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LINEARIZATION OF PLANAR HOMEOMORPHISMS

WITH A COMPACT ATTRACTOR

Armengol Gasull — Jorge Groisman — Francesc Mañosas

Abstract. Kerékjártó proved in 1934 that a planar homeomorphism with

an asymptotically stable fixed point is conjugated, on its basin of attrac-

tion, to one of the maps z 7→ z/2 or z 7→ z/2, depending on whether
f preserves or reverses the orientation. We extend this result to planar

homeomorphisms with a compact attractor.

1. Introduction

Consider the discrete dynamical system generated by a planar homeomor-

phism f . It is well-known that if f has an asymptotically stable fixed point, then

its basin of attraction U is an open and simply connected subset of the plane.

Moreover, Kerékjártó ([7], [8]) proved that f restricted to U is either conjugated

to L1(z) = z/2 or to L2(z) = z/2 in C, depending on whether f preserves or

reverses the orientation. A different proof of this result is also given in [4]. This

result has been extended, with clear modifications, to R3 in [5] and to Rm for

m 6= 4, 5 in [6], when f preserves orientation.

In this paper we will focus on the planar case and we extend Kerékjártó’s

result to the case where f has a compact attractor. To state our result we need

2010 Mathematics Subject Classification. Primary: 37C15; Secondary: 37C70, 54H20.
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to introduce a new concept, the stabilizer of a compact attractor. This notion is

analogous to the one proposed in [3] for ordinary differential equations.

Let K be a compact attractor, not necessarily stable, and with basin of

attraction A(K). Define the new compact set

K̃ := {x ∈ A(K) : α(x) ∩K 6= ∅},

where α(x) denotes the alpha-limit of the orbit passing through x, which we call

the stabilizer of K. We will see that K̃ is a compact stable attractor with the

same basin of attraction as K. Our main result is the following theorem:

Theorem 1.1. Let f : R2 → R2 be a homeomorphism, let K be a compact

attractor and let U be its basin of attraction. Assume that U is connected and

simply connected. Then U \ K̃ is homeomorphic to R2 \ {0} and f |U\K̃ is con-

jugated to L1(z) = z/2 or L2(z) = z/2 on R2 \ {0}.

As corollaries of the above theorem we get Kerékjártó’s result and the fol-

lowing extension:

Corollary 1.2. Let f : R2 → R2 be a homeomorphism and let K be a global

compact attractor. Then R2 \ K̃ is homeomorphic to R2 \ {0} and f |R2\K̃ is

conjugated either to L1 or to L2 on R2 \ {0}.

Let us recall the main steps of Kerékjártó’s proof. If γ is a Jordan curve

surrounding the fixed point, p, then clearly there exists n such that fn(γ) is

also a Jordan curve which surrounds p and lies in the bounded component of

U \ γ. Then, using all the curves f j(γ), j = 0, 1, . . . , n− 1, and some topological

reasonings he constructs a new curve, say Γ, for which the same holds but with

n = 1. Then, the closed annulus A with boundaries Γ and f(Γ) constitutes

a fundamental domain on which he constructs the conjugacy ψ between f and

Lj , j = 1 or 2. In fact, ψ must send A to the set A := {z ∈ C : 1/2 ≤ |z| ≤ 1},
with some natural restrictions on the boundary. Then, this ψ can be extended

to U in a natural way by iteration.

Our proof of Theorem 1.1 follows a similar approach, but with two main

differences. The first one is that the curve Γ with the property described above

is constructed by using a different idea. First, we prove the existence of a con-

tinuous Lyapunov function L associated to the asymptotically stable compact

set K̃, by adapting a similar construction developed in [1] for ordinary differen-

tial equations. Afterwards, we show how to smoothen some of the level sets of L

by using Sard’s theorem and the classification of one dimensional manifolds. One

of these smooth levels will be Γ. A second difference is that we use an extension

of Jordan’s curve theorem known as Schoenflies’ theorem ([2], [9]) to prove the

existence of a continuous conjugacy ψ between the respective domains A and A,

satisfying a suitable boundary condition.



Linearization of Planar Homeomorphisms 495

In [10], J. Lewowicz proposed to use the Lyapunov metrics (see the next sec-

tion for a precise definition) to study structural stability of homeomorphisms on

compact manifolds, and similar concepts, such as topological stability and persis-

tence. Since then, the method has been successfully applied to a wide spectrum

of dynamical systems, such as hyperbolic and almost hyperbolic diffeomorphisms

on manifolds, geodesic flows, pseudo-Anosov maps, billiards, expansive homeo-

morphisms on compact manifolds, in particular on surfaces, and on expansive

homeomorphisms of the plane.

Our second result relates usual Lyapunov functions, Lyapunov metrics and

global asymptotically stable fixed points in the plane.

Theorem 1.3. Let f : R2 → R2 be a homeomorphism and let p be a fixed

point. Then the following statements are equivalent:

(a) p is globally asymptotically stable.

(b) There exists a Lyapunov function for f and p.

(c) f is conjugate either to L1(z) = z/2 or to L2(z) = z/2.

(d) There exists a Lyapunov metric D for which p is D-stable.

In fact, by using the extension of Kerékjártó’s theorem to dimension 3, or

to dimensions m > 5 in the orientation preserving case, Theorem 1.3 can be

generalized to these situations in a natural way.

The paper is organized as follows. In Section 2 we introduce the stabilizer of

an attractor, we give some examples and prove its basic properties in Rm. We

also prove some basic facts about globally asymptotically stable compact sets

and its relation with the existence of Lyapunov functions in Rm. In this setting

we also introduce some properties of the Lyapunov metrics. We conclude with

some results in the planar case. In Section 3 we prove Theorems 1.1 and 1.3 and

some corollaries, including Kerékjártó’s theorem.

2. General definitions and preliminary results

We begin by reviewing some definitions and basic facts about the dynamics

of homeomorphisms and we also introduce the stabilizer of a compact attractor.

Let X be a locally compact topological space and let f : X → X be a home-

omorphism.

We say that Y ⊂ X is invariant if f(Y ) = Y . For x ∈ X the omega limit

set of x, denoted by ω(x), is the set of accumulation points of the sequence

{fn(x)}n∈N. Analogously the alpha limit set of x, denoted by α(x), is the set of

accumulation points of the sequence {f−n(x)}n∈N. The alpha and omega limit

sets are closed and invariant subsets of X.

We will say that a compact set K ⊂ X is an attractor if this set is invariant

and there exists a neighbourhood U of K such that for all x ∈ U , ω(x) 6= ∅ and
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ω(x) ⊂ K. If K is an attractor, the set

A(K) = {x ∈ X : ω(x) 6= ∅ and ω(x) ⊂ K}

is invariant and open and we call it the basin of attraction of K. In the case

that A(K) = X we will say that K is a global attractor.

Stabilizer of {p}

p p

Figure 1. Flow that defines f1 and stabilizer of {p}.

We will say that a compact set K ⊂ X is asymptotically stable if it is an

attractor and for all neighbourhoods U of K there exists V ⊂ U , a neighbourhood

of K, such that fn(x) ∈ U for all x ∈ V and n ∈ N. In the case that A(K) = X

we will say that K is globally asymptotically stable.

Let K be an attractor. Recall that we have introduced its stabilizer as

K̃ := {x ∈ A(K) : α(x) ∩K 6= ∅}. Let us show some examples. Let f1 and f2
be the time one maps given by the flows with phase portraits given in Figures 1

and 2, respectively. In these figures the stabilizers of different compact attractors

are displayed. It is interesting to notice that when we consider K = {p} for f2,

then this set is a compact attractor but Theorem 1.1 cannot be applied because

its basin of attraction U = R2 \ {q} is not simply connected. On the other hand,

taking K = {p, q} we get a global attractor and, by Corollary 1.2, we obtain

that f2 is conjugated with L1 on R2 \ K̃.

Our first objective is to show that in our situation K̃ is asymptotically stable

with the same basin as K. We need some preliminary results.

From now on we restrict our attention to the case when X is an open subset

of Rm. If K is an attractor, we can always assume that K is a global attractor

by considering f |A(K) which is also a homeomorphism. If U ⊂ X we will denote

by U , Ů and Uc the closure of U , its interior and X \ U , respectively.

Lemma 2.1. Let f : X → X be a homeomorphism where X is an open sub-

set of Rm. Assume that K ⊂ X is a global attractor. Let Q1 be a compact

neighbourhood of K. Then there exists a compact neighbourhood Q2 such that

Q1 ⊂ Q2 and f(Q2) ⊂ Q2.
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p

p

p

Stabilizer of {p}
q

Stabilizer of {p, q}

q

Figure 2. Flow that defines f2 and different stabilizers.

Proof. Let x ∈ Q1 and consider the first natural number nx ≥ 1 such that

fnx(x) ∈ Q̊1. Let Bx be an open neighbourhood of x such that Bx is compact

and fnx(Bx) ⊂ Q̊1. Then {Bx}x∈Q1 is an open cover of Q1. Let x1, . . . , xl be

such that Q1 ⊂
l⋃

i=1

Bxi
. Define

Q2 =

l⋃
i=1

nxi⋃
j=0

f j(Bxi
).

Clearly, Q2 is a compact set and f(Q2) ⊂ Q2. �

Lemma 2.2. Let X ⊂ Rm be open, f : X → X be a homeomorphism and let

K ⊂ X be a global attractor. Given any x ∈ X, we have that x ∈ K̃ or α(x) = ∅
(i.e. the negative orbit of x leaves any compact set).

Proof. Let x ∈ X and let M ⊂ X be a compact set such that the negative

orbit of x does not leave M . Then α(x) 6= ∅. Take y ∈ α(x). Then w(y) ⊂ K

and w(y) ⊂ α(x), since α(x) is an invariant set. So α(x)∩K 6= ∅. Thus x ∈ K̃.�

Proposition 2.3. Let X ⊂ Rm be open, f : X → X be a homeomorphism

and let K ⊂ X be an attractor. Then K̃ is asymptotically stable with the same

basin of attraction as K. Moreover, K is asymptotically stable if and only if

K̃ = K.

Proof. We can restrict our attention to the case where K is a global at-

tractor. Notice that by definition K̃ is invariant. Now, we prove that it is

compact. By Lemma 2.1, there exists a compact neighbourhood Q of K such

that f(Q) ⊂ Q. Thus, f−1(Qc) ⊂ Qc and then K̃ ⊂ Q. Thus K̃ is bounded. We

will prove that K̃c is an open set which will imply the compactness of K̃. Let
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p ∈ K̃c. By Lemma 2.2, there exists n ≥ 0 such that f−n(p) ∈ Qc. Let V be

a neighbourhood of p such that f−n(V) ⊂ Qc. Since Qc is invariant for f−1, then

α(x) ⊂ Qc for all x ∈ V, so V ⊂ K̃c. Then K̃ is a compact set. By definition

K ⊂ K̃, so K̃ is a global attractor. Let us see that K̃ is asymptotically stable.

Suppose that this is not true. Then there exists an open neighbourhood U of K̃

such that for all open neighbourhoods V of K̃ there exist x ∈ V and nx ≥ 0 such

that fnx(x) does not belong to U . Let Q be the compact and positive invariant

neighbourhood of K̃. Then there exists a sequence {xk}k of Q such that:

• fnk(xk) does not belong to U for some nk ≥ 0,

• limxk = x ∈ K̃.

Since xk ∈ Q andQ is a positive invariant set, we have that (taking a subsequence

if necessary) fnk(xk) tends to a point y ∈ Q \ U . By Lemma 2.2, there exist

j > 0 and a neighbourhood V of y such that f−j(y) ∈ Qc and f−j(V) ⊂ Qc. We

claim that the sequence {nk}k is unbounded. If not, we can take a subsequence

{xki
}i that tends to x and fn(xk) → y for some constant n. Thus, y = fn(x)

which contradicts the invariance of K̃. So, let k0 ∈ N be such that fnk(xk) ∈ V,

for all k > k0. Then fnk−j(xk) ∈ Qc, for all k > k0, and since the sequence

{nk}k is unbounded there exists some k such that nk − j > 0 which contradicts

the positive invariance of Q. Therefore K̃ is asymptotically stable. Since by

definition K ⊂ K̃, it follows that it is globally asymptotically stable. Thus the

first statement holds. Clearly if K̃ = K, it follows that K is asymptotically

stable. Lastly assume that K is asymptotically stable and we will see that

K̃ = K. Suppose to the contrary that x ∈ K̃ \ K. Then since α(x) ∩ K 6= ∅,
it follows that for any ε the set Bε = {y ∈ Rm : d(y,K) < ε} contains some

pre-image of x which contradicts the stability of K. This ends the proof of the

proposition. �

2.1. Lyapunov functions in Rm. A classical tool to investigate the stabil-

ity of compact invariant sets is the existence of the so-called Lyapunov functions.

Let f : Rm → Rm be a homeomorphism and K ⊂ Rm be a compact invariant

set. We will say that a proper and continuous map L : Rm → R is a Lyapunov

function for K and f , if it satisfies the following two properties:

(i) For all x ∈ Rm, L(x) ≥ 0 and L(x) = 0 if and only if x ∈ K.

(ii) For all x ∈ Rm \K, L(f(x)) < L(x).

The following result relates the global asymptotical stability with the exis-

tence of Lyapunov functions.

Proposition 2.4. Let f : Rm → Rm be a homeomorphism and K be a com-

pact invariant subset. Then the following statements are equivalent:

(a) There exists a Lyapunov function for f and K.

(b) K is globally asymptotically stable.
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Proof. Assume that (a) holds and let L : Rm → R be a Lyapunov function

for K and f . First we show that K is a global attractor. Let x ∈ Rm and

define k = L(x). Then the positive orbit of x is contained in L−1[0, k] which

is a compact set. Therefore ω(x) 6= ∅. We claim that ω(x) ⊂ K. If not, there

exists y ∈ ω(x) such that L(y) = ` 6= 0. Therefore L(f(y)) = `′ < `. Since

f(y) ∈ ω(x), this implies that there exists a sequence 0 < n1 < . . . < ni . . .

such that lim fni(x) = f(y). In particular, for j large enough we will have

L(fnj (x)) = s < `. Thus we will obtain that L(fn(x)) < s < ` = L(y) for

n > nj , which contradicts the fact that y ∈ ω(x). This proves the claim and

shows that K is a global attractor.

Now we show that K is asymptotically stable. Let U be an open neigh-

bourhood of K and set M = min{L(x) : x /∈ U} which exists because L is

proper. Moreover, since K ⊂ U it follows that M 6= 0. Assume, to the contrary,

that for all j > 0 there exists xj and kj ≥ 0 such that d(xj ,K) < 1/j and

fkj (xj) /∈ U . Thus we will obtain a sequence xj tending to K with L(xj) > M ,

which contradicts the continuity of L. Therefore there exists a value n such that

Bn = {x ∈ Rm : d(x,K) < 1/n} satisfies that for all y ∈ Bn and for all r ≥ 0,

fr(y) ∈ U . This ends the proof of the first implication.

Now assume that K is globally asymptotically stable. Define s : Rm → R by

s(x) = d(x,K) = min{‖x− y‖ : y ∈ K}

which clearly is a positive continuous function that only vanishes at K. Since

K is globally asymptotically stable for any x ∈ Rm \K there exists kx ∈ N such

that s(fn(x)) < s(x)/2 for all n > kx. Thus

Φ(x) = sup{s(fn(x)) : n ∈ N} = max{s(fn(x)) : n ∈ {0, . . . , kx}}

is well-defined. Clearly it is continuous and since Φ(x) ≥ s(x) it is also proper.

By definition, Φ satisfies property (i) and also satisfies that Φ(f(x)) ≤ Φ(x) for

all x ∈ Rm. Now consider

L(x) :=

∞∑
n=0

Φ(fn(x))

2n
.

Clearly this series converges uniformly on compact subsets of Rm and hence

defines a continuous function on Rm. Moreover, since L(x) ≥ Φ(x) ≥ s(x) for

all x ∈ Rm, it follows that L is proper and satisfies property (i). On the other

hand,

L(f(x))−L(x) =

∞∑
i=0

2−n(Φ(fn+1(x))−Φ(fn(x))) ≤ 0 and L(f(x))−L(x) = 0

if and only if Φ(x) = Φ(fn(x)) for all n ∈ N which implies that x ∈ K. �
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2.2. Lyapunov metrics in Rm. To formulate the notion of Lyapunov met-

ric we need to introduce some notation. Given a homeomorphism f : Rm→Rm

and a continuous mapG : Rm×Rm → R, we denote by ∆(G) the map ∆(G) : Rm×
Rm → R defined by

∆(G)(x, y) = G(f(x), f(y))−G(x, y).

We denote by ∆2(G) the map ∆(∆(G)).

Let f : Rm → Rm be a homeomorphism. We say that D : Rm × Rm → R is

a Lyapunov metric for f if it is continuous, vanishes only on the diagonal, and is

such that both D(x, y) and ∆2(D)(x, y) are positive for (x, y) whenever x 6= y.

Let f : Rm → Rm be a homeomorphism of the plane that admits a Lyapunov

metric D. A fixed point x ∈ Rm is said to be D-stable if the map Dx : Rm → R
defined by Dx(y) = D(x, y) is proper and given any k′ > 0 there exists k > 0

such that D(x, fm(y)) < k′ for all m ≥ 0, whenever D(x, y) < k.

Proposition 2.5. Let f : Rm → Rm be a homeomorphism and let D be

a Lyapunov metric for f . If p is a fixed point of f that is D-stable then p is

globally asymptotically stable.

Proof. We will show that the map Dp is a Lyapunov function for f and p.

By hypothesis it is positive and proper and only vanishes at p. So it only remains

to show that Dp(f(x)) < Dp(x) for all x ∈ Rm, x 6= p. That is ∆(D)(x, p) < 0

for all x 6= p. Set

W := {x ∈ Rm : ∆(D)(fn(x), p) < 0 for all n ≥ 0} ∪ {p}.

We will show that W = Rm.

First of all we claim that there exists a neighbourhood U of p, such that

U ⊂ W. To prove this note that since

∆(D)(f(x), p) = ∆(D)(x, p) + ∆2(D)(x, p),

we have that ∆(D)(f(x), p) > ∆(D)(x, p), and consequently, for all n > 0,

∆(D)(fn(x), p) > ∆(D)(x, p). Therefore we get

D(fn(x), p) = D(x, p) +

n−1∑
i=0

∆(D)(f i(x), p) > D(x, p) + n∆(D)(x, p).

Thus if ∆(D)(x, p) > 0 we obtain that lim
n→∞

D(fn(x), p) = ∞. We obtain

the same conclusion when ∆(D)(x, p) = 0, simply observing that for y =

f(x) we have ∆(D)(y, p) > 0. Lastly note that if ∆(D)(f j(x), p) ≥ 0 then

lim
n→∞

D(fn(f j(x)), p) =∞ and so lim
n→∞

D(fn(x), p) =∞.

Now we prove the claim. If such a neighbourhood U does not exist this implies

that there is a sequence {xi}i such that limxi = p and lim
n→∞

D(fn(xi), p) = ∞
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for all i. This clearly contradicts the fact that p is D-stable. In particular, we

have showed that W is invariant.

Next we will show that W is closed. Let {xk}k be a convergent sequence of

points fromW and let x be its limit point. If x does not belong toW then there

exists n ∈ N such that D(fn(x), p) > 0. Therefore, there exists a neighbourhood

B of fn(x) such that D(y, p) > 0 for all y ∈ B. Thus for a sufficiently large k,

we have that fn(xk) ∈ B which contradicts the fact that xk ∈ W.

The next step is to show that D(fn(x), p) tends to zero when n tends to

infinity and x ∈ W. Let us suppose that there exists a point x ∈ W such that

D(fn(x), p) does not converge to zero. Note that since x ∈ W, the function Dp

is decreasing over the positive orbit of x. Then the sequence {D(fn(x), p)}n≥0
is bounded by D(x, p). Since Dp is a proper function we obtain that the set

{fn(x) : n ≥ 0} is bounded and therefore there exists an accumulation point

q 6= p. Since W is closed, we have that q ∈ W, so D(f(q), p) < D(q, p). This

implies the existence of n1 < n2 such that D(fn1(x), p) < D(fn2(x), p) which

contradicts that x ∈ W.

Lastly we prove that W = Rm. It only remains to show that W is open.

Let x be an arbitrary point of W. By the above observation, we know that

lim
n→∞

D(fn(x), p) = 0. We claim that lim
n→∞

fn(x) = p. If this is not the case,

then {fn(x)}n≥0 must accumulate in a point q 6= p in view of the fact that Dp

is a proper function. So, there exists some subsequence {fnk(x)}nk
converging

to q. Using the continuity of D, we have that D(fnk(x), p) tends to D(q, p)

which is a positive number. This fact is in contradiction with the fact that

lim
n→∞

D(fn(x), p) = 0. Therefore limn→∞ fn(x) = p and there exists k such that

fk(x) ∈ U . Let V be an open neighbourhood of fk(x) contained in U . Then

f−k(V) is an open neighbourhood of x contained in W. Therefore W is open

and then W = Rm. Thus Dp is a Lyapunov function for f and p and the result

follows from Proposition 2.4. �

2.3. The planar case. In this section we focus on R2. Given a Jordan

curve J ⊂ R2, we denote by int(J) the bounded connected component of R2 \J .

Given two Jordan curves J1 and J2, we write J1 ≺ J2 if J1 ⊂ int(J2). Note that

if J1 ≺ J2, in particular, J1 ∩ J2 = ∅. Note also that if J1 ≺ J2 and h : R2 → R2

is a homeomorphism then h(J1) ≺ h(J2). Thus hn(J1) ≺ hn(J2) for all n ∈ Z.

The next lemma plays a crucial role in the proof of Theorem 1.1.

Lemma 2.6. Let f : R2 → R2 be a homeomorphism and K globally asymp-

totically stable. Then there exists an analytic Jordan curve J with K ⊂ int(J)

satisfying that f(J) ≺ J and K ⊂ int(f(J)).

Proof. In view of Proposition 2.4 there exists a Lyapunov continuous func-

tion L : R2→R, proper and strictly decreasing over the orbits (not contained
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in K) of f . The first objective is to modify L to obtain another Lyapunov func-

tion L which is analytic (in fact polynomial) in some open range of levels. First

we note that given b > 0 there exists 0 < a < b such that f(L−1[a, b])∩L−1[a, b] =

∅. To do this consider c < b and set

â = max{L(f(x)) : x ∈ L−1[c, b]}.

This value is well-defined because L is proper and L and f are continuous, and

clearly â < b because L is a Lyapunov function. Then if â < c it suffices to

choose a = c. Otherwise we can choose any a ∈ (â, b).

Now choose 0< a < b such that M := L−1[a, b] satisfies that M∩f(M)=∅.
Choose also 0 < ε < (b− a)/4 and denote Mε = L−1([a + ε, b − ε]) and M2ε =

L−1([a+ 2ε, b− 2ε]) which are compact sets because L is proper. By the Stone–

Weierstrass theorem, there exists a polynomial map P such that

max{|P (x)− L(x)| : x ∈M} < min(a, ε/4).

In particular, P (x) is positive in M . Set also U = L−1((a + ε/2, b − ε/2)) and

g : R2 → [0, 1] a C∞ function such that g(x) = 1 for all x ∈Mε and g(x) = 0 for

all x /∈ U . Lastly define L = gP + (1 − g)L. Simple computations show that L

satisfies the following properties:

(1) L(x) = P (x) when x ∈Mε and L(x) = L(x) when x /∈ U .

(2) L
−1

([a+ 2ε, b− 2ε]) ⊂Mε.

(3) L(x) ∈ [a, b] for all x ∈M .

Now we claim that L is still a proper Lyapunov function. It is proper because

it coincides with L outside of M . By construction, it follows that L satisfies

property (i) of a Lyapunov function. Now we show that it is decreasing over the

orbits. Set x /∈ K, we need to show that L(f(x)) < L(x). This is clear when x

and f(x) do not belong to M because in this case L and L coincide. Suppose that

x ∈ M . By construction, f(x) /∈ M and L(f(x)) = L(f(x)) < a. On the other

hand, by (3), L(x) ≥ a. Lastly, suppose that f(x) ∈ M . Also by construction,

x /∈ M and L(x) = L(x) > b. Also by (3) we have that L(f(x)) ∈ [a, b]. This

concludes the proof of the claim.

Note also that from (1) and (2) it follows that L is polynomial on the set

L
−1

([a + 2ε, b − 2ε]). By Sard’s theorem, we get that for almost all values

z ∈ (a + 2ε, b − 2ε), L
−1

(z) is an analytic compact manifold. Now we choose

z ∈ (a+ 2ε, b− 2ε) with this property and we get that L−1(z) is a finite union of

Jordan curves. Since L is proper it follows that L
−1

(z) separates K and a circle

of radius R large enough. Thus at least one of the Jordan curves of L−1(z) must

surround K. Denote one of them by J .

To end the proof of the lemma we will show that f(J) ≺ J . First of all

note that since J surrounds K, f(K) = K and f is a homeomorphism, we have
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that f(J) also surrounds K. Furthermore, since L(f(x)) < z for all x ∈ J , it

follows that either J ≺ f(J) or f(J) ≺ J . However, if J ≺ f(J) we also get

f(J) ≺ f2(J) because f is a homeomorphism and hence J ≺ f2(J). Iterating

this argument, we have J ≺ fn(J) for all n ∈ N which contradicts the fact that

K is globally asymptotically stable. This ends the proof of the lemma. �

We end this section stating the classical Schoenflies’ theorem, [2], [9]. As we

will see, we will use it together with some ideas of [9, Corollary 2.1] for proving

Theorem 1.1.

Theorem 2.7. Let J1 and J2 be simple closed curves. Then any homeomor-

phism h : J1 → J2 can be extended to a homeomorphism from int(J1) ∪ J1 onto

int(J2) ∪ J2.

3. Proof of the main results

Proof of Theorem 1.1. Since U is connected and simply connected it

is homeomorphic to R2 by the Riemann theorem. Therefore, we can restrict

our attention to the case where U = R2 and K is a global attractor. From

Proposition 2.3 the set K̃ is globally asymptotically stable and from Lemma 2.6

we know that there exists a Jordan curve J surrounding K̃ such that f(J) ≺ J .

First of all we claim that the ring determined by J and f(J) that is J ∪ (int(J)\
int(f(J))) is contained in R2 \ K̃. This is because if z ∈ J ∪ (int(J) \ int(f(J)))

then f−1(z) belongs to the ring determined by f−1(J) and J . Therefore f−1(z) /∈
K̃ and, since K̃ is invariant, z /∈ K̃. So the claim is proved. For i = 1, 2 denote

Si = {z ∈ R2 : ‖z‖ = 1/i},

S+
i = {(x, y) ∈ Si : y ≥ 0}, S−i = {(x, y) ∈ Si : y ≤ 0}

and consider a homeomorphism g1 : J → S1. Denote

J+ = g−11 (S+
1 ), J− = g−11 (S−1 ), a = g−11 (−1, 0), b = g−11 (1, 0)

and consider two simple and disjoint paths γ1, γ2 contained in the annulus de-

termined by J and f(J) joining a with f(a) and b with f(b). Denote also by Ĵ

the Jordan curve obtained by gluing J+, f(J+), γ1 and γ2. There are two pos-

sibilities. Either int(Ĵ ) ∩ int(f(J)) = ∅ or int(f(J)) ⊂ int(Ĵ ). In the first case

consider homeomorphisms g3 and g4 from γ1 to I1 = {(t, 0) : t ∈ [−1,−1/2]}
and from γ2 to I2 = {(t, 0) : t ∈ [1/2, 1]} and g2 : f(J) → S2 given by g2(x) =

g1(f−1(x))/2. Gluing g1, g2, g3 and g4 we obtain and homeomorphism from Ĵ

to the Jordan curve formed by S+
1 , S

+
2 , I1 and I2. Thus, by Schoenflies’ theo-

rem, this homeomorphism can be extended to a homeomorphism g+ between the

interiors of both Jordan curves, see Figure 3.

A similar argument shows that gluing g1, g2, g3 and g4 we obtain a homeo-

morphism between the Jordan curve formed by J−, f(J−), γ1, γ2 to the Jordan



504 A. Gasull — J. Groisman — F. Mañosas

K̃

J

a

f(a)

γ1

γ2

b

11/2−1/2−1

S1

g+

g−

f(b)

Figure 3. Construction of g in the preserving orientation case.

curve formed by S−1 , S
−
2 , I1 and I2. We also extend these homeomorphisms to a

homeomorphism g− between its interiors. Since g+ and g− coincide in γ1 and

γ2, we can glue both homeomorphisms to obtain a homeomorphism g between

the annulus determined by J and f(J), which we denote by A, and the annulus

determined by S1 and S2.

Now we claim that R2 \ K̃ =
⋃
i∈Z

f i(A). Let z ∈ R2 \ K̃ and assume that

z /∈ A. If z ∈
⋃
i∈Z

fn(J) there is nothing to prove. From Lemma 2.2 it follows that

there exists i ≤ 0 such that f i(z) /∈ int(J). Now, since K is an attractor there

exists a first j > 0 such that f i+j(z) ∈ int(J). This implies that f (i+j)(z) ∈ A
and hence z ∈ f−(i+j)(A).

Lastly let h : R2 \ K̃ → R2 \ {0} be defined by h(z) = 2ng(fn(z)) when

fn(z) ∈ A. Note that if z /∈
⋃
n∈Z

fn(J) then the map h is uniquely defined. If

z ∈ fn(J) for some n ∈ Z then f−n(z) ∈ J ⊂ A and f−n+1(z) ∈ f(J) ⊂ A.

Thus h(z) = 2−ng(f−n(z)) = 2−ng1(f−n(z)) or

h(z) = 2−n+1g(f−n+1(z)) = 2−n+1g2(f−n+1(z))

= 2−n+1 g1(f−n(z))

2
= 2−ng1(f−n(z)).

Therefore, h is a well-defined homeomorphism. Lastly, we have

h(z) = 2ng(fn(z)) = 2(2n−1g(fn−1(f(z)))) = 2h(f(z))

which implies that h(f(h−1(z))) = z/2. In particular, f preserves orientation.

This ends the proof of the theorem in this case.
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When int(f(J)) ⊂ int(J̃) the proof follows in a similar way considering the

Jordan curve J∗ obtained joining J+, f(J−), γ1, γ2 and the map g∗2 given by

g∗2(x) = g1(f−1(x))/2 instead of J̃ and g2. In this case the corresponding map

h∗ satisfies h∗(f((h∗)−1(z))) = z/2 and hence f reverses orientation. This ends

the proof of the theorem. �

The proof of Corollary 1.2 is straightforward from Theorem 1.1 because in

this case the basin of attraction is the whole plane, that is U = R2 and hence it is

clearly connected and simply connected. Next, we prove Kerékjártó’s theorem.

Proof of Kerékjártó’s theorem. We want to apply Theorem 1.1 when

K = {p}, where p is an asymptotically stable fixed point and U is its basin of

attraction. Hence the result follows once we prove that the set U is connected

and also simply connected. This is so, because we obtain a homeomorphism

h : U \ {p} → R2 \ {0} that linearizes f . Clearly, this homeomorphism extends

to a homeomorphism between U and R2 by putting h(p) = 0.

The above properties of U are well-known, but we prove them for the sake of

completeness. First, let us see that U is arc-connected. To do this let D ⊂ U be

an open disc containing p and z1, z2 ∈ U . Since p is asymptotically stable, there

exists n such that fn(z1), fn(z2) ∈ D. Now set α ⊂ D be an arc joining fn(z1)

and fn(z2). Then α = f−n(γ) is an arc joining z1 and z2. Since fn(α) ⊂ D ⊂ U
and U is f -invariant, it follows that α ⊂ U .

Now we show that U is simply connected. Let J ⊂ U be a Jordan curve and

we will see that int(J) ⊂ U . As before let D ⊂ U be an open disc containing p

and n ∈ N be such that fn(J) ⊂ D. Since f is a homeomorphism, fn(J) is also

a Jordan curve and fn(int(J)) = int(fn(J)) ⊂ D ⊂ U . Since U is f -invariant,

int(J) ⊂ U and the curve J can be deformed in U to a point. �

Collecting all our results in the plane we can prove Theorem 1.3.

Proof of Theorem 1.3. The equivalence (a)⇔ (b) follows from Proposi-

tion 2.4, while the double implication (a)⇔ (c) follows from Kerékjártó’s theo-

rem. Also it follows from Proposition 2.5 that statement (d) implies statement

(a). To finish the proof it suffices to show that statement (c) implies (d). This

is a consequence of the fact that the usual Euclidian metric D is a Lyapunov

metric for L1 and L2 for which (0, 0) is D-stable. Then the metric transported

via the conjugation gives the desired Lyapunov metric for f . �
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