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1. Introduction

Let M be a compact Riemannian manifold of dimension m with C* boundary
OM. Let V be a smooth vector bundle over M, let VP be a connection on V, and
let EP € C*°(End(V)). Let

(1.1) D= —(%,,,9"*VPV2 + EP)

be an operator of Laplace type on C°(V). Note that for every operator D of
Laplace type there is a unique connection V2 and a unique endomorphism EP so
that (1.1) holds. For example, the geometers Laplacian Dy = éd on C*°(M) is an
operator of Laplace type with V? trivial and EP = 0. Let § € C*(End(V)) and
let e, be the inward pointing unit normal. Let

D —_
(12) B{f=(Ve,f+Sf)lom and B f= flom
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be Neumann and Dirichlet boundary conditions. Let h(z,t) = e~tP5f(x) for
B € {B%,B~} be the solution for ¢ > 0 to the equations:

(1.3) O¢h(z,t) = —Dh(z,t), Bh(z,t) =0, and tli%1+ h{z,t) = fi(x).

Denote the natural pairing between V' and the dual bundle V* by {-,-). Let dz and
dy be the Riemannian measures on M and &M. To study the short time behavior
of h we introduce an auxiliary smooth test function f, € C*°(V*) and define

(1.4) B(fr, fas D, B(t) = /M (P51, f,) da.

For example, let Dy = éd be the geometers Laplacian, let f; € C®(M) represent
the initial temperature of M, and let &M have temperature O for all ¢ > 0. Then
B(f1,1, D, B™) is the total heat energy content of the manifold. We can also study
the corresponding localized problem by choosing f, suitably.

Standard elliptic methods, see for example the discussion in [4, Lemma 1.3],
show there is an asymptotic series as t — 01 of the form

(1.5) B(f1, f2, D, B)(t) ~ Zﬂn(flny;D,B)tn/za

n=0

and the existence of local invariants B:"t(fy, fa, D) and B2%(fy, fa, D, B) so that

(16)  Balfi, fo, D, B) = / Bi"*(fy, fay D) dz + / B4 (£, f2, D, B) dy.
M aM
We set t = 0 to see

(1.7) Bo(f1, f2, D, B) = /M(fl,fz) dz.

We introduce the following notational conventions. Let z = (z?,...,z™) be a
system of local coordinates on M. Near 0M, we choose coordinates z = (y, ™) so
z™ is the geodesic distance to the boundary and so the curves y(s) = (y, s) are unit
speed geodesics perpendicular to M. Greek indices v, u (resp. Roman indices
i, j) range from 1 through m and index coordinate (resp. orthonormal) frames
for the tangent T(M) and cotangent T*(M) bundles of M. Greek indices a, 8
(resp. Roman indices a, b) range from 1 through m — 1 and index coordinate (resp.
orthonormal) frames for T(OM) and T*(8M). We adopt the Einstein convention
and sum over repeated indices. If M = [rg,71] X M2, let €0, be the inward unit
normal; e(rg) = 1 and e(r;) = —1.

Let R;jx; be the curvature tensor of the Levi-Civita connection VM of M; with
our sign convention Rjp3 = —1 for the standard sphere in R3. Let 7 = Ry i
and p;; = R;gkj be the scalar curvature and the Ricci tensor. Let “” and “” be
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multiple covariant differentiation with respect to V¥ and V®™. When sections of
bundles built from V' are involved, “” and “”will mean

(1.8) VMe1+19V?P and V¥ 31+19 VP,

We use the dual connection on V*. The second fundamental form L measures the
difference between VM and VM. If f € C®(V), f,, = f. since no tangential
indices are to be differentiated. However, since the index a must be covariantly
differentiated, fiop = fiab — Labfim Where Lgp = (em, VM ep). Let D be the formal
adjoint on C*®(V*); V2 = {VP}* and ED = (EP)*. Let

(1.9) B,-g'-.f2 = (fom +S*fa)losr and B~ fo = flopr for fa € C®(V*).
The boundary conditions B and B are adjoint, i.e. if Bf; =0 and B f2 =0, then

(1.10) /(Dfl,f2) dx=/ (F1, Dfa) da.

M M
The main results of this paper are the formulae for the invariants
(111) ﬁ4(f1)f27DaB—) and ﬂﬁ(flafZ,D,B:St)

in the following theorems.

THEOREM 1.1. (a) Bo(f1, fo, D,B™) = [\, (f1, f2) dz
(b) 61(f1,f27DaB_) = —271'_1/2 faM<f11f2> dy
(¢) B2(f1, f2, D, B7) = — [1,(Df1, f2) dx + [5,,{(5Laaf1, fo) — {f1, form)} dy.

(d) Bs(f1, f2,D,B7) = =202 [0 {2 frimm, f2) + 3{f1, Fasmm) — (Fi-a» fara)
(EDfla f2) - %Laa(fl;m;f2> - %Laa(fla f2;m) + ((ﬁLaaLbb — éLabLab
+¢ Ramam) f1, f2)} dy.

() Balf1, f2,D,B7) = § [,(Df1, Do) dz + [5,, {3{(Df1)im, fo)
+5(f1, (Df2)im) — HLaa D1, f2) = HLaaft, Df2) + (A Eym — & LapLap Lec
+§LabLacLic — 15 RamsmLab + 75 RabebLac + 25 Tim + 15 Labias) f1, f2)
—3Lab(fra, f2) = §(Q0 frar F2) + 3(QD, f1, f2:a) } dy.

THEOREM 1.2. (a) Bo(f1, f2, D, BE) = [3,(f1, fo) dz.
(b) ,Bl(f17f2aD5 B‘-S"-) =0.

(¢) Ba(f1, f2, D, BE) = — [1,(Df1, fo) dz + [,,,(BE f1, fo) dy.
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(d) Bs(f1, far D, BE) = 2 - 20712 [\ (BE f1,BE fo) dy.

(e) ﬂ4(f1,f2,D B+> - 5 M(Dflny2> d$+faM{ B+f1an2>
~UDf1,BL o) +{(35+ 1L,0)BE f1,B% f2) dy.

(f) ﬂ5(f11 f2,DaBg'-) = 27T—1/2 faM{_f_5<B;Df1,g§f2) - %(B:S'thg,-sl’-‘ﬁfz)
~ 35 {(BE f1):ar (BE f2):a) + {(FEP + 455"+ 55 Laa+ Fo LaaLio+ 15 Lab Lap
—%Ramam)B;fligg:fﬂ}dy‘

(@) Bs(f1, f2, D, BE) = =% [1,(D2f1, Do) dz + [50, {3 (BEDf1, Df2)
+H(D*f1,BE f2) + L{BE f1, D* o) — $(SBEDf1, B f2) — 2(SBS f1,BED fo)
—%{LaaBEDf1, BE f2) — 5(LaaBE F1, BED o) + (BB + 5 EP Laa
+2A Loy LavLee + 25 LabLacLye — 35 RambmLab + 25 Rabeb Lac — 35 Ramam b
+ o= Tim + 35 Labiab + 155Laa Ly + 15SLabLay — 5 SRamam
+L(SEP + EPS) + 18%Laq + 15° + 18.0a)BY f1,BY f2)

5 Laal{(BE 1), (E:g'v'fz):b) T Lap{(BS f1):a» (B f2)m)
—H(S(BE f1):a» (B fo)a) - 24<n (B 11):0, BE f2)
+4(QD,BE f1, (BS f2):a) } dy.

We refer to [4, Theorem 3.1} for the proof of Theorem 1.1 (a)-(d) and to [7,
Theorem 1.2] for the proof of Theorem 1.2 (a)—(f), while Theorem 1.1 (e) was
proved in [4, Theorem 1.2 and Lemma 4.3] in the case f; = 1 and f; = 1 only. The
remainder of this paper is devoted to the proof of Theorem 1.1 (e¢) and Theorem
1.2 (g). In Section 2, we review the functorial properties of the §,. In Section 3, we
complete the proof. In Section 4, we append some useful combinatorial formulas.

The study of heat content asymptotics is relatively recent. Let

(112) B(®) = B(1L,1, Do, B)) = 3 BuM)"

n=0
give the asymptotic expansion of the total heat content of M with an initial temper-
ature one. Bo(M) and B;(M) for domains in Euclidean space were first computed
by van den Berg and Davies [2]; G2(M) was computed for domains in Euclidean
space by van den Berg and Le Gall [3]; Bo(M), 51(M), and B2(M) were computed
by van den Berg [1] for the upper hemisphere of a sphere; these results follow from
Theorem 1.1. The case of polygonal domains in the plane was considered by van
den Berg and Srisatkunarajah [5]; the analysis is quite different if the boundary



AsYMPTOTICS FOR OPERATORS OF LAPLACE TYPE 151

is not smooth and these results do not follow from Theorem 1.1. We also refer to
related work by Phillips and Jansons [10]. It is possible to generalize these results
to mixed boundary conditions, we refer to [7] and to McAvity [9] for details.

The invariants a, (M) of the heat equation are spectral quantities which are
defined by a similar asymptotic series:

oo
(1.13) Tr p2(e7*00) = (4rt) ™™/ " an(M)t™/2,

n=0
The a,(M) have been used by many authors to prove results in spectral geometry;
they also are given by suitable local formulas; see for example [6]. Since computing
the 3, seems to be combinatorially more tractible than computing the a,, it is an
interesting open problem to find a simple relationship between them.

2. Functorial properties

We showed [7, Lemma 2.5] the interior integrands have the form:
0 ifn=2k+1,
1) A, fo, D) = { (D*fr, D* o) /(2k)! if n = 4k,
—(DFHLf DRRY/(2k+ 1) ifm=4k+ 2.

Consequently we concentrate on the boundary integrands. The local formula defin-
ing B%(f1, f2, D, B) is built universally and polynomially from the metric tensor,
its inverse, and the covariant derivatives of the f;, the curvature tensor R, the endo-
morphism EP, the curvature of the connection V2, the second fundamental form
L, and the auxiliary endomorphism S. We set S = 0 if B = B~; we only tangen-
tially differentiate L and S as these two tensors are only defined on the boundary.
By Weyl’s work, these polynomials can be formed using only tensor products and
contraction of tensor arguments (indices); this yields a Weyl basis. The structure
group is the orthogonal group O(m — 1) and the normal direction plays a distin-
guished role. If A is a monomial term of 85 of degree (kg, kq, kg, kr, ks) in these
variables and if ky explicit covariant derivatives appear,

(2.2) 2(kR+kQ+kE)+kL+ks+k‘v='n-—1.

An important observation is that the coefficients which appear relative to a Weyl
basis are universal constants independent of the dimension and of the operator D;
they depend only on whether Dirichlet or Neumann boundary conditions have been
selected. We refer to [7, Lemmas 2.5 and 2.6] for details.

These invariants have many functorial properties.
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LEMMA 2-1- (a') ﬂn(fl)f?;D’B) = ﬂ’n(fz’fl’ﬁ’g)‘
(b) %ls:Oﬂ'n(flaf% D — EI, B) = ﬂn—2(.f1,f2:D7B)‘
(C) Ifol = 0, then ﬂn(fl)f%D, B) = —%ﬂn_Z(DflaerDa B)

PRrROOF. We refer to [7, §2] for the general case. For ease of exposition, we
suppose D is self-adjoint with respect to some fiber metric on V' and use the fiber
metric to identify V with V*. Let {¢,, A\, } be a spectral resolution of D. The {¢,}
are a complete orthonormal basis for L?(V) of smooth eigensections; D¢, = A, ¢,
and B¢, =0. Let 42 (f) = [,,(f, ¢.) dx be the Fourier coefficients. Then

(2'5) e_tDBfl =2V'YuD(f)¢u‘3_t/\"a

(2.6) B(f1, f2, D, B)(8) =L, (F1)7) (F2)e~*M;
(a) follows since (2.0) is symmetric in f; and fo. We replace A, by A\, — ¢ to see
(27) ﬂ(fla f21D - EI, B)(t) = etsﬁ(.fla f21 D,B)(t),

(b) now follows. Finally, if Bf; = 0, we may use (1.0) to see

@8)  AP(Df) = f (Dfy, ) dz = f (f1, D) do = My2(f2).
M M
This implies that:

—848(f1, f2, D, B)(t) =T, Ay, (F7 (f2)e

(2.9)
=B(Dfu, f2, D, B)(t).

O
We can link Neumann and Dirichlet boundary conditions. Let M = [rq, 71| and
let b € C=(M). Let

(2.10) A=0,+band A* =8, —b.

Let D; = A*A and Dy, = AA* be the associated operators of Laplace type. Let €0,
be the inward unit normal. Let S = b so BE f = €Af|om.

LEMMA 2.2. Bn(f1, fo, D1,BY) = —28,_2(Af1, Af2, Do, B).

n

Proor. We compute:

(2.12) —8,8(f1, f2, D1, BE) () = T A2 (Fu YD (fa)e .
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We restrict to A, > 0 henceforth; the zero spectrum of these operators plays no role.
Let ¥, = )y 1 2Ad)l,; the {¢,,A,} are a spectral resolution for D, on range(A) =
ker (D2)*. Since Ad,|anr =0,

YPH(Af) = f (Af, ) dz = A7 M2 / (Af, Ad,) da
M M

(2.12)
=52 [ (5, 2048,) da = NS ().
M
Consequently
213 ~8:8(f1, f2, D1, BE) =B 22 (Af1)v)? (Afa)e™ A
.13

=ﬂ(Af1’ Afa, Do, B_)(t)'
O
REMARK. There are higher dimensional generalizations of this relation involving
mixed boundary conditions; we omit details as we shall not need them.

Let M = M; x M, where the boundary of M; is empty. Let m; = dim(M;), let
ds? be the metrics on M;, and let V = V; ® V, where the V; are smooth bundles
over M;. Let 0,5 € C®(M,) and let p € C*°(M>). Let D; be operators of Laplace
type on V;, let S € C°(Wy), let B € {B,B~}, and let fi = ¢i(z1) & ti(zz). We
shall need several product formulas. The first involves isometric products. Let

(2.14) ds?; =ds? +ds2 and D=D1®1+1® D,.

LEMMA 2.3. Bn(f1, f2, D, B) = Zptq=nBp(¢1, b2, D1, B) By (1, %2, Ds).

The next lemma involves warped products. Let H be a first order operator on
C°°(V,) over M,. Assume Dty = Hvp; = 0. Let

2.15 dsiy =dr® +e?ds?and D=D1 ®1+e (1 ® (Dy 4+ GH)).
M

LEMMA 2.4. ﬂu(fla f27 D7 B) = ﬂu(¢1a em20¢2a Dl, B) ) sz (¢1, T/)z) diL'z.
Finally, let 6§ be a small parameter. Assume Dap; = 0. Let
(2.16) ds3; = ds? + (14 80p)?ds? and D = D; @ 1+ (1 + 60p) %1 @ D,.

LEMMA 2.5. ﬁu(flaf%Da B) = Ek (711:2)6kﬂl/(¢1’0k¢2’D1$B) f <".I’1;Pk",/12) de-
M,

ProoFS. To prove Lemma, 2.3, we note e~tP5 = ¢7tD18 @ ¢~tD2 g0 that:

(2.17) B(f1, f2, D, B)(t) = B(¢1, ¢2, D1, B)(t) - B(v)1,%2, D2)(t).
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Next we prove Lemma, 2.4: Since Doypy =0,
(2.18) D(¢® 1) = Di1¢® ¢
for ¢ = ¢(z1). Consequently e~*P5¢; = e7tP1.8¢;. Since dz = €™ dr dza,
Bt DBYE) = [ (€721, ) o) dr d
(2.19)
~B(01,€"62, Dy, B)() [ (i, ) s
Finally, we prove Lemma 2.6. We expand
(2.20) dz = £y (") 6%c* p* dzy dazo.
From this we conclude

(2.21) B(f1, 2, D, B)(t) = Tk (}?) B(b1, 62, D1, B) /M (1, P*42) dzs.

3. The proof of Theorems 1.1 and 1.2

We begin with the following technical lemma:

LEMMA 3.1. (a) Ba(f, f2, D, B7) = £ [1,(Df1, Dfa) dz+ [0 {3{(Df1);m, f2)
+1(f1, (Df2)im) — H{LaaD 1, fo) — $Laaf1, Dfa) + (T BB, + ¢ EP Lo
+¢3 TLaa + ¢ Lag Loy Lec + ¢5 Loy LapLec + €5 Lab LacLve + €7 Rambm Lab
+cg RavevLac + €3 Ramam Ly + C19Tim + €11 Laa:bb + 1o Lab:ab) f1, f2)
+d7 {Laaf1:5, fa:b) +d3 Lab(f1.as fob) +d5 (¥ fria, f2) — QD f1, f2:a)) } dy.

(b) Bs(f1, f2, D, BE) = =% [,(D*f1,Dfa) dz + [0, {2(BEDf1, Df2)
+ (D2 1y, BY fo) + L(BE £1, D2 fo) — L(SBEDf1,BL f)
—&(SB f1, BiDf) — & (LaaBED S, BY f2) — &(LaaB% f1, BED fo)
+((cT EL, + ¢ EP Lao + ¢} TLaa + ¢f LaaLsb Lee + ¢§ LabLabLee
+¢f Loy LacLve + ¢ RambmLab + €3 Ravev Lac + ¢4 Ramam Ly + cloTim
+ci"1L,w;bb + C-1+-2Lab:ab + c’1"3SL,meb + cﬂSLabLab + c'l*'sSRama,m + c’f};S’r
+¢HS2Lag + ¢k + ¢y S.aa + ¢ty (SEP + EPSY)BS f1, BY f2)
+{(dF Laa + df S)(BE 1):6, (BE f2):6) + dF Las{(BE f1):ar (BY f2)0)
+di ((22,(BE f1):a) BS f2) — (QD,BE f1, (BE f2):0))} dy.
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PROOF. Define £ as the remainder in the decomposition:
- 1 ~ 1
64) bl faDB) =5 [ OADR e+ [ (DM m R
2J/m om 2

1 ~ 1 1 ~
(35) + §<f1a (D.f2),m) - Z(Laan1>f2) - Z(Laafl)Df2>
(36)  +E(fi, 2 D,B) }dy;
these constants are motivated by Lemma 2.1 (c). If f1|aar = 0, then

(37) :64(f1,f2’D,B_)

. %ﬂZ(D.fla f2’DaB~) = _%ﬂ2(f2’D‘f1’5’g-)

=3 [ @nByas+ [ {5(0R)m 12

+ 54 (D)) — 1{LaaDfis f2) = 7 (Laafis Do)y dy.

Consequently [, f,'(fl,fz,D,B) dy = 0 if filoppr = 0. Since (3.0) and (3.0) are
symmetric in f; and fz, by Lemma 2.1 (a),

(3.8) [ i fuDB)ay= [ & DB )ay
oM oM

This integral vanishes if either fi|saar = 0 or f2|aar = 0 so € involves only tangential
derivatives of the f;. We complete the proof by writing a Weyl basis for the space
of such invariants; see (4.1) for some identities we have used. There is no invariant
involving Qgm.q since ﬁam:a = —Qym:a- We omit the following invariants which
might be thought to appear since their integrals are linear combinations of those
appearing in the Lemma:

(3.9) {Laa({fr:bb, f2) + (f1, f2b))s Lan({f1:abs f2) + (f1, f2:ab)),
Ra.mab(fl;.fZ):a)y Lab:a(.fh f2>:b, La.a.:b(flny):b}-

This proves (a), the proof of (b) is similar. 0

We complete the proof of Theorems 1.1 and 1.2 by evaluating the constants
of Lemma 3.1 in a series of steps. We use Lemmas from §2 and we adopt the
notation of those Lemmas during their application. We begin by using Lemma
2.3 to evaluate certain constants appearing in §; and ﬁé* in terms of constants
appearing in G35, ,65" , and ,62' which have already been computed previously. This
is the inductive step in the calculation.

STEP 3.2. (a) ¢c; =¢3 =d; =0.

+_ _ 1 1 +_ 1 0t et =1
by df =—3%5,df =-§,cf =5%,64 =0,cfs =0, cjp = 5.
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PROOF. We use Lemma 2.3. We equate the cross terms in L, in the following

expressions to prove (a):

(3.10)  Ba(f1, fa, D,B7)

/ {La.a b1, b2) <(( +02)E2+‘33’r+ (% “d;l—)vz)7/)17¢2> dy+ -

(8.11)  Ba(¢1, @2, D1, B™)Ba(t1, %2, D2)

N ./ {%Laa(¢17¢2)((E2 + V)1, ) dy + - .
oM

Similarly, we equate the cross terms in L,, and S to prove (b):
(3.12)
ﬁﬁ(f17f27DaB§-)

= [ {zeaBton Bron(((5 + ) B+ cir+ (5 - at) V) wa)

+(SB+¢1,B+¢2)<(( +2c20)E2+c16'r+( —d+) 2)¢1,¢2>}dy+-~

(3.13)
Ba(d1, b2, D1, BE)Ba (1,92, Ds)

_ / {lLaa(Bgm, Bt o) (Bz + V)1, )
oM 4

+ %(SB§¢1’EE¢2)((E2 + V2)¢1,¢2)} dy+---.

O

In the remaining steps, we use relations between the constants in 8; and 3§ to
determine the values of these constants in terms of values computed previously; the

values computed in the inductive Step 2.3 form the starting point. We use Lemma

2.2 to relate Neumann and Dirichlet boundary conditions:

——1 A+ _ 1 1
STEP 3.3. ¢f = §, ¢f = 5, and cfg = 3.

PROOF. By Lemma 2.2,
1 _
(3.14) Be(fi, f2. D1, BE) = —§ﬁ4(Af1,Af2,D2,B )-
Let b; = 82b. We expand F and ﬁ4_ in terms of b and equate coefficients:

(3.15) /aME{ + (b — 2b1b) + — (blb B+ cte® AT, Afa) dy

_ _% /a eei (b = 2B} Ay, Afy) dy
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O

At this point, the computation of Dirichlet and Neumann boundary conditions

decouples and each calculation is independent. In the next three steps, we use
Lemma 2.4 to relate 8 for M = [ro,1] x M; to B for [ro, 7).

STEP 3.4.(a) ¢; =0,¢c5 =—35, 5 = 2.

+ _ + _ 1 + 1 + _ 1 + _ 1 +_
(b)ci =0,c5 =45, €5 =34 €13 = 13> €l = 13> Cir =

»P-I»—-

PrOOF. We use Lemma 2.4. Let S® = {z € R"' : |z| = 1} and M =
[ro,r1] x S™. Identify M with the annulus in R™*! and give M the flat Euclidean
metric

ds3y = dr? +rids%..

Then the Laplacian DY is given by:

(3.16) DM = D4+ 2D§"

where D = —02 — nr—18,. We use (4.3) and (4.5) to compute:
Bs(1,1, DY, B7) = {—c;n® — 5 n® — ¢z n} /aM er" 3 dy,

1
(3.17) Ba(1,7™, D,B7) vol{S™) = (2n2 - n) / er™3 dy; vol(S™)
Oro,r1]

= ;(;nz un) /aMs'r”_"’dy.

We equate these two expressions to prove (a). The proof of (b) is similar. Let

(3.18) B = (8, + st flom

so S(DM) =esr~! and S(D) = s(s - %n)r‘l; gg(D)(r") = sr"~!. Then
Bs(1,1, D}, BE) =sz{ —cfn® —cfn? — cfn + cfysn?

1
+ cfysn — cfrs?n + 683} ‘/BM er™ % dy,

(3.19) . 6" JJowt
+ ny 2_ _ L
Bs(1,7", D, B )vol(S™) 3{24( ")+6(3 n)
1 1
- J—— —_n - - n-—>5
+6(8 2”) " }faM dy.
m
STEP 3.5.(a) ¢; = —15, ¢ = 7%, ¢ =0, €19 = 35-
(b)ef =—d5,cd =563 =35 =355 s = 13
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PROOF. We apply Lemma 2.4 again. Let M = [rg, 1] X T™ where T™ is the flat
torus with periodic parameters y,. Let o|spr = 0 and let ox = 8%0. Give M the
metric:

(3.20) ds3; = dr? + €2 (dy? + ... + dy?);

DY = D+e 2 D§" for D = —02 — no18,. We use (4.4) and (4.5) to compute:

1 1
B4(1,1,D¥ B~ =/ ed(=n?—n—nc; + (n—n?cg —ncy o3
a( 0 ) - {(16 ) 7+ ( )es Cg) 1

(3.21) + (—nc; —n%cg —2(n? +n)egy)o102 — 2'nc1_003} dy,
1
Ba(1,€™, D, B™)vol(T") = l/ 5( — —nos — 11’7;20'10'2) dy.
8 Jon “\ 7 2 2

We equate these expressions to prove (a). To prove (b), we let
(3.22) B f = &(6r + 8) flons;
S(D}) = es and S(D) = s(s - %no—l). We equate:

Bs(1,1, DY, BE)

/aM { 48n —-ﬂn—nc., n?cd + neg —nzcg')af

+ (—ncf —n’cf — 2n2cly — 2ncfy)o100 — 2ncyos

1 1 1
(3.23) + ( n? + En + nc;@,) saf + ncfS_scrz — Znszal + 633} dy,

Be(1, e"",D,B:'g') vol(T™) = /6M e{%( - %na;; - %n20102)
+ é( ;noz - inzaf) (s - %nag) + %(s — —;-nal)a} dy.

STEP 3.6. (a)dy = -1, dy =-%,di=-L1,dt=-1. (b)c=-1L.
2 3 2 127 ™3 24 19 12

PROOF. We use Lemma 2.4 with an auxiliary first order term. Let M be as in
Step 3.5. Let Glgpr = 1. Define:

(3.24) D = —(82 +no10, + €27 (302, + 26h,8,,)).
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Let 32 and h, be constant. We use (4.4). Since 3, (1, e, Dy, B) does not involve
h, we set the terms which involve & to zero to prove (a):

0= [ {(G+a)or+ (-~ 25)7 pivaay,

1 1
0=/ el (= +d Voo + (= —= — 24} )51 VW2 ey dy.
- {(12 2) ! ( 12 3) 1} Vady
To prove (b), we consider vector valued operators. Let V = M x C2? and let

D = DY — 2h,8,. Let f; and h, be constant, and let S be locally constant. We
use (4.6) to see:

0= /6M<{( - % +fy ) hahaS + ( - % +cfy ) Shaha

+ (% - 2ci'§)h45ha}f1,f2> dy.

(3.25)

(3.26)

We use Lemma 2.5 to obtain the remaining undetermined coefficients.

STEP 3.7.(a) ¢; =0, ¢33 = 15-
(b) Cfl =0, c-1*-2 = 4_18

PROOF. Let M = [rg, 1] x T™. Let o = o(r) and p = p(y). We assume o =0
near © = r; for £ > 1. Let § be a small parameter. Give M the warped product
metric:

(3.27) ds® = dr® + (14 60p)%(dy? + ... + dy2).

and let D = Dy + D, for D; = —82 and Dy = —(1 +60p)_22a6i. Let f1 =1 and
let fo = 12(y). Thus ¢ = ¢2 = 11 = 1. We use Lemma 2.5 to express:

(3.28) Bu(f1, f2, D, B) = Zi("2) 6 Bo (41, 042, D1, B) / (1, p* ) dza.

M

The coefficient of fa ” Se011202pdy in B4(1,), D, B7) is zero since (3.28) contains
no terms involving derivatives of 12 and p; this term is nonzero since %, is arbitrary.

We use (4.7) and Lemma 3.1 prove (a) by showing that

1 1 1 1 1 - _
(329) 0= (Zn—Zn+ E(n—2)+ﬁ(1—n)+§—cun—clz).

We take boundary conditions B f = &(6, + s)flomr = O where s is locally
constant on 8M. Since

(3.30) wl = —%en&alp + 0(6%),
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S = s+ 2enéoy1p. The same argument shows the coefficient of
(3.31) / Sea11h262 ps® dy

in Bs(1, %2, D, BY) is zero. We complete the proof by showing that

1 1 1 1 1
(3.32) 0=(——n+48(n 2)+48( n)+—n+24 nci"l—ci"z),

This completes the proof of all the assertions in the paper.

4. Appendix

We summarize for convenient reference some calculations that are immediate

from the definitions given.

(4.1} We have the following identities:
1) . = 39°%(8,9uc + 8ugve — Oegun),
2) Ruugns™ = 00y Tugus™ — 0uaTunns™ + Doy Do — Doy 4002,
3) Dy = —g~'8,99"#d, for g = det(g,,)'/2.

(4.2) If D = —(g%8,8; + p*8% + q), then:
1) w) = 59uu(P* + g7 Toct), QD = u‘-"D Ouwy) +wy
2) ED = q— g"*(Bwf) +wD D —wPr,,”), wPo =l = ED° =0.
3) Lag = (0m,Va,0p) = = —10m9ap, fiab = fiab — Lab fim,
4) RapeN = Lbc:a — Lacbs Ra,bab i = 2Rapmbia = p(L.... L, R. ).

DD

D, D
wy, v

(4.3) Let ds? = 82 + r%(ds2) on [ro,71] X S™. On OM :
1) LooLvpLee = _E,,,—3n3, LopLopLice = —€r™ ,n2 L bLacLbc = _5"'_3'"',

2) Ra,mbm,Lu.b = Rabchac = Ramameb =Tym = 0.

(4.4) Let ds? = 82 + €*")(dy? + ... 4+ dy?) on [ro, 1] x T™.
Let o|aar =0, and let 8¥c = of. On OM :
1) Tam® =Tma? = 01682, Top™ = —01€2784g, and T = 0 otherwise,
2) 7= —2n02 —no? —n%0?, LoaLey = n%0%, LopLap = no?,
3) Ramam = 102 + noa, Ty = —2n20102 — 2n0102 — 2no3,
4) LoaLtpLoc = =103, LapLapLoc = —1?03, LapLocLae = —no3,

_ 3 _
5) RampmLab = —Nnoy — No102, BRopeyLoe = —n? 01 + n0'1,



(4.5)

(4.6)

(4.7)

(1
(2l
3]
[4
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3

2 2
6) Ramameb = —N"0y —N"0102.

Let D = DM — 2¢295h,8, where h is constant and 7|apr = 1. Then:
7) WP =0, wP =Gh,, QL. = —G1hq,
8) EP = —e7%°52h2, EL |om = €727 (—261h2 + 201h2).

If D = —82 — noy(r)dy,

1) efym = (8 + gnoa(r)) f1, efzm = (0 — %Ml("‘))fz,
2) EP = —ing; — in%0?, ED, = ¢(—4nos — jn’oi02),
3) D(1) =0, and D(e™) = 0.

Let M = [rg,r] X T™, let D = —82 — 82 — 2h,8, on C®°(M x C?).
Let {hq, fi, S} be (locally) constant. Then:

1) EP = —hoha, (Sfi:a, fo:a) = (—Shaf1, hafa),

2} and 8.4, = hohoS — 2haShe + Shohg.

Let M = [rg,r1] x T™, let o|apr = 0 and oglanr =0 for k& > 1.

Let ds? = dr? + (1+260p+ O(6%))(dy? + ... + dy2), BE = £(8, + s)
and D = —(82 + (1 — 260p)02) + O(6%). Then:

1) LaaLepLee = O(63), LapLapLee = O(8%), LapLacLee = O(8%),

2) RampmLas = O(6%), RabebLac = O(63), RamamLsy = O(6%),

3) Tom =26(1 —n)o182p+ 0(62) Laa:th = —NM01P:00 + O(82),

4) Labiab = —01P:a0 + 0(52) wy = 3(2 —n)808,(p) + O(82),

5) w —Enéalp +0(6)?2, S=s+ %néolp + 0(62), S.pa = %né‘alpm,
6) EP = 3(n—2)8083(p), E;?n, = 3(n —2)6018%(p) + O(6)?,

7) Q5 = ~60184(p) + O(6%), (DY)im = 51601085 + O(62).
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