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EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS

FOR KIRCHHOFF TYPE EQUATION

WITH GENERAL CRITICAL GROWTH

Zhisu Liu — Chaoliang Luo

Abstract. We study the existence of positive ground state solutions for

the nonlinear Kirchhoff type equation
−
(
a + b

∫
R3
|∇u|2

)
∆u + V (x)u = f(u) in R3,

u ∈ H1(R3), u > 0 in R3,

where a, b > 0 are constants, f ∈ C(R,R) has general critical growth. We

generalize a Berestycki–Lions theorem about the critical case of Schrödinger

equation to Kirchhoff type equation via variational methods. Moreover,
some subcritical works on Kirchhoff type equation are extended to the

current critical case.

1. Introduction

We are concerned with the following Kirchhoff-type equation:

(K)

−
(
a+ b

∫
R3

|∇u|2
)

∆u+ V (x)u = f(u) in R3,

u ∈ H1(R3), u > 0 in R3,
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where a, b > 0 are constants, V ∈ C(R3,R) and f ∈ C(R,R) satisfy some

conditions to be made precise later.

We recall that u is said to be the ground state (or the least energy) solution

of (K) if and only if u solves (K) and minimizes the functional associated with

(K) among all possible nontrivial solutions. Almost sufficient and necessary

conditions for the existence of ground state solutions to the following nonlinear

elliptic equation:

(1.1)

−∆u = h(u) in RN ,
u ∈ H1(RN ), u > 0 in RN ,

are given by Berestycki and Lions in [6] when N ≥ 3 and Berestycki et al. in [7]

when N = 2. In particular, in [6], the following existence result is obtained.

Theorem 1.1. Suppose N ≥ 3 and h satisfies the following conditions:

(H1) h ∈ C(R,R) is odd;

(H2) −∞ < lim inf
s→0+

h(s)/s ≤ lim sup
s→0+

h(s)/s = −m < 0;

(H3) −∞ ≤ lim sup
s→0+

h(s)/sl ≤ 0, where l = (N + 2)/(N − 2);

(H4) there exists ζ > 0 such that H(ζ) :=
∫ ζ

0
h(s) ds > 0.

Then (1.1) possesses a positive radial ground state solution.

This problem was studied in [6] in the space H1
r (RN ) of radical symmetric

functions, in which case the nonlinear term h is independent of x ∈ RN . More

importantly, the imbedding of H1
r (R3) ↪→ Lr(RN ) is compact for r ∈ (2, 2∗).

Note also that (H3) implies that the nonlinear term has subcritical growth.

In [34], Zhang and Zou studied problem (1.1) for

h = h(x, u) = −V (x)u+ f(u),

i.e. h has critical growth and depends on x. Under conditions

(f1) f ∈ C1(RN ,R);

(f2) f(t) = o(t) as t→ 0+;

(f3) lim
t→+∞

f(s)/s(N+2)/(N−2) = K > 0;

(f4) there exist D > 0 and q ∈ (2, 2∗) such that f(s) ≥ Kt(N+2)/(N−2) +

Dtq−1 for all t ≥ 0, where 2∗ = 2N/(N − 2);

(f5) |f ′(t)| ≤ C(1 + |t|4/(N−2)) for t ≥ 0 and some C > 0.

they proved that (1.1) has a ground state solution if the potential V satisfies cer-

taiin reasonable hypotheses. These results of Zhang and Zou can be regarded as

a generalization of the Berestycki–Lions theorem to critical and non-radial case.

Conditions (f3) and (f4) characterize equation (1.1) to be of critical growth. Az-

zollini in [4] studied a class of Kirchhoff equations and extended the Berestycki–

Lions theorem to problem (K) by using minimizing arguments on a suitable
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natural constraint (the Pohozăev’s manifold P) in H1
r (R3). Recently, Liu and

Guo [22] made an attempt to complement the study initiated in [4] by consid-

ering a class of nonlinearities with general critical growth. To the best of our

knowledge, so far no result similar to [34] for critical and non-radial case for

Kirchhoff equations is established. So our interest in the present paper is to

extend the Berestycki–Lions theorem to critical and non-radial case to Kirchhoff

equations.

We shall pose the following conditions on the the potential V :

(V1) V ∈ C(R3,R) is weakly differentiable and satisfies (∇V (x), x) ∈ L∞(R3)

∪L3/2(R3) and there exists µ > 2 such that

µ− 2

µ
V (x)− (∇V (x), x) ≥ 0.

(V2) For almost every x ∈ R3, V (x) ≤ lim
|y|→+∞

V (y) = V∞ < +∞ and the

inequality is strict on a subset of positive Lebesgue measure.

(V3) inf σ(−∆+V (x)) > 0, where σ(−∆+V (x)) denotes the spectrum of the

self-adjoint operator −∆ + V (x) : H1(R3)→ L2(R3), i.e.

inf σ(−∆ + V (x)) = inf
u∈H1(R3)\{0}

∫
R3

(|∇u|2 + V (x)u2) dx∫
R3

|u|2 dx
> 0,

where ( · , · ) is the usual inner product in R3.

Moreover, we assume that the nonlinear term f ∈ C(R,R) satisfies the following

hypotheses:

(F1) lim
t→+∞

f(t)/t5 = K > 0.

(F2) There exist D > 0 and q ∈ (2, 6) such that f(t) ≥ Kt5 + Dtq−1 for all

t ≥ 0.

(F3) Denoting g(t) := f(t)−Kt5, there holds g(t)t− µG(t) ≥ 0 for all t ∈ R,

where G(t) =
∫ t

0
g(s) ds.

Now we state our main results.

Theorem 1.2. Under assumptions (f2), (F1)–(F3) and (V1)–(V3), assume

that either q ∈ (4, 6) or q ∈ (2, 4] and D is sufficiently large. Then problem (K)

possesses at least one positive ground state solution in H1(R3).

Remark 1.3. There are many functions satisfying (V1)–(V3). For instance,

V (x) = V∞ − (µ− 2)/µ(|x|+ 3), where V∞ > 1 is a positive constant.

Remark 1.4. In comparison with [22], [35], in the proof of Theorem 1.2 we

use a different method, which allows to drop radial restrictions. A local com-

pactness lemma established for critical case plays a crucial role in our arguments.

We believe that it can be used to deal with other similar problems. Moreover, it
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is interesting to learn whether the ground state solution from Theorem 1.2 and

the radial ground state solution obtained in [22] are the same. Yet, we do not

know the answer to this question.

As is known, problem (K) is a variant of Dirichlet problem of Kirchhoff type.

Indeed, if R3 is replaced by a smooth bounded domain Ω, then (K) reduces to

the following Dirichlet problem:

(1.2)

−
(
a+ b

∫
Ω

|∇u|2
)

∆u = f(x, u) in Ω,

u = 0 in ∂Ω,

which is related to the stationary analogue of the following equation:

(1.3)

utt −
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

It was proposed by Kirchhoff in [15] studying existence of the classical D’Alem-

bert wave equations for free vibration of elastic strings, particularly, taking into

account the subsequent change in the string length caused by oscillations. Such

a class of problems is viewed as being nonlocal because of the presence of the term

(
∫

Ω
|∇u|2 dx)∆u, which implies that the equation in (1.2) is no longer a pointwise

identity. Indeed, such a phenomenon provokes some mathematical difficulties,

which make the study of such a class of problems particularly interesting. Let

us mention that equation (1.3) received much attention only after Lions [18]

introduced an abstract framework to this problem. We refer interested readers

to the papers [10], [24], [33], [1]–[3], [9], [27], [25], [5] and references therein.

Recently, there has been increasing interest in studying the following Kirch-

hoff problem:

(1.4)

−
(
a+ b

∫
R3

|∇u|2
)

∆u+ V (x)u = f(x, u) in R3,

u ∈ H1(R3) in R3,

especially the existence of positive solutions, multiple solutions, ground states

and semiclassical states, see for example, [32], [17], [14], [30], [26], [20], [21], [16],

[29], [12], [11] and references therein. In these papers mainly the case where

the nonlinear term behaves as f(u) ∼ |u|p−1u with p ∈ (3, 5) and satisfies the

following Ambrosetti–Rabinowitz type condition:

(AR) there exists µ ≥ 4 such that 0 < µF (s) ≤ f(s)s for all s ∈ R,

where F (u) =
∫ u

0
f(s) ds has been investigated. While there are very few results

on the existence of solutions for the case p ∈ (1, 3) and without any compactness

assumptions. Recently, under certain assumptions on V , Li and Ye [16] proved

that problem (1.4) with f(u) = |u|p−1u, p ∈ (2, 5), has a positive ground state
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solution by using a monotonicity trick and a global compactness lemma. Next,

Liu and Guo [23] extended this result to the case p ∈ (1, 5). However, in [16],

[23] only the subcritical case was considered. It seems natural to expect that

there exists a corresponding solution in the critical case. In the present paper,

we give an affirmative answer to this question (see Theorem 1.2). It is known

that the critical exponent growth makes the problem very tough due to the lack

of compactness. Therefore, the method of [16, 23] cannot be used directly and

some additional tricks are needed. Indeed, we will employ a monotonicity trick

together with establishing a local compactness lemma of critical case to obtain

our result.

Remark 1.5. Note that in the case f(u) = |u|p−1u+ |u|5−1u our conditions

(F1)–(F4) cover the full subcritical range of p ∈ (1, 5). Therefore, Theorem 1.2

can also be regarded as a generalization of the results in [16] and [23] to the

critical case.

Throughout this paper, C > 0 denotes various positive generic constants.

The remainder of this paper is organized as follows. In Section 2, some prelimi-

nary results are presented. In Section 3, we provide proofs of the main results.

2. Preliminaries

We denote by E := H1(R3) the usual Sobolev space equipped with the

standard norm

‖u‖H :=

(∫
R3

(|∇u|2 + u2) dx

)1/2

and denote the norm of D1,2(R3) by

‖u‖D1,2 :=

(∫
R3

|∇u|2 dx
)1/2

.

In E, we also define the inner product and norm

〈u, u〉 :=

∫
R3

(a|∇u|2 + V (x)u2) dx, ‖u‖ := 〈u, u〉1/2,

which is equivalent to ‖ · ‖H under hypotheses (V1)–(V3). ‖ · ‖q stands for the

usual Lq-norm, q ∈ [1,+∞]. The letter S denotes the best Sobolev constant, i.e.

S := inf
u∈D1,2(R3)\{0}

∫
R3

|∇u|2 dx(∫
R3

u6 dx

)1/3
.

For any ρ > 0 and z ∈ R3, Bρ(z) := {x ∈ R3 : |x− z| ≤ ρ}.
For brevity, hereafter we omit the symbol dx in the integrals over R3 when

no confusion can arise, moreover, we also assume that K = 1.
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Since our interest is to establish the existence of positive solutions for problem

(K), we assume f(t) = 0 for t ≤ 0. So g(t) = f(t)− (t+)5, where t+ = max{0, t}.
Define the energy functional I : E → R as

(2.1) I(u) :=
1

2

∫
R3

(a|∇u|2 + V (x)u2)

+
b

4

(∫
R3

|∇u|2
)2

−
∫
R3

G(u)− 1

6

∫
R3

(u+)6,

which is a well-defined C1 functional. Moreover, for any u, ϕ ∈ E, we have

(2.2) I ′(u)ϕ = 〈u, ϕ〉+ b

∫
R3

|∇u|2
∫
R3

∇u∇ϕ−
∫
R3

g(u)ϕ−
∫
R3

(u+)5ϕ.

Clearly, weak solutions to (K) correspond to critical points of the functional I.

In order to prove our theorem, the following abstract result established in

[13] will be needed.

Theorem 2.1. Let (E, ‖ · ‖) be a real Banach space with its dual space E−1

and J ∈ R+ an interval. Consider the family of C1 functionals on E:

Iλ = A(u)− λB(u), for all λ ∈ J,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞,

satisfying Iλ(0) = 0. For any λ ∈ J we set

Γλ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) < 0}.

If for every λ ∈ J the set Γλ is nonempty and

(2.3) cλ = inf
γ∈Γλ

max
s∈[0,1]

Iλ(γ(s)) > 0,

then for almost every λ ∈ J there is a bounded Palais–Smale sequence {un}, i.e.

{un} is bounded and satisfies Iλ(un) → cλ and I ′λ(un) → 0 in E−1. Moreover,

the map λ 7→ cλ is continuous from the left.

In our arguments, set

A(u) :=
1

2
‖u‖2 +

b

4

(∫
R3

|∇u|2
)2

, B(u) :=

∫
R3

(
G(u) +

1

6
(u+)6

)
and J = [1/2, 1]. We also will make use of the following Pohozăev type identity,

whose proof is standard and can be found in [6].

Lemma 2.2. Let u be a critical point of Iλ in E for λ ∈ J , then

a

2

∫
R3

|∇u|2 +
b

2

(∫
R3

|∇u|2
)2

+
3

2

∫
R3

V (x)u2

+
1

2

∫
R3

(∇V (x), x)u2 − 3λ

∫
R3

F (u) = 0,

where F (u) =
∫ u

0
f(s) ds.
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Now we give a lemma which will be used later.

Lemma 2.3. If all assumptions of Theorem 1.2 are satisfied, then the con-

clusions of Theorem 2.1 hold. Moreover,

cλ < c∗λ :=
ab

4λ
S3 +

[b2S4 + 4λaS]3/2

24λ2
+
b3S6

24λ2
.

Proof. It is easy to see that B(u) ≥ 0 for all u ∈ E and A(u) → +∞ as

‖u‖ → ∞. On the other hand, conditions (f2) and (F1)–(F2) imply that for all

ε > 0, there exists Cε > 0 such that F (u) ≤ ε|u|2 + Cε|u|6. Therefore, there

exists r > 0 such that for all ‖u‖ = r, Iλ(u) ≥ α > 0, where r, α are independent

of λ. From (F2),

Iλ(u) ≤ 1

2
‖u‖2 +

b

4

(∫
R3

|∇u|2
)2

− D

2q

∫
R3

(u+)q − 1

12

∫
R3

(u+)6.

Set v ∈ E \ {0} such that v > 0. Then lim
t→+∞

Iλ(tv) = −∞. Thus, there exists

t0 > 0 such that ‖t0v‖ > r and Iλ(t0v) < 0 for all λ ∈ [1/2, 1]. Set γ(0) = 0,

γ(1) = t0v, then Γλ 6= ∅ and cλ > 0. Therefore, the conclusions of Theorem 2.1

hold. The argument that cλ < c∗λ is similar to that in [22], so we omit it. �

Remark 2.4. In the present paper, we assume that for λ ∈ [1/2, 1], if {un} ⊂
E is a sequence satisfying

‖un‖ <∞, Iλ(un)→ cλ, I ′λ(un)→ 0,

then we can assume that un ≥ 0 in E. Indeed, we have I ′λ(un)u−n = o(1), where

u−n = min{un, 0}. Thus, ‖u−n ‖ = o(1) from which we derive that ‖u+
n ‖ < ∞,

Iλ(u+
n )→ cλ and I ′λ(u+

n )→ 0.

3. Proofs of main results

Now we define the limit functional corresponding to Iλ as

I∞λ :=
a

2

∫
R3

|∇u|2 +
1

2

∫
R3

V∞u
2 +

b

4

(∫
R3

|∇u|2
)2

− λ
∫
R3

F (u).

In view of Lemma 2.2, we have the Pohozăev type identity corresponding to I∞λ

(3.1) Pλ(u) :=
a

2

∫
R3

|∇u|2 +
b

2

(∫
R3

|∇u|2
)2

+
3

2

∫
R3

V∞u
2 − 3λ

∫
R3

F (u) = 0,

where u is a critical point of I∞λ .

Remark 3.1. It is easy to see that for any nontrivial critical point u of I∞λ ,

I∞λ (u) =
a

3

∫
R3

|∇u|2 +
b

12

(∫
R3

|∇u|2
)2

> 0.



172 Z. Liu — Ch. Luo

In [22], we have proved that there exists a critical point v ∈ E \ {0} of I∞λ
such that I∞λ (v) = mλ for λ ∈ [1/2, 1], where

mλ = inf{I∞λ (u) : Pλ(u) = 0, u ∈ E \ {0}}.

The following lemma can also be found in [22], it embodies the relationship

between cλ and mλ.

Lemma 3.2. There exists a continuous path γ1 : [0, 1]→E such that I∞λ (γ1(0))

= 0, I∞λ (γ1(1)) < 0 and v ∈ γ1([0, 1]) with I∞λ (v) = max
t∈[0,1]

I∞λ (γ1(t)). Moreover,

cλ < mλ.

Now we state the following local compactness lemma for the Palais–Smale

sequence at the energy level cλ.

Lemma 3.3. Assume all conditions of Theorem 1.2 hold. For λ ∈ [1/2, 1],

let {un} ⊂ E be a sequence such that ‖un‖ < ∞, Iλ(un) → cλ and I ′λ(un) → 0.

Then there exist u0 ∈ E and A ∈ R such that I ′λ(u0) = 0, where

(3.2) Iλ(u) =
a+ bA2

2

∫
R3

|∇u|2 +
1

2

∫
R3

V (x)u2 − λ
∫
R3

F (u),

a number k ∈ N ∪ {0}, nontrivial solutions w1, . . . , wk of the following problem:

−(a+ bA2)∆u+ V∞u = λf(u),

and k sequences of points {yjn} ⊂ R3, 1 ≤ j ≤ k, such that

(a) |yjn| → +∞, |yjn − yin| → +∞ if i 6= j, 1 ≤ i, j ≤ k, n→ +∞,

(b) wj 6= 0 and (I∞λ )′(wj) = 0 for 1 ≤ j ≤ k,

(c)

∥∥∥∥un − u0 −
j=k∑
j=1

wj( · − yjn)

∥∥∥∥→ 0 as n→∞,

(d) cλ + (bA4/4) = Iλ(u0) +
j=k∑
j=1

I∞λ (wj), where

I∞λ (u) =
a+ bA2

2

∫
R3

|∇u|2 +
1

2

∫
R3

V∞|u|2 − λ
∫
R3

F (u),

(e) A2 = ‖∇u0‖22 +
j=k∑
j=1

‖wj‖22.

Moreover, we agree that in the case k = 0 the above holds without wj and {yjn}.

Proof. ‖un‖ < ∞ means that there exist u0 ∈ E and A ∈ R such that

un ⇀ u0 in E and
∫
R3 |∇un|2 → A2 after extracting a subsequence. Then it

follows from I ′λ(un)→ 0 that I ′λ(u0) = 0. Since

Iλ(un) =
a+ bA2

2

∫
R3

|∇un|2 +
1

2

∫
R3

V (x)|un|2 − λ
∫
R3

F (un)

= Iλ(un) +
bA4

4
+ o(1),
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and it is easy to prove that Iλ(un) → cλ + bA4/4 and I ′λ(un) → 0 in E−1. In

what follows, we will consider the functional Iλ.

Set v1
n = un − u0. From the Brezis–Lieb lemma we have

(3.3)
‖∇un‖22 = ‖∇v1

n‖22 + ‖∇u0‖22,

‖un‖ss = ‖v1
n‖ss + ‖u0‖ss, s ∈ [2, 6].

Note that (f2) and (F1)–(F2) imply that for any ε > 0, there exists Cε > 0 such

that

(3.4) |g(u)| ≤ ε(|u|+ |u|5) + Cε|u|q−1.

Therefore, similarly to the arguments of Lemma 3.2 in [22], it follows from the

Strauss compactness lemma [28] and un ⇀ u0 in E that

(3.5)

∫
R3

G(un) =

∫
R3

G(u0) +

∫
R3

G(v1
n) + o(1),∫

R3

g(un)un =

∫
R3

g(u0)u0 +

∫
R3

g(v1
n)v1

n + o(1).

The remaining proof will be divided into four steps.

Step 1. If

lim
n→∞

sup
y∈R3

∫
B1(y)

|v1
n|2 = 0,

then un → u0 in E and the conclusions hold with k = 0.

In view of the Lions lemma in [19], we have

(3.6) v1
n → 0 in Ls(R3), for all s ∈ (2, 6).

It follows from the definition of Iλ that

I ′λ(un)un = (a+ bA2)

∫
R3

(|∇v1
n|2 + |∇u0|2) +

∫
R3

V (x)((v1
n)2 + |u0|2)(3.7)

− λ
∫
R3

(g(u0)u0 + g(v1
n)v1

n)− λ
∫
R3

(|v1
n|6 + |u0|6) + o(1)

= I ′λ(v1
n)v1

n + I ′λ(u0)u0 + o(1).

From I ′λ(u0) = 0 and (3.6), (3.4) we deduce that

(3.8) o(1) = (a+ bA2)

∫
R3

|∇v1
n|2 +

∫
R3

V (x)|v1
n|2 − λ

∫
R3

|v1
n|6.
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Moreover, it follows from (3.3)–(3.8) that

cλ +
bA4

4
− Iλ(u0) = Iλ(un)− Iλ(u0) + o(1)(3.9)

=
(a+ bA2)

2

∫
R3

|∇v1
n|2 +

1

2

∫
R3

V (x)|v1
n|2

− λ
∫
R3

G(v1
n)− λ

∫
R3

|v1
n|6 + o(1)

=
(a+ bA2)

2

∫
R3

|∇v1
n|2 +

1

2

∫
R3

V (x)|v1
n|2 − λ

∫
R3

|v1
n|6 + o(1).

We show that

(3.10) Iλ(u0) ≥ 1

4
bA2

∫
R3

|∇u0|2.

Indeed, since I ′λ(u0) = 0, by Lemma 2.2, we have the following identity:

(3.11)
a+ bA2

2

∫
R3

|∇u0|2 +
3

2

∫
R3

V (x)|u0|2

+
1

2

∫
R3

(∇V (x), x)|u0|2 − 3λ

∫
R3

F (u0) = 0

Therefore, this, together with (V2) and (F3), implies that(
3

2
− 1

µ

)
(a+ bA2)

∫
R3

|∇u0|2 +

∫
R3

(
µ− 2

2µ
V (x)− 1

2
(∇V (x), x)

)
u2

0

+ λ

∫
R3

(
1

µ
f(u0)u0 − F (u0)

)
= 4Iλ(u0).

Then it follows that

Iλ(u0) ≥ 1

4

(
3

2
− 1

γ

)
(a+ bA2)

∫
R3

|∇u0|2 ≥
1

4
bA2

∫
R3

|∇u0|2.

So (3.10) holds. On the other hand, from (3.9) we have

(3.12) cλ +
bA4

4
− bA2

4

∫
R3

|∇u0|2 >
(a+ bA2)

2

∫
R3

|∇v1
n|2

+
1

2

∫
R3

V (x)|v1
n|2 − λ

∫
R3

|v1
n|6 + o(1).

It follows from (3.8) that we may assume that there exist li ≥ 0 (i = 1, 2, 3) such

that

‖v1
n‖2 → l1, bA2

∫
R3

|∇v1
n|2 → l2, λ

∫
R3

|v1
n|6 → l3, as n→∞,

then l1 + l2 = l3. If l1 = 0, then Step 1 is complete. Else if l1 > 0, then l2, l3 > 0.

Therefore, in view of the above facts, (3.12) can be reduced to cλ ≥ l1/3 + l2/12.
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Note that by the Sobolev inequality, we have

a3

∫
R3

|v1
n|6 ≤ a3

(
S−1

∫
R3

|∇v1
n|2
)3

≤ S−3‖v1
n‖6

and

b

(∫
R3

|v1
n|6
)2/3

≤ b
(
S−1

∫
R3

|∇v1
n|2
)2

= bS−2

(∫
R3

|∇v1
n|2
)2

,

which imply that

l1 ≥ aλ−1/3S(l1 + l2)1/3 and l2 ≥ bλ−2/3S2(l1 + l2)2/3.

It follows from the arguments of Lemma 3.4 of [22] that cλ ≥ c∗λ, which contra-

dicts Lemma 2.3. Therefore,

o(1) =
a+ bA2

2

∫
R3

|∇v1
n|2 +

∫
R3

V (x)|v1
n|2

which implies that un → u0 in E and Step 1 follows.

Step 2. If there exists a sequence {zn} ⊂ R3 such that
∫
B1(zn)

|v1
n|2 → d > 0,

then after extracting a subsequence, if necessary, the following hold

(1) |zn| → ∞.

(2) There exists w1 ∈ E such that un( · + zn) ⇀ w1 6= 0 in E and

(I∞λ )′(w1) = 0.

The proof is standard, so we omit it.

Step 3. If there exist a positive integer m ≥ 1, w1, . . . , wm ∈ E and m

sequences of points {yjn} ⊂ R3, 1 ≤ j ≤ m, such that

(i) |yjn| → +∞, |yjn − yin| → +∞ if i 6= j, 1 ≤ i, j ≤ m, n→ +∞,

(i’) un( · + yjn) ⇀ wj in E for 1 ≤ j ≤ m,

(ii) wj 6= 0 and (I∞λ )′(wj) = 0 for 1 ≤ j ≤ m,

then one of the following cases must hold:

(1) If sup
z∈R3

∫
B1(z)

∣∣∣∣un − u0 −
j=m∑
j=1

ωj(x− yjn)

∣∣∣∣2 → 0, then

∥∥∥∥un − u0 −
j=m∑
j=1

ωj(x− yjn)

∥∥∥∥→ 0.

(2) If there exists {zn} ⊂ R3 such that∫
B1(zn)

∣∣∣∣un − u0 −
j=m∑
j=1

ωj(x− yjn)

∣∣∣∣2 → d > 0,

then, after extracting a subsequence, if necessary, the following hold:

(I) |zn| → +∞, |zn − yjn| → +∞ if 1 ≤ j ≤ m,

(II) un( · + zn) ⇀ wm+1 6= 0 in E,
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(III) (I∞λ )′(wm+1) = 0.

We firstly consider case (1). Set ηn = un − u0 −
j=m∑
j=1

ωj(x − yjn). It is clear

that the sequence {ηn} is bounded in E. The Lions lemma [19] implies that

(3.13) ηn → 0 in Ls(R3), for all s ∈ (2, 6).

By using (i) and (i’) of Step 3, we have

(3.14) ηn( · + yjn) ⇀ 0 in E; ηn( · + yjn)→ 0 in Lsloc(R3), 0 ≤ j ≤ m,

where y0
n = 0. A direct calculation shows that

‖ηn‖2 + bA2

∫
R3

|∇ηn|2 = I ′λ(un)ηn −
j=m∑
j=1

(I∞λ )′(wj)ηn( · + yjn)(3.15)

+ λ

∫
R3

(g(un)− g(u0))ηn − λ
j=m∑
j=1

∫
R3

g(wj)ηn( · + yjn)

+ λ

∫
R3

(|un|5 − |u0|5)ηn − λ
j=m∑
j=1

∫
R3

|wj |5ηn( · + yjn).

It follows from the standard elliptic estimates that u0, w
j ∈ L∞(R3) for j =

1, . . . ,m. This, together with (3.13), (3.14) and (3.4), implies that

∫
R3

(g(un)− g(u0))ηn → 0,

j=m∑
j=1

∫
R3

g(wj)ηn( · + yjn)→ 0

as n→∞. Therefore, it follows from Lemma 8.9 of [31] that

‖ηn‖2 + bA2

∫
R3

|∇ηn|2

=λ

∫
R3

(|un|5 − |u0|5)ηn − λ
j=m∑
j=1

∫
R3

|wj |5ηn( · + yjn) + o(1)

=λ

∫
R3

|un − u0 − w1( · − y1
n)|5ηn − λ

j=m∑
j=2

∫
R3

|wj |5ηn( · + yjn) + o(1).

Continuing this process, we have

(3.16) ‖ηn‖2 + bA2

∫
R3

|∇ηn|2 = λ

∫
R3

|ηn|6 + o(1).
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Note that v1
n( · + y1

n) ⇀ w1 in E. By (3.4), (3.5) and the Brezis–Lieb lemma [8],

we obtain that

cλ +
bA4

4
− Iλ(u0) = Iλ(un)− Iλ(u0) + o(1)

=
a+ bA2

2

∫
R3

|∇v1
n( · + y1

n)|2 +
1

2

∫
R3

V∞|v1
n( · + y1

n)|2

− λ
∫
R3

F (v1
n( · + y1

n)) + o(1)

=
a+ bA2

2

∫
R3

|∇(v1
n( · + y1

n)− w1)|2 +
1

2

∫
R3

V∞|v1
n( · + y1

n)− w1|2

− λ
∫
R3

[
G(v1

n( · + y1
n)− w1) +

1

6
|v1
n( · + y1

n)− w1|6
]

+ I∞λ (w1) + o(1)

=
a+ bA2

2

∫
R3

|∇v1
n − w1( · − y1

n)|2 +
1

2

∫
R3

V∞|v1
n − w1(· − y1

n)|2

− λ
∫
R3

G(v1
n − w1( · − y1

n))− λ

6

∫
R3

|v1
n − w1( · − y1

n)|6 + I∞λ (w1) + o(1).

With the help of (i) and (i’) of Step 3, continuing this process, we obtain that

(3.17) cλ +
bA4

4
− Iλ(u0)−

j=m∑
j=1

I∞λ (wj)

=
a+ bA2

2

∫
R3

|∇ηn|2 +
1

2

∫
R3

V∞|ηn|2 −
λ

6

∫
R3

|ηn|6.

On the other hand, it is not hard to check that

A2 = ‖∇u0‖22 +

j=m∑
j=1

‖∇wj‖22 + ‖∇ηn‖2 + o(1).

It follows from Lemma 2.2 that

I∞λ (wj) ≥ a+ bA2

3

∫
R3

|∇wj |2 ≥ bA2

4

∫
R3

|∇wj |2, j = 1, . . . ,m,

which, together with (3.17), implies that

(3.18) cλ ≥
(
a

2
+
bA2

4

)∫
R3

|∇ηn|2 +
1

2

∫
R3

V∞|ηn|2 −
λ

6

∫
R3

|ηn|6.

It follows from (3.16) that we may assume that there exist li ≥ 0 (i = 4, 5, 6)

such that

‖ηn‖2 → l4, bA2

∫
R3

|∇ηn|2 → l5, λ

∫
R3

|ηn|6 → l6, as n→∞,

then l4 + l5 = l6. If l4 = 0, then case (1) is complete. Else, if l4 > 0, then

l5, l6 > 0. Note that from (3.13) and conditions (V1)–(V2) we conclude that∫
R3

V (x)|ηn|2 =

∫
R3

V∞|ηn|2 + o(1),
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which, together with the above facts, implies that∫
R3

(a|∇ηn|2 + V∞|ηn|2) = l4 + o(1).

Therefore, combining (3.16) and (3.18), we have

(3.19) cλ ≥
l4
3

+
l5
12
.

Similarly to the arguments of Step 1, we have cλ ≥ c∗λ which contradicts Lem-

ma 2.3. Thus, ‖ηn‖ = o(1). Therefore, we have

cλ +
bA2

4
− Iλ(u0)−

j=m∑
j=1

I∞λ (wj) = 0.

On the other hand, it is not hard to check that

A2 = ‖∇u0‖22 +

j=m∑
j=1

‖∇wj‖22.

In case (2) the argument is standard and we omit it.

Step 4. Conclusion. By Step 1, we know that (Iλ)′(u0) = 0 and Lemma 3.3

holds with k = 0. If not, the assumption of Step 2 holds. If case (1) of Step 3

holds with m = 1, arguing as in Step 3, we obtain the conclusions of Lemma 3.3.

Otherwise, case (2) of Step 3 holds. Set y2
n = zn and continue the procedure of

Step 3. Remark that

lim
n→∞

(
‖un‖2 − ‖u0‖2 −

j=m∑
j=1

∫
R3

(a|∇wj |2 + V∞|wj |2)

)

= lim
n→∞

∥∥∥∥un − u0 −
j=m∑
j=1

wj( · + yjn)

∥∥∥∥2

.

It is easy to get that there exists β > 0 independent of λ ∈ [1/2, 1] such that any

nontrivial critical point u of I∞λ satisfies ‖u‖ ≥ β. Thus case (1) in Step 3 must

occur after a finite number of iterations. �

Lemma 3.4. Assume that all conditions of Theorem 1.2 hold. For λ ∈
[1/2, 1], let {un} be a bounded Palais–Smale sequence of Iλ at level cλ, then

there exists a nontrivial u0 ∈ E such that un → u0 in E.

Proof. It follows from Lemma 3.3 that there exist u0 ∈ E and A ∈ R such

that

un ⇀ u0 in E

∫
R3

|∇un|2 → A2, as n→∞



Existence of Positive Ground State Solutions 179

after extracting a subsequence, if necessary, and I ′λ(u0) = 0. For each nontrivial

critical point wj (j = 1, . . . , k) of I∞λ , wj satisfies the Pohozăev identity

(3.20) Pλ(wj) :=
a+ bA2

2

∫
R3

|∇wj |2 +
3

2

∫
R3

V∞|wj |2 − 3λ

∫
R3

F (wj) = 0.

Therefore,

a

2

∫
R3

|∇wj |2 +
b

2

(∫
R3

|∇wj |2
)2

+
3

2

∫
R3

V∞|wj |2 − 3λ

∫
R3

F (wj) ≤ 0.

In view of the above inequality, we can easily see that there exist tj ∈ (0, 1] such

that

a

2

∫
R3

∣∣∣∣∇wj( ·tj
)∣∣∣∣2 +

b

2

(∫
R3

|∇wj
(
·
tj

)∣∣∣∣2)2

+
3

2

∫
R3

V∞

∣∣∣∣wj( ·tj
)∣∣∣∣2 − 3λ

∫
R3

F

(
wj
(
·
tj

))
= 0.

Therefore, it follows form the definition of mλ that I∞λ (wj( · /tj)) ≥ mλ. So, by

Remark 3.1 and (3.20), we have

I∞λ (wj) = I∞λ (wj)− 1

3
Pλ(wj) =

a+ bA2

3

∫
R3

|∇wj |2(3.21)

≥ a

3

∫
R3

∣∣∣∣∇wj( xtj
)∣∣∣∣2 +

b

12

(∫
R3

∣∣∣∣∇wj( xtj
)∣∣∣∣2)2

+
bA2

4

∫
R3

|∇wj |2

= I∞λ

(
wj
(
·
tj

))
+
bA2

4

∫
R3

|∇wj |2 ≥ mλ +
bA2

4

∫
R3

|∇wj |2.

Then, from Lemma 3.3, we deduce that

cλ +
bA4

4
= Iλ(u0) +

j=k∑
j=1

I∞λ (wj)

≥ kmλ +
1

4
bA2

∫
R3

|∇u0|2 +
1

4
bA2

j=k∑
j=1

∫
R3

|∇wj |2 ≥ kmλ +
bA4

4
.

If k ≥ 1, then the above inequality contradicts with Lemma 3.2. Therefore, by

Lemma 3.3 with k = 0, we have un → u0 in E. �

Proof of Theorem 1.2. In view of Lemmas 2.3 and 3.4, for almost all

λ ∈ [1/2, 1], there is a nontrivial critical point uλ ∈ H1(R3) for Iλ with Iλ(uλ) =

cλ. Choosing a sequence {λn} ⊂ [1/2, 1] satisfying λn → 1, we find a sequence

of nontrivial critical points {uλn} (still denoted by {un}) of Iλn with Iλn(un) =

cλn . Now we show that {un} is bounded in H1(R3). Indeed, since λ → cλ is

continuous from the left-hand side, {cλn} is a bounded sequence. Similarly to

(3.10), we know that

cλn = Iλ(un) ≥ 1

4
a

∫
R3

|∇un|2.
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Therefore, there exists C > 0 such that
∫
R3 |∇un|2 ≤ C. On the other hand,

from (f2) and (F1) and the Sobolev embedding inequality, we can easily deduce

that ‖un‖ < C for some positive constant C. Therefore, by Theorem 2.1, we see

that

lim
n→∞

I(un) = lim
n→∞

(
Iλn(un) + (λn − 1)

∫
R3

F (un)

)
= lim
n→∞

cλn = c1

and, for any ϕ ∈ H1(R3), we have

lim
n→∞

I ′(un)ϕ = lim
n→∞

(
I ′λn(un)ϕ+ (λn − 1)

∫
R3

f(un)ϕ

)
= 0.

That is to say, {un} is a bounded Palais–Smale sequence for I at level c1.

Then, by Lemma 3.4, there is a nontrivial critical point u0 ∈ H1(R3) for I

with I(u0)=c1.

Set ν = inf{I(u) | u ∈ H1(R3) \ {0}, I ′(u) = 0}. It is easy to see that

0 < ν ≤ c1 < +∞. By the definition of ν, there exists {un} ⊂ H1(R3) such that

I(un) → ν and I ′(un) = 0. Using the earlier arguments, we can deduce that

{un} is bounded in H1(R3). Arguing as in Lemma 3.4, there exists a nontrivial

u ∈ H1(R3) such that I(u) = ν and I ′(u) = 0. Therefore, we see that u is

a positive ground state solution of problem (K). �
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