ), where X is a compact

Hausdorff space and T : X → X a self-homeomorphism, is called uniformly rigid

if there is a sequence nk ↗ ∞ such that the sequence of homeomorphisms Tnk

tends uniformly to the identity. This notion was formally introduced in [8]

where such systems were analyzed. Building on examples constructed in [9] it

was shown in [8] that there exist strictly ergodic (hence minimal) systems which

are both topologically weakly mixing and uniformly rigid.

In the paper [12] the authors posed the question whether there are uniformly

rigid systems which also admit a weakly mixing measure of full support (Ques-

tion 3.1).
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In the paper [10] we consider the infinite torus T∞ and its group of self-

homeomorphisms Homeo (T∞), equipped with the uniform convergence topol-

ogy. We fix a minimal rotation σ on T∞ and define a certain subgroup G of

Homeo (T∞). Finally we let

S = cls {gσg−1 : g ∈ G}

be the closure of the conjugacy class of σ under G. We then show the existence

of a residual subset R of S such that each T in R is (i) strictly ergodic and

(ii) measure weakly mixing with respect to the Haar measure on T∞. See [10]

for more details. Now this result, together with the observation in the paper

[8, p. 319] that, automatically, a residual subset of S consists of uniformly rigid

homeomorphisms, immediately yield a residual set of uniformly rigid, measure

weakly mixing, strictly ergodic homeomorphisms.

A similar construction can be carried out also in the setup of [9] thus pro-

ducing such examples on the 2-torus T2.

Theorem 2.1. There exists a compact metric, strictly ergodic (hence min-

imal), uniformly rigid dynamical system (X,µ, T ) such that the corresponding

measure dynamical system is weakly mixing.

3. Strict ergodicity

Let G be a topological group. A topological G-system is a pair (X,G),

where X is a compact Hausdorff space on which G acts by homeomorphisms

in such a way that the map G × X → X, (g, x) 7→ gx is continuous. The

system is minimal if every orbit is dense and it is uniquely ergodic if there is

on X a unique G-invariant probability measure. Finally the system is strictly

ergodic if it is uniquely ergodic and the unique G-invariant measure, say µ, has

full support, i.e. supp (µ) = X.

Suppose now that G is an amenable group and that the system (X,G) is

strictly ergodic. Then, if Y ( X is a nonempty, closed, G-invariant, proper

subset, it follows by the amenability of G, that there is a G-invariant proba-

bility measure on Y , say ν. The measure ν cannot coincide with µ because

supp (ν) ⊆ Y . This however contradicts the unique ergodicity of X and we con-

clude that X admits no nonempty, closed, G-invariant, proper subsets; i.e. (X,G)

is minimal. Thus, when G is amenable, a strictly ergodic system is necessarily

minimal. A similar argument shows that a factor of a strictly ergodic G-system

is strictly ergodic. If π : X → Y is a factor map from the strictly ergodic system

(X,µ,G) onto Y , then one needs to show that for an invariant measure ν on Y

there always is an invariant measure on X whose push forward in Y is ν. For

this one uses the amenability of G in the disguise of the fixed point property.
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In [7, p. 98, line 5], in the first two questions in Exercise 4.8 one is asked to

prove the above statements, but the assumption that G be amenable is missing.

Now it turns out that these statements need not be true for a general group

action. Here is a counterexample for the acting group G = SL(2,Z).

Example 3.1. Consider the topological dynamical system (Y,G), where Y =

T2 = R2/Z2 and G acts by automorphisms. It is well known that the only ergodic

G-invariant probability measures on Y are the Lebesgue measure λ and finitely

supported measures on periodic orbits.

Now, by a well-known procedure, one can “blow-up” a periodic point into

a projective line P1, consisting of all the lines through the origin in R2. We

identify P1 with the homogeneous space SL(2,R)/H, where H < SL(2,R) is the

subgroup H =
{(

a b
0 a−1

)
: a 6= 0

}
.

Thus, e.g. the point (0, 0) ∈ T2 is replaced by (0, 0)× P1, in such a way that

a sequence (xn, yn) in T2 approaches ((0, 0), `) if and only if lim
n→∞

(xn, yn) = (0, 0)

and the sequence of lines `n, where `n is the unique line through the origin and

(xn, yn), tends to the line ` ∈ P1. The G-action on the larger space is clear. It is

easy to see that the action of G on P1 admits no invariant probability measures.

(E.g. the subgroup
{

( 1 2
0 1 )

n
: n ∈ Z

}
squeezes the whole of P1 towards the x-

axis.) It then follows that in the resulting G-action on the enlarged space the

invariant measure δ(0,0) disappears.

We enumerate the periodic orbits and attach a projective line with diameter

εn at each point of the n-th orbit. An appropriate choice of a sequence of positive

numbers εn tending to zero will ensure that the resulting space X is compact

and metrizable. Again the action of G on X is naturally defined and we obtain

the system (X,G). Finally by collapsing each P1 back to the point it is attached

to we get a natural homomorphism π : X → Y .

It is easy to check now that X carries a unique invariant measure (the natural

lift of the Lebesgue measure on Y ) which is full. Thus the system (X,G) is

strictly ergodic, but of course it is not minimal. Also, the factor (Y,G) is not

uniquely ergodic. This proves the following:

Theorem 3.2. With G = SL(2,Z) there exists a metric compact strictly

ergodic dynamical system (X,G) which is not minimal. Moreover (X,G) admits

a factor which is not uniquely ergodic.

Via a construction of Furstenberg and Weiss, [6] we can obtain this latter

phenomenon exhibited in a minimal system.

Theorem 3.3. There exist a compact metric minimal dynamical system

(Ũ , G), with G = SL(2,Z), and a continuous homomorphism of topological

dynamical systems γ : (Ũ , G) → (Ṽ , G) such that the system (Ũ , G) is strictly

ergodic but its factor (Ṽ , G) is not.
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Proof. We apply the Furstenberg–Weiss construction [6] to the above ex-

ample, as follows. Start with the profinite system (P,G), where P is the in-

verse limit of the directed set of finite quotients {G/Γ : Γ < G of finite index}.
This is an equicontinuous minimal and strictly ergodic G-system. Consider the

product system (P ×X,G) := (U,G), where (X,G) is the example constructed

above. Clearly this product system is topologically transitive and it admits

(P × Y,G) := (V,G) as a factor, id× π : U → V . Let σ : V = P × Y → P be the

projection map. Now apply (a slight strengthening) of the Furstenberg–Weiss

theorem (see [15, Remark 5.3]) to obtain a commutative diagram

U
φ
//

id×π
��

Ũ

γ

��

α

�����������������

V

σ

��

Ṽ

β
����������

P

where (Ũ , G) and (Ṽ , G) are minimal systems, the homomorphism α (and hence

also β and γ) is an almost one-to-one extension, and the map φ : U → Ũ is a Borel

isomorphism which induces an affine isomorphism of the simplex of invariant

measures on U to that on Ũ and which moreover induces an isomorphism of the

simplex of invariant measures on V to that on Ṽ . The map γ : Ũ → Ṽ is then

the required map. �
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