
Topological Methods in Nonlinear Analysis
Volume 49, No. 2, 2017, 665–682

DOI: 10.12775/TMNA.2017.004

c© 2017 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

THE EXISTENCE OF POSITIVE SOLUTIONS

FOR THE SINGULAR TWO-POINT

BOUNDARY VALUE PROBLEM

Yanmin Niu — Baoqiang Yan

Abstract. In this paper, we consider the following boundary value prob-

lem: {
((−u′(t))n)′ = ntn−1f(u(t)) for 0 < t < 1,

u′(0) = 0, u(1) = 0,

where n > 1. Using the fixed point theory on a cone and approximation

technique, we obtain the existence of positive solutions in which f may be

singular at u = 0 or f may be sign-changing.

1. Introduction

In this paper, we consider the following problem:

(1.1)

((−u′(t))n)′ = ntn−1f(u(t)) for 0 < t < 1,

u′(0) = 0, u(1) = 0,

where n > 1 and f is not identically zero.
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Such a problem arises in the study of radially symmetric solutions to the

following Dirichlet problem for the Monge–Ampère equations in Rn:

(1.2)

det(D2u) = λf(−u) in B,

u = 0 on ∂B,

where B = {x ∈ Rn : |x| < 1} is the unit ball in Rn and D2u = (∂2u/∂xi∂xj) is

the Hessian of u (see [8]).

The Monge–Ampère equation has attracted a growing attention in recent

years because of its important role in several areas of applied mathematics.

In [11], Lions considered the existence of a unique eigenvalue λ1 to the boundary

value problem (1.2) with f(u) = un and showed that λ1 acts like a bifurcation

point for the boundary value problem (1.2). Kutev [9] obtained the existence

of a unique nontrivial convex radially symmetric solution to the boundary value

problem (1.2) with f(u) = up, for all 0 < p 6= n, reducing (1.2) to (1.1). Hu

and Wang [8] established sufficient conditions for the existence and multiplic-

ity of positive solutions to problem (1.1), where the function f is continuous

on [0,+∞). In [3], Dai discussed unilateral global bifurcation results for the

problem with f(u) = un + g(u). In [17]–[18], Wang considered the existence,

multiplicity and nonexistence of nontrivial radial convex solutions to systems of

Monge–Ampère equations with superlinearity or sublinearity assumptions for an

appropriately chosen parameter. In [16], using the Leggett–Williams fixed point

theorem, Wang and An investigated the existence of at least three nontrivial

radial convex solutions to systems of Monge–Ampère equations. We refer to [4],

[7], [12], [20] and references therein for further discussions regarding solutions to

the Monge–Ampère equations with continuous nonlinearities. For the case that

f(x) is singular at x = 0, there are some interesting results also. In [10], us-

ing the existing regularity theory and a subsolution-supersolution method, Lazer

and McKennar discussed the existence and uniqueness of positive solutions to

singular BVP (1.2). Using the sub-super solution technique, Mohammed [13]–

[14] established the existence and uniqueness of negative convex solution also to

BVP (1.2).

The goal of this paper is to consider the existence of positive solutions un-

der the conditions that n > 1 and f(x) is singular at x = 0 and sign-changing.

Firstly, in order to overcome difficulties caused by singularity of f we pose new

conditions which are different from those in [8], [17]–[18], and establish the mul-

tiplicity of positive solutions to BVP (1.1) different from that in [10], [13]–[14]

under the condition that f(x) is suplinear at x = +∞. Secondly, when f is

singular and sign-changing, we establish the existence of at least one positive

solution to BVP (1.1) which is different from that in [6], [8], [13]–[14], [17]–[18]

where f is supposed to be positive on (0,+∞).
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Our paper is organized as follows. In Section 2, we present some lemmas and

preliminaries. Section 3 discusses the existence of multiple positive solutions to

BVP (1.1) when f is positive. In Section 4, we discuss the existence of at least

one positive solution to BVP (1.1) when f is singular at u = 0 and sign-changing.

Some of our ideas come from [1]–[2], [15], [19].

2. Preliminaries

Here we state some auxiliary lemmas needed in the sequel.

Lemma 2.1 (see [6]). Let Ω be a bounded open set in the real Banach space

E, P be a cone in E, θ ∈ Ω and A : Ω ∩ P → P be continuous and compact.

Suppose λAx 6= x, for all x ∈ ∂Ω ∩ P , λ ∈ (0, 1]. Then

i(A,Ω ∩ P, P ) = 1.

Lemma 2.2 (see [6]). Let Ω be a bounded open set in the real Banach space

E, P be a cone in E, θ ∈ Ω and A : Ω ∩ P → P be continuous and compact.

Suppose Ax 6≤ x, for all x ∈ ∂Ω ∩ P . Then

i(A,Ω ∩ P, P ) = 0.

Lemma 2.3 (see [6]). Let E be a Banach space, R > 0, BR = {x ∈ E : ‖x‖ ≤
R}, and F : BR → E be a continuous compact operator. If x 6= λF (x), for any

x ∈ E with ‖x‖ = R and 0 < λ < 1, then F has a fixed point in BR.

Let C[0, 1] = {y : [0, 1] → R : y(t) is continuous on [0, 1]} with the norm

‖y‖ = max
t∈[0,1]

|y(t)|. It is easy to see that C[0, 1] is a Banach space. Define

P = {y ∈ C[0, 1] : y is decreasing on [0, 1]

with y(t) ≥ (1− t)‖y‖, for all t ∈ [0, 1] and y(1) = 0}.

It is easy to prove P is a cone in C[0, 1] (see [8]).

Lemma 2.4 (see [8]). For any function v ⊆ C[0, 1] with v(t) ≥ 0 and v′(t)

decreasing in [0, 1], v(0) = ‖v‖, we have v(t) ≥ (1− t)‖v‖.

We shall pose the following conditions on the function f :

(C1) f : (0,∞)→ (−∞,∞) is continuous.

(C2) lim
x→0+

f(x) = +∞.

3. Multiplicity of positive solutions to the singular BVP (1.1)

In this section, we consider the existence of multiple positive solutions to

BVP (1.1). For y ∈ P , we define the operator

(3.1) (Tεy)(t) =

∫ 1

t

(∫ s

0

nτn−1f(max{ε, y(τ)}) dτ
)1/n

ds,
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for 0 ≤ t ≤ 1, 1 ≥ ε > 0.

Lemma 3.1. Suppose (C1) hold and f(x) > 0 for all x ∈ (0,+∞). Then

Tε : P → P is continuous and compact for all 1 ≥ ε > 0.

Proof. It is easy to prove that Tε is well defined and (Tεy)(t) ≥ 0 for all

t ∈ P . For y ∈ P , we have

(Tε y)′(t) = −
(∫ t

0

nsn−1f(max{ε, y(s)}) ds
)1/n

< 0 on (0, 1),

which implies that (Tεy)′(t) is decreasing on [0, 1]. Since (Tεy)′(0) = 0, we have

(Tεy)′(t) < 0 for all t ∈ (0, 1), which together with (Tεy)(1) = 0, implies that

‖Tεy‖ = (Tεy)(0).

Hence, Lemma 2.4 guarantees that TεP ⊆ P . A standard argument shows that

Tε : P → P is continuous and compact (see [6]). �

Define

Φr =
{
x ∈ P ∩ C2((0, 1), R) : ‖x‖ ≤ r and x satisfies

((−x′(t))n)′ = ntn−1f(max{ε, x(t)}) = 0,

0 < t < 1, x′(0) = 0, x(1) = 0, for all 1 ≥ ε > 0
}
.

Lemma 3.2. If Φr 6= ∅ and (C2) hold with f(x) > 0 for all x ∈ (0,+∞), then

there exists δr > 0 such that

(3.2) x(t) ≥ δr(1− t), for all t ∈ [0, 1], x ∈ Φr.

Proof. Suppose x ∈ Φr. By the proof of Lemma 3.1, we have x ∈ P .

Condition (C2) guarantees that there exist 1 > b > 0 and a > 0 such that

f(x) ≥ a, for all 0 < x ≤ b.

Since f > 0 is continuous on [b, 1], we have min
x∈[b,1]

f(x) > 0. Then

(3.3) f(x) ≥ min
{
a, min
x∈[b,1]

f(x)
}
> 0, for all x ∈ (0, 1].

There are two cases to consider. (I) ‖x‖ > 1. Lemma 2.4 implies that

(3.4) x(t) ≥ (1− t)‖x‖ ≥ (1− t), for all t ∈ [0, 1].
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(II) 0 < ‖x‖ ≤ 1. (3.3) guarantees that

x(t) =

∫ 1

t

(∫ s

0

nτn−1f(max{ε, x(τ)}) dτ
)1/n

ds(3.5)

≥
∫ 1

t

(∫ s

0

nτn−1 min
{
a, min
x∈[b,1]

f(x)
}
dτ

)1/n

ds

= min
{
a, min
x∈[b,1]

f(x)
}1/n

(1− t2)

= min
{
a, min
x∈[b,1]

f(x)
}1/n

(1 + t)(1− t)

≥ min
{
a, min
x∈[b,1]

f(x)
}1/n

(1− t), for all t ∈ [0, 1].

Let δr = min
{

1,min
{
a, min
x∈[b,1]

f(x)
}1/n}

. From (3.4) and (3.5), one has

x(t) ≥ δr(1− t), for all t ∈ [0, 1]. �

Lemma 3.3. Suppose that f(x) > 0 for all x ∈ (0,+∞) and

(3.6) lim
x→+∞

f(x)

xn
= +∞.

Then, there exists R′ > 1 such that for all R ≥ R′

i(Tε,ΩR ∩ P, P ) = 0, for all 0 < ε ≤ 1.

Proof. From (3.6), there exists R1 > max{1, r} such that

(3.7) f(x) ≥ N∗xn, for all x ≥ R1,

where N∗ > 23n. Let R′ = 2R1 and ΩR = {x ∈ C[0, 1] : ‖x‖ < R}, for all

R ≥ R′. Now we show that

(3.8) Tεy 6≤ y for y ∈ P ∩ ∂ΩR and all 0 < ε ≤ 1.

Suppose that there exists y0 ∈ P ∩ ∂ΩR with Tεy0 ≤ y0. Then, ‖y0‖ = R. Since

y0 ∈ P we have from Lemma 2.4 that y0(t) ≥ (1− t)‖y0‖ ≥ (1− t)R for t ∈ [0, 1].

For t ∈ [0, 1/2], one has

y0(t) ≥ 1

2
R ≥ 1

2
R′ = R1, for all t ∈

[
0,

1

2

]
,

which together with (3.7) yields that

(3.9) f(max{ε, y0(t)}) = f(y0(t)) ≥ N∗(y0(t))n ≥ N∗
(

1

2
R

)n
,
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for all t ∈ [0, 1/2]. Then we have, using (3.9),

y0(0) ≥ (Tε y0)(0) =

∫ 1

0

(∫ s

0

nτn−1f(max{ε, y0(τ)}) dτ
)1/n

ds

≥
∫ 1

1/2

(∫ 1/2

0

nτn−1f(max{ε, y0(τ)}) dτ
)1/n

ds

≥
∫ 1

1/2

(∫ 1/2

0

nτn−1f(y0(τ)) dτ

)1/n

ds

≥
∫ 1

1/2

(∫ 1/2

0

nτn−1N∗(y0(τ))n dτ

)1/n

ds

≥
∫ 1

1/2

(∫ 1/2

0

nτn−1N∗(1/2R)n dτ

)1/n

ds =
1

8
(N∗)1/nR > R = ‖y0‖,

which is a contradiction. Hence (3.8) is true. Lemma 2.2 guarantees that

i(Tε,ΩR ∩ P, P ) = 0, for all 0 < ε ≤ 1. �

Theorem 3.4. Suppose that (C1) and (C2) hold, 0 < f(v) ≤ [g(v) + h(v)]n

on (0,∞) with g > 0 continuous and nonincreasing on (0,∞), h ≥ 0 continuous

on [0,∞) and h/g nondecreasing on (0,∞),

(3.10) sup
r∈(0,+∞)

1

1 + h(r)/g(r)

∫ r

0

du

g(u)
>

1

2

hold. Then BVP (1.1) has a solution v ∈ C[0, 1] ∩ C2(0, 1) with v > 0 on (0, 1)

and ‖v‖ < r.

Proof. From (3.10), choose 0 < r with

(3.11)
1

1 + h(r)/g(r)

∫ r

0

du

g(u)
>

1

2
.

Let n0 ∈ {1, 2, . . .} be chosen so that 1/n0 < r and N0 = {n0, n0 + 1, . . .}. Set

Ω1 = {y ∈ C[0, 1] : ‖y‖ < r}. For m ∈ N0, we define T1/m as that in (3.1).

Lemma 3.1 guarantees that T1/m : P → P is continuous and compact.

Now we show that

(3.12) y 6= λT1/my, for all y ∈ ∂Ω1 ∩ P, λ ∈ (0, 1], m ∈ N0.

Suppose that there are y0 ∈ ∂Ω1 ∩ P and λ0 ∈ (0, 1] with y0 = λ0T1/my0, i.e. y0
satisfies((−y′0(t))n)′ = λntn−1f(max{1/m, y0(t)}) for 0 < t < 1,

y′0(0) = 0, y0(1) = 0 for m ∈ N0, λ ∈ (0, 1].
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Since y0 is nonincreasing and nonnegative on (0, 1) with y0(0) = 0, we have

y0(0) = ‖y0‖ = r. Then,

((−y′0(t))n)′ = ntn−1f

(
max

{
1

m
, y0(t)

})
≤ ntn−1gn

(
max

{
1

m
, y0(t)

}){
1 +

h(max{1/m, y0(t)})
g(max{1/m, y0(t)})

}n
≤ ntn−1gn(y0(t))

{
1 +

h(r)

g(r)

}n
.

Integrate both sides from 0 to t to obtain

(−y′0(t))n ≤ ngn(y0(t))

{
1 +

h(r)

g(r)

}n ∫ t

0

sn−1 ds = tngn(y0(t))

{
1 +

h(r)

g(r)

}n
.

Then

(3.13) −y′0(t) ≤ tg(y0(t))

{
1 +

h(r)

g(r)

}
.

Integrate both sides from t to 1 to obtain∫ y0(t)

y0(1)

du

g(u)
≤ 1

2
(1− t2)

{
1 +

h(r)

g(r)

}
,

i.e.
1

1 + h(r)/g(r)

∫ y0(t)

0

du

g(u)
≤ 1

2
(1− t2) ≤ 1

2
, for all t ∈ (0, 1).

Consequently
1

1 + h(r)/g(r)

∫ r

0

du

g(u)
≤ 1

2
.

This is a contradiction. Lemma 2.1 guarantees that

i(T1/m, P ∩ Ω1, P ) = 1, for all m ∈ N0,

which implies that there exists vm ∈ P ∩ Ω1 with vm = T1/mvm, i.e. vm ∈ Φr.

From Lemma 3.2, there exists a δr > 0 such that

(3.14) vm(t) ≥ δr(1− t), for all t ∈ [0, 1].

Now we will show that

(3.15) {vm(t)}m∈N0 is a bounded, equicontinuous family on [0, 1].

Obviously, {vm(t)}m∈N0 is uniformly bounded. Returning to (3.13) (with y0
replaced by vm) we have

(3.16)
−v′m(t)

g(vm(t))
≤ t
{

1 +
h(vm(0))

g(vm(0))

}
, for all t ∈ (0, 1).

Let I : [0,∞)→ [0,∞) be defined by

I(z) =

∫ z

0

du

g(u)
.
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Note that I is an increasing map from [0,∞) onto [0,∞) (notice that I(∞) =∞
since g > 0 is nonincreasing on (0,∞)) with I continuous on [0, A] for any A > 0.

For t, s ∈ [0, 1] we have

|I(vm(t))− I(vm(s))| =
∣∣∣∣ ∫ t

s

v′m(τ)

g(vm(τ))
dτ

∣∣∣∣
≤
{

1 +
h(r)

g(r)

}∣∣∣∣ ∫ t

s

τ dτ

∣∣∣∣ =

{
1 +

h(r)

g(r)

}
1

2
|t2 − s2|,

which implies that

(3.17) {I(vm(t))}m∈N0
is equicontinuous on [0, 1].

Condition (3.17) and the uniform continuity of I−1 on [0, I(r)] together with

|vm(t)− vm(s)| = |I−1(I(vm(t)))− I−1(I(vm(s)))|

guarantees that (3.15) holds. Moreover, from (3.14), we have δr/2 ≤ vm(t) < r,

for all t ∈ [0, 1/2]. Hence,

((−v′m(s))n)′ = nsn−1f

(
max

{
1

m
, ym(s)

})
≤ nsn−1gn

(
δr

1

2

){
1 +

h(r)

g(r)

}n
,

for all s ∈ (0, 1/2], which guarantees that

the functions belonging to {(−v′m(t))n}

are equicontinuous and uniformly bounded on [0, 1/2],

and so

(3.18)
the functions belonging to {−v′m(t)}

are equicontinuous and uniformly bounded on [0, 1/2].

The Arzela–Ascoli Theorem guarantees that {vm(t)} has a uniformly con-

vergent subsequence {vmi
} on [0, 1] and {v′mi

(t)} has a uniformly convergent

subsequence {v′mij
(t)} on [0, 1/2]. Without loss of generality, we may assume

that there is a function v ∈ C[0, 1]∩C1[0, 1/2] with lim
m→∞

vm(t) = v(t) uniformly

on [0, 1] and lim
m→∞

v′m(t) = v′(t) uniformly on [0, 1/2]. Obviously, v′(0) = 0 and

v(1) = 0, ‖v‖ ≤ r. In particular, (3.14) implies that v(t) ≥ (1 − t)δr on (0, 1).

Fixing t ∈ (0, 1), we have that vm, m ∈ N0, satisfies the integral equation

vm(t) = vm(0)−
∫ t

0

(∫ s

0

nτn−1f

(
max

{
1

m
, vm(τ)

})
dτ

)1/n

ds, t ∈ (0, 1).

Let m→∞ through N0 (we note here that f is uniformly continuous on compact

subsets of (0, r]) to obtain

v(t) = v(0)−
∫ t

0

(∫ s

0

nτn−1f(v(τ)) dx

)1/n

ds, for all t ∈ (0, 1).
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We can do this argument for each t ∈ (0, 1) and so ((−v′(t))n)′ = ntn−1f(v(t)),

for 0 < t < 1. Finally it is easy to see that ‖v‖ < r. �

Theorem 3.5. Suppose the conditions of Theorem 3.4 hold and

(3.19) lim
x→+∞

f(x)

xn
= +∞.

Then BVP (1.1) has at least two positive solutions.

Proof. From (3.10) and (3.19), choose r > 0 as in (3.11), n0 > 0 with

1/n0 < r, and R > max{r,R′} in Lemma 3.3. Set N0 = {n0, n0 + 1, . . .}, and

Ω1 = {y ∈ C[0, 1] : ‖y‖ < r}, Ω2 = {y ∈ C[0, 1] : ‖y‖ < R}.

From the proofs of Theorem 3.4 and Lemma 3.3, we have

i(T1/m,Ω1 ∩ P, P ) = 1 and i(T1/m,Ω2 ∩ P, P ) = 0,

which imply that

i(T1/m, (Ω2 − Ω1) ∩ P, P ) = −1.

Then, there exist x1,m ∈ Ω1 ∩ P and x2,m ∈ (Ω2 − Ω1) ∩ P such that

T1/mx1,m = x1,m, T1/mx2,m = x2,m.

From the proof of Theorem 3.4, there exist a subsequence {x1,mi} of {x1,m} and

x1 ∈ P ∩ Ω1 such that

lim
mi→+∞

x1,mi
(t) = x1(t), for all t ∈ [0, 1],

and moreover, x1(t) is a positive solution to BVP (1.1) with r > x1(t) ≥ δr(1−t),
for all t ∈ [0, 1].

A similar argument shows that there exist a subsequence {x2,mj
} of {x2,m}

and x2 ∈ P ∩ (Ω2 − Ω1) such that

lim
mj→+∞

x1,mj (t) = x2(t), for all t ∈ [0, 1],

and x2(t) is a positive solution to BVP (1.1); while (3.11) guarantees ‖x2‖>r.
Hence, x1 and x2 are two positive solutions to BVP (1.1). �

Theorem 3.6. Suppose that all conditions of Theorem 3.5 hold. Then BVP

(1.1) has a minimal positive solution and a maximal positive solution in C[0, 1]∩
C2(0, 1).

Proof. Let Ω = {x(t) : x(t) is a C[0, 1] ∩C2(0, 1) positive solution to BVP

(1.1)}. From Theorem 3.4, we know that Ω is nonempty.

First, we show that Ω is bounded. From (3.19), there exists R1 > 1 such

that

(3.20) f(x) ≥ N∗xn, for all x ≥ R1,
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where N∗ > 23n. Let R′ = 2R1. We have

(3.21) ‖x‖ ≤ R′, for all x ∈ Ω.

Indeed, suppose that there exists x0 ∈ Ω with ‖x0‖ > R′. Lemma 2.4 guarantees

that

x0(t) ≥ (1− t)‖x0‖ ≥ (1− t)R′, for all t ∈ [0, 1].

Then

x0(t) ≥ 1

2
‖x0‖ ≥

1

2
R′ = R1, for all t ∈

[
0,

1

2

]
,

which together (3.20) implies that

x0(0) =

∫ 1

0

(∫ s

0

nτn−1f(x0(τ)) dτ

)1/n

ds

≥
∫ 1

1/2

(∫ 1/2

0

nτn−1f(x0(τ)) dτ

)1/n

ds

≥
∫ 1

1/2

(∫ 1/2

0

nτn−1N∗(x0(τ))n dτ

)1/n

ds =
1

8
N∗1/n‖x0‖ > ‖x0‖,

a contradiction. Hence (3.21) is true. Now, Lemma 3.2 implies that there exists

δR′ > 0 such that

x(t) ≥ (1− t)δR′ , for all t ∈ [0, 1].

Define a partial order “≤” in Ω: x ≤ y if and only if x(t) ≤ y(t) for any

t ∈ [0, 1]. We prove only that any chain in 〈Ω,≤〉 has lower and upper bounds

in Ω. The rest is obtained from Zorn’s Lemma.

Let {xα(t)} be a chain in 〈Ω,≤〉. Since C[0, 1] is a separable Banach space,

there exists an at most denumerable set {xm(t)}, which is dense in {xα(t)}.
Without loss of generality, we may assume that {xm(t)} ⊆ {xα(t)}.

Set zm(t) = min{x1(t), . . . , xm(t)}, ym(t) = max{x1(t), . . . , xm(t)}. Since

{xα(t)} is a chain, zm(t), ym(t) ∈ Ω for any m ∈ N0 and δR′(1− t) ≤ zm+1(t) ≤
zm(t), R′ ≥ ym+1(t) ≥ ym(t) for any m ∈ N0.

From the proofs of (3.15) and (3.18), we get that uniformly in t

lim
m→∞

zm(t) = z(t), t ∈ [0, 1], lim
m→∞

z′m(t) = z′(t), t ∈ [0, 1/2],

lim
m→∞

ym(t) = y(t), t ∈ [0, 1], lim
m→∞

y′m(t) = y′(t), t ∈ [0, 1/2].

We prove that y, z ∈ Ω. From Theorem 3.4, we know that ym and zm,

m ∈ N0, satisfy the integral equations

ym(t) = ym(0)−
∫ t

0

(∫ s

0

nτn−1f(ym(τ)) dτ

)1/n

ds, for all t ∈ (0, 1),

and

zm(t) = zm(0)−
∫ t

0

(∫ s

0

nτn−1f(zm(τ)) dτ

)1/n

ds, for all t ∈ (0, 1).
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Let m→∞ through N0 (we note here that f is uniformly continuous on compact

subsets of (0, r]) to obtain

y(t) = y(0)−
∫ t

0

(∫ s

0

nτn−1f(y(τ)) dτ

)1/n

ds, for all t ∈ (0, 1),

and

z(t) = z(0)−
∫ t

0

(∫ s

0

nτn−1f(z(τ)) dτ

)1/n

ds, for all t ∈ (0, 1),

and so z, y ∈ Ω.

For any x(t) ∈ {xα(t)}, there exists {xmk
(t)} ⊆ {xm(t)} such that ‖xmk

−
x‖ → 0. Noticing that y(t) ≥ ymk

(t) ≥ xmk
(t) ≥ zmk

(t) ≥ z(t), t ∈ [0, 1], and

letting mk → ∞, we have y(t) ≥ x(t) ≥ z(t), t ∈ [0, 1], i.e. {xα(t)} has lower

and upper bounds in Ω.

Zorn’s Lemma shows that BVP (1.1) has a minimal C[0, 1]∩C2(0, 1) positive

solution and a maximal C[0, 1] ∩ C2(0, 1) positive solution. �

Example 3.7. Consider

(3.22)

((−u′(t))n)′ = ntn−1(u−α + uβ + 1− sinu2)n, 0 < t < 1,

u′(0) = 0, y(1) = 0,

where α > 0, β > 1 and

sup
r∈(0,+∞)

1

1 + α

rα+1

1 + rα + rα+β
>

1

2
.

Then BVP (3.22) has at least two positive solutions, a minimal positive solution

and a maximal positive solution in C[0, 1] ∩ C2(0, 1).

It is easy to prove that all conditions of Theorem 3.6 hold and our conclusion

is true.

4. Positive solutions for singular boundary value problems

with sign-changing nonlinearities

We shall consider the following conditions:

(H1) There exists a decreasing function F (y) ∈ C((0,+∞), (0,+∞)) and

a function G(y) ∈ C([0,+∞), [0,+∞)) such that f(y) ≤ (F (y)+G(y))n,

and there exists R > 1 such that∫ R

0

dy

F (y)
·
(

1 +
G(R)

F (R)

)−1
>

1

2
,

where G(R) = max
s∈[0,R]

G(s).

(H2) n > 1 is a even number.
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For y ∈ C[0, 1], we define the operator Tm as

(4.1) (Tmy)(t) =
1

m
+

∫ 1

t

(∫ s

0

nτn−1f

(
max

{
1

m
, y(τ)

})
dτ

)1/n

ds,

for 0 ≤ t ≤ 1, m ∈ {1, 2, . . .}. From a standard argument (see [6]), we have the

following result.

Lemma 4.1. Suppose (C1)–(C2) hold. Then the operator Tm is continuous

and compact from C[0, 1] to C[0, 1].

Lemma 4.2. Suppose (C1)–(C2) and (H1)–(H2) hold. Then, for m big enough,

there exists xm ∈ C[0, 1] with 1/m ≤ xm(t) ≤ R such that

(4.2) xm(t) =
1

m
+

∫ 1

t

(∫ s

0

nτn−1f(xm(τ)) dτ

)1/n

ds, 0 ≤ t ≤ 1.

Proof. From (C2), there exist two positive constants a > 0 and b > 0 such

that f(y) ≥ a, for all y ∈ (0, b]. (H1) guarantees that there exists ε0 > 0 such

that

(4.3)

∫ R

ε0

dy

F (y)
·
(

1 +
G(R)

F (R)

)−1
>

1

2
.

Choose n0 > 3 with 1/n0 < min{ε0, b} and let N0 = {n0, n0+1, . . .}. Lemma 4.1

implies that the operator Tm is continuous and compact from C[0, 1] to C[0, 1],

for m ∈ N0.

Let Ω = {y ∈ C : ‖y‖ < R}. For y ∈ ∂Ω, we now prove that

(4.4) y(t) 6= λ(Tmy)(t)

= λ
1

m
+ λ

∫ 1

t

(∫ s

0

nτn−1f

(
max

{
1

m
, y(τ)

})
dτ

)1/n

ds,

for 0 ≤ t ≤ 1, n ∈ N0 and any λ ∈ (0, 1].

Suppose that (4.4) is not true. Then there exist y ∈ C[0, 1], with ‖y‖ = R,

and 0 < λ ≤ 1 such that

(4.5)

y(t) = λ(Tmy)(t) = λ
1

m
+ λ

∫ 1

t

(∫ s

0

nτn−1f

(
max

{
1

m
, y(τ)

})
dτ

)1/n

ds,

for 0 ≤ t ≤ 1, n ∈ N0. We first claim that

(4.6) y(t) ≥ λ 1

m
, for any t ∈ [0, 1].

Suppose that there exists η ∈ (0, 1) with y(η) < λ1/m. Let γ0 = inf {t1 : y(s) <

λ/m, for all s ∈ [t1, η]} and γ1 = sup{t1 : y(s) < λ/m, for all s ∈ [η, t1]}. Since

y(1) = λ/m, we have γ1 ≤ 1 and y(γ1) = λ/m.
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If γ0 > 0 we have y(t) < λ/m, for all t ∈ (γ0, γ1) and y(γ0) = y(γ1) = λ/m,

which implies that there exists t0 ∈ (γ0, γ1) such that y′(t0) = 0. Differentiating

(4.5), we have

0 = n(−y′(t0))n−1y′′(t0) = ((−y′(t0))n)′ = λntn−10 f(1/m) > 0,

a contradiction.

If γ0 = 0, there two cases to consider.

(I) y(γ0) = λ/m. By the same argument as for γ0 > 0, we get a contradiction.

(II) y(γ0) < λ/m. If there exists t0 ∈ (0, γ1) with y′(t0) = 0, we also get

a contradiction. If y′(t) 6= 0, for all t ∈ (γ0, γ1) = (0, γ1), we have y′(t) > 0, for

all t ∈ (0, γ1). Differentiating (4.5), from (H2), we have

n(−y′(t))n−1y′′(t) = ((−y′(t))n)′ = λntn−10 f(1/m) > 0,

which implies that y′′(t) < 0, for all t ∈ (0, γ1). Since y′(0) = 0, we have

y′(t) < 0. This is a contradiction. Consequently, (4.6) holds.

Let t∗ = sup{t : y(t) = R, y′(t) = 0}. Obviously, 0 ≤ t∗ < 1, y′(t∗) = 0,

y(t∗) = R, y(t) < R, for all t ∈ (t∗, 1]. Let t1 = inf {t∗ < t ≤ 1 : y(t) = λy(1)}.
It is easy to see that t∗ < t1 ≤ 1, y(t) > y(t1) for all t ∈ (t∗, t1).

Now we consider the properties of y on (t∗, t1). We get a countable set {ti}
in (t∗, t1] such that

• t∗ > . . . ≥ t2m > t2m−1 > . . . > t5 ≥ t4 > t3 ≥ t2 > t1, t2m → t∗,

• y(t2i) = y(t2i+1), y′(t2i) = 0, i = 1, 2, . . .,

• y(t) is strictly decreasing in [t2i, t2i−1], i = 1, 2, . . . (if y(t) is strictly

decreasing in [t∗, t1], put m = 1; i.e. [t2, t1] = [t∗, t1]).

Differentiating (4.5) and using assumption (H1), we obtain

((−y′(t))n)′ = λntn−1f

(
max

{
1

m
, y(t)

})
(4.7)

≤ λntn−1
(
F

(
max

{
1

m
, y(t)

})
+G

(
max

{
1

m
, y(t)

}))n
= λntn−1Fn

(
max

{
1

m
, y(t)

})(
1 +

G(max{1/m, y(t)})
F (max{1/m, y(t)})

)n
< ntn−1Fn

(
max

{
1

m
, y(t)

})(
1 +

G(R)

F (R)

)n
≤ ntn−1Fn(y(t))

(
1 +

G(R)

F (R)

)n
,

for t ∈ [t2i, t2i−1), i = 1, 2, . . .
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Integrating (4.7) from t2i to t, we have due to the decreasing property of F ,∫ t

t2i

((−y′(s))n)′ ds ≤
(

1 +
G(R)

F (R)

)n ∫ t

t2i

nsn−1Fn(y(s)) ds

≤ Fn(y(t))

(
1 +

G(R)

F (R)

)n
(tn − tn2i),

for t ∈ [t2i, t2i−1), i = 1, 2, . . .; that is to say

(4.8) (−y′(t))n ≤ Fn(y(t))

(
1 +

G(R)

F (R)

)n
(tn − tn2i),

for t ∈ [t2i, t2i−1), i = 1, 2, . . . It follows from (4.8) that

(4.9) − y′(t)

F (y(t))
≤
(

1 +
G(R)

F (R)

)
t,

for t ∈ [t2i, t2i−1), i = 1, 2, . . .

On the other hand, for any z ∈ (0, 1) with y(z) > λ1/m, we can choose i0
and z′ ∈ (t∗, t1) such that z′ ∈ [t2i0 , t2i0−1), y(z′) = y(z) and z ≤ z′. Integrating

(4.9) from t2i to t2i−1, i = 1, . . . , i0 − 1, and from t2i0 to z′, we have

(4.10)

∫ y(t2i)

y(t2i−1)

dy

F (y)
≤
(

1 +
G(R)

F (R)

)∫ t2i−1

t2i

t dt =

(
1 +

G(R)

F (R)

)
1

2
(t22i−1 − t22i)

for i = 1, . . . , i0 − 1, and

(4.11)

∫ y(z′)

y(t2i0−1)

dy

F (y)
≤
(

1+
G(R)

F (R)

)∫ t2i0−1

z′
t dt =

(
1+

G(R)

F (R)

)
1

2
(t2i0−1

2−z′2).

Summing (4.10) from 1 to i0 − 1, we have by (4.11) and y(t2i) = y(t2i+1), that∫ y(z′)

y(t1)

dy

F (y)
≤
(

1 +
G(R)

F (R)

)
1

2
(t21 − z′

2
).

Since y(z) = y(z′),

(4.12)

∫ y(z)

y(t1)

dy

F (y)
≤
(

1 +
G(R)

F (R)

)
1

2
(t21 − z2).

Letting z → t∗ in (4.12), we have∫ R

ε0

dy

F (y)
≤
∫ R

y(t1)

dy

F (y)
≤
(

1 +
G(R)

F (R)

)
1

2
(t21 − t∗

2) ≤
(

1 +
G(R)

F (R)

)
1

2
,

which contradicts (4.3). Hence (4.4) holds.

It follows from Lemma 2.3 that Tm has a fixed point xm in C[0, 1]. Using

xm and 1 in place of y and λ in (4.5), we obtain easily that 1/m ≤ xm(t) ≤ R,

t ∈ [0, 1]. Since xm satisfies

xm(t) =
1

m
+

∫ 1

t

(∫ s

0

nτn−1f

(
max

{
1

m
,xm(τ)

})
dτ

)1/n

ds,

for t ∈ [0, 1], we have that (4.2) holds. �
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Lemma 4.3. Suppose that all conditions of Lemma 4.2 hold and xm satisfies

(4.2). For a fixed h ∈ (0, 1), let Mm,h = min{xm(t) : t ∈ [0, h]}. Then

Mh = inf {Mm,h} > 0.

Proof. Since xm(t) ≥ 1/m > 0, we get Mh ≥ 0. For any fixed natural

numbers m (m > n0 defined in Lemma 4.2), let tm ∈ [0, h] be such that xm(tm) =

min{xm(t) : t ∈ [0, h]}. If Mh = 0, then there exists a countable set {mi} such

that

lim
mi→+∞

xmi(tmi) = 0.

So there exists N0 such that xmi(tmi) < b (defined in Lemma 4.2), mi > N0.

Let N0 = {mi > N0 : mi ∈ N0 with lim
mi→+∞

xmi(tmi) = 0}. Then we have two

cases.

Case 1. There exist mk ∈ N0 and t∗mk
∈ (0, 1) such that x′mk

(t∗mk
) = 0. By

the same argument as in Lemma 4.2, we have

(4.13) 0 = ((−x′mk
(t∗mk

))n)′ = nt∗n−1mk
f(xmk

(t∗mk
)) > 0,

a contradiction.

Case 2. x′mi
(t) < 0 for all t ∈ (0, 1), mi ∈ N0. From lim

mi→+∞
xmi

(tmi
) = 0,

we have

(4.14) lim
mi→+∞

xmi
(t) = 0 uniformly on [h, 1]

and 0 < xmi
(t) < b, for all t ∈ [h, 1], mi ∈ N0, which yields that f(xmi

(t)) ≥ a,

for all t ∈ [h, 1], mi ∈ N0. Then, for any t ∈ [h, (h+ 1)/2], we have

xmi
(t) =

1

mi
+

∫ 1

t

(∫ s

0

nτn−1f(xmi
(τ)) dτ

)1/n

ds

≥
∫ 1

(h+1)/2

(∫ s

0

nτn−1f(xmi(τ)) dτ

)1/n

ds

≥
∫ 1

(h+1)/2

(∫ (h+1)/2

h

nτn−1f(xmi
(τ)) dτ

)1/n

ds

≥
∫ 1

(h+1)/2

(∫ (h+1)/2

h

nτn−1a dτ

)1/n

ds

= a1/n
((

h+ 1

2

)n
− hn

)1/n
1− h

2
> 0,

which contradicts (4.14). Hence, Mh > 0. �

Theorem 4.4. If (C1)–(C2) and (H1)–(H2) hold, then BVP (1.1) has at least

one positive solution.
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Proof. For any natural numbers n ∈ N0 (defined in Lemma 4.2), it follows

from Lemma 4.2 that there exist xm ∈ C, 1/m ≤ xm(t) ≤ R for all t ∈ [0, 1],

satisfying (4.2). Now we divide the proof into two steps.

Step 1. There exists a convergent subsequence of {xm} in [0, 1). For a natural

number k ≥ 3, it follows from Lemma 4.3 that 0 < m1−1/k ≤ xm(t) ≤ R,

t ∈ [0, 1−1/k], for any natural numbers m ∈ N0; i.e. {xm} is uniformly bounded

in [0, 1− 1/k]. Since xm also satisfies

(4.15) |((−x′m(t))n)′| ≤ ntn−1|f(xm(t))| ≤ n max
x∈[m1−1/k,R]

f(r),

for t ∈ [0, 1 − 1/k], it follows from inequality (4.15) that {xm} and {x′m} are

equicontinuous in [0, 1 − 1/k]. The Ascoli–Arzela Theorem guarantees that

there exists a subsequence of {x′n(t)} which converges uniformly on [0, 1− 1/k].

We may choose the diagonal sequence {x(k)k

′
(t)} which converges everywhere in

[0, 1) and it is easy to verify that {x(k)k

′
(t)} converges uniformly on any interval

[0, d] ⊆ [0, 1). Without loss of generality, let {x(k)k

′
(t)} be {x′n(t)} in what fol-

lows. Putting x(t) = lim
n→+∞

xn(t) and x′(t) = lim
n→+∞

x′n(t), t ∈ [0, 1), we have

that x′(t) is continuous in [0, 1) and x(t) ≥ mh > 0, t ∈ [0, h], for any h ∈ (0, 1)

by Lemma 4.3.

Step 2. Fix t ∈ (0, 1), we have

xm(t) = xm(0)−
∫ t

0

(∫ s

0

nτn−1f(xm(τ)) dτ

)1/n

ds.

Letting m→ +∞ in the above equation, we have

(4.16) x(t) = x(0)−
∫ t

0

(∫ s

0

nτn−1f(x(τ)) dτ

)1/n

ds.

Differentiating (4.16), we get

(4.17) ((−x′(t))n)′ = ntn−1f(x(t)), for all t ∈ (0, 1).

Since x′m(0) = 0 and {x′m(t)} is uniformly continuous on [0, h] for any 1 > h > 0,

we have

(4.18) x′(0) = 0.

Let tm = sup{t : xm(t) = ‖xm‖, x′m(t) = 0, t ∈ [0, 1)}. Then tm ∈ [0, 1),

xm(tm) = ‖xm‖ and x′m(tm) = 0. Using xm(t), 1, tm in place of y(t), λ and t∗

in Lemma 4.2, from (4.12), we obtain easily by∫ ‖xm‖

1/m

dx

F (x)
≤
(

1 +
G(R)

F (R)

)
1

2
(1− t2m).
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It follows from above inequalities that b1 = sup{tm} < 1. Fixed z ∈ (b1, 1), we

get 1/m ≤ xm(z) < ‖xm‖ ≤ R. From (4.12) and the proof of Lemma 4.2, one

easily has ∫ xm(z)

1/m

dx

F (x)
≤
(

1 +
G(R)

F (R)

)
1

2
(1− z2), for all z ∈ (b, 1).

Letting m→ +∞ in the above inequality, we have

(4.19)

∫ x(z)

0

dx

F (x)
≤
(

1 +
G(R)

F (R)

)
1

2
(1− z2), for all z ∈ (b, 1).

It follows from (4.19) that

(4.20) x(1) = lim
z→1−

x(z) = 0.

Combining (4.17), (4.18) and (4.20), x is a positive solution to BVP (1.1). �

Example 4.5. Consider((−u′(t))8)′ = 8t7
(

1

12
u3(t) +

1

12
u−2(t)− 100

)
for 0 < t < 1,

u′(0) = 0, u(1) = 0.

It is easy to prove that all conditions of Theorem 4.4 hold hence this problem

has at least one positive solution.

References

[1] R.P. Agarwal and D. O’Regan, Singular boundary value problems for superlinear second

ordinary and delay differential equations, J. Differential Equations 130 (1996), 335–355.

[2] , Nonlinear superlinear singular and nonsingular second order boundary value

problems, J. Differential Equations 143 (1998), 60–95.

[3] G. Dai, Eigenvalue, bifurcation, existence and nonexistence of solutions for Monge–Am-
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