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PERIODIC SOLUTIONS

FOR THE NON-LOCAL OPERATOR (−∆ +m2)s −m2s

WITH m ≥ 0

Vincenzo Ambrosio

Abstract. By using variational methods, we investigate the existence of

T -periodic solutions to{
[(−∆x +m2)s −m2s]u = f(x, u) in (0, T )N ,

u(x+ Tei) = u(x) for all x ∈ RN , i = 1, . . . , N,

where s ∈ (0, 1), N > 2s, T > 0, m ≥ 0 and f is a continuous func-

tion, T -periodic in the first variable, verifying the Ambrosetti–Rabinowitz

condition, with a polynomial growth at rate p ∈ (1, (N + 2s)/(N − 2s)).

1. Introduction

Recently, considerable attention has been given to fractional Sobolev spaces

and corresponding non-local equations, in particular to the ones driven by the

fractional powers of the Laplacian. In fact, this operator naturally arises in sev-

eral areas of research and finds applications in optimization, finance, the thin ob-

stacle problem, phase transitions, anomalous diffusion, crystal dislocation, flame

propagation, conservation laws, ultra-relativistic limits of quantum mechanics,

quasi-geostrophic flows and water waves. For more details and applications see

[4], [6], [9], [12], [15], [16], [22], [26]–[28], [30] and references therein.
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The purpose of the present paper is to study T -periodic solutions to the

problem

(1.1)

[(−∆x +m2)s −m2s]u = f(x, u) in (0, T )N ,

u(x+ Tei) = u(x) for all x ∈ RN , i = 1, . . . , N,

where s ∈ (0, 1), N > 2s, (ei) is the canonical basis in RN and f : RN+1 → R is

a function satisfying the following hypotheses:

(f1) f(x, t) is T -periodic in x ∈ RN , that is f(x+ Tei, t) = f(x, t).

(f2) f is continuous in RN+1.

(f3) f(x, t) = o(t) as t→ 0 uniformly in x ∈ RN .

(f4) There exist 1 < p < 2]s − 1 = 2N/(N − 2s)− 1 and C > 0 such that

|f(x, t)| ≤ C(1 + |t|p) for any x ∈ RN and t ∈ R.

(f5) There exist µ > 2 and r0 > 0 such that

0 < µF (x, t) ≤ tf(x, t) for x ∈ RN and |t| ≥ r0.

Here F (x, t) =
∫ t

0
f(x, τ) dτ .

(f6) tf(x, t) ≥ 0 for all x ∈ RN and t ∈ R.

We notice that (f2) and (f5) imply the existence of two constants a, b > 0 such

that

F (x, t) ≥ a|t|µ − b for all x ∈ RN , t ∈ R.

Then, since µ > 2, F (x, t) grows at a superquadratic rate and by (f5), f(x, t)

grows at a superlinear rate as |t| → ∞. Here, the operator (−∆x+m2)s is defined

through the spectral decomposition, by using the powers of the eigenvalues of

−∆ +m2 with periodic boundary conditions.

Let u ∈ C∞T (RN ), that is u is infinitely differentiable in RN and T -periodic

in each variable. Then u has a Fourier series expansion

u(x) =
∑
k∈ZN

ck
eıωk·x√
TN

, x ∈ RN ,

where

ω =
2π

T
and ck =

1√
TN

∫
(0,T )N

u(x)e−ıωk·xdx, k ∈ ZN ,

are the Fourier coefficients of u. The operator (−∆x+m2)s is defined by setting

(−∆x +m2)su =
∑
k∈ZN

ck(ω2|k|2 +m2)s
eıωk·x√
TN

.

For

u =
∑
k∈ZN

ck
eıωk·x√
TN

and v =
∑
k∈ZN

dk
eıωk·x√
TN

,
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we have that

Q(u, v) =
∑
k∈ZN

(ω2|k|2 +m2)sckdk

can be extended by density to a quadratic form on the Hilbert space

Hsm,T =

{
u =

∑
k∈ZN

ck
eıωk·x√
TN
∈ L2(0, T )N :

∑
k∈ZN

(ω2|k|2 +m2)s|ck|2 <∞
}

endowed with the norm

|u|2Hsm,T =
∑
k∈ZN

(ω2|k|2 +m2)s|ck|2.

When m = 1 we set HsT = Hs1,T .

In RN , the physical interest of the non-local operator (−∆+m2)s is manifest

in the case s = 1/2: it is the Hamiltonian for a (free) relativistic particle of mass

m; see for instance [2], [19]–[22]. In particular, such operator is deeply connected

with the Stochastic Process Theory: in fact it is an infinitesimal generator of a

Lévy process called the α-stable process; see [4], [14] and [25].

Problems similar to (1.1) have been also studied in the local setting. The

typical example is given by

(1.2)

Lu = f(x, u) in Ω,

u = 0 on ∂Ω,

where L is uniformly elliptic, Ω is a smooth bounded domain in RN and f is a

continuous function satisfying the assumptions (f3)–(f5). It is well-known that

(1.2) possesses a weak solution which can be obtained as a critical point of a

corresponding functional by means of minimax methods; see for instance [1],

[23], [24], [29] and [31].

The aim of the following paper is to study (1.2) in the periodic setting, when

we replace L by (−∆+m2)s−m2s, m ≥ 0 and s ∈ (0, 1). We remark that problem

(1.1) with s = 1/2 has been investigated by the same author in [3]. In this paper,

we extend the results in [3] to the more general operator (−∆ + m2)s − m2s,

with s ∈ (0, 1).

Our first result is the following:

Theorem 1.1. Let m > 0 and f : RN+1 → R be a function satisfying assump-

tions (f1)–(f6). Then there exists a solution u ∈ Hsm,T to (1.1). In particular, u

belongs to C0,α([0, T ]N ) for some α ∈ (0, 1).

To study problem (1.1) we will give an alternative formulation of the operator

(−∆ + m2)s with periodic boundary conditions, which consists in realizing it

as an operator that maps a Dirichlet boundary condition to a Neumann-type

condition via an extension problem on the half-cylinder (0, T )N × (0,∞); see [3]

for the case s = 1/2. We recall that this argument is an adaptation of the idea
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originally introduced in [11] to study the fractional Laplacian in RN (see also

[7], [8]) and subsequently extended to the case of the fractional Laplacian on a

bounded domain [10], [13].

As explained in more detail in Section 3, for u ∈ Hsm,T one considers the

problem
−div(y1−2s∇v) +m2y1−2sv = 0 in ST := (0, T )N × (0,∞),

v|{xi=0} = v|{xi=T} on ∂LST := ∂(0, T )N × [0,∞),

v(x, 0) = u(x) on ∂0ST := (0, T )N × {0},

from where the operator (−∆x +m2)s is obtained as

− lim
y→0

y1−2s ∂v

∂y
(x, y) = κs(−∆x +m2)su(x)

in weak sense and κs = 21−2sΓ(1− s)/Γ(s). Thus, in order to study (1.1), we

will exploit this fact to investigate the following problem:

(1.3)


−div(y1−2s∇v) +m2y1−2sv = 0 in ST := (0, T )N × (0,∞),

v|{xi=0} = v|{xi=T} on ∂LST := ∂(0, T )N × [0,∞),

∂v

∂ν1−2s
= κs[m

2sv + f(x, v)] on ∂0ST := (0, T )N × {0},

where
∂v

∂ν1−2s
:= − lim

y→0
y1−2s ∂v

∂y
(x, y)

is the conormal exterior derivative of v.

Solutions to (1.3) are obtained as critical points of the functional Jm associ-

ated to (1.1)

Jm(v) =
1

2
||v||2Xsm,T −

m2sκs
2
|v( · , 0)|2L2(0,T )N − κs

∫
∂0ST

F (x, v) dx

defined on the space Xsm,T , which is the closure of the set of smooth and T -

periodic (in x) functions in RN+1
+ with respect to the norm

||v||2Xsm,T :=

∫∫
ST
y1−2s(|∇v|2 +m2sv2) dx dy.

More precisely, we will prove that, for any fixed m > 0, Jm satisfies the hypothe-

ses of the Linking Theorem due to Rabinowitz [24].

When m is sufficiently small, we are able to obtain estimates on critical levels

αm of the functionals Jm independently of m. In this way, we can pass to the

limit as m → 0 in (1.3) and we deduce the existence of a nontrivial solution to

the problem

(1.4)

(−∆x)su = f(x, u) in (0, T )N ,

u(x+ Tei) = u(x) for all x ∈ RN , i = 1, . . . , N.
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This result can be stated as follows:

Theorem 1.2. Under the same assumptions on f as in Theorem 1.1, problem

(1.4) admits a nontrivial solution u ∈ HsT ∩ C0,α([0, T ]N ).

The paper is organized as follows: in Section 2 we collect some preliminary

results which we will use later to study problem (1.1); in Section 3 we show

that problem (1.1) can be realized in a local manner through the nonlinear

problem (1.3); in Section 4 we verify that, for any fixed m > 0, the functional Jm
satisfies the linking hypotheses; in Section 5 we study the regularity of solutions

of problem (1.1); in the last section we show that we can find a nontrivial Hölder

continuous solution to (1.4) by passing to the limit in (1.1) as m→ 0.

2. Preliminaries

In this section we introduce some notation and facts which will be frequently

used in the sequel of the paper. We denote the upper half-space in RN+1 by

RN+1
+ = {(x, y) ∈ RN+1 : x ∈ RN , y > 0}.

Let ST = (0, T )N × (0,∞) be the half-cylinder in RN+1
+ with the basis ∂0ST =

(0, T )N ×{0} and we denote by ∂LST = ∂(0, T )N × [0,+∞) its lateral boundary.

With ||v||Lr(ST ) we always denote the norm of v ∈ Lr(ST ) and with |u|Lr(0,T )N

the Lr(0, T )N norm of u ∈ Lr(0, T )N .

Let s ∈ (0, 1) and m > 0. Let A ⊂ RN be a domain. We denote by

L2(A × R+, y
1−2s) the space of all measurable functions v defined on A × R+

such that ∫∫
A×R+

y1−2sv2 dx dy <∞.

We say that v ∈ H1
m(A × R+, y

1−2s) if v and its weak gradient ∇v belongs to

L2(A× R+, y
1−2s). The norm of v in H1

m(A× R+, y
1−2s) is given by∫∫

A×R+

y1−2s(|∇v|2 +m2v2) dx dy <∞.

It is clear that H1
m(A× R+, y

1−2s) is a Hilbert space with the inner product∫∫
A×R+

y1−2s(∇v∇z +m2vz) dx dy.

When m = 1, we set H1(A× R+, y
1−2s) = H1

1 (A× R+, y
1−2s).

We denote by C∞T (RN ) the space of functions u ∈ C∞(RN ) such that u is

T -periodic in each variable, that is

u(x+ eiT ) = u(x) for all x ∈ RN , i = 1, . . . , N.
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Let u ∈ C∞T (RN ). Then we know that

u(x) =
∑
k∈ZN

ck
eıωk·x√
TN

for all x ∈ RN ,

where

ω =
2π

T
and ck =

1√
TN

∫
(0,T )N

u(x)e−ıkω·x dx, k ∈ ZN ,

are the Fourier coefficients of u. We define the fractional Sobolev space Hsm,T as

the closure of C∞T (RN ) under the norm

|u|2Hsm,T :=
∑
k∈ZN

(ω2|k|2 +m2)s|ck|2.

When m = 1, we set HsT = Hs1,T and | · |HsT = | · |Hs1,T . Now we introduce the

functional space Xsm,T defined as the completion of

C∞T (RN+1
+ ) =

{
v ∈ C∞(RN+1

+ ) : v(x+ eiT, y) = v(x, y)

for every (x, y) ∈ RN+1
+ , i = 1, . . . , N

}
under the H1

m(ST , y1−2s)-norm

||v||2Xsm,T :=

∫∫
ST
y1−2s(|∇v|2 +m2v2) dx dy.

If m = 1, we set XsT = Xs1,T and || · ||XsT = || · ||Xs1,T .

Now let us prove that it is possible to define a trace operator from Xsm,T to

the fractional space Hsm,T .

Theorem 2.1. There exists a bounded linear operator Tr: Xsm,T → Hsm,T
such that:

(a) Tr(v) = v|∂0ST for all v ∈ C∞T (RN+1
+ ) ∩ Xsm,T .

(b) There exists C = C(s) > 0 such that

C|Tr(v)|Hsm,T ≤ ||v||Xsm,T for every v ∈ Xsm,T .

(c) Tr is surjective.

Proof. Let v ∈ C∞T (RN+1
+ ) be such that ‖v‖Xsm,T < ∞. Then v can be

expressed as

v(x, y) =
∑
k∈ZN

ck(y)
eıωk·x√
TN

,

where

ck(y) =

∫
(0,T )N

v(x, y)
e−ıωk·x√
TN

dx and ck ∈ H1
m(R+, y

1−2s).
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We notice that, by using Parseval’s identity, we have

(2.1) ‖v‖2Xsm,T =
∑
k∈ZN

∫ +∞

0

y1−2s
[
(ω2|k|2 +m2)|ck(y)|2 + |c′k(y)|2

]
dy.

Let us show that there exists a positive constant Cs depending only on s such

that

Cs|Tr(v)|2Hsm,T ≤ ‖v‖
2
Xsm,T

for any v ∈ C∞T (RN+1
+ ) such that ‖v‖Xsm,T < +∞,

or equivalently,

(2.2) Cs
∑
k∈ZN

(ω2|k|2 +m2)s|ck(0)|2

≤
∑
k∈ZN

∫ +∞

0

y1−2s
[
(ω2|k|2 +m2)|ck(y)|2 + |c′k(y)|2

]
dy.

By the Fundamental Theorem of Calculus, we have

|ck(0)| ≤ |ck(y)|+
∣∣∣∣ ∫ y

0

c′k(t) dt

∣∣∣∣,
hence, by (|a|+ |b|)2 ≤ 2(|a|2 + |b|2),

(2.3) |ck(0)|2 ≤ 2|ck(y)|2 + 2

∣∣∣∣ ∫ y

0

c′k(t) dt

∣∣∣∣2
for any k ∈ ZN . Now, observe that, by the Hölder inequality,∫ y

0

|c′k(t)| dt ≤
(∫ y

0

t1−2s|c′k(t)|2 dt
)1/2(∫ y

0

t2s−1 dt

)1/2

(2.4)

=

(∫ y

0

t1−2s|c′k(t)|2 dt
)1/2(

y2s

2s

)1/2

.

Putting together (2.3) and (2.4), we obtain

|ck(0)|2 ≤ 2|ck(y)|2 +
y2s

s

(∫ +∞

0

t1−2s|c′k(t)|2 dt
)
,

and multiplying both sides by y1−2s, we get

(2.5) y1−2s|ck(0)|2 ≤ 2y1−2s|ck(y)|2 +
y

s

(∫ +∞

0

t1−2s|c′k(t)|2. dt
)
.

Let ak = (ω2|k|2 +m2)−1/2. Integrating (2.5) over y ∈ (0, ak), we deduce

a2−2s
k

2− 2s
|ck(0)|2 ≤ 2

∫ ak

0

y1−2s|ck(y)|2 dy(2.6)

+

(∫ ak

0

y

s
dy

)(∫ +∞

0

t1−2s|c′k(t)|2 dt
)
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≤ 2

∫ +∞

0

y1−2s|ck(y)|2 dy +
a2
k

2s

(∫ +∞

0

t1−2s|c′k(t)|2 dt
)

= 2

∫ +∞

0

t1−2s|ck(t)|2 dt+
a2
k

2s

(∫ +∞

0

t1−2s|c′k(t)|2 dt
)
.

Multiplying both sides of (2.6) by a−2
k = (ω2|k|2 +m2), we have

(ω2|k|2 +m2)s

2− 2s
|ck(0)|2 ≤ 2(ω2|k|2 +m2)

∫ +∞

0

t1−2s|ck(t)|2 dt

+
1

2s

(∫ +∞

0

t1−2s|c′k(t)|2 dt
)

for any k ∈ ZN . Summing over ZN , we deduce

1

2− 2s

∑
k∈ZN

(ω2|k|2 +m2)s|ck(0)|2(2.7)

≤
∑
k∈ZN

[
2(ω2|k|2 +m2)

∫ +∞

0

t1−2s|ck(t)|2 dt

+
1

2s

(∫ +∞

0

t1−2s|c′k(t)|2 dt
)]

≤ max

{
2,

1

2s

} ∑
k∈ZN

∫ +∞

0

t1−2s
[
(ω2|k|2 +m2)|ck(t)|2 + |c′k(t)|2

]
dt.

Taking into account (2.1) and (2.7), we get (2.2). Therefore there exists a trace

operator Tr: Xsm,T → Hsm,T . Now we prove that Tr is surjective. Let

u =
∑
k∈ZN

ck
eıωk·x√
TN
∈ Hsm,T .

Define

(2.8) v(x, y) =
∑
k∈ZN

ckθk(y)
eıωk·x√
TN

,

where θk(y) = θ(
√
ω2|k|2 +m2y) and θ(y) ∈ H1(R+, y

1−2s) solves the following

ODE: θ
′′

+
1− 2s

y
θ
′
− θ = 0 in R+,

θ(0) = 1 and θ(∞) = 0.

It is known (see [17]) that θ(y) = (2/Γ(s))(y/2)sKs(y), where Ks is the Bessel

function of second kind with order s, and as K ′s = (s/y)Ks −Ks−1, we get

κs :=

∫ ∞
0

y1−2s(|θ′(y)|2 + |θ(y)|2) dy = − lim
y→0

y1−2sθ′(y) = 21−2s Γ(1− s)
Γ(s)

.

Then it is clear that v is smooth for y > 0, v is T -periodic in x and satisfies

−div(y1−2s∇v) +m2y1−2sv = 0 in ST .
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Now, we show that Tr(v) = u. From standard properties of Ks, we know that

θ(y)→ 1 as y → 0 and 0 < θ(y) ≤ As for any y ≥ 0. Then, as u ∈ Hsm,T , we

have

|v( · , y)− u|2Hsm,T =
∑
k∈ZN

(ω2|k|2 +m2)s|ck|2|θk(y)− 1|2 → 0 as y → 0.

Finally, we prove that v ∈ Xsm,T . By Parseval’s identity, we get

||v||2Xsm,T =

∫∫
ST
y1−2s(|∇v|2 +m2v2) dx dy(2.9)

=
∑
k∈ZN

|ck|2
∫ ∞

0

y1−2s(|θ′k(y)|2 + |θk(y)|2) dy

=
∑
k∈ZN

|ck|2
∫ ∞

0

y1−2s(ω2|k|2 +m2)

·
(
|θ′(
√
ω2|k|2 +m2y)|2 + |θ(

√
ω2|k|2 +m2y)|2

)
dy

=
∑
k∈ZN

|ck|2
√
ω2|k|2 +m2

(ω2|k|2 +m2)(1−2s)/2

·
∫ ∞

0

y1−2s(|θ′(y)|2 + |θ(y)|2) dy

=κs
∑
k∈ZN

(ω2|k|2 +m2)s|ck|2 = κs|u|2Hsm,T . �

Theorem 2.2. Let N > 2s. Then Tr(Xsm,T ) is continuously embedded in

Lq(0, T )N for any 1 ≤ q ≤ 2]s. Moreover, Tr(Xsm,T ) is compactly embedded in

Lq(0, T )N for any 1 ≤ q < 2]s.

Proof. By Theorem 2.1, we know that there exists a continuous embed-

ding from Xsm,T to Hsm,T . Let us show that Hsm,T is continuously embedded in

Lq(0, T )N for any q ≤ 2]s and compactly in Lq(0, T )N for any q < 2]s.

By Proposition 2.1 in [5], we know that there exists a constant C2]s
> 0 such

that

(2.10) |u|
L2
]
s (0,T )N

≤ C2]s

( ∑
|k|≥1

ω2s|k|2s|ck|2
)1/2

for any u ∈ C∞T (RN ) such that (1/TN )
∫

(0,T )N
u(x) dx = 0. As a consequence,

fixed 2 ≤ q ≤ 2]s, we have

(2.11) |u|Lq(0,T )N ≤ C
( ∑
k∈ZN

|ck|2(ω2|k|2 +m2)s
)1/2

for any u ∈ Hsm,T , that is Hsm,T is continuously embedded in Lq(0, T )N for any

2 ≤ q ≤ 2]s. Now, we proceed as the proof of Theorem 4 in [3] to prove that
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Hsm,T b Lq(0, T )N for any 2 ≤ q < 2]s. Fix q ∈ [2, 2]s). Then, by (2.11) and the

interpolation inequality, we obtain

(2.12) |u|Lq(0,T )N ≤ C|u|θL2(0,T )N

( ∑
k∈ZN

|ck|2(ω2|k|2 +m2)s
)1−θ

,

for some real positive number θ ∈ (0, 1).

Now, taking into account (2.12), it is enough to prove that Hsm,T b L2(0, T )N

to infer that Hsm,T is compactly embedded in Lq(0, T )N for every q ∈ [2, 2]s). Let

us assume that uj ⇀ 0 in Hsm,T . Then

lim
j→∞

|cjk|
2(ω2|k|2 +m2)s = 0 for all k ∈ ZN ,(2.13) ∑

k∈ZN
|cjk|

2(ω2|k|2 +m2)s ≤ C for all j ∈ N.(2.14)

Fix ε > 0. Then there exists νε > 0 such that (ω2|k|2 +m2)−s < ε for |k| > νε.

By (2.14), we have∑
k∈ZN

|cjk|
2 =

∑
|k|≤νε

|cjk|
2 +

∑
|k|>νε

|cjk|
2

=
∑
|k|≤ν

|cjk|
2 +

∑
|k|>νε

|cjk|
2(ω2|k|2 +m2)s(ω2|k|2 +m2)−s

≤
∑
|k|≤νε

|cjk|
2 + Cε.

Using (2.13), we deduce that
∑
|k|≤νε |c

j
k|2 < ε for j large. Thus uj → 0 in

L2(0, T )N . �

We conclude this section with some elementary results on the nonlinearity f .

More precisely, by using the assumptions (f2)–(f4), one can deduce some bounds

from above and below for f and its primitive F . This part is quite standard

and the proofs of the two subsequent lemmas can be found, for instance, in [1]

and [24].

Lemma 2.3. Let f : [0, T ]N × R → R satisfy conditions (f1)–(f3). Then, for

any ε > 0, there exists Cε > 0 such that

|f(x, t)| ≤ 2ε|t|+ (p+ 1)Cε|t|p for all t ∈ R and all x ∈ [0, T ]N ,(2.15)

|F (x, t)| ≤ ε|t|2 + Cε|t|p+1 for all t ∈ R and all x ∈ [0, T ]N .(2.16)

Lemma 2.4. Assume that f : [0, T ]N × R → R satisfies conditions (f1)–(f4).

Then, there exist two constants a3 > 0 and a4 > 0 such that

F (x, t) ≥ a3|t|µ − a4 for all t ∈ R and all x ∈ [0, T ]N .



Periodic Solutions for the Non-Local Operator (−∆ +m2)s −m2s 85

3. Extension problem

In this section we show that to study (1.1) it is equivalent to investigate the

solutions of a problem in a half-cylinder with a Neumann nonlinear boundary

condition. We start with

Theorem 3.1. Let u ∈ Hsm,T . Then there exists a unique v ∈ Xsm,T such

that

(3.1)


−div(y1−2s∇v) +m2y1−2sv = 0 in ST ,
v|{xi=0} = v|{xi=T} on ∂LST ,
v( · , 0) = u on ∂0ST ,

and

(3.2) − lim
y→0

y1−2s ∂v

∂y
(x, y) = κs(−∆x +m2)su(x) in H−sm,T ,

where

H−sm,T =

{
u =

∑
k∈ZN

ck
eıωk·x√
TN

:
|ck|2

(ω2|k|2 +m2)s
<∞

}
is the dual of Hsm,T .

Proof. Let u =
∑
k∈ZN

cke
ıωk·x/

√
TN ∈ C∞T (RN ). Consider the following

problem:

(3.3) min
{
||v||2Xsm,T : v ∈ Xsm,T , Tr(v) = u

}
.

By Theorem 2.2, we can find a minimizer to (3.3). Since || · ||2Xsm,T is strictly

convex, such minimizer is unique and we denote it by v. As a consequence, for

any φ ∈ Xsm,T such that Tr(φ) = 0,

(3.4)

∫∫
ST
y1−2s(∇v∇φ+m2vφ) dx dy = 0,

that is v is a weak solution to (3.1). Since the function defined in (2.8) is

a solution to (3.1), by the uniqueness of minimizer, we deduce that v is given by

v(x, y) =
∑
k∈ZN

ckθk(y)
eıωk·x√
TN

,

where θk(y) = θ(
√
ω2|k|2 +m2y). In particular, by (2.9), we have

||v||Xsm,T =
√
κs|u|Hsm,T .



86 V. Ambrosio

Then∣∣∣∣− y1−2s ∂v

∂y
(·, y)− κs(−∆ +m2)su

∣∣∣∣2
H−sm,T

=
∑
k∈ZN

1

(ω2|k|2 +m2)s
|ck|2

∣∣∣√ω2|k|2 +m2θ′k(y)y1−2s + κs(ω
2|k|2 +m2)s

∣∣∣2
=
∑
k∈ZN

(ω2|k|2 +m2)s|ck|2
∣∣∣[(ω2|k|2 +m2)y

]1−2s
θ′k(y) + κs

∣∣∣2
and, by using u ∈ Hsm,T , −y1−2sθ′(y) → κs as y → 0 and 0 < −κsy1−2sθ′(y) ≤
Bs for any y ≥ 0 (see [17]), we deduce (3.2). �

Therefore, for any given u ∈ Hsm,T , we can find a unique function v = Ext(u)

in Xsm,T , which will be called the extension of u, such that

(a) v is smooth for y > 0, T -periodic in x and v solves (3.1).

(b) ||v||Xsm,T ≤ ||z||Xsm,T for any z ∈ Xsm,T such that Tr(z) = u.

(c) ||v||Xsm,T =
√
κs|u|Hsm,T .

(d) We have

lim
y→0
−y1−2s ∂v

∂y
(x, y) = κs(−∆ +m2)su(x) in H−sm,T .

Now, modifying the proof of Lemma 2.2 in [13], we deduce

Theorem 3.2. Let g ∈ H−sm,T . Then, there is a unique solution to the prob-

lem:

find u ∈ Hsm,T such that (−∆ +m2)su = g.

Moreover, u is the trace of v ∈ Xsm,T , where v is the unique solution to (1.3),

that is for every φ ∈ Xsm,T it holds∫∫
ST
y1−2s(∇v∇φ+m2vφ) dx dy = κs〈g,Tr(φ)〉H−sm,T ,Hsm,T .

Taking into account the previous results we can reformulate the non-local

problem (1.1) in a local way as explained below.

Let g ∈ H−sm,T and consider the following two problems:

(3.5)

(−∆x +m2)su = g in (0, T )N ,

u(x+ Tei) = u(x) for x ∈ RN

and

(3.6)


−div(y1−2s∇v) +m2y1−2sv = 0 in ST ,
v|{xi=0} = v|{xi=T} on ∂LST ,
∂v

∂ν1−2s
= g(x) on ∂0ST .
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Definition 3.3. We say that u ∈ Hsm,T is a weak solution to (3.5) if u = Tr(v)

and v is a weak solution to (3.6).

Remark 3.4. Later, with abuse of notation, we will denote by v( · , 0) the

trace Tr(v) of a function v ∈ Xsm,T .

We conclude this section giving the proof of the following sharp trace in-

equality:

Theorem 3.5. For any v ∈ Xsm,T we have

(3.7) κs|Tr(v)|2Hsm,T ≤ ||v||
2
Xsm,T

and the equality is attained if and only if v = Ext(Tr(v)). In particular,

(3.8) ||v||2Xsm,T − κsm
2s|Tr(v)|2L2(0,T )N = 0

⇔ v(x, y) = C θ(my) for some C ∈ R.

Proof. By properties (b) and (c), for any v ∈ Xsm,T

κs|Tr(v)|2Hsm,T = ||Ext Tr(v)||2Xsm,T ≤ ||v||
2
Xsm,T

,

and the equality holds if and only if v = Ext Tr(v).

Now, we prove (3.8). We denote by ck the Fourier coefficients of Tr(v). If

v(x, y) = Cθm(y) := Cθ(my) for some C ∈ R, as θ(0) = 1, we have

||v||2Xsm,T = C2TN
∫ +∞

0

y1−2s(|θ′m(y)|2 +m2|θm(y)|2) dy

= C2TNm2s

∫ +∞

0

y1−2s(|θ′(y)|2 +m2|θ(y)|2) dy

= C2TNm2sκs = m2sκs|Tr(v)|2L2(0,T )N .

Now, assume that ||v||2Xsm,T − κsm
2s|Tr(v)|2L2(0,T )N = 0. By (b) and (c),

||Ext Tr(v)||2Xsm,T ≤ ||v||
2
Xsm,T

= κsm
2s|Tr(v)|2L2(0,T )N(3.9)

≤ κs|Tr(v)|2Hsm,T = ||Ext Tr(v)||2Xsm,T
that is

||v||2Xsm,T = ||Ext Tr(v)||2Xsm,T = κsm
2s|Tr(v)|2L2(0,T )N .

Let us note that ||v||2Xsm,T = ||Ext Tr(v)||2Xsm,T implies v = Ext(Tr(v)). In parti-

cular, from

κsm
2s|Tr(v)|2L2(0,T )N = ||Ext Tr(v)||2Xsm,T = κs|Tr(v)|2Hsm,T

we obtain that ck = 0 for any k 6= 0, so we get

v = Ext(Tr(v)) =
∑
k∈ZN

ckθ(
√
ω2|k|2 +m2y)eık·x = c0θ(my). �
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4. Periodic solutions in the cylinder ST

In this section we prove the existence of a solution to (1.1). As shown in the

previous section, we know that the study of (1.1) is equivalent to investigate the

existence of weak solutions to

(4.1)


−div(y1−2s∇v) +m2y1−2sv = 0 in ST := (0, T )N × (0,∞),

v|{xi=0} = v|{xi=T} on ∂LST := ∂(0, T )N × [0,∞),

∂v

∂ν1−2s
= κs[m

2sv + f(x, v)] on ∂0ST := (0, T )N × {0}.

For simplicity, we will assume that κs = 1. Then, we will look for the critical

points of

Jm(v) =
1

2
||v||2Xsm,T −

m2s

2
|v( · , 0)|2L2(0,T )N −

∫
∂0ST

F (x, v) dx

defined for v ∈ Xsm,T . More precisely, we will prove that Jm satisfies the as-

sumptions of the Linking Theorem [24]:

Theorem 4.1. Let (X, || · ||) be a real Banach space with X = Y ⊕Z, where

Y is finite dimensional. Let J ∈ C1(X,R) be a functional satisfying the following

conditions:

(a) J satisfies the Palais–Smale condition.

(b) There exist η, ρ > 0 such that J(v) ≥ ρ for all v ∈ Z such that ||v|| = η.

(c) There exist z ∈ ∂B1 ∩ Z, R > η and R′ > 0 such that J ≤ 0 on ∂A,

where

A = {v = y + rz : y ∈ Y, ||y|| ≤ R′ and 0 ≤ r ≤ R},

∂A = {v = y + rz : y ∈ Y, ||y|| = R′ or r ∈ {0, R}}.

Then J possesses a critical value c ≥ ρ which can be characterized as

c := inf
γ∈Γ

max
v∈A

J(γ(v)),

where Γ :=
{
γ ∈ C(A, X) : γ = Id on ∂A

}
.

Due to the assumptions on f , it is easy to prove that Jm is well-defined on

Xsm,T and Jm ∈ C1(Xsm,T ,R). Moreover, by (3.7), we notice that the quadratic

part of Jm is nonnegative, that is

(4.2) ||v||2Xsm,T −m
2s|v( · , 0)|2L2(0,T )N ≥ 0.

Let us note that

Xsm,T = 〈θ(my)〉 ⊕
{
v ∈ Xsm,T :

∫
(0,T )N

v(x, 0) dx = 0

}
=: Ysm,T ⊕ Zsm,T ,
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where dimYsm,T < ∞ and Zsm,T is the orthogonal complement of Ysm,T with

respect to the inner product in Xsm,T . In order to prove that Jm verifies the

linking hypotheses we need the following results.

Lemma 4.2. Jm ≤ 0 on Ysm,T .

Proof. It follows directly from (3.8) and assumption (f6). �

Lemma 4.3. There exist ρ > 0 and η > 0 such that

Jm(v) ≥ ρ for v ∈ Zsm,T such that ||v||Xsm,T = η.

Proof. Firstly we show that there exists a constant C > 0 such that

||v||2Xsm,T −m
2s|v(·, 0)|2L2(0,T )N ≥ C||v||

2
Xsm,T

(4.3)

for any v ∈ Zsm,T . Assume, by contradiction, that there exists a sequence (vj) ⊂
Zsm,T such that

||vj ||2Xsm,T −m
2s|vj( · , 0)|2L2(0,T )N <

1

j
||vj ||2Xsm,T .

Let zj = vj/||vj ||Xsm,T . Then ||zj ||Xsm,T = 1, so we can assume that zj ⇀ z in

Xsm,T and zj( · , 0) → z( · , 0) in L2(0, T )N for some z ∈ Zsm,T (Zsm,T is weakly

closed). Hence, for any j ∈ N

1−m2s|zj( · , 0)|2L2(0,T )N <
1

j
,

so we get |zj( · , 0)|2L2(0,T )N → 1/m2s that is |z( · , 0)|L2(0,T )N = 1/ms.

On the other hand,

0 ≤ ||z||2Xsm,T−m
2s|z( · , 0)|2L2(0,T )N ≤ lim inf

j→∞
||zj ||2Xsm,T −m

2s|zj(·, 0)|2L2(0,T )N = 0

implies that z = cθ(my) by (3.8). But z ∈ Zsm,T , so c = 0 and this is a contra-

diction because of |z( · , 0)|L2(0,T )N = 1/ms > 0.

Taking into account (4.3), (2.16) and Theorem 2.2, we have

Jm(v) ≥ C||v||2Xsm,T − ε|v( · , 0)|2L2(0,T )N − Cε|v( · , 0)|p+1
Lp+1(0,T )N

≥
(
C − ε

m

)
||v||2Xsm,T − C||v||

p+1
Xsm,T

for any v ∈ Zsm,T . Choosing ε ∈ (0,mC), we can find ρ > 0 and η > 0 such that

inf
{
Jm(v) : v ∈ Zsm,T and ||v||Xsm,T = η

}
≥ ρ. �

Lemma 4.4. There exist R > η, R′ > 0 and z ∈ Zsm,T such that

max
∂Asm,T

Jm(v) ≤ 0 and max
Asm,T

Jm(v) <∞,

where Asm,T =
{
v = y + rz : ||y||Xsm,T ≤ R

′ and r ∈ [0, R]
}

.
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Proof. From Lemma 4.2 we know that Jm ≤ 0 on Ysm,T . Let us consider

w =

N∏
i=1

sin(ωxi)
1

y + 1
.

Note that w ∈ Zsm,T (since
∫ T

0
sin(ωx) dx = 0) and

||w||2Xsm,T =N

(N−1∏
i=1

∫ T

0

sin2(ωx) dx

)
ω2

·
(∫ T

0

cos2(ωx) dx

)(∫ ∞
0

y1−2s dy

(y + 1)2

)
+

( N∏
i=1

∫ T

0

sin2(ωx) dx

)(∫ ∞
0

y1−2s dy

(y + 1)4

)

+m2

( N∏
i=1

∫ T

0

sin2(ωx) dx

)(∫ ∞
0

y1−2s dy

(y + 1)2

)
.

So there exist C1, C2, C3 > 0 (independent of m) such that

(4.4) C1 ≤ ||w||2Xsm,T ≤ C2 +m2C3.

Set z = w/||w||Xsm,T . It is clear that z ∈ Zsm,T and ||z||Xsm,T = 1.

By the Hölder inequality, we can observe that if v = y + rz ∈ Ysm,T ⊕ R+z

|v( · , 0)|µ
Lµ(0,T )N

≥ C|v( · , 0)|µ
L2(0,T )N

= C

(∫
(0,T )N

(c+ rz)2 dx

)µ/2
≥ C ′(m2sc2TN + r2)µ/2.

Then, for any v = y + rz ∈ Ysm,T ⊕ R+z,

Jm(v) =
1

2
||z||2Xsm,T −

m2s

2
|z( · , 0)|2L2(0,T )N −

∫
∂0ST

F (x, v) dx

≤ r2

2
−A|v( · , 0)|µ

Lµ(0,T )N
+BTN

≤ r2

2
− C ′′(m2sc2TN + r2)µ/2 +BTN(4.5)

≤ (m2sc2TN + r2)− C ′′(m2sc2TN + r2)µ/2 +BTN(4.6)

= ||v||2Xsm,T − E||v||
µ
Xsm,T

+ F.(4.7)

Recall that µ > 2. By (4.5), there exists R > 0 such that

Jm(y + rz) ≤ 0 for any r ≥ R and y ∈ Ysm,T .

Let r ∈ [0, R]. By (4.6), we can find R′ > 0 such that Jm(y + rz) ≤ 0 for

||y||Xsm,T ≥ R
′. By (4.7), we deduce that there exists a constant δ > 0 such that

Jm(v) ≤ δ for any v ∈ Asm,T . �



Periodic Solutions for the Non-Local Operator (−∆ +m2)s −m2s 91

Finally, we show that Jm satisfies the Palais–Smale condition:

Lemma 4.5. Let c ∈ R. Let (vj) ⊂ Xsm,T be a sequence such that

(4.8) Jm(vj)→ c and J ′m(vj)→ 0.

Then there exist a subsequence (vjh) ⊂ (vj) and v ∈ Xsm,T such that vjh → v

in Xsm,T .

Proof. We start proving that (vj) is bounded in Xsm,T . Fix β ∈ (1/µ, 1/2).

By Lemma 2.3 with ε = 1, we get

(4.9)

∣∣∣∣ ∫
∂0ST∩{|vj |≤r0}

(βf(x, vj)vj − F (x, vj)) dx

∣∣∣∣
≤ ((2β + 1)r2

0 + C1(p+ 2)rp+1
0 )TN = ι1

and

(4.10)

∣∣∣∣ ∫
∂0ST∩{|vj |≤r0}

F (x, vj) dx

∣∣∣∣ ≤ (r2
0 + C1r

p+1
0

)
TN = ι2.

Taking into account Lemma 2.4, (f5), (4.2), (4.8)–(4.10), we have for j large

enough

c+ 1 + ||vj ||Xsm,T ≥ Jm(vj)− β〈J ′(vj), vj〉

=

(
1

2
− β

)[
||vj ||2Xsm,T −m

2s|vj(·, 0)|2L2(0,T )N

]
+

∫
∂0ST

[βf(x, vj)vj − F (x, vj)] dx

≥
∫
∂0ST

[βf(x, vj)vj − F (x, vj)] dx

=

∫
∂0ST∩{|vn|≥r0}

[βf(x, vj)vj − F (x, vj)] dx

+

∫
∂0ST∩{|vn|≤r0}

[βf(x, vj)vj − F (x, vj)] dx

≥ (µβ − 1)

∫
∂0ST∩{|vj |≥r0}

F (x, vj) dx− ι1

≥ (µβ − 1)

∫
∂0ST

F (x, vj) dx− (µβ − 1)ι2 − ι1

= (µβ − 1)

∫
∂0ST

F (x, vj) dx− ι(4.11)

≥ (µβ − 1)
[
a3|vj( · , 0)|µ

Lµ(0,T )N
− a4T

N
]
− ι

≥ (µβ − 1)
[
a3|vj( · , 0)|µ

L2(0,T )N
T−N(µ−2)/2 − a4T

N
]
− ι.(4.12)
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Hence, by (4.11) and (4.12), we deduce that

||vj ||2Xsm,T = 2Jm(vj) +m2s|vj( · , 0)|2L2(0,T )N + 2

∫
∂0ST

F (x, vj) dx

≤ C1 + C2

(
C3 + 1 + ||vj ||Xsm,T

)2/µ
+ C4

(
C5 + 1 + ||vj ||Xsm,T

)
≤ C6 + C7||vj ||Xsm,T

that is (vj) is bounded in Xsm,T .

By Theorem 2.1, we can assume, up to a subsequence, that

vj ⇀ v in Xsm,T ,

vj( · , 0)→ v( · , 0) in Lp+1(0, T )N ,(4.13)

vj( · , 0)→ v( · , 0) a.e. in (0, T )N

as j →∞ and there exists h ∈ Lp+1(0, T )N such that

(4.14) |vj(x, 0)| ≤ h(x) a.e. in x ∈ (0, T )N , for all j ∈ N.

Taking into account (f2), (f4), (4.13), (4.14) and the Dominated Convergence

Theorem, we get

(4.15)

∫
∂0ST

f(x, vj)vj dx→
∫
∂0ST

f(x, v)v dx

and

(4.16)

∫
∂0ST

f(x, vj)v dx→
∫
∂0ST

f(x, v)v dx

as j → ∞. Due to (4.8) and boundedness of (vj)j∈N in Xsm,T , we deduce that

〈J ′m(vj), vj〉 → 0, that is

(4.17) ||vj ||2Xsm,T −m
2s|vj( · , 0)|2L2(0,T )N −

∫
∂0ST

f(x, vj)vj dx→ 0

as j →∞. By (4.13), (4.15) and (4.17) we have

(4.18) ||vj ||2Xsm,T → m2s|v( · , 0)|2L2(0,T )N −
∫
∂0ST

f(x, v)v dx.

Moreover, by (4.8) and v ∈ Xsm,T , we have 〈J ′m(vj), v〉 → 0 as j →∞, that is

(4.19) 〈vj , v〉Xsm,T −m
2s〈vj , v〉L2(0,T )N −

∫
∂0ST

f(x, vj)v dx→ 0.

Taking into account (4.13), (4.14), (4.16) and (4.19), we obtain

(4.20) ||v||2Xsm,T = m2s|v( · , 0)|2L2(0,T )N −
∫
∂0ST

f(x, v)v dx.

Thus, (4.18) and (4.20) imply that

(4.21) ||vj ||2Xsm,T → ||v||
2
Xsm,T

as j →∞.
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Since Xsm,T is a Hilbert space, we have

||vj − v||2Xsm,T = ||vj ||2Xsm,T + ||v||2Xsm,T − 2〈vj , v〉Xsm,T

and, due to vj ⇀ v in Xsm,T and (4.21), we can conclude that vj → v in Xsm,T ,

as j →∞. �

Proof of Theorem 1.1. Taking into account Lemmas 4.2–4.5, by Theorem

4.1, we deduce that for any fixed m > 0, there exists of a function vm ∈ Xsm,T
such that Jm(vm) = αm, J ′m(vm) = 0, where

(4.22) αm = inf
γ∈Γm

max
v∈Asm,T

Jm(γ(v))

and Γm =
{
γ ∈ C(Asm,T ,Xsm,T ) : γ = Id on ∂Asm,T

}
. �

Remark 4.6. Let us observe that an easy consequence of Theorem 1.1 is the

existence of infinitely many distinct T -periodic solutions to (1.1). To prove it,

one can proceed as in the proof of [24, Corollary 6.44].

5. Regularity of solutions to (1.1)

In this section we study the regularity of weak solutions to problem (1.1).

Lemma 5.1. Let v ∈ Xsm,T be a weak solution to

(5.1)


−div(y1−2s∇v) +m2y1−2sv = 0 in ST ,
v|{xi=0} = v|{xi=T} on ∂LST ,
∂v

∂ν1−2s
= m2sv + f(x, v) on ∂0ST .

Then v( · , 0) ∈ Lq(0, T )N for all q <∞.

Proof. We proceed as in the proof of Lemma 7 in [3]. Since v is a critical

point for Jm, we know that

(5.2)

∫∫
ST
y1−2s(∇v∇η +m2vη) dx, dy =

∫
∂0
(
ST
m2svη + f(x, v)η

)
dx

for all η ∈ XmT . Let w = vv2β
K ∈ Xsm,T , where vK = min{|v|,K}, K > 1 and

β ≥ 0. Taking η = w in (5.2), we deduce that

(5.3)

∫∫
ST
y1−2sv2β

K (|∇v|2 +m2v2) dx dy +

∫∫
DK,T

2βy1−2sv2β
K |∇v|

2 dx dy

= m2s

∫
∂0ST

v2v2β
K dx+

∫
∂0ST

f(x, v)vv2β
K dx,

where DK,T = {(x, y) ∈ ST : |v(x, y)| ≤ K}.
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It is easy to see that

(5.4)

∫∫
ST
y1−2s|∇(vvβK)|2 dx dy

=

∫∫
ST
y1−2sv2β

K |∇v|
2 dx dy +

∫∫
DK,T

(2β + β2)y1−2sv2β
K |∇v|

2 dx dy.

Then, putting together (5.3) and (5.4), we get

||vvβK ||
2
Xsm,T

=

∫∫
ST
y1−2s

[
|∇(vvβK)|2 +m2v2v2β

K

]
dx dy(5.5)

=

∫∫
ST
y1−2sv2β

K

[
|∇v|2 +m2v2

]
dx dy

+

∫∫
DK,T

2β

(
1 +

β

2

)
y1−2sv2β

K |∇v|
2 dx dy

≤ cβ
[ ∫∫

ST
y1−2sv2β

K

[
|∇v|2 +m2v2

]
dx dy

+

∫∫
DK,T

2βy1−2sv2β
K |∇v|

2 dx dy

]
= cβ

∫
∂0ST

(
m2sv2v2β

K + f(x, v)vv2β
K

)
dx,

where cβ = 1 + β/2. By Lemma 2.3 with ε = 1, we deduce that

m2sv2v2β
K + f(x, v)vv2β

K ≤ (m2s + 2)v2v2β
K + (p+ 1)C1|v|p−1v2v2β

K

on ∂0ST . Now, we prove that |v|p−1 ≤ 1+h on ∂0ST for some h ∈ LN/2s(0, T )N .

Firstly, we observe that

|v|p−1 = χ{|v|≤1}|v|p−1 + χ{|v|>1}|v|p−1 ≤ 1 + χ{|v|>1}|v|p−1 on ∂0ST .

If (p− 1)N < 4s then∫
∂0ST

χ{|v|>1}|v|N(p−1)/(2s) dx ≤
∫
∂0ST

χ{|v|>1}|v|2 dx <∞

while if 4s ≤ (p−1)N we have that (p−1)N/(2s) ∈ [2, 2N/(N − 2s)]. Therefore,

there exist a constant c = m2s + 2 + (p+ 1)C1 and a function h ∈ LN/2s(0, T )N ,

h ≥ 0 and independent of K and β, such that

(5.6) m2sv2v2β
K + f(x, v)vv2β

K ≤ (c+ h)v2v2β
K on ∂0ST .

Taking into account (5.5) and (5.6), we have

||vvβK ||
2
Xsm,T

≤ cβ
∫
∂0ST

(c+ h)v2v2β
K dx,
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and, by the Monotone Convergence Theorem (vK is increasing with respect to

K), we have as K →∞

(5.7) |||v|β+1||2Xsm,T ≤ ccβ
∫
∂0ST

|v|2(β+1) dx+ cβ

∫
∂0ST

h|v|2(β+1) dx.

Fix M > 0 and let A1 = {h ≤M} and A2 = {h > M}. Then

(5.8)

∫
∂0ST

h|v( · , 0)|2(β+1) dx

≤M ||v( · , 0)|β+1|2L2(0,T )N + ε(M)||v( · , 0)|β+1|2
L2] (0,T )N

,

where

ε(M) =

(∫
A2

hN/2s dx

)2s/N

→ 0 as M →∞.

Taking into account (5.7), (5.8), we get

(5.9) |||v|β+1||2Xsm,T
≤ cβ(c+M)||v( · , 0)|β+1|2L2(0,T )N + cβε(M)||v( · , 0)|β+1|2

L2
]
s (0,T )N

.

By Theorem 2.2, we know that there exists a constant C2
2]s,m

> 0 such that

(5.10) ||v( · , 0)|β+1|2
L2
]
s (0,T )N

≤ C2
2]s,m
|||v|β+1||2Xsm,T .

Then, choosing M large enough so that ε(M)cβC
2
2],m < 1/2, by (5.9) and (5.10),

we obtain

(5.11) ||v( · , 0)|β+1|2
L2
]
s (0,T )N

≤ 2C2
2]s,m

cβ(c+M)||v( · , 0)|β+1|2L2(0,T )N .

Then we can start a bootstrap argument: since v( · , 0) ∈ L2N/(N−2s) we can

apply (5.11) with β1 + 1 = N/(N − 2s) to deduce that

v( · , 0) ∈ L(β1+1)2N/(N−2s)(0, T )N = L2N2/(N−2s)2(0, T )N .

Applying (5.11) again, after k iterations we find v( · , 0) ∈ L2Nk/(N−2s)k(0, T )N ,

and so v( · , 0) ∈ Lq(0, T )N for all q ∈ [2,∞). �

Theorem 5.2. Let v ∈ Xsm,T be a weak solution to

(5.12)


−div(y1−2s∇v) +m2y1−2sv = 0 in ST ,
v|{xi=0} = v|{xi=T} on ∂LST ,
∂v

∂ν1−2s
= κs[m

2sv + f(x, v)] on ∂0ST .

Let us assume that v is extended by periodicity to the whole RN+1
+ . Then v( · , 0) ∈

C0,α(RN ) for some α ∈ (0, 1).

Proof. It is clear that v ∈ H1
m(A × R+, y

1−2s) for any bounded domain

A ⊂ RN . By Lemma 5.1 here and Proposition 3.5 in [18], the statement follows.�
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6. Passage to the limit as m→ 0

In this last section, we give the proof of Theorem 1.2. We verify that it is

possible to take the limit in (1.3) as m → 0 so that we deduce the existence

of a nontrivial weak solution to (1.4). In particular, we will prove that such

solution is Hölder continuous. We remark that in Section 4 we proved that for

any m > 0 there exists vm ∈ Xsm,T such that

Jm(vm) = αm and J ′m(vm) = 0,(6.1)

where αm is defined in (4.22). In order to attain our aim, we estimate from

above and below the critical levels of the functional Jm independently of m.

Let us assume that 0 < m < m0 := 1/2C2
2]s

, where C2]s
is the Sobolev

constant which appears in (2.10). We start proving that there exists a positive

constant δ independent of m such that

(6.2) αm ≤ δ for all 0 < m < m0.

Due to (4.4) and m < m0, we know that

C1 ≤ ||z||2Xsm,T ≤ C2 +m2
0C3.

Moreover (see Lemma 4.4), we have for any v = y + rz ∈ Ysm,T ⊕ R+z

|v( · , 0)|µ
Lµ(0,T )N

≥ T−N(µ−2)/2|v( · , 0)|µ
L2(0,T )N

(6.3)

= T−N(µ−2)/2

(∫
(0,T )N

(c+ rz)2 dx

)µ/2
≥ T−N(µ−2)/2

(
c2TN +

(
T

2

)N
r2

||z||2Xsm,T

)µ/2
≥ T−N(µ−2)/2 min

{
1

m2s
0

,
(T/2)N

C2 +m2
0C3

}
(m2sc2TN + r2)µ/2

= C||v||µXsm,T
for some C = C(m0, T,N, s) > 0. Then, for any v = y + rz ∈ Ysm,T ⊕ R+z and

0 < m < m0 we get

Jm(v) =
1

2
||v||2Xsm,T −

m2s

2
|v( · , 0)|2L2(0,T )N −

∫
∂0ST

F (x, v) dx(6.4)

≤ 1

2
||v||2Xsm,T −A|v( · , 0)|µ

Lµ(0,T )N
+B TN

= ||v||2Xsm,T − C||v||
µ
Xsm,T

+D ≤ δ,

where A,B,C,D, δ > 0 are independent of m.

Now we prove that there exists λ > 0 independent of m such that

(6.5) αm ≥ λ for all 0 < m < m0.



Periodic Solutions for the Non-Local Operator (−∆ +m2)s −m2s 97

Let v ∈ Zsm,T and ε > 0. We denote by ck the Fourier coefficients of the trace

of v. By (2.10) and (3.7) (with κs = 1),

(6.6) |v|Lq(0,T )N ≤ C2]s

( ∑
|k|≥1

ω2s|k|2s|ck|2
)1/2

≤ C2]s
|v|Hsm,T ≤ C2]s

||v||Xsm,T

for any q ∈ [2, 2]s]. By Lemma 2.3 and (6.6), we can see that for every 0 < m <

m0

Jm(v) =
1

2

∫∫
ST
y1−2s(|∇v|2 +m2v2) dx dy

− m2s

2

∫
∂0ST

|v|2 dx−
∫
∂0ST

F (x, v) dx

≥ 1

2
||v||2Xsm,T −

(
m

2
+ ε

)
|v( · , 0)|2L2(0,T )N − Cε|v( · , 0)|p+1

Lp+1(0,T )N

≥
[

1

2
− C2

2]s

(
m

2
+ ε

)]
||v||2XmT − CεC

p+1

2]s
||v||p+1

Xsm,T

≥
(

1

4
− C2

2]s
ε

)
||v||2Xsm,T − C

′
ε||v||

p+1
Xsm,T

.

Choosing 0 < ε < 1/(4C2
2]s

), we have that b := 1/4 − C2
2]s
ε > 0. Let ρ :=

(b/(2C ′b))
1/(p−1). Then, for every v ∈ Zsm,T such that ||v||Xsm,T = ρ,

Jm(v) ≥ bρ2 − C ′b ρp+1 =
b

2

(
b

2C ′b

)2/(p−1)

=: λ.

Therefore, taking into account (6.2) and (6.5), we deduce that

(6.7) λ ≤ αm ≤ δ for every 0 < m < m0.

Now, we estimate the H1
loc(ST , y1−2s)-norm of vm in order to pass to the

limit in (1.3) as m→ 0. Fix β ∈ (1/µ, 1/2). By (6.1) and (6.7), we have for any

m ∈ (0,m0)

δ ≥Jm(vm)− β〈J ′m(vm), vm〉

=

(
1

2
− β

)[
||vm||2Xsm,T −m

2s|vm( · , 0)|2L2(0,T )N

]
(6.8)

+

∫
∂0ST

[βf(x, vm)vm − F (x, vm)] dx

≥
∫
∂0ST

[βf(x, vm)vm − F (x, vm)] dx

≥ (µβ − 1)

∫
∂0ST

F (x, vm) dx− κ̃(6.9)

≥ (µβ − 1)
[
a3|vm( · , 0)|µ

Lµ(0,T )N
− a4T

N
]
− κ̃

≥ (µβ − 1)
[
a3|vm( · , 0)|µ

L2(0,T )N
T−N(µ−2)/2 − a4T

N
]
− κ̃.(6.10)
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By (6.10), we deduce that the trace of vm is bounded in L2(0, T )N

(6.11) |vm( · , 0)|L2(0,T )N ≤ K(δ) for every m ∈ (0,m0).

Taking into account (6.1), (6.7), (6.9) and (6.11), we deduce

||∇vm||2L2(ST ,y1−2s) ≤ ||vm||
2
Xsm,T

(6.12)

= 2Jm(vm) +m|vm(·, 0)|2L2(0,T )N + 2

∫
∂0ST

F (x, vm) dx

≤ 2δ +
ω

2
K(δ) + C(δ) =: K ′(δ).

Now, let cmk be the Fourier coefficients of the trace of vm. By (3.7), we can see

that

(6.13) K ′(δ) ≥ ||vm||2Xsm,T ≥ |vm( · , 0)|2Hsm,T ≥
∑
k∈ZN

ω2s|k|2s|cmk |2,

which, together with (6.11), implies that

(6.14) |vm( · , 0)|HsT ≤ K
′′(δ) for every m ∈ (0,m0),

that is Tr(vm) is bounded in HsT .

Finally, we estimate the L2
loc(ST , y1−2s)-norm of vm uniformly in m. Fix

α > 0 and let v ∈ C∞T (RN+1
+ ) be such that ||vm||Xsm,T <∞. For any x ∈ [0, T ]N

and y ∈ [0, α], we have

v(x, y) = v(x, 0) +

∫ y

0

∂yv(x, t) dt.

Due to (a+ b)2 ≤ 2a2 + 2b2 for all a, b ≥ 0, we obtain

|v(x, y)|2 ≤ 2|v(x, 0)|2 + 2

(∫ y

0

|∂yv(x, t)| dt
)2

,

and, applying the Hölder inequality, we deduce

(6.15) |v(x, y)|2 ≤ 2

[
|v(x, 0)|2 +

(∫ y

0

t1−2s|∂yv(x, t)|2 dt
)
y2s

2s

]
.

Multiplying both sides by y1−2s, we have

(6.16) y1−2s|v(x, y)|2 ≤ 2

[
y1−2s|v(x, 0)|2 +

(∫ y

0

t1−2s|∂yv(x, t)|2 dt
)
y

2s

]
.

Integrating (6.16) over (0, T )N × (0, α), we have

(6.17) ||v||2L2((0,T )N×(0,α),y1−2s)

≤ α2−2s

1− s
|v( · , 0)|2L2(0,T )N +

α2

2s
||∂yv||2L2(ST ,y1−2s).
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By density, the above inequality holds for any v ∈ Xsm,T . Then, by (6.17), (6.11)

and (6.12), for any 0 < m < m0, we have

||vm||2L2((0,T )N×(0,α),y1−2s) ≤
α2−2s

1− s
|vm( · , 0)|2L2(0,T )N +

α2

2s
||∂yvm||2L2(ST ,y1−2s)

≤ C(α, s)K(δ)2 + C ′(α, s)K ′(δ).

As a consequence, we can extract a subsequence, that for simplicity we will

denote again with (vm), and a function v such that

• v ∈ L2
loc(ST , y1−2s) and ∇v ∈ L2(ST , y1−2s);

• vm ⇀ v in L2
loc(ST , y1−2s) as m→ 0;

• ∇vm ⇀ ∇v in L2(ST , y1−2s) as m→ 0;

• vm( · , 0) ⇀ v( · , 0) in HsT and vm( · , 0)→ v( · , 0) in Lq(0, T )N as m→ 0,

for any q ∈ [2, 2N/(N − 2s)).

Now we prove that v is a weak solution to

(6.18)


−div(y1−2s∇v) = 0 in ST := (0, T )N × (0,∞),

v|{xi=0} = v|{xi=T} on ∂LST := ∂(0, T )N × [0,∞),

∂v

∂ν1−2s
= f(x, v) on ∂0ST := (0, T )N × {0}.

Fix ϕ ∈ XsT . We know that vm satisfies

(6.19)

∫∫
ST
y1−2s(∇vm∇η +m2vmη) dx dy =

∫
∂0ST

[m2svm + f(x, vm)]η dx

for every η ∈ Xsm,T . Now, we consider ξ ∈ C∞([0,∞)) defined as follows:

(6.20)


ξ = 1 if 0 ≤ y ≤ 1,

0 ≤ ξ ≤ 1 if 1 ≤ y ≤ 2,

ξ = 0 if y ≥ 2.

We set ξR(y) = ξ(y/R) for R > 1. Then choosing η = ϕξR ∈ Xsm,T in (6.19) and

taking the limit as m→ 0, we have

(6.21)

∫∫
ST
y1−2s∇v∇(ϕξR) dx dy =

∫
∂0ST

f(x, v)ϕdx.

Taking the limit as R→∞, we deduce that v verifies∫∫
ST
y1−2s∇v∇ϕdx dy −

∫
∂0ST

f(x, v)ϕdx = 0 for all ϕ ∈ XsT .
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Now let us prove that v 6≡ 0. Let ξ ∈ C∞([0,∞)) as in (6.20), note that ξv ∈
Xsm,T . Then

0 = 〈J ′m(vm), ξv〉 =

∫∫
ST
y1−2s(∇vm∇(ξv) +m2vmξv) dx dy

−m2s

∫
∂0ST

vmv dx−
∫
∂0ST

f(x, vm)v dx

and, taking the limit as m→ 0, we get

(6.22) 0 =

∫∫
ST
y1−2s∇v∇(ξv) dx dy −

∫
∂0ST

f(x, v)v dx.

Due to (6.1), (6.7), 〈J ′m(vm), vm〉 = 0 and F ≥ 0, we have

2λ ≤ 2Jm(vm) +m2s|vm( · , 0)|2L2(0,T )N + 2

∫
∂0ST

F (x, vm) dx(6.23)

= ‖vm‖2XmT = m2s|vm( · , 0)|2L2(0,T )N +

∫
∂0ST

f(x, vm)vm dx.

Taking the limit in (6.23) as m→ 0, we obtain

(6.24) 2λ ≤
∫
∂0ST

f(x, v)v dx.

Hence, (6.22) and (6.24) give

0 < 2λ ≤
∫
∂0ST

f(x, v)v dx =

∫∫
ST
y1−2s∇v∇(ξv) dx dy,

that is v is not a trivial solution to (6.18).

Finally, we show that v ∈ C0,α([0, T ]N ), for some α ∈ (0, 1). We start proving

that v( · , 0) ∈ Lq(0, T )N for any q <∞. We proceed as in the proof of Lemma 5.1

and we use estimate (6.14). Let wm = vmv
2β
m,K , where vm,K = min{|vm|,K},

K > 1 and β ≥ 0. Then, replacing vv2β
K by vmv

2β
m,K in (5.5), we can see that

||vmvβm,K ||
2
Xsm,T

≤ cβ
∫

(0,T )N

[
m2sv2

mv
2β
m,K + f(x, vm)vmv

2β
m,K

]
dx,(6.25)

where cβ = 1 + β/2 ≥ 1. Using Lemma 2.3 with ε = 1, we get

m2sv2
mv

2β
m,K + f(x, vm)vmv

2β
m,K ≤ (m2s + 2)v2

mv
2β
m,K + (p+ 1)C1|vm|p−1v2v2β

m,K .

Since vm converges strongly in LN(p−1)/(2s)(0, T )N (because of N(p− 1)/(2s)

< 2]s), we can assume that, up to subsequences, there exists a function z in

LN(p−1)/(2s)(0, T )N such that |vm(x, 0)| ≤ z(x) in (0, T )N for every m < m0.

Therefore, there exist a constant c = m2s
0 + 2 + (p + 1)C1 and a function h :=

1 + zp−1 ∈ LN/(2s)(0, T )N , h ≥ 0 and independent of K, m and β such that

(6.26) m2sv2
mv

2β
m,K + f(x, vm)vmv

2β
m,K ≤ (c+ h)v2

mv
2β
m,K on ∂0ST .
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As a consequence

(6.27) ||vmvβm,K ||
2
Xsm,T

≤ cβ
∫

(0,T )N
(c+ h)v2

mv
2β
m,K dx.

Taking the limit as K →∞ (vm,K is increasing with respect to K), we get

(6.28) |||vm|β+1||2Xsm,T ≤ ccβ
∫

(0,T )N
|vm|2(β+1) dx+ cβ

∫
(0,T )N

h|vm|2(β+1) dx.

For any M > 0, let A1 = {h ≤M} and A2 = {h > M}. Then

(6.29)

∫
(0,T )N

h|vm( · , 0)|2(β+1) dx

≤M ||vm( · , 0)|β+1|2L2(0,T )N + ε(M)||vm( · , 0)|β+1|2
L2
]
s (0,T )N

,

where

ε(M) =

(∫
A2

hN/(2s) dx

)2s/N

→ 0 as M →∞.

Taking into account (6.28), (6.29), we have

(6.30) |||vm|β+1||2Xsm,T
≤ cβ(c+M)||vm(·, 0)|β+1|2L2(0,T )N + cβε(M)||vm( · , 0)|β+1|2

L2] (0,T )N
.

Now, by (2.10), we know that for every w ∈ C∞T (RN ) with mean zero, there

exists µ0 := C2]s
> 0 such that

(6.31) |w|
L2
]
s (0,T )N

≤ µ0

( ∑
|k|6=0

ω2s|k|2s|bk|2
)1/2

,

where bk are the Fourier coefficients of w. Therefore, if w ∈ C∞T (RN ) and

w :=
1

TN

∫
(0,T )N

w(x) dx,

by the Hölder inequality, we have

|w|
L2
]
s (0,T )N

≤ |w − w|
L2
]
s (0,T )N

+ |w|
L2
]
s (0,T )N

(6.32)

≤ µ0

(∑
|k|6=0

ω2s|k|2s|bk|2
)1/2

+ |w|
L2
]
s (0,T )N

≤ µ0

(∑
|k|6=0

ω2s|k|2s|bk|2
)1/2

+ µ1|w|2L2(0,T )N

≤ µ0|w|2Hsm,T + µ1|w|2L2(0,T )N ,
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where µ1 = T (N−2)/2 > 0. Taking into account (6.30), (6.32) and (3.7), we

deduce that

||vm( · ,0)|β+1|2
L2
]
s (0,T )N

− µ1||vm( · , 0)|β+1|2L2(0,T )N(6.33)

≤µ0||vm( · , 0)|β+1|2Hsm,T ≤ µ0|||vm|β+1||2Xsm,T
≤µ0

[
cβ(c+M)||vm( · , 0)|β+1|2L2(0,T )N

+ cβε(M)||vm( · , 0)|β+1|2
L2
]
s (0,T )N

]
.

Choosing M large enough so that cβµ0ε(M) < 1/2, by (6.33), we obtain

(6.34) ||vm( · , 0)|β+1|2
L2
]
s (0,T )N

≤ 2
[
µ0cβ(c+M) + µ1

]
||vm( · , 0)|β+1|2L2(0,T )N .

Let us notice that, by (6.14) and HsT ⊂ L2]s(0, T )N , we get

|vm( · , 0)|
L2
]
s (0,T )N

≤ K ′′′(δ),(6.35)

for any m < m0. By applying (6.34) with β + 1 = N/(N − 2s) (that is β =

2s/(N − 2s)) and by using (6.35), we have that

||vm|N/(N−2s)|2
L2
]
s (0,T )N

≤ 2
[
c2s/(N−2s)µ0(c+M) + µ1

]
K ′′′(δ)2N/(N−2s),

and taking the limit as m→ 0, we deduce v( · , 0) ∈ L2N2/(N−2s)2(0, T )N .

By (6.34), we find, after k iterations, that v( · , 0) in L2Nk/(N−2s)k(0, T )N

for all k ∈ N. Then v( · , 0) ∈ Lq(0, T )N for all q ∈ [2,∞), and by invoking

Proposition 3.5 in [18], we conclude that v ∈ C0,α([0, T ]N ), for some α ∈ (0, 1).
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similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non
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