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ON EXTREME VALUES OF NEHARI MANIFOLD METHOD

VIA NONLINEAR RAYLEIGH’S QUOTIENT

Yavdat Ilyasov

Abstract. We study applicability conditions of the Nehari manifold

method to the equation of the form DuT (u) − λDuF (u) = 0 in a Banach
space W , where λ is a real parameter. Our study is based on the develop-

ment of the Rayleigh quotient theory for nonlinear problems. It turns out

that the extreme values of parameter λ which define intervals of applicabil-
ity of the Nehari manifold method can be found through the critical values

of the corresponding nonlinear generalized Rayleigh quotient. In the main

part of this paper, we provide general results on this relationship. Theo-
retical results are illustrated by considering several examples of nonlinear

boundary value problems. Furthermore, we demonstrate that the intro-

duced tool of nonlinear generalized Rayleigh quotient can also be applied
to prove new results on the existence of multiple solutions for nonlinear

elliptic equations.

1. Introduction

The Nehari manifold method (NM-method), which was introduced in [28]

and [29], by now is a well-established and useful tool in finding solutions of

equations in variational form. Let us briefly describe it. Assume W is a real
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Banach space, Φλ : W → R is a Fréchet-differentiable functional with derivative

DuΦλ and λ ∈ R is a parameter. Consider the equation in variational form

(1.1) DuΦλ(u) = 0, u ∈W.

The Nehari manifold associated with (1.1) is defined as

Nλ := {u ∈W \ 0 : DuΦλ(u)(u) = 0}.

Since any solution of (1.1) belongs to Nλ, a natural idea to solve (1.1) is to

consider the constrained minimization problem

Φλ(u)→ min, u ∈ Nλ.

Suppose that there exists a local minimizer u of this problem and Φλ ∈ C2(U,R)

for some neighbourhood U ⊂W of u. Then by the Lagrange multiplier rule one

has µ0DuΦλ(u) + µ1(DuΦλ(u) +DuuΦλ(u)(u, · )) = 0 for some µ0, µ1 such that

|µ0| + |µ1| 6= 0. Testing this equality by u we obtain µ1DuuΦλ(u)(u, u) = 0.

Hence, if DuuΦλ(u)(u, u) 6= 0, then we have successively µ1 = 0, µ0 6= 0 and

therefore DuΦλ(u) = 0. Thus, one has the following sufficient condition for the

applicability of the NM-method:

(1.2) DuuΦλ(u)(u, u) 6= 0 for any u ∈ Nλ.

The feasibility of this condition often depends on the parameter λ. Thus, we

may expect that there exists the set of extreme values of the NM-method σN :=

{λmin,i, λmax,i}∞i=1 such that the sufficient condition (1.2) is satisfied only for

λ ∈
∞⋃
i=1

(λmin,i, λmax,i). This brings up the question of how to find these extreme

values.

In general, this question is related to finding bifurcations for critical points

of family fibering functions φλ,v(s) := Φλ(sv), s ∈ R+, where v ∈ S := {v ∈W :

‖v‖W = 1} and λ ∈ R. Indeed, if uλ = sλvλ satisfies (1.1), then dφλ,vλ(sλ)/ds =

0 and hence sλvλ ∈ Nλ, whereas condition (1.2) is equivalent to d2φλ,vλ(sλ)/ds2

6= 0. Thus, in general, an extreme value λ∗ of the NM-method may occur only:

(1) as a bifurcation at zero or at infinity, when sλ → 0 or sλ → +∞ as λ→ λ∗, re-

spectively; (2) as a bifurcation at a point (s∗, λ∗, v∗), where d2φλ∗,v∗(s∗)/ds2 = 0

and (s1
λ, v

1
λ)→ (s∗, v∗), (s2

λ, v
2
λ)→ (s∗, v∗) as λ→ λ∗, for some branches of crit-

ical points s1
λ and s2

λ of φλ,v(s). In fact, when for each v ∈ S the function

φλ,v(s) may possess at most one critical point in R+ the extreme values of the

NM-method either do not exist or can be found directly. Essential dependence of

equation (1.1) on the parameter λ and the necessity of finding the extreme val-

ues of the NM-method take place when φλ,v(s) may have more than one critical

point of various types. Nonlinear partial differential equations with such prop-

erty have been studied in a number of papers dealing with the multiplicity of
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solutions (see, e.g. [1]–[3], [15], [30]). Furthermore, to study such problems a gen-

eral approach, the so-called fibering method, had been introduced by Pohozaev

[32], [33]. However, as far as we know, the problem of finding the extreme values

of the NM-method in the general setting has not been given much attention to.

This problem was studied in [17], [18], [20] where a method (the so-called spectral

analysis by the fibering procedure) of finding variational principles correspond-

ing to the extreme values of the NM-method has been introduced. Although

this method has been applied to a number of problems (see, e.g. [8], [12], [13],

[16], [21], [22], [24], [25]), it has certain disadvantages mainly due to its complex-

ity. Difficulties in finding of the extreme values of the NM-method significantly

increase when systems of equations are considered. Actually, in this case the cor-

responding fibering function φλ,v(t) := Φλ(t v) is a function of several variables

t ∈ (R+)n and analysis of its critical points is known to be more complicated

as compared with the fibering function of one variable φλ,v(s) for the scalar

problem.

The aim of the present paper is to introduce a new approach to this problem.

To specify the principal idea, let us consider equation (1.1) in the particular form

DuT (u)− λDuG(u) = 0.

Let us assume that DuG(u)(u) 6= 0 for any u ∈ W \ 0. Testing the equation by

u ∈ W and then solving it with respect to λ =: R(u) we obtain the following

functional:

(1.3) R(u) =
DuT (u)(u)

DuG(u)(u)
, u ∈W \ 0,

which is meaningful to call the Rayleigh quotient. Note that u belongs to Nλ if

and only if it lies on the level set R(u) = λ. Using this fact we derive that

(1.4) DuR(u)(u) =
1

DuG(u)(u)
D2
uuΦλ(u)(u, u), for all u ∈ Nλ,

which means, in particular, that the sufficient condition (1.2) is satisfied if and

only if DuR(u)(u) 6= 0. Note also that DuR(u)(u) = dR(tu)/dt|t=1. This

reasoning leads us to the following idea:

The extreme values of the NM-method can be studied by investigation of the

critical values of the fibering Rayleigh quotient ru(t) := R(tu) in R+ \ 0, for

u ∈W \ 0.

To implement this idea, we introduce a new approach to generalization of

the Rayleigh quotient that preserves main properties of the original Rayleigh

quotient and allows to analyse the nonlinear problems. Basically this way of

generalization may be described as follows: In general, one may assume that for

every u ∈W \0 the function ru(t) has a countable (or finite) set of extreme points

t1(u), t2(u), . . . ∈ R+ \ 0, which determine the mappings ti( · ) : W \ 0→ R+ \ 0,
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i = 1, 2, . . ., so that we are able to introduce 0-homogeneous functionals

λi(u) := ru(ti(u)), u ∈W \ 0, i = 1, 2, . . . ,

which we call the nonlinear generalized Rayleigh quotients. Thus, we arrive to

the main idea of our approach:

The set of the extreme values of the NM-method σN can be found by studying

the critical values of the nonlinear generalized Rayleigh quotients (λi(u))∞i=1.

On the whole, application of the Nehari manifold method for a fixed value λ

means implementation of the following steps:

(1) verify that the Nehari manifold Nλ is not empty;

(2) prove that there exists a minimizing point uλ ∈ Nλ of problem (2.3);

(3) prove that the minimizing point uλ corresponds to a solution of equation

(2.1).

This work is mainly focused on studying conditions under which step (3) is

satisfied. However, some general results on extreme values of λ for step (1)

will also be obtained. Furthermore, we believe that the introduced category of

nonlinear generalized Rayleigh quotients may be useful not only for determining

the extreme values of the NM-method. Some results confirming this are given

in Section 5.

The literature on the Nehari manifold method is rather extensive and it would

be impossible to provide a reasonably complete references on this. We have

reported only the papers more closely related to the material discussed herein.

A particular topic which we leave out in order to keep this work reasonably short

is the critical point theory and its application in the framework of the Nehari

manifold method (see, e.g. [4], [14], [31], [34], [36], [37]). We do not discuss

applicability conditions for many other constrained minimization methods as for

instance the fibering method [32], [33] or the one employing Pohozaev’s identity

as a constraint [7], [21], [25], [35].

This paper is organized as follows. Section 2 contains preliminaries on the

Nehari manifold method. It should be noted that when we consider a system of

equations the Nehari manifold may be introduced by several ways. We discuss

two main approaches, the so-called vector and scalar Nehari manifold methods.

Section 3 is devoted to the nonlinear generalized Rayleigh quotient and its main

properties. In Section 4, we show how one can find the extreme values of NM-

method for a system of equations with nonlinearity indefinite in sign applying

the NG-Rayleigh quotients theory. In Section 5, using the NG-Raylegh quotients

we prove a result on existence of multiple solutions for an abstract system of

equations and as a consequence therefrom we obtain a new result on existence

of multiple sign-constant solutions for a boundary value problem with a general

convex-concave type nonlinearity and p-Laplacian.
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Notations. We will denote by W = W1 × . . . × Wn the product of real

Banach spaces Wi with the norms ‖ · ‖Wi
, i = 1, . . . , n, and the norm ‖ · ‖ =

‖ · ‖W1
+ . . .+ ‖ · ‖Wn

in W . To simplify the notations we write:

• Ẇ = (W1 \ 0)× . . .× (Wn \ 0) and Ṙ+ = R+ \ 0,

• t := (t1, . . . , tn) ∈ Rn,

• t u := (t1u1, . . . , tnun), s u := (su1, . . . , sun),
〈
t, u
〉

=
n∑
i=1

tiui, for u ∈W ,

t ∈ Rn, s ∈ R,

• 1n = (1, . . . , 1)T and 0n = (0, . . . , 0)T denote the vectors 1×n and 0×n
in Rn, respectively.

For F ∈ C1(W,R), u, v ∈W , t ∈ Rn we write

• ∇uF (u) := (Du1F (u), . . . , DunF (u))T,

• ∇uF (u) v := (Du1F (u)(v1), . . . , DunF (u)(vn))T,

• DuF (u)(v) :=
∑n
i=1DuiF (u)(vi),

• ∇tF (t u) := (∂t1F (t u), . . . , ∂tnF (t u))T,

• ∇tF (t u) t := (∂t1F (t u)t1, . . . , ∂tnF (t u)tn)T,

• ∂F (t u)/∂t := 〈∇tF (t u), t〉 ≡
n∑
i=1

∂tiF (t u)ti.

Here DuiF (u) denotes the Fréchet derivative with respect to ui ∈ Wi and

DuiF (u)(vi) denotes the value of DuiF (u) at vi ∈Wi, i = 1, . . . , n.

In the sequel, Ω denotes a bounded domain in RN with smooth boundary

∂Ω, W := W 1,p
0 (Ω), 1 < p < +∞, is the standard Sobolev space with the norm

‖u‖W = (
∫
|∇u|p dx)1/p, p∗ denotes the critical Sobolev exponent.

2. Preliminaries

In the present paper, we shall deal with the system of equations of the form

(2.1) ∇uΦλ(u) ≡ ∇uT (u)− λ∇uG(u) = 0, u ∈W,

where W =
n∏
i=1

Wi is the product of real Banach spaces Wi, λ ∈ R, T,G ∈

C1(Ẇ ,R) and Φλ(u) = T (u)−λG(u). In the case n = 1, we call (2.1) the scalar

problem. We define the vector Nehari manifold associated with (2.1) as follows:

(2.2) Nλ =
{
u ∈ Ẇ : ∇uΦλ(u)u ≡ ∇tΦλ(t u)|t=1n

= 0
}
,

where Ẇ =
n∏
i=1

(Wi \ 0). The corresponding Nehari manifold problem is

(2.3)

Φλ(u)→ crit,

u ∈ Nλ.

We will say that u ∈ Nλ is a critical point of Φλ with respect to the Nehari

manifold (a solution of (2.3) for short) if Nλ has a tangent space Tu(Nλ) at u
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and∇uΦλ(u)h = 0 for all h ∈ Tu(Nλ). We denote by Φ̂λ the global minimization

value in (2.3), i.e. Φ̂λ := inf {Φλ(u) : u ∈ Nλ}. A solution u ∈ Ẇ of (2.1) is said

to be a ground state if Φλ(u) ≤ Φλ(w) for any solution w ∈ Ẇ of (2.1). Thus

a global minimizer u of (2.3) which satisfies equation (2.1) is a ground state.

The following assumption will be needed throughout the paper: ∇tΦλ(t u) is

a map of class C1 on (Ṙ+)n × Ẇ . Notice that this assumption implies that the

constraint functional ∇uΦλ(u)(u) in (2.3) is a map of class C1 on Ẇ . Evidently,

any functional Φλ ∈ C2(Ẇ ,R) satisfies this assumption. However, for instance,

the functional Φ(u) =
∫

Ω
|u|p dx which is defined on W := Lp(Ω) where Ω ⊂ Rn

does not belong to C2(L̇p(Ω),R) if 1 < p < 2 but dΦ(tu)/dt = ptp−1
∫

Ω
|u|p dx ∈

C1(Ṙ+ × L̇p(Ω),R).

Let u ∈ Ẇ . Consider the Hessian matrix H(Φλ(t u)) which is defined as

follows:

H(Φλ(t u)) =

(
∂2

∂ti∂tj
Φλ(t u)

)
{1≤i,j≤n}

.

To shorten the notation, we write H(Φλ(u)) := H(Φλ(t u))|t=1n
. Note that in

the case Φλ ∈ C2(Ẇ ,R), one has

H(Φλ(u)) =
(
D2
uiujΦλ(u)(ui, uj)

)
{1≤i,j≤n}.

Let us prove

Lemma 2.1. Let λ ∈ R. Assume Φλ ∈ C1(Ẇ ,R), ∇tΦλ(t u) is a map of

class C1 on (Ṙ+)n × Ẇ . Suppose that Nλ 6= ∅ and for all u ∈ Nλ

(2.4) detH(Φλ(u)) 6= 0.

Then Nλ is a C1-manifold of codimension n, W = Tu(Nλ) ⊕ Rnu for every

u ∈ Nλ and any solution of (2.3) satisfies (2.1).

Proof. Since ∇tΦλ ∈ C1((Ṙ+)n × Ẇ ,Rn), the vector-valued functional

Ψ(u) := ∇uΦλ(u)(u) is a map of class C1 on Ẇ . Consider the Jacobian

Ju(Ψ(u)) = [Du1Ψ(u) . . . DunΨ(u)], u ∈W.

Observe

(2.5) Ju(Ψ(u))a u = Jt(Ψ(tu))a|t=1n
, for all a ∈ Rn.

Furthermore, for u0 ∈ Nλ there holds

Jt(Ψ(t u0))|t=1n
= H(Φλ(u0)) +∇u0

Φλ(u0)u0 = H(Φλ(u0)).

This and (2.4) imply that the function Jt(Ψ(t u0))|t=1n
: Rn → Rn is bijective

and therefore by (2.5), Ju(Ψ(u)) : W → Rn is a surjective map. Hence by the

implicit function theorem Nλ is a C1-manifold in W which codimension is equal

n so that W = Tu(Nλ) ⊕ Rnu. Clearly, this yields that any solution of (2.3)

satisfies (2.1). �
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Let us mention that the Nehari manifold (2.2) is actually introduced by

means of the vector fibering map Φλ(t u), (t, u) ∈ (R+)n ×W . But if we use

the scalar fibering map Φλ(s u), (s, u) ∈ R+×W , we get another kind of Nehari

manifold:

(2.6) N s
λ =

{
u ∈W \ 0n :

d

ds
Φλ(s u)|s=1 ≡ DuΦλ(u)(u) = 0

}
,

to be further called the scalar Nehari manifold.

The scalar Nehari manifold problem is defined as follows:

(2.7)

Φλ(u)→ crit,

u ∈ N s
λ ,

where the definition of a solution is likewise in (2.3). Arguing as above, we have

Lemma 2.2. Assume Φλ ∈ C1(W \ 0n,R) and dΦλ(s u)/ds is a map of class

C1 on Ṙ+ × (W \ 0n). Suppose that Nλ 6= ∅ and for all u ∈ N s
λ

(2.8)
d

ds
Du Φλ(s u)(u)|s=1 6= 0.

Then N s
λ is a C1-manifold of codimension 1, W = Tu(Nλ)⊕Ru for every u ∈ N s

λ

and any solution of (2.7) satisfies (2.1).

In what follows, we call (2.3) and (2.7) the vector and scalar Nehari manifold

method (NM-method), respectively. Note that Nλ ⊆ N s
λ .

Definition 2.3. We say that the vector (scalar) NM-method is applicable

in general (applicable for short) to problem (2.1) for a given λ ∈ R if condition

(2.4) ((2.8)) is satisfied for each u ∈ Nλ (u ∈ N s
λ).

Remark 2.4. The Nehari manifold method can be applied even if condition

(2.4) is satisfied only in some subset of manifold Nλ. In such case it makes sense

to speak about local applicability of the Nehari manifold method.

Let us remark that the definition of the Nehari manifold (2.2) ((2.6)) and

condition (2.4) ((2.8)) are invariant in the following sense:

Proposition 2.5. Let θ : (Ṙ+)n → (Ṙ+)n be C1-map such that

θ(1n) = 1n, det Jτ (θ(τ))|τ=1n 6= 0,

where Jτ (θ(τ)) is the Jacobian matrix of θ(τ). Then

(a) ∇τΦλ(θ(τ)u)|τ=1n = 0 if and only if ∇tΦλ(t u)|t=1n
= 0,

(b) detH(Φλ(θ(τ)u))|τ=1n 6= 0 if and only if detH(Φλ(u)) 6= 0.

Proof. Indeed, we have ∇τΦλ(θ(τ)u)|τ=1n = Jτ (θ(τ))|τ=1n∇tΦλ(t u)|t=1n

and detH(φλ,u(θ(τ))|τ=1n = det Jτ (θ(1n)) detH(Φλ(u)). �
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3. Nonlinear generalized Rayleigh quotient

In the sequel, we always assume:

(A1) DuG(u)(u) 6= 0 for any u ∈ Ẇ .

In the scalar case of NM-method, this condition is represented as DuG(u)(u) 6= 0

for any u ∈W \ 0n.

A central role in the present paper will play the following fibering Rayleigh

quotient:

ru(t) := R(t u) =
DuT (t u)(t u)

DuG(t u)(t u)
, t ∈ (Ṙ+)n, u ∈ Ẇ ,

where

R(u) :=
DuT (u)(u)

DuG(u)(u)

is the original Rayleigh quotient. To shorten notation, we use the same letter

to designate the scalar fibering Rayleigh quotient ru(s) = R(s u), s ∈ Ṙ+, u ∈
W \ 0n.

Note, since (A1), ru(t) in (Ṙ+)n × Ẇ are well defined. Clearly, T,G ∈
C1(W,R) implies R( · ) ∈ C(Ẇ ,R) and ru( · ) ∈ C((Ṙ+)n,R) for every u ∈ Ẇ .

From now on we make the assumption:

(A2) ∇tT (t u),∇tG(t u) are maps of class C1 on (Ṙ+)n × Ẇ .

Observe, that (A1) and (A2) imply that ru(t) and ∇tΦλ(t u) are maps of class

C1 on (Ṙ+)n × Ẇ .

We will also need the following assumption:

(A3) For every fixed u ∈ Ẇ and an ∈ (R+)n \ (Ṙ+)n, there exists

lim
t→an

ru(t) = r̂u(an), where |r̂u(an)| ≤ ∞.

Note that (A3) entails the existence of a continuation of the fibering Rayleigh

quotient ru(t) := ru(t) to (R+)n×Ẇ such that ru(an) := r̂u(an) for each u ∈ Ẇ
and an ∈ (R+)n \ (Ṙ+)n. Notice that in the scalar case of NM-method, (A3)

is represented as follows: for every fixed u ∈ Ẇ , there exists lim
s→0

ru(s) = r̂u(0),

where |r̂u(0)| ≤ ∞.

Let u ∈ Ẇ , t0 ∈ (Ṙ+)n. If ∇tru(t0) = 0n, then t0 is said to be a critical

point of ru(t) and λ = ru(t0) is said to be a critical value. We call t0 ∈ (R+)n

the extreme point of ru(t) if the function ru(t) attains at t0 its local maximum

or minimum on (R+)n.

Let t u ∈ Nλ, then we can compute

(3.1) ∇t ru(t) =
H(Φλ(t u))1n
DuG(t u)(t u)

.



On Extreme Values of Nehari Manifold Method 691

Notice that λ = ru(t) for t u ∈ Nλ. Thus, if t is a critical point of ru(t) and

t u ∈ Nλ, then detH(Φλ(t u)) = 0 with λ = ru(t). However, the converse

assertion is not always satisfied. Proceeding from (3.1), we just may conclude

that to have equality∇tru(t) = 0n for t u ∈ Nλ, the condition 1n ∈ KerH(Φλ(u))

is required.

Our basic assumption is the following:

(R) For u ∈ Nλ, if detH(Φλ(u)) = 0 then 1n ∈ KerH(Φλ(u)).

Lemma 2.1 implies:

Corollary 3.1. Assume (A1), (A2) and (R) are satisfied. Let λ ∈ R.

Suppose that Nλ 6= ∅ and ru(t) does not have critical points in (Ṙ+)n such that

t u ∈ Nλ. Then Nλ is a C1-manifold of codimension n, W = Tu(Nλ)⊕Rnu for

every u ∈ Nλ and any solution of (2.3) satisfies (2.1).

Proof. Let λ ∈ R and u ∈ Nλ. To obtain a contradiction, suppose that

detH(Φλ(u)) = 0. Then (3.1) and (R) imply that the point t = 1n is a critical

point for ru(t). But 1nu ∈ Nλ and we get a contradiction. Thus detH(Φλ(u)) 6=
0 and the proof follows from Lemma 2.1. �

Notice that, in the case of scalar NM-method, assumption (R) is always

satisfied. Indeed, in this case, s u ∈ Nλ if and only if λ = ru(s). Moreover, (3.1)

is written as

(3.2)
d

ds
ru(s) =

1

DuG(s u)(s u)

d

ds

(
Du Φλ(s u)(u)

)
.

Thus, in this case, Corollary 3.1 can be written as follows.

Corollary 3.2. Assume (A1), (A2) are satisfied. Let λ ∈ R. Suppose that

N s
λ 6= ∅ and the level λ is not critical of ru(t) for all u ∈ Ẇ . Then N s

λ is

a C1-manifold of codimension 1, W = Tu(N s
λ) ⊕ Ru for every u ∈ N s

λ and any

solution of (2.7) satisfies (2.1).

In the next propositions we collected some other basic properties of ru(t).

Proposition 3.3. For any u ∈ Ẇ and t ∈ (Ṙ+)n there hold:

(a) ru(t) = λ if and only if ∂Φλ(t u)/∂t = 0;

(b) if t u ∈ Nλ, then λ = ru(t).

Furthermore, if ∂G(t u)/∂t > 0 (∂G(t u)/∂t < 0) for u ∈ Ẇ and t ∈ (Ṙ+)n,

then:

(c) ru(t) > λ if and only if ∂Φλ(t u)/∂t > 0 (∂Φλ(t u)/∂t < 0);

(d) ru(t) < λ if and only if ∂Φλ(t u)/∂t < 0 (∂Φλ(t u)/∂t > 0).

Proof. Observe that

ru(t) =
∂T (t u)/∂t

∂G(t u)/∂t
, u ∈ Ẇ , t ∈ (Ṙ+)n.
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Thus, to obtain the proof it is sufficient to note that ru(t) =: λ is nothing else

but the root of the equation

∂Φλ(t u)

∂t
≡ ∂T (t u)

∂t
− λ ∂G(t u)

∂t
= 0. �

For the case of scalar fibering Rayleigh quotient, in addition, we have

Proposition 3.4. For u ∈ Ẇ and s > 0 there holds:

(a) s u ∈ N s
λ if and only if λ = ru(s).

Furthermore, if DuG(s u)(s u) > 0 (DuG(s u)(s u) < 0) for u ∈ Ẇ and s ∈ R+,

then:

(b) dru(s)/ds < 0 if and only if d2Φλ(s u)/ds2 < 0 (d2Φλ(s u)/ds2 > 0);

(c) dru(s)/ds > 0 if and only if d2Φλ(s u)/ds2 > 0 (d2Φλ(s u)/ds2 < 0).

The proof is evident.

Remark 3.5. In the case of scalar NM-method, the Nehari manifold can be

defined also as

(3.3) N s
λ = {u ∈W \ 0 : R(u) = λ}, λ ∈ R.

Remark 3.6. In view of Proposition 2.5, all of the above statements (Propo-

sitions 3.3, 3.4 etc.) still hold after making a change of variable t = θ(τ), where

θ : (Ṙ+)n → (Ṙ+)n is a C1-map such that the det Jτ (θ(τ)) 6= 0 for all τ ∈ (Ṙ+)n.

Furthermore, (R) is satisfied if and only if the same assumption (R) holds after

making a change of variable t = θ(τ).

In the present paper, we consider the following nonlinear generalized Rayleigh

quotients (the NG-Rayleigh quotients for short):

λ(u) := inf
t∈(R+)n

ru(t), u ∈ Ẇ ,

Λ(u) := sup
t∈(R+)n

ru(t), u ∈ Ẇ ,

and we restrict our main attention to the extremal values:

λmin = inf
u∈Ẇ

λ(u), λmax = sup
u∈Ẇ

Λ(u),(3.4)

λ∗min = sup
u∈Ẇ

λ(u), λ∗max = inf
u∈Ẇ

Λ(u).(3.5)

In the scalar case, similar objects we shall denote as λs(u),Λs(u), λsmin, λ
s
max,

λ∗,smin, λ
∗,s
max. First, note that values (3.4) allow us to obtain conditions when the

Nehari manifold Nλ is not empty, i.e. we have:

Lemma 3.7.

(a) If λmin > −∞ (λmax < +∞), then Nλ = ∅ for any λ < λmin (λ > λmax);

(b) N s
λ 6= ∅ for λ ∈ (λsmin, λ

s
max), and N s

λ = ∅ for λ ∈ R \ [λsmin, λ
s
max].
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Proof. Since R(u) = λ for u ∈ Nλ, (a) is satisfied. (b) holds, because

u ∈ N s
λ if and only if R(u) = λ. �

The level of complexity of the problem of finding the extreme values of NM-

method depends on the number of critical values of the fibering Rayleigh quotient

ru(t). For instance, the simplest are the problems where ru(t) has no critical

values for all u ∈ Ẇ . Indeed, it follows from Corollary 3.1 that in such case

NM-method is applicable to problem (2.1) for all λ. The latter means that the

set of extreme values of NM-method is empty. Let us mention that, in the scalar

case, the absence of critical values of the fibering Rayleigh quotient ru(s) entails

that the corresponding fibering function Φλ(s u) has precisely one critical value

(see Figure 1).

r

ss = s1

r = λ

rū(s)

Φ

ss = s1

Φλ(sū)

Figure 1. ru(s) without critical values and the corresponding fibering func-
tion Φλ(s u).

The present paper is mainly focused on the next level of complexity of such

problems when ru(t) allows for existence of one critical value. We indicate this

class of problems by the condition:

(S) For all u ∈ Ẇ , ru(t) does not have critical points in (Ṙ+)n such that t u ∈
Nru(t) except points of global minimum or maximum of ru(t) on (R+)n.

Remark 3.8. In the scalar case, since s u ∈ Nru(s) for any u ∈W \0n, s > 0,

condition (S) can be written as:

(Ss) For all u ∈ Ẇ , ru(s) has no critical points in Ṙ+ except the points of

global minimum or maximum of ru(s) on R+.
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We will see in the forthcoming examples that condition (S) could easily be

verified. Typical graphs of function ru(s) satisfying (S) are presented in Figures 2

and 3.

r

ss1

r = λ
rū(s)

Φ

ss1

Φλ(sū)

s2 s2smax

Figure 2. ru(s) with a unique critical value in R+ and the corresponding

fibering function Φλ(s u).

Theorem 3.9. Assume (A1), (A2) and (A3) hold. Suppose ru(t) satisfies

(R), (S) and λ∗min < λ∗max. Then for each λ ∈ (λ∗min, λ
∗
max) the vector Nehari

manifold method is applicable to (2.1) so that if Nλ 6= ∅, then Nλ is a C1-manifold

of codimension n and any solution of (2.3) satisfies (2.1).

Proof. Let λ ∈ (λ∗min, λ
∗
max) and u ∈ Nλ. Suppose by contradiction that

detH(Φλ(u)) = 0. Then by (3.1) and (R) the point t = 1n is a critical for ru(t),

and by (S) the function ru(t) attains its global minimum or/and maximum at

t = 1n. Assume, for instance, that this is a global minimum point. Since

λ > λ∗min and λ = ru(1n) for u ∈ Nλ, (3.5) implies

ru(1n) = min
t∈(R+)n

ru(t) = λ > λ∗min ≥ inf
t∈(R+)n

ru(t).

Thus we get a contradiction and the proof follows from Lemma 2.1. �

Example 3.10. Consider the following problem with convex-concave nonli-

nearity:

(3.6)

−∆pu = λ|u|q−2u+ |u|γ−2u in Ω,

u = 0 on ∂Ω,
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where 1 < q < p < γ ≤ p∗ and by a solution of (3.6) we mean a weak solution

u ∈W := W 1,p
0 (Ω). The corresponding Rayleigh quotient is given as

R(u) =

∫
|∇u|p dx−

∫
|u|γ dx∫

|u|q dx
, u ∈W \ 0.

For u ∈W \ 0, s > 0, we have

(3.7) ru(s) =

sp−q
∫
|∇u|p dx− sγ−q

∫
|u|γ dx∫

|u|q dx
.

Since this is scalar problem, assumption (R) is satisfied (see (3.2)). Compute

d

ds
ru(s) =

(p− q)sp−q−1

∫
|∇u|p dx− (γ − q)sγ−q−1

∫
|u|γ dx∫

|u|q dx
.

Hence, dru(s)/ds = 0 if and only if

(p− q)sp−q−1

∫
|∇u|p dx− (γ − q)sγ−q−1

∫
|u|γ dx = 0.

The only nonzero solution of this equation is

smax(u) =

 (p− q)
∫
|∇u|p dx

(γ − q)
∫
|u|γ dx


1/(γ−p)

.

From this we conclude that assumption (S) is satisfied. The substituting smax(u)

into ru(s) yields the following NG-Rayleigh quotient:

Λ(u) = sup
s>0

ru(s) = cp,q

(∫
|∇u|p dx

)(γ−q)/(γ−p)

∫
|u|qdx

(∫
|u|γ dx

)(p−q)/(γ−p) ,

where

cp,q =
γ − p
p− q

(
p− q
γ − q

)(γ−q)/(γ−p)

.

Thus

(3.8) λ∗max = cp,q inf


(∫

|∇u|p dx
)(γ−q)/(γ−p)

∫
|u|qdx

(∫
|u|γ dx

)(p−q)/(γ−p) : u ∈W \ 0

 .
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Using Sobolev’s and Holder’s inequalities it is not hard to show that λ∗max > 0.

From (3.7) it is easily to see that λ(u) = inf
s>0

ru(s) = −∞. Thus, λ∗min =

sup
u∈W\0

λ(u) = −∞ and Theorem 3.9 is applicable with −∞ = λ∗min < λ∗max.

In the case of enhancing condition (S) by introducing additional restrictions,

one should expect to receive more precise estimations of the extreme values of

NM-method. Let us consider the following special case of (S):

(S0) For any u ∈ Ẇ one of the following holds:

(a) ru(t) has no critical point t ∈ (Ṙ+)n such that t u ∈ Nru(t);

(b) ∇tru(t) ≡ 0n for all t ∈ (Ṙ+)n.

Typical graphs of the function ru(s) satisfying (S) are given in Figure 3.

r

s

r = λmin

rū1(s)

r = λ∗
max

rū2(s)

rū3(s)

Figure 3. Examples of ru(s) which satisfy (S0).

Theorem 3.11. Assume (A1), (A2) and (A3) hold. Suppose ru(t) satisfies

(R), (S0) and λmin < λ∗max (λ∗min < λmax). Then for each λ ∈ (λmin, λ
∗
max)

(λ ∈ (λ∗min, λmax)) the vector Nehari manifold method is applicable to (2.1) so

that if Nλ 6= ∅, then Nλ is a C1-manifold of codimension n and any solution of

(2.3) satisfies (2.1).

Proof. We prove the statement for the case λmin < λ∗max. The proof in the

case λ∗min < λmax is similar. Suppose by contradiction that detH(Φλ(u)) = 0.

Then (3.1) and (R) yield that t = 1n is a critical point of the function ru(t)

and consequently ∇t ru(t)|t=1n
= 0n. Hence, (S0) entails that the function ru(t)

identically equals to the constant λ in (R+)n and attains its global minimum and
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maximum at any point t ∈ (R+)n. However, the assumption λ < λ∗max yields

that

λ < λ∗max ≤ sup
t∈(R+)n

ru(t) = max
t∈(R+)n

ru(t) ≡ R(u) = λ.

Thus we get a contradiction and the proof follows from Lemma 2.1. �

Remark 3.12. Clearly, λmin ≤ λ∗min and λ∗max ≤ λmax. Thus, if assumptions

(S0) are satisfied and λ∗min < λ∗max, then Theorem 3.11 provides a stronger result

than Theorem 3.9.

Example 3.13. Consider the boundary value problem with nonlinearity in-

definite in sign:

(3.9)

 −∆pu = λ|u|p−2u+ f |u|γ−2u in Ω,

u = 0 on ∂Ω,

where λ ∈ R, 1 < p < γ ≤ p∗, f ∈ L∞(Ω) and by a solution of (3.9) we shall

mean a weak solution u ∈ W := W 1,p
0 (Ω). In the case when f may change the

sign in Ω, the nonlinearity in right-hand side of (3.9) is called indefinite in sign

(cf. [1], [6]). Consider the corresponding Rayleigh quotient

R(u) =

∫
|∇u|p dx−

∫
f |u|γ dx∫

|u|p dx
, u ∈W \ 0.

For u ∈W \ 0, s > 0, we have

(3.10) ru(s) =

∫
|∇u|p dx∫
|u|p dx

− sγ−p

∫
f |u|γ dx∫
|u|p dx

.

Evidently, assumption (R) is satisfied (see (3.2)). Furthermore, (3.10) implies

that ru(s) has only extreme point at s = 0 or

if

∫
f |u|γ dx = 0, then ru(s) ≡

∫
|∇u|p dx∫
|u|p dx

for all s ≥ 0. Thus, condition (S0) is satisfied and one may apply Theorem 3.11.

From (3.10) we have

Λ(u) = sup
s>0

ru(s) =


∫
|∇u|p dx

/∫
|u|p dx if

∫
f |u|γ dx ≥ 0,

+∞ if

∫
f |u|γ dx < 0,
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and

λ(u) = inf
s>0

ru(s) =


−∞ if

∫
f |u|γ dx > 0,∫

|∇u|p dx
/∫

|u|p dx if

∫
f |u|γ dx ≤ 0,

and thus

λ∗min = sup


∫
|∇u|p dx∫
|u|p dx

:

∫
f |u|γ dx ≤ 0, u ∈W \ 0

 ,(3.11)

λ∗max = inf


∫
|∇u|p dx∫
|u|p dx

:

∫
f |u|γ dx ≥ 0, u ∈W \ 0

 .(3.12)

Observe, λmin = −∞, λ∗min = +∞ if the set {x ∈ Ω : f(x) ≤ 0} contains

an open domain up to a subset of Lebesgue measure zero. Thus, in this case,

Theorem 3.11 is applicable with −∞ = λmin and λ∗max given by (3.12). On

the other hand, if
∫

Ω
f(x)|u|γ dx > 0 for all u ∈ W \ 0, then λ∗min = −∞ and

Theorem 3.11 is applicable with −∞ = λ∗min < λmax = +∞.

As far as we are aware, the extreme value (3.12) was first discovered by

Ouyang [30], who apparently used a direct reasoning method.

Remark 3.14. In the present paper, we do not deal with the applicability

of Nehari manifold method at its extreme values like λ∗max, λmax or λmin. This

is a subject of another research.

Let us stress that

Λs(u) := sup
s∈R+

ru(s) ≤ sup
t∈(R+)n

ru(t) =: Λ(u),

and therefore,

(3.13) λs,∗max := inf
u∈Ẇ

Λs(u) ≤ inf
u∈Ẇ

Λ(u) =: λ∗max.

Similarly,

(3.14) λsmax ≤ λmax, λmin ≤ λsmin, λ∗min ≤ λ
s,∗
min.

Thus, (λs,∗min, λ
s,∗
max) ⊆ (λ∗min, λ

∗
max), (λsmin, λ

s,∗
max) ⊆ (λmin, λ

∗
max) and (λs,∗min, λ

s
max)

⊆ (λ∗min, λmax), that is, the vector NM-method is preferable.

Remark 3.15. The assumptions (S), (S0) and definition of extreme values

λmin, λmax, λ
∗
min, λ

∗
max etc. obviously do not depend on changing variables as in

Remark 3.6.
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4. Extreme values of the NM-method for system of equations

with nonlinearity indefinite in sign

In this section, we apply the above theory for a system of equations with

nonlinearity indefinite in sign. In the sequel, λ1 := λ1,p, φ1 := φ1,p denote the

first eigenpair of the operator −∆p in Ω, 1 < p < +∞ with the zero boundary

conditions. Eigenvalue λ1 is known to be positive, simple and isolated, the

corresponding eigenfunction φ1 to be positive and and it can be normalized so

that ‖φ1‖W = 1, see [5], [27].

Consider system of equations with indefinite nonlinearity

(4.1)


−∆pu = λ|u|p−2u+ αf |u|α−2u|v|β in Ω,

−∆qv = λ|v|q−2v + βf |u|α|v|β−2v in Ω,

u|∂Ω = 0, v|∂Ω = 0,

where λ ∈ R, 1 < p < +∞, 1 < q < +∞ and

(4.2) α, β > 0,
α

p
+
β

q
> 1,

α

p∗
+
β

q∗
≤ 1.

We suppose

(f1) f ∈ Ld(Ω), where d ≥ p∗q∗/(p∗q∗ − αq∗ − βp∗) if p < N or/and q < N ,

α/p∗ + β/q∗ < 1; d = +∞ if p < N , q < N and α/p∗ + β/q∗ = 1; d > 1

if p ≥ N , q ≥ N .

Furthermore, the function f may change the sign in Ω, i.e. problem (4.1) has

the nonlinearity indefinite in sign. By a solution of (4.1) we shall mean a weak

solution (u, v) ∈W := W 1,p
0 (Ω)×W 1,q

0 (Ω).

Let us study (4.1) using the vector NM-method. Consider the corresponding

Nehari manifold problem:

(4.3)

Φλ(u, v)→ crit,

(u, v) ∈ Nλ,

where

Φλ(u, v) =
1

p

∫
(|∇u|p − λ|u|p) dx+

1

q

∫
(|∇v|q − λ|v|q) dx− F (u, v),

and

Nλ :=

{
(u, v) ∈ Ẇ :

∫
(|∇u|p − λ|u|p) dx− αF (u, v) = 0,(4.4) ∫
(|∇v|q − λ|v|q)dx− βF (u, v) = 0

}
.

Here F (u, v) =
∫
f |u|α|v|β dx and Ẇ := (W 1,p

0 (Ω) \ 0)× (W 1,q
0 (Ω) \ 0).
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The corresponding vector fibering Rayleigh quotient is given as follows:

r(u,v)(t, s) := R(tu, sv) =

tp
∫
|∇u|p dx+ sq

∫
|∇v|q dx− tαsβ(α+ β)F (u, v)

tp
∫
|u|p dx+ sq

∫
|v|q dx

for t, s ∈ Ṙ+ and (u, v) ∈ Ẇ . Evidently conditions (A1)–(A3) are satisfied.

Consider the Hessian matrix

H(Φλ)(u, v)

=

(
(p− 1)Pλ(u)− α(α− 1)F (u, v) −αβF (u, v)

−αβF (u, v) (q − 1)Qλ(v)− β(β − 1)F (u, v)

)
.

Here we denote

Pλ(u) :=

∫
|∇u|pdx− λ

∫
|u|p dx, Qλ(v) :=

∫
|∇v|qdx− λ

∫
|v|q dx.

Then, for (u, v) ∈ Nλ we have

H(Φλ)(u, v) =

 α(p− α)F (u, v) −αβF (u, v)

−αβF (u, v) β(q − β)F (u, v)

 .

Proposition 4.1. r(u,v)(t, s) satisfies (R) and (S0).

Proof. Observe that detH(Φλ)(u, v) = αβ(pq−pβ−qα)F 2(u, v) for (u, v) ∈
Nλ. By (4.2), pq − pβ − qα 6= 0. Hence detH(Φλ)(u, v) = 0 for (u, v) ∈ Nλ
if and only if F (u, v) = 0. However, H(Φλ)(u, v)12 = 02 if F (u, v) = 0. Thus,

condition (R) holds.

Observe, for (u, v) ∈ Ẇ , t > 0, s > 0 we have

∂

∂t
r(u,v)(t, s) =

1

t

(
tp
∫
|u|p dx+ sq

∫
|v|q dx

) (pPλ(tu)− α(α+ β)F (tu, sv)),

∂

∂s
r(u,v)(t, s) =

1

s

(
tp
∫
|u|p dx+ sq

∫
|v|q dx

) (qQλ(sv)− β(α+ β)F (tu, sv)).

Thus, if (t0u, s0v)∈Nr(u,v)(t0,s0) and ∂r(u,v)(t0, s0)/∂t= 0, ∂r(u,v)(t0, s0)/∂s= 0

for some t0 > 0, s0 > 0, then Pλ(t0u)=0, Qλ(s0v)=0 and F (t0u, s0v)=0. Hence

we have successively Pλ(u) = 0, Qλ(v) = 0 , F (u, v) = 0 and ∂r(u,v)(t, s)/∂t ≡ 0,

∂r(u,v)(t, s)/∂s ≡ 0 for all t > 0, s > 0. Thus, condition (S0) holds. �

Let us prove
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Lemma 4.2. The extreme value λ∗max of Nehari manifold (4.4) is expressed

by the following explicit variational form:

(4.5) λ∗max = inf
(u,v)∈Ẇ

max


∫
|∇u|p dx∫
|u|p dx

,

∫
|∇v|q dx∫
|v|q dx

 : F (u, v) ≥ 0

 .

Proof. We claim that

Λ(u, v) = sup
t,s∈Ṙ+

r(u,v)(t, s) =

max

{∫
|∇u|pdx∫
|u|pdx

,

∫
|∇v|qdx∫
|v|qdx

}
if F (u, v) ≥ 0,

+∞ if F (u, v) < 0,

and

λ(u, v) = inf
t,s∈Ṙ+

r(u,v)(t, s) =


−∞ if F (u, v) > 0,

min

{∫
|∇u|pdx∫
|u|p dx

,

∫
|∇v|q dx∫
|v|q dx

}
if F (u, v) ≤ 0.

Let us show, as an example, the first equality. Assume F (u, v) < 0. Then setting

t = σq, s = σp we obtain∫
|∇u|p dx+

∫
|∇v|q dx− σpq(α/p+β/q−1)F (u, v)∫
|u|p dx+

∫
|v|q dx

→ +∞

as σ → +∞, since α/p+ β/q > 1. Consider now the case F (u, v) ≥ 0. Without

loss of generality, we can suppose that∫
|∇u|p dx∫
|u|p dx

≥

∫
|∇v|q dx∫
|v|q dx

.

This implies that ∫
|∇u|p dx+ τ

∫
|∇v|q dx∫

|u|p dx+ τ

∫
|v|q dx

≤

∫
|∇u|p dx∫
|u|p dx

for any τ ≥ 0. Since F (u, v) ≥ 0,

r(u,v)(t, s) =

∫
|∇u|p dx+ sqt−p

∫
|∇v|q dx− tα−psβ(α+ β)F (u, v)∫

|u|p dx+ sqt−p
∫
|v|q dx

≤

∫
|∇u|p dx∫
|u|p dx

.
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for any s ≥ 0 and t > 0. Taking into account that this inequality becomes

equality if s = 0, we get the proof of the assertion and the lemma. �

Observe, that λ∗min = sup
(u,v)∈Ẇ

λ(u, v) = +∞ if the set {x ∈ Ω : f(x) ≤ 0}

contains an open domain up to a subset of Lebesgue measure zero. Consider

λmin = inf
(u,v)∈Ẇ

λ(u, v). Simple analysis shows that Nλ 6= ∅ as λ ∈ (λmin, λ
∗
max)

(see e.g. [9]). Let us prove

Lemma 4.3. Assume (4.2), (f1) are satisfied. Then λmin < λ∗max and for

λ ∈ (λmin, λ
∗
max), the vector NM-method (4.3) is applicable to (4.1) so that (4.4)

is a C1-manifold of codimension 2 and any solution of (4.3) satisfies (4.1).

Proof. Consider λl1 := min{λ1,p, λ1,q}, λu1 := max{λ1,p, λ1,q}. Clearly,

λl1 = inf
(u,v)∈Ẇ

min


∫
|∇u|p dx∫
|u|p dx

,

∫
|∇v|q dx∫
|v|q dx

 ,

λu1 = inf
(u,v)∈Ẇ

max


∫
|∇u|p dx∫
|u|p dx

,

∫
|∇v|q dx∫
|v|q dx

 .

Hence λ∗max ≥ λu1 ≥ λl1. Observe that

λmin =

−∞ if there exists (u, v) ∈ Ẇ such that F (u, v) > 0,

λl1 if for all (u, v) ∈ Ẇ , F (u, v) ≤ 0.

Now taking into account that λ∗max = +∞ if F (u, v) ≤ 0, for all (u, v) ∈ Ẇ , we

get λmin < λ∗max. By Proposition 4.1, conditions (R), (S) are satisfied. Thus,

the proof of the lemma follows from Theorem 3.11. �

Note that if f > 0 almost everywhere in Ω, then −∞ = λ∗min < λmax = +∞.

Thus, in this case, we can apply Theorem 3.11 with the extreme values λ∗min, λmax

that is (4.3) is applicable to (4.1) for any λ ∈ R.

The existence of the solution of (4.3) for λ ∈ (λmin, λ
l
1) ∪ (λu1 , λ

∗
max) follows

from [9], [10]. Herein, we did not study (4.1) using the scalar NM-method.

However, by (3.13), (3.14) we have (λsmin, λ
s,∗
max) ⊆ (λmin, λ

∗
max). Thus, the

scalar NM-method is not expected to provide better results than the vector

NM-method (4.3).

The extreme values like (4.5) are not believed to be obtained directly as for

Ouyang’s extreme value (3.12) or applying the spectral analysis by the fibering

procedure [17], [18], [20] as for (3.8). We would like to draw the reader’s atten-

tion to the fact that the extreme value (4.5) has been presented in our paper
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already [9]. However, in that case it was found by applying the same approach

as in the proof of Lemma 4.2.

5. Multiplicity result

Nehari manifold method is often used to prove the existence of multiple

solutions, see e.g. [15], [18], [30]. In this section, we show how to obtain such

type of results in terms of categories of NG-Rayleigh quotient. First we prove a

result on existence of multiple solutions for an abstract system of equations and

as a consequence therefrom we obtain a new result on existence of multiple sign-

constant solutions for a boundary value problem with a general convex-concave

type nonlinearity and p-Laplacian.

We will study (2.1) using the scalar NM-method. In what follows, we always

assume that DuG(u)(u) > 0 for all u ∈ W \ 0n so that (A1) is satisfied. De-

note S = {v ∈ W : ‖v‖W = 1}. We will suppose ru(s) satisfies the following

conditions:

(1) For all u ∈W \0n, ru(s) has a unique critical point smax(u) ∈ Ṙ+ which

is a global maximum point.

(2) There exists δ0 > 0 such that smax(v) > δ0 for any v ∈ S.

(3) If (vm) ⊂ S is weakly separated from 0n ∈ W , then the set of functions

(rvm(t))∞m=1 is bounded in C1[σ, T ] for any σ, T ∈ (0,∞).

(4) For any λ ∈ R, 0 < σ < T < +∞, the set N s
λ ∩ {σ < ‖u‖W < T} is

weakly separated from 0n ∈W .

Typical graph of the function ru(s) satisfying (1) is presented in Figure 2.

The condition of type (2) is common in study of variational problems, where

fibering functions are used (see eg. [11], [34], [36]). Roughly speaking, this con-

dition, as well as conditions (3) and (4), ensures that the solutions of problem

(2.3) are separated from zero and from each others. In the example below, we

will see that conditions (3) and (4) will be verified by standard methods as a

consequence of Sobolev’s and Holder’s inequalities and the Rellich–Kondrachov

theorem.

Evidently, (1) yields (R), (S) (see (3.2) and Remark 3.8) and that it satisfies

dru(smax(u))/ds = 0,

(5.1)
d

ds
ru(s) > 0 ⇔ 0 < s < smax(u) and

d

ds
ru(s) < 0 ⇔ s > smax(u).

Furthermore, it follows that for all u ∈W \ 0n there exist limits: ru(s)→ r̂u(0)

as s → 0 and ru(s) → r̂u(∞) as s → +∞, where −∞ ≤ r̂u(0), r̂u(∞) < +∞.

Introduce

λ∂min = sup
u∈W\0n

max {r̂u(0), r̂u(∞)}.
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Consider λ∗max = inf
u∈W\0n

sup
s>0

ru(s). Observe, that (1) entails

(5.2) λ∗min = sup
u∈W\0n

inf
s>0

ru(s) ≤ λ∂min.

Let us introduce the following sets:

N s,1
λ :=N s

λ ∩
{
u ∈W \ 0n :

d

ds
ru(s)

∣∣∣∣
s=1

< 0

}
,(5.3)

N s,2
λ :=N s

λ ∩
{
u ∈W \ 0n :

d

ds
ru(s)

∣∣∣∣
s=1

> 0

}
.(5.4)

Obviously, N s,1
λ ∩ N s,2

λ = ∅ and N s,1
λ ∪ N s,2

λ = N s
λ if λ < λ∗max. In view of

Lemma 3.7, N s,1
λ 6= ∅, N s,2

λ 6= ∅ if λ ∈ (λ∂min, λ
∗
max). Thus, for λ ∈ (λ∂min, λ

∗
max),

one may split minimization problem (2.3) into

Φ̂1
λ := min {Φλ(u) : u ∈ N s,1

λ },(5.5)

Φ̂2
λ := min {Φλ(u) : u ∈ N s,2

λ }.(5.6)

Theorem 5.1. Suppose W is a reflexive Banach space, Φλ ∈ C1(W \0n,R),

dT (s u)/ds, dG(su)/ds are maps of class C1 on Ṙ+× (W \ 0n), DuG(u)(u) > 0,

for all u ∈W \ 0n, (1)–(4) hold and the following conditions are fulfilled:

(a) for all λ ∈ R, Φλ(u)→ +∞ as ‖u‖W →∞, u ∈ N s
λ ,

(b) Φλ(u), for all λ ∈ R and R(u) are sequentially weakly lower semi-

continuous functionals on W .

Assume λ∂min < λ∗max. Then for every λ ∈ (λ∂min, λ
∗
max) system of equations (2.1)

has two distinct solutions u1
λ, u

2
λ ∈W \ 0n such that

d2Φλ(su1
λ)/ds2|s=1 < 0, d2Φλ(su2

λ)/ds2|s=1 > 0, Φλ(u2
λ) ≡ Φ̂2

λ < Φλ(0).

Furthermore, for λ ∈ (λ∂min, λ
∗
max), u2

λ is a ground state of (2.1) and N s,1
λ , N s,2

λ

are C1-manifolds of codimension 1.

Proof. Since N s,1
λ ∩ N s,2

λ = ∅ and N s,1
λ ∪ N s,2

λ = N s
λ for λ ∈ (λ∂min, λ

∗
max),

any solution of (5.5) or (5.6) is a critical point (local minimizer) of Φλ in N s
λ .

Thus, in view of Theorem 3.9, to prove the existence of two distinct solutions

of (2.1), it is sufficient to show that (5.5) and (5.6) for λ ∈ (λ∂min, λ
∗
max) possess

minimizers u1
λ ∈ N

s,1
λ , and u2

λ ∈ N
s,2
λ , respectively.

Let λ ∈ (λ∂min, λ
∗
max) and (uim), i = 1, 2, be minimizing sequences of (5.5)

and (5.6), respectively.

Proposition 5.2. For i = 1, 2, the minimizing sequence (uim) has a non-zero

limit point ui0 ∈W .

Proof. Let i = 1, 2. Observe, (a) implies that (uim) is bounded in W . Write

uim = smvm, where sim = ‖uim‖W , vim ∈ S, m = 1, 2, . . . Then (sim) is bounded
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above and we may assume that sim → si0, vim ⇁ vi0 weakly in W as m→∞ for

some si0 ≥ 0 and vi0 ∈W .

Let us show that ui0 := si0v
i
0 6= 0n, i = 1, 2. Consider first minimizing

problem (5.5). In view of (5.1), we have s1
m > smax(vm). Then (2) entails

infm s
1
m > δ0 > 0 for any m = 1, 2, . . . and thus s1

0 6= 0. Consider now minimizing

problem (5.6). Observe, Φ̂2
λ < 0 for λ ∈ (λ∂min, λ

∗
max). Indeed, let u ∈ N s,2

λ , then

(1) entails ru(s) < λ for every s ∈ (0, 1). Consequently by Proposition 3.3,

dΦλ(su)/ds < 0 for all s ∈ (0, 1) and therefore 0 = Φλ(0u) > Φλ(u) ≥ Φ̂2
λ.

Assume s2
m → 0. Then ‖u2

m‖W → 0 and Φλ(u2
m)→ 0. However, this contradicts

to Φ̂2
λ < 0 and therefore s2

0 6= 0.

Thus δ < ‖uim‖W < K < +∞, m = 1, 2, . . ., i = 1, 2, with some δ,K ∈
(0,∞), and assumption (4) entails that ui0 6= 0n, i = 1, 2. �

Proposition 5.3.

d

ds
ru1

0
(s)

∣∣∣∣
s=1

< 0,(5.7)

d

ds
ru2

0
(s)

∣∣∣∣
s=1

> 0.(5.8)

Proof. Let i = 1, 2. Since (vim) is weakly separated from 0n ∈W , assump-

tion (3) yields that the set of functions (rivm(t))∞m=1 is bounded in C1[σ, T ] for

any σ, T ∈ (0,+∞). Consequently by the Arzelá–Ascoli compactness criterion

we can assume that

(5.9) rivm(t)→ ψi(t) in C[σ, T ], as m→∞ for all σ, T ∈ (0,+∞),

for some limit function ψi ∈ C(0,+∞). Since si0 > 0,

(5.10) ruim(t) = R(tsimv
i
m)→ ψi(tsi0) =: ψ̂i(t) as m→∞

for all t ∈ (0,+∞). Observe that by the weak lower semi-continuity of R

(5.11) rui0(s) ≡ R(sui0) ≤ lim inf
m→∞

R(suim), for all s > 0.

This and (5.10) yield that for s ≥ 0

(5.12) rui0(s) ≤ ψ̂i(s).

Let us show (5.7). Suppose, contrary to our claim, that dru1
0
(s)/ds|s=1 ≥ 0.

Then (5.1) entails smax(u1
0) ≥ 1. Since ru1

m
(s) ≤ λ for s ∈ [1,∞), m = 1, 2, . . .,

(5.10) implies ψ̂1(s) ≤ λ for s ∈ [1,∞) and consequently by (5.12), ru1
0
(s) ≤ λ for

s ∈ [1,∞). Hence max
s>0

ru1
0
(s) = ru1

0
(smax(u1

0)) ≤ λ. However, by the assumption

λ < λ∗max ≤ max
s>0

ru1
0
(s). Thus we get a contradiction.

Assertion (5.8) can be handled in a similar way. Indeed, if dru2
0
(s)/ds|s=1 ≤ 0,

then (5.1) entails smax(u2
0) ≤ 1. Since ru2

m
(s) ≤ λ for s ∈ (0, 1], m = 1, 2 . . .,
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(5.10), (5.12) yield ru2
0
(s) ≤ λ for any s ∈ (0, 1]. Hence λ < λ∗max ≤ max

s>0
ru2

0
(s) =

ru2
0
(smax(u2

0)) ≤ λ, which is a contradiction. �

Proposition 5.4. u1
0 and u2

0 are minimizers of (5.5) and (5.6), respectively.

Proof. By the weak lower semi-continuity of Φλ and R we have

−∞ < Φλ(ui0) ≤ lim inf
m→∞

Φλ(uim) = Φ̂iλ, i = 1, 2,(5.13)

−∞ < R(ui0) ≤ lim inf
m→∞

R(uim) = λ, i = 1, 2.(5.14)

Note that if R(ui0) = λ, i = 1, 2, then (5.7), (5.8) imply that u1
0 ∈ N

s,1
λ , u2

0 ∈
N s,2
λ . Consequently, in (5.13) are possible only equalities Φλ(ui0) = Φ̂iλ, i = 1, 2,

that yield the proof of the proposition.

Consider (5.5). Suppose that R(u1
0) < λ. Since (5.7), assumptions λ < λ∗max

and (1) entail that there is s1 < 1 such that R(s1u
1
0) = λ and dR(su1

0)/ds|s=s1 <
0. Since R(s1u

1
m) ≥ R(s1u

1
0) = λ and R(u1

m) = λ for m = 1, 2, . . ., assump-

tion (1) entails R(su1
m) > λ, m = 1, 2, . . ., for all s ∈ (s1, 1]. Then by Propo-

sition 3.3, dΦλ(su1
m)/ds > 0, m = 1, 2, . . ., for all s ∈ (s1, 1]. Consequently,

Φλ(s1u
1
m) < Φλ(u1

m) and by the weak lower semi-continuity of Φλ we have

Φλ(s1u
1
0) ≤ lim inf

m→∞
Φλ(s1u

1
m) ≤ lim inf

m→∞
Φλ(u1

m) = Φ̂1
λ.

Notice that s1u
1
0 ∈ N

s,1
λ . Hence if Φλ(s1u

1
0) = Φ̂1

λ, then s1u
1
0 is a minimizer

of (5.5) and we are done. Otherwise, if Φλ(s1u
1
0) < Φ̂1

λ, then we obtain a

contradiction and thus R(u1
0) = λ.

Consider (5.6). Suppose contrary to our claim that R(u2
0) < λ. Then

R(u2
0) < λ < λ∗max ≤ R(smax(u2

0)u2
0). By (5.8), we have dR(su2

0)/ds|s=1 > 0.

Hence, assumption (1) yields that there exists s1 ∈ (1, smax(u2
0)) such that

R(s1u
2
0) = λ and dR(su2

0)/ds|s=s1 > 0, i.e. s1u
2
0 ∈ N

s,2
λ . On the other hand, by

Proposition 3.3 the inequality R(su2
0) < λ, s ∈ [1, s1), implies dΦλ(su2

0)/ds < 0

for s ∈ [1, s1). Consequently, by (5.13) we have

Φλ(s1u
2
0) < Φλ(u2

0) ≤ Φ̂2
λ.

But for s1u
2
0 ∈ N

s,2
λ , this is impossible. This completes the proof of the propo-

sition. �

Now let us conclude the proof of the theorem. Since (5.2), Proposition 5.4

and Theorem 3.9 yield u1
λ = u1

0 and u2
λ = u2

0 satisfy (2.1). Since (5.7), (5.8),

Proposition 3.4 implies that d2Φλ(su1
λ)/ds2|s=1 < 0, d2Φλ(su2

λ)/ds2|s=1 > 0.

Thus, it remains to show that that u2
λ is a ground state of (2.1). Assump-

tion (a) and λ ∈ (λ∂min, λ
∗
max) yield that the equation dΦλ(τu1

λ)/dτ = 0 has

precisely two solutions τmin < 1 and τmax = 1 such that

d2Φλ(τu1
λ)/dτ2|τ=1 < 0 and d2Φλ(τu1

λ)/dτ2|τ=τmin > 0.
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This and Proposition 3.4 yield that τminu
1
λ ∈ N

s,2
λ . Hence

Φλ(u1
λ) > Φλ(τminu

1
λ) ≥ Φ̂2

λ ≡ Φλ(u2
λ).

Since N s,1
λ ∪N

s,2
λ = N s

λ for λ ∈ (λ∂min, λ
∗
max), this implies that u2

λ is a minimizer

of the problem Φ̂λ := min{Φλ(u) : u ∈ N s
λ}, i.e. u2

λ is a ground state of (2.1) .�

We emphasize that the value λ∂min has been used above only in order to

allocate the values λ in (λ∂min, λ
∗
max) for which N s,1

λ 6= ∅, N s,2
λ 6= ∅. In fact, the

above proof of Theorem 5.1 can be easily adapted to other assumptions on the

behaviour of rv(s) at s→ 0 and s→∞. In particular, let us assume that for all

v ∈ S there holds

(5.15) rv(s)→ 0 as s→ 0 and rv(s)→ −∞ as s→∞.

Then λ∂min = 0, λ∗min = −∞, and now N s,1
λ 6= ∅ for all λ < λ∗max. It is easily

seen that the above proof of the existence of the minimizer u1
λ of (5.5) remains

valid for all λ < λ∗max, provided (5.15) is satisfied. Thus we have

Corollary 5.5. Suppose the assumptions of Theorem 5.1 and (5.15) hold.

Then for every λ < λ∗max there exists a minimizer u1
λ of (5.5) which satisfies

(2.1). Furthermore, d2Φλ(su1
λ)/ds2|s=1 < 0 and u1

λ is the ground state of (2.1)

for λ ≤ 0.

5.1. Multiplicity nonnegative solutions for problems with a general

convex-concave type nonlinearity. In this subsection, using Theorem 5.1 we

obtain a result on the existence of multiple sign-constant solutions for problems

with a general convex-concave type nonlinearity and p-Laplacian.

Consider the following system of the equations:

(5.16)


−∆pu1 = λ|u|q−2u1 + f1(x, u) in Ω,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−∆pun = λ|u|q−2un + fn(x, u) in Ω,

ui|∂Ω = 0 i = 1, . . . , n,

where 1 < q < p < +∞, fi : Ω × Rn → R+, i = 1, . . . , n, are Carathéodory

functions such that fi(x, 0n) = 0, fi(x, · ) ∈ C1(Rn,R) for almost all x ∈ Ω,

with primitive F (x, u) so that fi(x, u) = ∂F (x, u)/∂ui for almost all x ∈ Ω,

u ∈ Rn, i = 1, . . . , n.

We will suppose that f := (f1, . . . , fn) satisfies the following conditions:

(F1) There exist γ1, γ2 ∈ (p, p∗), γ1 ≤ γ2 and exist gj ∈ Lβj (Ω), gj ≥ 0,

j = 1, 2, so that: for i = 1, . . . , n, for all u ∈ Rn \ 0n, for all s ∈ R \ 0,

0 < s
∂

∂s
fi(x, s u) ≤ g1(x)|s u|γ1−1 + g2(x)|s u|γ2−1 a.e. in Ω,

where βj > p∗/(p∗ − γj), if N > p and βj > 1, if N ≤ p, j = 1, 2.
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(F2) There exist θ > p, K1 > 0 such that

0 < θF (x, u) ≤
n∑
i=1

fi(x, u)ui, a.e. in Ω, |u| ≥ K1.

(F3) For all u ∈ Rn \ 0n and for almost all x ∈ Ω,

ρ(s) :=

n∑
i=1

∂

∂s

s1−qfi(x, s u)ui
sp−q−1

is a monotone function such that ρ(s)→ +∞ as s→ +∞.

By a solution of (5.16) we shall mean a weak solution u ∈W := (W 1,p
0 (Ω))n.

Problem (5.16) has a variational form with the Euler–Lagrange functional

(5.17) Φλ(u) =
1

p

∫
|∇u|p dx− λ 1

q

∫
|u|q dx−

∫
F (x, u) dx.

Here ∇u := (∇u1, . . . ,∇un) and |∇u|p =
∑n
i=1 |∇ui|p. Consider the NG-

Rayleigh quotient

(5.18) R(u) =

∫
|∇u|p dx−

n∑
i=1

∫
fi(x, u)ui dx∫

|u|q dx
, u ∈W \ 0n

and the corresponding fibering map

(5.19) ru(s) =

sp−q
∫
|∇u|p dx− s1−q

n∑
i=1

∫
fi(x, s u)ui dx∫

|u|qdx

for u ∈W \ 0n, s > 0. Note that (F1) implies that, for all u ∈ Rn \ 0n,

(5.20) 0 < fi(x, u) ≤ g′1(x)|u|γ1−1 + g′2(x)|u|γ2−1 for a.a. x ∈ Ω, i = 1, . . . , n.

Here g′j = gj/(γj − 1), j = 1, 2. For u ∈ W and j = 1, 2, by Sobolev’s and

Holder’s inequalities one has

(5.21)

∣∣∣∣ ∫ g′j(x)|u|γj dx
∣∣∣∣ ≤ C‖u‖γj/p∗(Lp∗ )n

(∫
|g′j(x)|p

∗/(p∗−γi) dx

)(p∗−γj)/p∗

,

where C < +∞. Here and in what follows we denote (Ld)n = (Ld(Ω))n, 1 < d <

∞. This implies that Φλ and r are well defined on W and W \ 0n, respectively.

Consider the extreme value

(5.22) λ∗max = inf
u∈W\0n

sup
s>0

sp−q
∫
|∇u|p dx− s1−q

n∑
i=1

∫
fi(x, s u)ui dx∫

|u|q dx
.

We prove
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Theorem 5.6. Assume 1 < q < p < +∞, fi : Ω × Rn → R+, i = 1, . . . , n,

are Carathéodory functions such that fi(x, 0n) = 0, fi(x, · ) ∈ C1(Rn,R) for

almost all x ∈ Ω and (F1)–(F3) hold. Then 0 < λ∗max and for any λ < λ∗max,

problem (5.16) admits a weak solution u1
λ 6= 0. Furthermore, when λ ∈ (0, λ∗max)

problem (5.16) has a second weak solution u2
λ 6= 0. Moreover,

(a) d2Φλ(s u1
λ)/ds2|s=1 < 0, d2Φλ(s u2

λ)/ds2|s=1 > 0, Φλ(u2
λ) < 0;

(b) if λ ∈ (−∞, 0], then u1
λ is a ground state of (5.16);

(c) if λ ∈ (0, λ∗max), then u2
λ is a ground state of (5.16).

Proof. We will obtain the proof by applying Theorem 5.1 and Corollary 5.5.

First we verify conditions (1)–(4) of Theorem 5.1.

Claim. (1) holds. Compute

(5.23)

d

ds
ru(s) =

(p− q)sp−q−1

∫
|∇u|p dx−

∫
∂

∂s

(
s1−q

n∑
i=1

fi(x, s u)ui

)
dx∫

|u|q dx
.

Clearly, (F1), (5.20) (5.21) yield∫
∂

∂s

(
s1−q

n∑
i=1

fi(x, s u)ui

)
dx/sp−q−1 → 0

as s→ 0 for any u ∈W . Hence by (F3) the equation∫
|∇u|pdx−

∫
∂

∂s

(
s1−q

n∑
i=1

fi(x, s u)ui

)
dx/sp−q−1 = 0

has a unique solution smax(u) ∈ Ṙ+ which is a global maximum point of ru(s).

Thus we get (1).

Claim. (2) holds. Suppose by contradiction that there is a sequence (vm) ⊂ S
such that sm := smax(vm)→ 0 as m→∞. In view of (5.23), we have

(p− q)sp−q−1
m −

∫
∂

∂s

(
s1−q

n∑
i=1

fi(x, s vm)vm,i

)
dx = 0.

Now using (F1), (5.20), (5.21) we obtain

(p− q)sp−q−1
m − c1sγ2−q−1

m − c2sγ1−q−1
m ≤ 0,

where c1, c2 do not depend on s > 0 and m = 1, 2, . . . However, since q < p <

γ2 ≤ γ1, we get a contradiction as sm → 0. Thus, we get (2).

Claim. (3) holds. Assume that (vm) ⊂ S is weakly separated from 0n ∈ W .

Since (vm) is bounded in W and W is the reflexive Banach space, we may

assume that vm ⇁ v0 weakly in W for some v0 ∈ W . Furthermore, by the

Rellich–Kondrachov theorem ‖vm‖Ld < C1 < +∞ for m = 1, 2, . . ., 1 ≤ d ≤ p∗,
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and vm → v0 in Ld(Ω) for d < p∗. Since (vm) ⊂ S is weakly separated from

0n ∈ W , v0 6= 0 and consequently there exists δ0 > 0 such that
∫
|vm|q dx > δ0

for all m = 1, 2, . . . Hence by (F1), (5.20) and (5.21) we have: for any s > 0,

|R(s vm)| ≤ δ−1
0

(
sp−q + s1−q

n∑
i=1

∫
|fi(x, s vm)vm,i| dx

)
≤ C2s

p−q + C3s
γ2−q,

and∣∣∣∣ dds R(s vm)

∣∣∣∣ ≤ δ−1
0

(
(p− q)sp−q−1 + (q − 1)s−q

n∑
i=1

∫
|fi(x, s vm)vm,i| dx

+ s1−q
n∑
i=1

∫ ∣∣∣∣ ∂∂sfi(x, s vm)vm,i

∣∣∣∣ dx)
≤C4s

p−q−1 + C5s
γ2−q−1,

where C2, . . . , C5 do not depend on s > 0 and m = 1, 2, . . . Thus we get (2).

Claim. (4) holds. Observe that (5.20) and (5.21) imply

(5.24) ru(s) ≥
sp−q‖u‖pW − C ′1sγ2−q‖u‖

γ2
(Lγ2 )n − C

′
2s
γ1−q‖u‖γ1(Lγ1 )n

‖u‖q(Lq)n

for s > 0, u ∈ W \ 0, where C ′1, C
′
2 do not depend on s > 0. Suppose by

contradiction that there exists (smvm) ⊂ N s
λ , λ ∈ R such that (vm) ⊂ S,

σ < sm < T , m = 1, 2, . . ., for some σ, T ∈ (0,+∞) and vm ⇁ 0 weakly in W .

Then, we may assume that vm → 0 in (Lq)n, (Lγ1)n and (Lγ2)n. However, by

(5.24) we have

sγ1−qm ≥
σp−q − λ‖vm‖q(Lq)n

C ′1T
γ2−γ1‖vm‖γ2(Lγ2 )n + C ′2‖vm‖

γ1
(Lγ1 )n

→∞ as m→∞

that contradicts to the assumption sm < T , m = 1, 2, . . . Thus (4) also holds.

It is readily seen, (F1), (5.20), (5.21) imply that (5.19) satisfies condition

(5.15) of Corollary 5.5.

Let us show that conditions (a), (b) of Theorem 5.1 are satisfied. For u ∈ N s
λ

we have

Φλ(u)=
(θ − p)
p

∫
|∇u|p dx−λ (θ − q)

q

∫
|u|q dx−

∫ (
θF (x, u)−

n∑
i=1

fi(x, u)ui

)
dx.

Hence (F2) and Sobolev’s inequalities yield

Φλ(u) ≥ (θ − p)
p

‖u‖pW −
λ(θ − q)

q
‖u‖qW

for ‖u‖W > K1. Since q < p, this implies Φλ(u) → +∞ as ‖u‖W → +∞ and

thus condition (a) of Theorem 5.1 is satisfied.
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Clearly, the functionals
∫
F (x, u) dx,

∫
fi(x, u)ui dx,

∫
|u|q dx are weakly con-

tinuous on W and
∫
|∇u|p dx is a weakly lower semi-continuous functional on W .

This yields that (5.17) and (5.18) satisfy (b) of Theorem 5.1.

Note that (5.24), (F1) and Sobolev’s inequalities yield

λ∗max ≥ inf
‖v‖=1

sup
s>0

sp−q‖v‖pW − c̃1sγ2−q‖v‖
γ2
W − c̃2sγ1−q‖v‖

γ1
W

c̃3‖v‖qW
= max

s>0
{sp−q − c̃1sγ2−q − c̃2sγ1−q}/c̃3 > 0

for some c̃1, c̃2, c̃3 > 0. Hence λ∗max > 0. Thus, all assumptions of Theorem 5.1

and Corollary 5.5 are satisfied. �

Denote |u| = (|u1|, . . . , |un|). The next corollary on the existence of sign-

constant solutions follows in the standard way.

Corollary 5.7. Suppose the assumptions of Theorem 5.6 are satisfied and

F (x, u) = F (x, |u|) almost everywhere in Ω, for any u ∈ Rn. Then, for λ < λ∗max,

system of equations (5.16) admits a pair of non-trivial weak solutions u1,+
λ ≥

0n ≥ u1,−
λ and for λ ∈ (0, λ∗max), system of equations (5.16) has a second pair of

non-trivial weak solutions u2,+
λ ≥ 0n ≥ u2,−

λ . Furthermore, assertions (a)–(c) of

Theorem 5.6 are satisfied for u1,±
λ , u2,±

λ .

In the scalar version of (5.16), this result can be strengthened. Let us consider

(5.25)

−∆pu = λ|u|q−2u+ f(x, u) in Ω,

u|∂Ω = 0.

Consider the extreme value

(5.26) λ∗max = inf
v∈W\0

sup
s>0

sp−q
∫
|∇u|p dx− s1−q

∫
f(x, su)u dx∫

|u|q dx
.

Theorem 5.8. Assume 1 < q < p < +∞, f : Ω× R→ R is a Carathéodory

function such that f(x, · ) ∈ C1(R,R), f(x, 0) = 0, ∂f(x, s)/∂s|s=0 = 0 for

almost all x ∈ Ω and (F1)–(F3) (with n = 1) hold. Then 0 < λ∗max and for

any λ < λ∗max, problem (5.25) admits a pair of non-trivial weak solutions u1,+
λ ≥

0 ≥ u1,−
λ . Furthermore, when λ ∈ (0, λ∗max) equation (5.25) has a second pair of

non-trivial weak solutions u2,+
λ ≥ 0 ≥ u2,−

λ . Moreover,

(a) d2Φλ(su1,±
λ )/ds2|s=1 < 0, d2Φλ(su2,±

λ )/ds2|s=1 > 0, Φλ(u2,±
λ ) < 0;

(b) if λ ∈ (−∞, 0], then one of the solutions u1,+
λ or u1,−

λ is a ground state

of (5.25);

(c) if λ ∈ (0, λ∗max), then one of the solutions u2,+
λ or u2,−

λ is a ground state

of (5.25).
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Remark 5.9. Similar result on the existence of multiple sign-constant so-

lutions for scalar problems with a general convex-concave type nonlinearity has

been obtained in [2], [3], [26]. However, our assumptions on the function f(x, u)

are different from that of made in [2], [3], [26]. In particular, functions gi, i = 1, 2,

may not be bounded from above, which may result in difficulties in applying the

super-sub solution method (cf. [2], [3], [26]). Furthermore, the presence of p-

Laplacian with p 6= 2 in (5.25) can complicate the application of mountain pass

theorem in order intervals (cf. [26]).

Proof. In order to obtain sign-constant solutions u1,+
λ ≥ 0 ≥ u1,−

λ and

u2,+
λ ≥ 0 ≥ u2,−

λ , we truncate and reflect f(x, u) as follows:

(5.27) f±(x, u) =

f(x, u) if ± u ≥ 0,

−f(x,−u) if ± u < 0.

Let F±(x, u) denote the primitive of f±(x, u) and consider

(5.28) Φ±λ (u) =
1

p

∫
|∇u|p dx− λ 1

q

∫
|u|q dx−

∫
F±(x, u) dx.

Clearly, Φ±λ (u) ∈ C1(W\0,R). Furthermore, since f(x, 0) = 0, ∂f(x, s)/∂s|s=0 =

0, for almost all x ∈ Ω, ∂
∂s

∫
F±(x, su) dx is a map of class C1 on Ṙ+ × (W \ 0).

As above in the proof of Theorem 5.6, it can be shown that all the other as-

sumptions of Theorem 5.1 and Corollary 5.5 are also satisfied. Thus there exist

weak solutions u1,±
λ , u2,±

λ ∈W 1,p
0 (Ω) of

−∆pu = λ|u|q−2u+ f±(x, u)

for λ < λ∗max and λ ∈ (0, λ∗max), respectively. Since Φ±λ (|u|) = Φ±λ (u) we may

assume that the minimizers u1,+
λ , u2,+

λ of Φ̂j,+λ := min {Φ+
λ (u) : u ∈ N s,j

λ }, j =

1, 2, respectively, are non-negative, whereas the minimizers u1,−
λ , u2,−

λ of Φ̂j,−λ :=

min {Φ−λ (u) : u ∈ N s,j
λ }, j = 1, 2, respectively, are non-positive. Now taking into

account (5.27) we get that the functions u1,±
λ , u2,±

λ in fact are weak solutions

of the original problem (5.25). Finally, assertions (a)–(c) of Theorem 5.8 follow

from Theorem 5.1 and Corollary 5.5. �
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[15] P. Drábek and S.I. Pohozaev, Positive solution for the p-Laplacian: application of the

fibering method, Proc. Roy. Soc. Edinburg Sect. A. 127 (1997), 703–726.

[16] Y.V. Egorov and Y. Il’yasov, On conformal invariants for elliptic systems with multiple

critical exponents, Ann. Global Anal. Geom. 32 (2007), no. 1, 39–66.

[17] Y. Il’yasov, On a procedure of projective fibering of functionals on Banach spaces, Proc.

Steklov Inst. Math. 232 (2001), 150–156.

[18] , Non-local investigation of bifurcations of solutions of non-linear elliptic equa-

tions, Izv. Ross. Acad. Nauk Ser. Mat. 66 (2002), no. 6, 1103–1130.

[19] , On nonlocal existence results for elliptic equations with convex-concave nonlin-

earities, Nonlinear Anal. 61 (2005), no. 1–2, 211–236.

[20] , On calculation of the bifurcations by the fibering approach, Harmonic, Wavelet

and P -adic Analysis (N.M. Chuong et al., eds.), World Scientific, Hackensack, 2007, pp.

141–155.

[21] Y. Il’yasov and Y. Egorov, Hopf boundary maximum principle violation for semilinear

elliptic equations, Nonlinear Anal. 72 (2010), no. 7–8, 3346–3355.

[22] Y. Il’yasov and T. Runst, Positive solutions for indefinite inhomogeneous Neumann

elliptic problems, Electron. J. Differential Equations 57 (2003), 1–21.

[23] , On nonlocal calculation for inhomogeneous indefinite Neumann boundary value

problems, Calc. Var. Partial Differential Equations 22 (2005), no. 1, 101–127.

[24] Y. Il’yasov, T. Runst and A. Youssfi, On the existence of pair positive-negative solu-

tions for resonance problems, Nonlinear Anal. 70 (2009), no. 10, 3461–3471.

[25] Y.S. Il’yasov and P. Takác, Optimal-regularity, Pohozhaev’s identity, and nonexistence

of weak solutions to some quasilinear elliptic equations, J. Differential Equations 252

(2012), no. 3, 2792–2822.

[26] S. Li and Z.Q. Wang, Mountain pass theorem in order intervals and multiple solutions

for semilinear elliptic Dirichlet problems, J. Anal. Math. 81 (2000), no. 1, 373–396.



714 Y. Ilyasov

[27] P. Lindqvist, On the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0, Proc. Amer. Math. Soc.

109 (1990), no. 1, 157–164.

[28] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer.

Math. Soc. (1960), 101–123.

[29] , Characteristic values associated with a class of nonlinear second-order differential

equations, Acta Math. 105 (1961), 141–175.

[30] T. Ouyang, On the positive solutions of semilinear equations ∆u+ λu+ hup = 0 on the

compact manifolds, Part II, Indiana Univ. Math. J. 40 (1991), no. 3, 1083–1141.

[31] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crys-

tals, Milan J. Math 73 (2005), no. 1, 259–287.

[32] S.I. Pohozaev, On an approach to Nonlinear equations, Doklady Acad. Sci. USSR. 247

(1979), 1327–1331.

[33] , The fibering method in nonlinear variational problems, In: Topological and Vari-

ational Methods for Nonlinear Boundary Value Problems, Pitman Res. Notes Math. Ser.,

Vol. 365, Longman, Harlow, 1997, pp. 35–88.

[34] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Dif-

ferential Equations, CBMS Reg. Conf. Series Math., Vol. 65. American Mathematical

Society, Providence, 1986.

[35] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55

(1977), no. 2, 149–162.

[36] A. Szulkin and T. Weth, The method of Nehari manifold, In: Handbook of Nonconvex

Analysis and Applications, International Press, Somerville, 2010, pp. 597–632.

[37] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their

Applications, Vol. 24, Springer, Boston, 1997.

Manuscript received April 10, 2016

accepted September 26, 2016

Yavdat Ilyasov

Institute of Mathematics

Ufa Scientific Center
Russian Academy of Sciences

Chernyshevsky 112

Ufa, RUSSIA

E-mail address: ilyasov02@gmail.com

TMNA : Volume 49 – 2017 – No 2


