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Abstract. We consider a singular nonlocal viscoelastic problem with

a nonlinear source term and a possible damping term. We prove that if

the initial data enter into the stable set, the solution exists globally and
decays to zero with a more general rate, and if the initial data enter into

the unstable set, the solution with nonpositive initial energy as well as pos-

itive initial energy blows up in finite time. These are achieved by using the
potential well theory, the modified convexity method and the perturbed

energy method.
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1. Introduction

In this paper, we investigate the following one-dimensional viscoelastic prob-

lem with a nonlocal boundary condition:

(1.1)



utt −
1

x
(xux)x +

∫ t

0

g(t− s) 1

x
(xux(x, s))x ds+ aut = |u|p−2u

for x ∈ (0, `), t ∈ (0,∞),

u(`, t) = 0,

∫ `

0

xu(x, t) dx = 0 for t ∈ [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ [0, `],

where a ≥ 0, ` <∞, p > 2 and g : R+ → R+.

This type of evolution problems, with nonlocal constraints, are generally en-

countered in heart transmission theory, thermoelasticity, chemical engineering,

underground water flow, and plasma physics. The nonlocal boundary conditions

arise mainly when the data on the boundary cannot be measured directly, but

their average values are known. We can refer to the works of Cahlon and Shi [4],

Cannon [5], Choi and Chan [8], Ewing and Lin [9], Ionkin [10], Kamynin [11],

Samarskii [33], Shi and Shilor [34], Wang et al. [36], and Wu et al. [37]. The first

paper discussed second order partial differential equations with nonlocal integral

conditions going back to Cannon [5]. In fact, most of the works on this topic were

dedicated to classical solutions. Later, mixed problems with classical and nonlo-

cal (integral) boundary conditions related to parabolic and hyperbolic equations

received attention and have been extensively studied. Existence and unique-

ness questions have been considered by Bouziani [3], Ionkin [10], Kamynin [11],

Mesloub [25], Pulkina [32].

In the absence of the viscoelastic term (i.e., g = 0), Mesloub and Bouziani [23]

studied the following equation:

vtt −
1

x
vx − vxx = f(x, t), x ∈ (0, `), t ∈ (0, T ),

and obtained the existence and uniqueness of a strong solution. Later, Mesloub

and Messaoudi [25] solved a three-point boundary-value problem for a hyperbolic

equation with a Bessel operator and an integral condition based on an energy

method. Then in [26] they considered a nonlinear one-dimensional hyperbolic

problem with a linear damping term and established a blow-up result for large

initial data and a decay result for small initial data.

In the presence of the viscoelastic term (i.e. g 6= 0), Mecheri et al. [22] studied

the following equation:

utt−
1

x
(xux)x+

∫ t

0

g(t−s) 1

x
(xux(x, s))x ds+aut = f(x, t), 0 < x < 1, t > 0,
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for a > 0 and proved the existence and uniqueness of the strong solution. Then,

Mesloub et al. [24] considered a nonlinear mixed problem for a viscoelastic equa-

tion with a dissipation term under a nonlocal boundary condition and obtained

the existence and uniqueness of the weak solution based on the iteration pro-

cesses. Later, the global existence, decay and blow-up of solutions of problem

(1.1) (when a = 0) were established by Mesloub and Messaoudi in [27], where the

authors studied the blow-up result with only negative initial energy. Recently,

Wu [38] improved [27] by establishing the blow-up result with nonpositive initial

energy as well as positive initial energy.

For the case of initial and boundary value problems for linear and nonlin-

ear viscoelastic equations with classical conditions, many results have also been

extensively studied. Cavalcanti et al. [6] studied

utt −∆u+

∫ t

0

g(t− τ)∆u(τ) dτ + a(x)ut + |u|mu = 0, (x, t) ∈ Ω× (0,∞),

for a : Ω→ R+, a function which may be null on a part of the domain Ω. Under

the conditions that a(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some geometry

restrictions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

the authors established an exponential rate of decay. Berrimi and Messaoudi [2]

improved Cavalcanti’s result by introducing a different functional which allowed

to weak the conditions on both a and g. In particular, the function a can

vanish on the whole domain Ω and consequently the geometry condition has

disappeared. In [7], Cavalcanti et al. considered

utt − k0∆u+

∫ t

0

div[a(x)g(t− τ)∇u(τ)] dτ + b(x)h(ut) + f(u) = 0,

under similar conditions on the relaxation function g and a(x)+b(x) ≥ ρ > 0, for

all x ∈ Ω. They improved the result of [6] by establishing exponential stability

for g decaying exponentially and h linear and polynomial stability for g decaying

polynomially and h nonlinear. In [1], Berrimi and Messaoudi considered

utt −∆u+

∫ t

0

g(t− τ)∆u(τ) dτ = |u|p−2u

in a bounded domain and p > 2. They established a local existence result

and showed that, under weaker condition g′(t) ≤ ξgr(t), the solution is global

and decay in a polynomial or exponential fashion when the initial data is small

enough. Then Messaoudi [30] improved this result by establishing a general decay

of energy which is similar to the relaxation function under weaker condition that

g′(t) ≤ ξ(t)g(t). In regard of nonexistence, Messaoudi [28] considered

utt −∆u+

∫ t

0

g(t− τ)∆u(τ) dτ + a|ut|m−2ut = |u|p−2u



302 W. Liu — Y. Sun — G. Li

and established a blow-up result for solutions with negative energy if p > m and

a global existence result for p ≤ m. Then Messaoudi [29] improved this result by

accommodating certain solutions with positive initial energy. Liu [14] obtained

the similar blow-up result for the viscoelastic problem with strong damping and

nonlinear source by using the potential well theory and convexity technique. For

other related works, we refer the readers to [12], [13], [15]–[21], [31], [35], [39]–[41]

and the references therein.

Inspired by [1], [14], [20], [27], [30], we intend to study the blow-up and decay

properties of problem (1.1) in this paper. Our goal is to establish a decay result

with a more general rate and a blow-up result with nonpositive initial energy

as well as positive initial energy. The main difficulties we encounter here arise

from the simultaneous appearance of the singular nonlocal viscoelastic term, the

possible damping term, as well as the nonlinear source term. We first show that

if the initial data enter into the unstable set, the source term is enough to obtain

blow-up result no matter a = 0 or a > 0. This is achieved by using the potential

well theory and the modified convexity method. We then establish the decay

result under the condition that g′(t) ≤ −ξ(t)gr(t), which is more general than

that of [1], [30], by constructing some functionals and using the perturbed energy

method.

The paper is organized as follows. In Section 2 we present some assumptions

and known results and state the main results. Section 3 is devoted to the proof

of the blow-up result. The decay result is proved in Sections 4.

2. Preliminaries and main results

In this section we first introduce some functional spaces and present some

assumptions and known results which will be used throughout this work.

Let Lpx = Lpx(0, `) be the weighted Banach space equipped with the norm

‖u‖p =

(∫ `

0

x|u|p dx
)1/p

.

In particular, when p = 2, we denote H = L2
x(0, `) to be the weighted Hilbert

space of square integrable functions having the finite norm

‖u‖H =

(∫ `

0

xu2 dx

)1/2

.

We take V = V 1,1
x (0, `) to be the weighted Hilbert space equipped with the norm

‖u‖V = (‖u‖2H + ‖ux‖2H)1/2,

and V0 = {u ∈ V : u(`) = 0}.
On the relaxation function g we put the following assumptions:
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(G1) g : R+ → R+ is a non-increasing C2 function such that

g(0) > 0, 1−
∫ ∞
0

g(s) ds = l > 0.

(G2) There exists a positive differentiable function ξ such that

(2.1) g′(t) ≤ −ξ(t)gr(t), t ≥ 0, 1 ≤ r < 3

2
,

and ξ satisfies, for some positive constant L,∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ ≤ L, ξ′(t) ≤ 0, for all t > 0,

∫ +∞

0

ξ(s) ds = +∞.

Furthermore, when 1 < r < 3/2, for any fixed t0 > 0, there exists

a positive constant Cr depending only on r, such that

(2.2)
t(

1 +

∫ t

t0

ξ(s) ds

)1/(2(r−1)) ≤ Cr,
∫ ∞
0

1(
1 +

∫ t

t0

ξ(s) ds

)ν dt < +∞,

for all t ≥ t0, ν > 1,

Remark 2.1. The condition r < 3/2 is made to ensure that∫ ∞
0

g2−r(s) ds <∞.

Remark 2.2. If ξ(t) ≡ ξ =contant, (G2) recaptures that of [1], [14], [27].

If r ≡ 1, (G2) recaptures that of [30], [31]. Therefore, (G2) is a generalization

of [1], [14], [27], [30], [31]. In particular, when ξ(t) ≡ ξ and 1 < r < 3/2, (2.2)

holds naturally.

Lemma 2.3 ([27], Poincaré-type inequality). For any v in V0, we have∫ `

0

xv2(x) dx ≤ Cp
∫ `

0

xv2x(x) dx,

where Cp is some positive constant.

Lemma 2.4 ([27]). For any v in V0, 2 < p < 4, we have∫ `

0

x|v|p dx ≤ C∗‖vx‖p2,

where C∗ is a constant depending on ` and p only.

We have the following local existence result for problem (1.1).

Theorem 2.5. Suppose that (G1) holds and 2 < p < 3. Then, for any u0
in V0 and u1 in H, problem (1.1) has a unique local solution

u ∈ C(0, Tmax;V0) ∩ C1(0, Tmax;H)
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such that

〈utt(t), φ〉 −
(

1

x
(xux)x, φ

)
H

+

(∫ t

0

g(t− s) 1

x
(xux(x, s))x ds, φ

)
H

+ (aut, φ)H = (|u|p−2u, φ)H

for all test functions φ ∈ V0 and for almost all t ∈ [0, Tmax) with Tmax > 0 small

enough.

Proof. The proof can be easily established by adopting the arguments of [1],

[24] and [26]. That is, we consider, first, a related linear problem. Then, we use

the well-known contraction mapping theorem to prove the existence of solutions

to the nonlinear problem. These are quite standard so we omit it here. �

Remark 2.6. The condition 2 < p < 3 is needed so that the embedding of

V0 in L2
x is Lipschitz (see [26, Lemma 5.2]).

Next we introduce the functionals for I, J and E:

I(t) := I(u(t)) =

(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx

+ (g ◦ ux)(t)−
∫ `

0

x|u(t)|p dx,

J(t) := J(u(t)) =
1

2

(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx

+
1

2
(g ◦ ux)(t)− 1

p

∫ `

0

x|u(t)|p dx,

E(t) := E(u(t)) = J(t) +
1

2

∫ `

0

xu2t dx,

where

(g ◦ ux)(t) =

∫ `

0

∫ t

0

xg(t− s)|ux(x, t)− ux(x, s)|2 ds dx.

Remark 2.7. Multiplication of equation (1.1) by xut and integration over

(0, `) easily yields, for all t ≥ 0

(2.3) E′(t) =
1

2
(g′ ◦ ux)(t)− 1

2
g(t)

∫ `

0

xu2x dx− a
∫ `

0

xu2t dx

≤ −a
∫ `

0

xu2t dx ≤ 0.

We are now in position to state our main results.

Theorem 2.8. Assume that (G1) holds and 2 < p < 3, let u be the unique

local solution to problem (1.1) and denote

d1 =
p− 2

2p

(
l

C
2/p
∗

)p/(p−2)
.
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For any fixed δ < 1, assume that u0, u1 satisfy

(2.4) E(0) < δd1, I(0) < 0.

Suppose that

(2.5)

∫ ∞
0

g(s) ds ≤ p− 2

p− 2 + 1/[(1− δ̂)2p+ 2δ(1− δ̂)]

where δ̂ = max {0, δ}. Then the solution of problem (1.1) blows up in a finite

time T ∗ in the sense that

lim
t→T∗−

‖u(t)‖2H = +∞.

Remark 2.9. For a = 0, Wu [38] established blow-up results under some

restrictions on
∫ `
0
xu0u1 dx, which are no more needed in this paper. In fact,

we use the potential well theory and the modified convexity method, which is

different from that in Wu [38].

Theorem 2.10. Assume that (G1) holds and 2 < p < 3, let u be the unique

local solution to problem (1.1). In addition, assume that u0, u1 satisfy

(2.6) E(0) < d1, I(0) > 0.

Then the solution u is global and satisfies

(2.7)

∫ `

0

xu2x dx ≤
2p

l(p− 2)
E(t) ≤ 2p

l(p− 2)
E(0), for all t > 0.

Theorem 2.11. Under the assumptions of Theorem 2.10, suppose further

that (G2) holds. Then for each t0 > 0, there exist positive constants K and κ

such that

(2.8) E(t) ≤


Ke
−κ

∫ t
t0
ξ(s) ds

if r = 1,

K

(
1 +

∫ t

t0

ξ(s) ds

)−1/(r−1)
if 1 < r <

3

2
.

Remark 2.12. Note that when 1 < r < 3/2, we obtain more general type of

decays.

If we choose ξ(t) ≡ ξ, (2.8) gives the polynomial rate decay as

E(t) ≤ K(1 + t)−1/(r−1),

which coincides with the results of [1], [14], [27].

If we choose ξ(t) = (1 + t)−m for 0 < m < 3 − 2r < 1, which satisfies (2.2),

we have

g(t) ≤ C0

(1 + t)q
with q =

1−m
r − 1

and (2.8) also gives the polynomial rate of decay as E(t) ≤ C1/(1 + t)q.
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If we choose ξ(t) = 2a(r − 1)t−(3−2r) + b for a, b > 0, then we have

g(t) ≤ C

[1 + at2(r−1) + bt]1/(r−1)
,

which gives the polynomial rate of decay as

E(t) ≤ K

[1 + at2(r−1) + bt]1/(r−1)
.

If we choose ξ(t) = 2(r − 1)(1 + t)−(3−2r) + (1 + t)−1, which satisfies (G2),

then we have

g(t) ≤ C

[(1 + t)2(r−1) + ln(1 + t)− 1]1/(r−1)

and a new type of decay as

E(t) ≤ K

[(1 + t)2(r−1) + ln(1 + t)− 1]1/(r−1)

is established.

3. Blow-up of solutions

In this section, we prove a finite time blow-up result for initial data in the

unstable set. For t ≥ 0, we define d(t) = inf
u∈V0\{0}

sup
λ≥0

J(λu) and

(3.1) N = {u ∈ V0 \ {0} : I(u) = 0}.

Then we can prove the following lemma.

Lemma 3.1. For t ≥ 0, we have 0 < d1 ≤ d(t) ≤ d2(u) = sup
λ≥0

J(λu) and

(3.2) d(t) = inf
u∈N

J(u).

Proof. Obviously, d(t) ≤ d2(u) = sup
λ≥0

J(λu). Since

J(λu) =
λ2

2

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]
− λp

p

∫ `

0

x|u|p dx.

We get

d

dλ
J(λu) = λ

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]
− λp−1

∫ `

0

x|u|p dx.

Let
d

dλ
J(λu) = 0,

which implies

λ1 = 0, λ2 =


(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)∫ `

0

x|u|p dx


1/(p−2)

.
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An elementary calculation shows

d2

dλ2
J(λ1u) > 0 and

d2

dλ2
J(λ2u) < 0.

Using (G1) and Lemma 2.4, we get

sup
λ≥0

J(λu) = J(λ2u)

=
p− 2

2p


(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)(∫ `

0

x|u|p dx
)2/p


p/(p−2)

≥ p− 2

2p


l

∫ `

0

xu2x dx(∫ `

0

x|u|p dx
)2/p


p/(p−2)

≥ p− 2

2p

(
l

C
2/p
∗

)p/(p−2)
= d1>0,

which implies that d(t) ≥ d1.

To get (3.2), straightforward computations lead to

I(λ2u) =

(
1−

∫ t

0

g(s) ds

)∫ `

0

x(λ2u)2x dx+ (g ◦ (λ2u)x)(t)−
∫ `

0

x|λ2u|p dx

=


(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)∫ `

0

x|u|p dx


2/(p−2)

×
[(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]

−


(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)∫ `

0

x|u|p dx


p/(p−2)∫ `

0

x|u|p dx

=

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]p/(p−2)
(∫ `

0

x|u|p dx
)2/(p−2)

×


(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

− 1

 = 0,
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which implies that λ2u ∈ N . Also, for any u ∈ N , we note that

λ2(u) =


(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)∫ `

0

x|u|p dx


1/(p−2)

= 1.

Therefore we have λ2(u)u = u for all u ∈ N . �

Lemma 3.2. Under the same assumptions as in Theorem 2.8, one has I(u(t))

< 0 and, for all t ∈ [0, Tmax),

d1 <
p− 2

2p

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]
<
p− 2

2p

∫ `

0

x|u|p dx.

Proof. Using (2.3) and (2.4), we have E(t) ≤ δd1 for all t ∈ [0, Tmax).

Furthermore, we can obtain I(u(t)) < 0 for all t ∈ [0, Tmax).

In fact, if it is not true, then there exists some t0 ∈ [0, Tmax) such that

I(t0) ≥ 0. Since I(0) < 0, it follows that there exists some t̃ ∈ (0, t0] such that

I(u(t̃)) = 0. Define

(3.3) t∗ = inf

{
t̃ ∈ (0, t0] :(

1−
∫ t̃

0

g(s) ds

)∫ `

0

xu2x(t̃) dx+ (g ◦ ux)(t̃) =

∫ `

0

x|u(t̃)|p dx
}
.

Then, we have I(u(t∗)) = 0 and

(3.4)

(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t) <

∫ `

0

x|u|p dx, 0 ≤ t < t∗.

Next, we consider two cases:

Case 1. Suppose that ‖u(t∗)‖2H = 0, using the regularity of u, we have

(3.5) lim
t→t∗−

‖u(t)‖2H = 0.

On the other hand, from (3.4) and Lemma 2.4, we obtain

(3.6)

(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t) <

∫ `

0

x|u|p dx ≤ C∗‖ux‖p2,

and ‖u(t)‖2H 6= 0, for all t ∈ [0, t∗). Therefore we have

lim
t→t∗−

‖u(t)‖2H >

(
l

C∗

)1/(p−2)

,

which contradicts to (3.5).

Case 2. Suppose that ‖u(t∗)‖2H 6= 0. Applying Lemma 3.1, we see that d(t)

is the infimum of J(u(t)) over all functions u in N and J(u(t∗)) ≥ d(t) ≥ d1,
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which contradicts to J(u(t∗)) ≤ E(t∗) < d1. Thus, we conclude that I(t) < 0

for all t ∈ [0, Tmax).

To get (3.2), we use (3.4), Lemma 3.1 and the conclusion that I(t) < 0 for

all t ∈ [0, Tmax) and get

d1 ≤
p− 2

2p

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]2/(p−2)
(∫ `

0

x|u|p dx
)p/(p−2)(3.7)

<
p− 2

2p

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]
, 0 ≤ t < Tmax.

It follows from (3.4) and (3.7) that

0 < d1 <
p− 2

2p

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]
<
p− 2

2p

∫ `

0

x|u|p dx,

for 0 ≤ t < Tmax. �

Lemma 3.3 ([12]). Let L be a positive C2 function, which satisfies, for t > 0,

the inequality

L(t)L′′(t)− (1 + ζ)L′(t)2 ≥ 0

with some ζ > 0. If L(0) > 0 and L′(0) > 0, then there exists time T ∗ ≤
L(0)/ζL′(0) such that

lim
t→T∗−

L(t) =∞.

Proof of Theorem 2.8. Assume by contradiction that the solution u is

global. Then, we consider L : [0, T ]→ R+ defined by

(3.8) L(t) =

∫ `

0

xu2 dx+ a

∫ t

0

∫ `

0

xu2 dx ds+ a(T − t)
∫ `

0

xu20 dx+ b(t+ T0)2,

where T, b and T0 are positive constants to be chosen later. Then L(0) > 0.

Furthermore,

L′(t) = 2

∫ `

0

xuut dx+ a

∫ `

0

x(u2 − u20) dx+ 2b(t+ T0)

= 2

∫ `

0

xuut dx+ 2a

∫ t

0

∫ `

0

xuus dx ds+ 2b(t+ T0),

and, consequently,

L′′(t) = 2

∫ `

0

xuutt dx+ 2

∫ `

0

xu2t dx+ 2a

∫ `

0

xuut dx+ 2b
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for almost every t ∈ [0, T ]. Testing equation (1.1) with xu and plugging the

result into the expression of L′′(t), we obtain

L′′(t) =− 2

∫ `

0

xu2x dx+ 2

∫ `

0

∫ t

0

g(t− s)xux(x, t)ux(x, s) ds dx

− 2a

∫ `

0

xuut dx+ 2

∫ `

0

x|u|p dx+ 2

∫ `

0

xu2t dx+ 2a

∫ `

0

xuut dx+ 2b

= 2

[ ∫ `

0

xu2t dx−
(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx

−
∫ `

0

∫ t

0

g(t− s)xux(x, t)(ux(x, t)− ux(x, s)) ds dx+

∫ `

0

x|u|p dx+ b

]
for almost every t ∈ [0, T ]. Therefore, we get

L(t)L′′(t)− p+ 2

4
L′(t)2 = 2L(t)

[ ∫ `

0

xu2t dx−
(

1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx

−
∫ `

0

∫ t

0

g(t− s)xux(x, t)(ux(x, t)− ux(x, s)) ds dx+

∫ `

0

x|u|p dx+ b

]
+ (p+ 2)

[
η(t)−

(
L(t)− a(T − t)

∫ `

0

xu20 dx

)
×
(∫ `

0

xu2t dx+ a

∫ t

0

∫ `

0

xu2s dx ds+ b

)]
,

where

η(t) =

(∫ `

0

xu2 dx+ a

∫ t

0

∫ `

0

xu2 dx ds+ b(t+ T0)2
)

×
(∫ `

0

xu2t dx+ a

∫ t

0

∫ `

0

xu2s dx ds+ b

)
−
[ ∫ `

0

xuut dx+ a

∫ t

0

∫ `

0

xuus dx ds+ b(t+ T0)

]2
.

Using Schwarz’s inequality, we can easily get η(t) ≥ 0 for every t ∈ [0, T ]. As

a consequence, we reach the following differential inequality:

(3.9) L(t)L′′(t)− p+ 2

4
L′(t)2 ≥ L(t)Φ(t), for a.e. t ∈ [0, T ],

where Φ: [0, T ] 7→ R+ is the map defined by

Φ(t) =− p
∫ `

0

xu2t dx− 2

(
1−
∫ t

0

g(s) ds

)∫ `

0

xu2x dx − a(p+ 2)

∫ t

0

∫ `

0

xu2s dx ds

− 2

∫ `

0

∫ t

0

g(t− s)xux(x, t)(ux(x, t)− ux(x, s)) ds dx + 2

∫ `

0

x|u|p dx− pb
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=− 2pE(t) + p(g ◦ ux)(t) + (p− 2)

(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx

− pb− 2

∫ `

0

∫ t

0

g(t− s)xux(x, t)(ux(x, t)− ux(x, s)) ds dx

− a(p+ 2)

∫ t

0

∫ `

0

xu2s dx ds.

By (2.3), for all t ∈ [0, T ] we may also write

(3.10) Φ(t) ≥ −2pE(0) + p(g ◦ ux)(t) + (p− 2)

(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx

−pb−2

∫ `

0

∫ t

0

g(t−s)xux(x, t)(ux(x, t)−ux(x, s)) ds dx+a(p−2)

∫ t

0

∫ `

0

xu2s dx ds.

By using Young’s inequality, we have

(3.11) 2

∫ `

0

∫ t

0

g(t− s)xux(x, t)(ux(x, t)− ux(x, s)) ds dx

≤ 1

ε

∫ t

0

g(s)

∫ `

0

xu2x ds dx+ ε(g ◦ ux)(t),

for any ε > 0. Substituting (3.11) for the fifth term of the right hand side of

(3.10), we obtain

Φ(t) ≥− 2pE(0) +

[
(p− 2)−

(
p− 2 +

1

ε

)∫ t

0

g(s) ds

] ∫ `

0

xu2x dx(3.12)

+ (p− ε)(g ◦ ux)(t) + a(p− 2)

∫ t

0

∫ `

0

xu2s dx ds− pb.

If δ ≤ 0, i.e. E(0) < 0, we choose ε = p in (3.12) and b small enough such that

b ≤ −2E(0). Together with (2.5), we obtain

(3.13) Φ(t) ≥
[
(p− 2)−

(
p− 2 +

1

p

)∫ t

0

g(s) ds

] ∫ `

0

xu2x dx

+ a(p− 2)

∫ t

0

∫ `

0

xu2s dx ds ≥ a(p− 2)

∫ t

0

∫ `

0

xu2s dx ds ≥ 0.

If 0 < δ < 1, i.e. E(0) < δd1, we choose ε = (1−δ)p+2δ and b = 2(δd1−E(0))>0

in (3.12). Then we get

Φ(t) ≥− 2pδd1 +

[
(p− 2)−

(
p− 2 +

1

(1− δ)p+ 2δ

)∫ t

0

g(s) ds

] ∫ `

0

xu2x dx

+ δ(p− 2)(g ◦ ux)(t) + a(p− 2)

∫ t

0

∫ `

0

xu2s dx ds.

By (2.5), we have

(p− 2)−
(
p− 2 +

1

(1− δ)p+ 2δ

)∫ t

0

g(s) ds ≥ δ(p− 2)

(
1−

∫ t

0

g(s) ds

)



312 W. Liu — Y. Sun — G. Li

and therefore, by (3.2) and (2.4), we get

Φ(t) ≥− 2pδd1 + δ(p− 2)

[(
1−

∫ t

0

g(s) ds

)∫ `

0

xu2x dx+ (g ◦ ux)(t)

]
(3.14)

+ a(p− 2)

∫ t

0

∫ `

0

xu2s dx ds

≥2p(δd1 − δd1) + a(p− 2)

∫ t

0

∫ `

0

xu2s dx ds ≥ 0.

Therefore, combining (3.9), (3.13), and (3.14), we arrive at

L(t)L′′(t)− p+ 2

4
L′(t)2 ≥ 0, for a.e. t ∈ [0, T ].

Let T0 be any number which depends only on p, b,
∫ `
0
xu20 dx and

∫ `
0
xu21 dx as

T0 >

(p− 2 + 4a)

∫ `

0

xu20 dx+ (p− 2)

∫ `

0

xu21 dx

2(p− 2)b
,

which fulfills the requirement of

L′(0) = 2

∫ `

0

xu0u1 dx+ 2bT0 > 0.

Then using Lemma 3.3, we obtain that L(t) goes to ∞ as t tends to some T ∗

satisfying

(3.15) T ∗ ≤ 4L(0)

(p− 2)L′(0)
=

2(1 + aT )

∫ `

0

xu20 dx+ 2bT 2
0

(p− 2)

∫ `

0

xu0u1 dx+ (p− 2)bT0

.

Finally, for fixed T0, we choose T as

(3.16) T >

4

(∫ `

0

xu20 dx+ bT 2
0

)
2(p− 2)bT0 − (p− 2 + 4a)

∫ `

0

xu20 dx− (p− 2)

∫ `

0

xu21 dx

.

Combing (3.15) and (3.16), we get T > T ∗ and this contradicts to our assump-

tion, which finishes our proof. �

4. Decay of solutions

In this section we prove our decay result. For this purpose, we need the

following lemmas.

Lemma 4.1 ([27, Lemma 4.1]). Under the same assumption as in Theo-

rem 2.11, one has I(u(t)) > 0 for all t ∈ [0, Tmax).

Proof of Theorem 2.10. We can refer to [27, Lemma 4.2]. �



On Decay and Blow-Up of Solutions 313

Next, we use the following “modified” functional

(4.1) F (t) := E(t) + ε1Ψ(t) + ε2χ(t),

where ε1 and ε2 are positive constants and

Ψ(t) = ξ(t)

∫ `

0

xutu dx,(4.2)

χ(t) = −ξ(t)
∫ `

0

xut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx.(4.3)

Lemma 4.2. For ε1 and ε2 small enough, we have

(4.4) α1F (t) ≤ E(t) ≤ α2F (t)

holds for two positive constants α1 and α2.

Proof. Straightforward computations lead to

F (t) =E(t) + ε1ξ(t)

∫ `

0

xutu dx− ε2ξ(t)
∫ `

0

xut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

≤E(t) +
ε1
2
ξ(t)

∫ `

0

xu2t dx+
ε1
2
ξ(t)

∫ `

0

xu2 dx +
ε2
2
ξ(t)

∫ `

0

xu2t dx

+
ε2
2
ξ(t)

∫ `

0

x

(∫ t

0

g(t− s)(u(t)− u(s)) ds

)2

dx

≤E(t) +
ε1
2
ξ(t)

∫ `

0

xu2t dx+
ε1
2
ξ(t)

∫ `

0

xu2 dx +
ε2
2
ξ(t)

∫ `

0

xu2t dx

+
ε2
2
ξ(t)

∫ `

0

x

∫ t

0

g(s) ds

∫ t

0

g(t− s)(u(t)− u(s))2 ds dx

≤E(t) +
(ε1 + ε2)ξ(t)

2

∫ `

0

xu2t dx+
Cpε1

2
ξ(t)

∫ `

0

xu2x dx

+
ε2
2

(1− l)ξ(t)
∫ `

0

∫ t

0

xg(t− s)(u(t)− u(s))2 ds dx

≤E(t) +
(ε1 + ε2)ξ(t)

2

∫ `

0

xu2t dx

+
Cpε1

2
ξ(t)

∫ `

0

xu2x dx+
ε2
2

(1− l)Cpξ(t)(g ◦ ux)(t) ≤ 1

α1
E(t),

and in the same way, we get

F (t) ≥E(t)− (ε1 + ε2)ξ(t)

2

∫ `

0

xu2t dx−
Cpε1

2
ξ(t)

∫ `

0

xu2x dx

− ε2
2

(1− l)Cpξ(t)(g ◦ ux)(t)
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≥
[

1

2
− (ε1 + ε2)ξ(t)

2

] ∫ `

0

xu2t dx+

(
1

2
l − Cpε1

2
ξ(t)

)∫ `

0

xu2x dx

+

[
1

2
− Cp

2
ε2(1− l)ξ(t)

]
(g ◦ ux)(t)− 1

p

∫ `

0

x|u|p dx ≥ 1

α2
E(t),

for ε1 and ε2 small enough. �

Lemma 4.3 ([27, Lemma 4.5]). Let v ∈ L∞((0, T );H), vx ∈ L∞((0, T );H)

and g be a continuous function on [0, T ] and suppose that 0 < τ < 1 and r > 0.

Then there exists a constant C > 0 such that∫ t

0

g(t− s)‖vx( · , t)− vx( · , s)‖2H ds

≤ C
(

sup
0<s<T

‖v( · , s)‖2H
∫ t

0

g1−τ (s) ds

)(r−1)/(r−1+τ)

×
(∫ t

0

gr(t− s)‖vx( · , t)− vx( · , s)‖2H ds
)τ/(r−1+τ)

.

Lemma 4.4 ([27, Lemma 4.6]). Let v ∈ L∞((0, T );H), vx ∈ L∞((0, T );H)

and g be a continuous function on [0, T ] and suppose that r > 0. Then there

exists a constant C > 0 such that∫ t

0

g(t− s)‖vx( · , t)− vx( · , s)‖2H ds

≤ C
(
t‖vx( · , t)‖2H +

∫ t

0

‖vx( · , s)‖2H ds
)(r−1)/r

×
(∫ t

0

gr(t− s)‖vx( · , t)− vx( · , s)‖2H ds
)1/r

.

Lemma 4.5. Assume that 2 < p < 3 and that (G1), (G2) and (2.10) hold.

Then the functional Ψ, defined by (4.2), satisfies, for all α, β > 0,

(4.5) Ψ′(t) ≤
(

1 +
a

2β
+

L

2α

)
ξ(t)

∫ `

0

xu2t dx

−
(
l − aβCp − αCpL

2

)
ξ(t)

∫ `

0

xu2x dx

+
ξ(t)

2l

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t) + ξ(t)‖u‖p

Lp
x
.

Proof. By using the differential equation in (1.1), we easily see that

Ψ′(t) = ξ(t)

∫ `

0

xu2t dx+ ξ(t)

∫ `

0

xuutt dx+ ξ′(t)

∫ `

0

xuut dx(4.6)

= ξ(t)

∫ `

0

xu2t dx− ξ(t)
∫ `

0

xu2x dx



On Decay and Blow-Up of Solutions 315

+ ξ(t)

∫ `

0

x|u|p dx− aξ(t)
∫ `

0

xuut dx

+ ξ(t)

∫ `

0

xux

∫ t

0

g(t− s)ux(x, s) ds dx+ ξ′(t)

∫ `

0

xuut dx.

By Young’s inequality, (G1), (G2), Lemma 2.3 and direct calculations, we arrive

at (see [27])

ξ(t)

∫ `

0

xux

∫ t

0

g(t− s)ux(x, s) ds dx ≤ ξ(t)

2

∫ `

0

xu2x dx(4.7)

+
ξ(t)

2

∫ `

0

x

[ ∫ t

0

g(t− s)(|ux(s)− ux(t)|+ |ux(t)|) ds
]2
dx

≤ ξ(t)

2

∫ `

0

xu2x dx+
ξ(t)

2
(1 + η)(1− l)2

∫ `

0

xu2x dx

+
ξ(t)

2

(
1 +

1

η

)∫ t

0

g2−r(s) ds

∫ `

0

∫ t

0

xgr(t− s)|ux(s)− ux(t)|2 ds dx

for any η > 0. We also have

(4.8) ξ′(t)

∫ `

0

xuut dx ≤
ξ(t)

2

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ (Cpα ∫ `

0

xu2x dx+
1

α

∫ `

0

xu2t dx

)
,

for all α > 0, and

(4.9) −aξ(t)
∫ `

0

xuut dx ≤
aβCp

2
ξ(t)

∫ `

0

xu2x dx+
a

2β
ξ(t)

∫ `

0

xu2t dx.

Combining (4.6)–(4.9), we arrive at

Ψ′(t) ≤
(

1 +
L

2α
+

a

2β

)
ξ(t)

∫ `

0

xu2t dx

− ξ(t)

2

[
1− (1 + η)(1− l)2 − aCpβ − αCpL

] ∫ `

0

xu2x dx

+
ξ(t)

2

(
1 +

1

η

)(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t) + ξ(t)‖u‖p

Lp
x
.

By choosing η = l/(1− l), (4.5) is established. �

Lemma 4.6. Assume 2 < p < 3 and that (G1), (G2) and (2.10) hold. Then

the functional χ, defined by (4.3), satisfies, for all θ > 0,

χ′(t) ≤ ξ(t)θ[1 + C∗ + 2(1− l)2]

∫ `

0

xu2x dx(4.10)

+ ξ(t)

[
θ −

∫ t

0

g(s) ds+ aθ + θL

] ∫ `

0

xu2t dx

+

[
1

2θ
+ 2θ +

Cp + (a+ L)Cp
4θ

]
ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t)

− Cp
4θ

ξ(t)g(0)(g′ ◦ ux)(t).
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Proof. Direct calculations give

χ′(t) = ξ(t)

∫ `

0

xux(t)

(∫ t

0

g(t− s)(ux(t)− ux(s)) ds

)
dx(4.11)

− ξ(t)
∫ `

0

x

(∫ t

0

g(t− s)(ux(t)− ux(s)) ds

)
×
(∫ t

0

g(t− s)ux(s)

)
dx

− ξ(t)
∫ `

0

x|u|p−2u
(∫ t

0

g(t− s)(u(t)− u(s)) ds

)
dx

− ξ(t)
∫ `

0

xut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

+ aξ(t)

∫ `

0

xut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

− ξ(t)
∫ `

0

xu2t

∫ t

0

g(t− s) ds dx

− ξ′(t)
∫ `

0

xut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx.

We now estimate the right hand side of (4.11). For θ > 0, similar as in [27],

we have the estimates of the first to the fourth terms. The first term

(4.12) ξ(t)

∫ `

0

xux(t)

(∫ t

0

g(t− s)(ux(t)− ux(s)) ds

)
dx

≤ θξ(t)
∫ `

0

xu2x dx+
1

4θ
ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t).

The second term

(4.13) ξ(t)

∫ `

0

x

(∫ t

0

g(t− s)(ux(t)− ux(s)) ds

)(∫ t

0

g(t− s)ux(s)

)
dx

≤ 2θ(1− l)2ξ(t)
∫ `

0

xu2x dx+

(
2θ +

1

4θ

)
ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t).

The third term

(4.14) ξ(t)

∫ `

0

x|u|p−2u
(∫ t

0

g(t− s)(u(t)− u(s)) ds)

)
dx

≤ θC∗ξ(t)
∫ `

0

xu2x dx+ ξ(t)
Cp
4θ

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t),

where

C∗ =
C∗

3− p

(
2p

l(p− 2)
E(0)

)p−2
.
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The fourth term

(4.15) − ξ(t)
∫ `

0

xut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

≤ θξ(t)
∫ `

0

xu2t dx−
g(0)

4θ
Cpξ(t)(g

′ ◦ ux)(t).

For the fifth term, by Young’s inequality and Lemma 2.3, we have

(4.16) aξ(t)

∫ `

0

xut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

≤ aθξ(t)
∫ `

0

xu2t dx+
aCp
4θ

ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t).

For the sixth term

−ξ′(t)
∫ `

0

xut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx(4.17)

≤ξ(t)
∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ [θ ∫ `

0

xu2t dx+
Cp
4θ

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t)

]
≤θLξ(t)

∫ `

0

xu2t dx+
CpL

4θ
ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t).

A combination of (4.11)–(4.17) yields (4.10). �

Proof of Theorem 2.11. Since g is continuous and g(0) > 0, then for any

t0 > 0, we have

(4.18)

∫ t

0

g(s) ds ≥
∫ t0

0

g(s) ds := g0, for all t ≥ t0.

By using (2.3), (4.5), (4.10) and (4.18), we obtain

F ′(t) =E′(t) + ε1Ψ′(t) + ε2χ
′(t)

=
1

2
(g′ ◦ ux)(t)− 1

2
g(t)

∫ `

0

xu2x dx− a
∫ `

0

xu2t dx+ ε1Ψ′(t) + ε2χ
′(t)

≤−
[
a− ε1

(
1 +

a

2β
+

L

2α

)
ξ(t) + ε2ξ(t)(g0 − θ(1 + L)− aθ)

] ∫ `

0

xu2t dx

+ ε1ξ(t)

∫ `

0

x|u|p dx+

[
1

2
− ε2ξ(0)

4θ
Cpg(0)

]
(g′ ◦ ux)(t)

−
{
ε1
2

(l − aβCp − αCpL)− ε2θ
[
(1 + C∗ + 2(1− l)2

]}
ξ(t)

∫ `

0

xu2x dx

+

{
ε1
2l

+ ε2

[
1

2θ
+ 2θ +

Cp + (a+ L)Cp
4θ

]}
× ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t)
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≤ −
[
a

ξ(0)
− ε1

(
1 +

a

2β
+

L

2α

)
+ ε2(g0 − θ(1 + L)− aθ)

]
ξ(t)

∫ `

0

xu2t dx

+ ε1ξ(t)

∫ `

0

x|u|p dx+

[
1

2
− ε2ξ(0)

4θ
Cpg(0)

]
(g′ ◦ ux)(t)

−
{
ε1
2

(l − aβCp − αCpL)− ε2θ
[
(1 + C∗ + 2(1− l)2

]}
ξ(t)

∫ `

0

xu2x dx

+

{
ε1
2l

+ ε2

[
1

2θ
+ 2θ +

Cp + (a+ L)Cp
4θ

]}
× ξ(t)

(∫ t

0

g2−r(s) ds

)
(gr ◦ ux)(t),

since 0 < ξ(t) ≤ ξ(0). When a > 0, we choose α and β so small that l− aβCp −
αCpL > l/2 and then choose θ small enough satisfying

(4.19) k2 =
ε1l

4
− ε2θ

[
(1 + C∗ + 2(1− l)2

]
> 0.

As far as α, β and θ are fixed, we then pick ε1 and ε2 so small that (4.4) and

(4.19) remain valid and

k1 =
a

ξ(0)
− ε1

(
1 +

a

2β
+

L

2α

)
+ ε2(g0 − θ(1 + L)− aθ) > 0,

k3 =
1

2
− ε2Cpg(0)

4θ
ξ(0)

−
{
ε1
2l

+ ε2

[
1

2θ
+ 2θ +

Cp + (a+ L)Cp
4θ

](∫ t

0

g2−r(s) ds

)}
> 0.

Therefore, using the assumption g′(t) ≤ −ξ(t)gr(t) in (G2), we have, for some

σ > 0 and for all t ≥ t0,

(4.20) F ′(t) ≤ −σξ(t)
[ ∫ `

0

xu2t dx−
∫ `

0

x|u|p dx+

∫ `

0

xu2x dx+ (gr ◦ ux)(t)

]
.

When a = 0, we choose θ, α so small that g0 − (1 +L)θ > g0/2, l−αCpL > l/2,

and
4θ[1 + C∗ + 2(1− l)2]

l
<

g0
2 + L/α

.

Whence θ and α are fixed, the choice of ε1 and ε2 satisfying

4θ[1 + C∗ + 2(1− l)2]

l
ε2 < ε1 <

g0ε2
2 + L/α

will make

k1 = − ε1
(

1 +
L

2α

)
ξ(0) + ε2ξ(0)(g0 − θ(1 + L)) > 0,(4.21)

k2 =
ε1
2

(l − αCpL)− ε2θ[(1 + C∗ + 2(1− l)2] > 0.(4.22)
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We then pick ε1 and ε2 so small that (4.4), (4.21) and (4.22) remain valid and

k3 =
1

2
− ε2Cpg(0)

4θ
ξ(0)

−
{
ε1
2l

+ ε2

[
1

2θ
+ 2θ +

Cp + LCp
4θ

](∫ t

0

g2−r(s) ds

)}
> 0.

We can still get (4.20). Next, as (4.20) is proved, we will give the following two

cases according to the different ranges of r:

Case 1. r = 1.

By virtue of the choice of ε1, ε2 and θ, we estimate (4.20) and obtain, for

some constant α > 0,

(4.23) F ′(t) ≤ −αξ(t)E(t), for all t ≥ t0.

Hence, with the help of the left hand side inequality in (4.4) and (4.23), we find

(4.24) F ′(t) ≤ −αα1ξ(t)F (t), for all t ≥ t0.

A simple integration of (4.24) over (t0, t) leads to

(4.25) F (t) ≤ F (t0)e
−(αα1)

∫ t
t0
ξ(s) ds

, for all t ≥ t0.

Therefore, (2.8) is established by virtue of (4.4) again.

Case 2. 1 < r < 3/2.

By using (2.1), we get

g(t)1−r ≥ (r − 1)

∫ t

t0

ξ(s) ds+ g(t0)1−r.

For all 0 < τ < 1, we further have∫ ∞
0

g1−τ (s) ds ≤
∫ ∞
0

1

[(r − 1)
∫ t
t0
ξ(s) ds+ g(t0)1−r](1−τ)/(r−1)

dt.

For 0 < τ < 2− r < 1, we have (1− τ)/(r − 1) > 1. And using (2.2), we obtain∫ ∞
0

g1−τ (s) ds <∞, for all 0 < τ < 2− r.

So Lemma 4.3 and (2.7) yield

(g ◦ ux)(t) ≤ C
(
E(0)

∫ ∞
0

g1−τ (s) ds

)(r−1)/(r−1+τ)

(gr ◦ ux)τ/(r−1+τ)

≤ C(gr ◦ ux)τ/(r−1+τ)
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for some positive constant C. Therefore, for any r1 > 1, we arrive at

Er1(t) ≤CEr1−1(0)

(∫ `

0

xu2t dx−
∫ `

0

x|u|p dx+

∫ `

0

xu2x dx

)
(4.26)

+ C(g ◦ ux)r1

≤CEr1−1(0)

(∫ `

0

xu2t dx−
∫ `

0

x|u|p dx+

∫ `

0

xu2x dx

)
+ C(gr ◦ ux)τr1/(r−1+τ).

By choosing τ = 1/2 and r1 = 2r − 1 (hence τr1/(r − 1 + τ) = 1), estimate

(4.26) gives, for some Γ > 0,

(4.27) Er1(t) ≤ Γ

[ ∫ `

0

xu2t dx−
∫ `

0

x|u|p dx+

∫ `

0

xu2x dx+ (gr ◦ ux)(t)

]
By combining (4.4), (4.20) and (4.27), we obtain

(4.28) F ′(t) ≤ −σ
Γ
ξ(t)Er1(t) ≤ −σ

Γ
αr11 F

r1(t)ξ(t), for all t ≥ t0.

A simple integration of (4.28) leads to

(4.29) F (t) ≤ C1

(
1 +

∫ t

t0

ξ(s) ds

)−1/(r1−1)
, for all t ≥ t0.

Therefore, ∫ ∞
t0

F (t) dt ≤ C1

∫ ∞
t0

1(
1 +

∫ t

t0

ξ(s) ds

)1/(r1−1)
dt.

Since 1/(r1 − 1) > 1 and 1 +
∫ t
t0
ξ(s) ds → +∞ as t → +∞, we get from (2.2)

that

(4.30)

∫ ∞
t0

F (t) dt <∞.

In addition, by using (2.2), we have

tF (t) ≤ C1t(
1 +

∫ t

t0

ξ(s) ds

)1/(r1−1)
≤ Cr.

Therefore, we obtain

(4.31) sup
t≥t0

tF (t) < +∞.

Since E is bounded, we use (4.4), (4.30) and (4.31) to get∫ ∞
0

F (t) dt+ sup
t≥0

tF (t) <∞.
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Then, by using (2.7) and Lemma 4.4, we have

(g ◦ ux)(t) ≤C2

(
t‖ux( · , t)‖2H +

∫ t

0

‖ux( · , s)‖2H ds
)(r−1)/r

×
(∫ t

0

gr(t− s)‖ux( · , t)− ux( · , s)‖2H ds
)1/r

≤C2

(
tF (t) +

∫ t

0

F (s) ds

)(r−1)/r

(gr ◦ ux)1/r ≤ C3(gr ◦ ux)1/r,

which implies that

(4.32) (gr ◦ ux)(t) ≥ C4(g ◦ ux)r,

for some constant C4 > 0. Consequently, a combination of (4.20) and (4.32)

yields, for all t ≥ t0,

F ′(t) ≤ −C5ξ(t)

[ ∫ `

0

xu2t dx−
∫ `

0

x|u|p dx+

∫ `

0

xu2x dx+ (g ◦ ux)r
]
,

for some constant C5 > 0. On the other hand, as in [1], we can get

Er(t) ≤ C6

[ ∫ `

0

xu2t dx−
∫ `

0

x|u|p dx+

∫ `

0

xu2x dx+ (g ◦ ux)r
]

for all t ≥ 0 and some constant C6 > 0. Combining the last two inequalities and

(4.4), we obtain

(4.33) F ′(t) ≤ −C7ξ(t)F
r(t), for all t ≥ t0

for some constant C7 > 0. A simple integration of (4.33) over (t0, t) gives

F (t) ≤ C8

(
1 +

∫ t

t0

ξ(s) ds

)−1/(r−1)
, for all t ≥ t0.

Therefore, (2.8) is obtained by virtue of (4.4) again. �
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