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1. Introduction

Consider the following system of ordinary differential equations:
(S)e v = f(u,v,e), ev' =gu,v,e).

We make the following standing assumptions:

(H1) 7 is an integer with r > 3,

f:(uw,v,e) eR"xR* x R f(u,v,e) € R™
g9:(u,v,6) ER™" xR" x R g(u,v,€) € R"

are C"-bounded maps, h : R™ — R™ is a map of class C7 with all
derivatives of order p with 1 < p < r globally bounded and such that
9(u, h(u),0) = 0.
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(H2) For some integer & with 0 < k < n and some positive real x the n x n-
matrix A(u) := D,g(u,h(u),0) has, for every u € R™, k eigenvalues with
real part < —2u and n — k eigenvalues with real part > 2p.

The following result is known:

THEOREM 1. (i) There is angq > 0 and a C™~-function h : R™ x [0,&9] — R™
such that for € € (0,¢q] the set

C: := {(u, h(u,€))jlu e R™}

is invariant with respect to (S)e and sup,cr~ |P{u,€) —h(u)| — 0 ase — 0.

(i) There is a constant § > O such that for every € € (0,&9] every solution
t — (u(t),v(t)) of (S)e which remains, for all t € R, in the §-neighborhood of
Co = {(u, h(u))|u € R™}, lies in C..

The center-like manifold C; is very important for the analysis of the singular
perturbation problem (S). and we only refer the reader to the recent paper [16]
for an interesting application of Theorem 1 to a model of electron transport in
semiconductors.

A stronger and global version of Theorem 1 is given in [5, Theorem 9.1] with
a proof based on the invariant manifold theory from [4]. The beatiful partly geo-
metric and partly analytic technique (similar to the method presented in the lecture
notes [9]) works for diffeomorphisms and flows on manifolds but does not appear
to extend to the case of maps or semiflows (generated, for example, by semilinear
parabolic equations).

An analytic proof which does generalize to maps and semiflows is presented in
[14]. It is based on the method of functions of exponential growth developed in [3],
[6], [7], [15], [19] and [18] and also used in (1}, [10], [11], [17], [20] as well as in the
excellent recent article [2]. Whereas in these papers the existence of the invariant
manifolds in question can be obtained by a direct application of the contraction
mapping principle to the appropiate fixed point equation this is no longer possible
in the situation of Theorem 1 since the domain of definition of the corresponding
contraction operator is not closed in the Banach space considered. To remedy this,
Sakamoto first substitutes the solutions ¢ — u(t) (depending on initial values £
and functions £ — v(t) as parameters) of the first equation in (S), into the second
equation. This substitution leads to excessively complex expressions and estimates
in the proof of higher order differentiability of the graph of C,. This is probably
the reason why Sakamoto only gives details of the existence and the C'-smoothness
part of the proof. (Cf. the remark made in the proof of [14, Lemma 2.5).)

In this note we give a simpler proof of Theorem 1 which is more in the spirit of
the above quoted papers.
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In fact we work directly in spaces of functions of exponential growth without
anv previous substitution of one equatiou into the other. We obtain existence of
Ce¢ by a simple modification of the contraction mapping theorem. The approach
‘we choose considerably simplifies the expressions for higher order derivatives of the
operators involved so we are able to give a complete and reasonably short proof of
the C"~!-differentiability of Cc. The proof is further shortened by the application
of an abstract differentiability result for solutions of fixed point equations on scales
of Banach spaces which was developed in [11]. In the course of the proof we obtain
precise recursive formulas for the (higher order) Fréchet derivatives of the map
generating the invariant manifold. Such formulas can be useful e.g. in applications
of hard implicit function theorems (cf. [12] and [13]). The approach presented in
this note can also be applied to maps or semiflows, e.g. to obtain smoothness of
some invariant manifolds whose existence is established in [8]. However, this will
not be treated here.

2. Existence

In the sequel, given p € R and a normed space (E, |-|) we write, for an arbitrary

functiony: R — F
lyl, = supe~*1|y(t)].
teR

By BCP(E) we denote the vector space of all continuous functions y : R — E such
that |y|, < co. Note that |- |, is a norm on BC?(E) which is complete if | - | is
complete on E.

For the reader’s convenience we first collect a few preliminary results which are
explicitly or implicitly contained in [14].

LEMMA 1. [14, Lemma 2.3]. Under hypothesis (H2) for every positive real
number N there exists an €1 > 0 and ¢ K > 1 such that for every u C'(R, R™)
with |u'| = sup,er [/ (t)| < N ande € (0,¢1] there are projection operators P(s; u),
Q%(s;u) : R* - R™ with P%(s;u) + Q°(s;u) = idr~, s € R, such that the solution
operator T¢(t, s; u) of the equation

ey = A(u(t))v
satisfies the inequalities

T=(t, 5;u) 0 P(s;u)| < Ke #(=2)/e >
|T=(t, 85u) 0 Q°(s; u)| < Ker(i—a)/e, t<s.

Moreover, dim Range P¢(s;u) = k and dim Range Q°(s;u) = n — k.
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DEFINITION 1. For £ as in Lemma 1 define the Green’s function U®(t, s;u) as
follows: Ut(t,s;u) := T=(t,s;u) o PE(s;u) fort > s, US(t,s;u) .= —T°(t,s;u) 0
Q%(s;u) fort < s.

LEMMA 2. (a) For p > 0 and u; € BCP(R™) set

u(t) := /0 uy(s) ds, teR.

Then u € BCP(R™) and |ul, < (1/p)|u1],-
(b) Let € and u be as in Lemma 1, p1 < pfe and pz € [p1, p/€). Then for every
1 € BCP2(R™) of
ey’ = A(u(t))¥ + 91(2)-

The function 1 i3 given by the expression
v =/9) [ Utswh)ds  teR,

Moreover, ], < (2K/ (1 — ep1))lbr s -

PROOF. Lemma. 1, Definition 1 and trivial integration. (]

LEMMA 3. The change of variables u — u and v — v+ h(u) transforms system
(S)e into the equivalent system (S’)c :

(8")e v = F(u,v,¢), ev’ = A(u(t))v + G(u,v, ).
Here

F(u,v,€) := f(u,v + h(u),€),
a1(u,v,€) := g(u, v + h(u), &) — eDyh(u) f(u,v + h(u), ),
G(u,v,€) == g1(u,v,€) — g1(1,0,0) — Dyg1(u,0,0)v.
There is a constant C such that
|G(u,v,€)| < Cle + [v]?),
|D.G(u,v,€)| £ Cle + [v]?),
|D.G(u,v,€)| < C(e + |v])

for all (u,v,€).

PROOF. A trivial calculation using the fact that » > 3 and the mean value
theorem. (Note that g;(u,0,0) =0.) O
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LEMMA 4. Suppose that 0 < ¢ < & and thatu: R —» R™ and v : R — R™
are continuous functions with v bounded. Set N := supy, , ) |f(u,v,€)|. Then the
following properties are equivalent:

(a) (u,v) is a solution of (S)e.
(b) u € CY(R,R™), [v/|o = supyeg [t/(t)| < N and there is a £ € R™ such
that for allt € R

ut) =€+ [ Fule),(s),e)ds,

v(t) = (1/e) /—00 U®(t, 5;u)G(u(s),v(s),€) ds.

PROOF. Use Lemmas 2 and 3. 0

LEMMA 5. If0 < e <e;. w € BCP(R"), p < p/fe, u,up € CY(R'R™) with /|,
|ugl| < N and

w(t) = (1/e) /-oo Ut (t, s; u)w(s) ds, teR

—o

then

w(t) = (1/e) /_00 Us(t, s;u0)[(A(u(s)) — A(uo(s)))w(s) + w(s)]ds, ¢eR.

PROOF. Apply Lemma 2 to ¢ := w and ¢; := (A(u(s)) — A(uo(s)))w(s) +w(s),
s € R. O

We can now prove existence of manifold C:

LEMMA 6. Set

N := sup |f(u,v,€)],

(u,v,¢)

Nl = (Sup max {lDu,f(u, v, E),’ ID'vf(u’ Uy 6‘),}‘
u,0,E

M, :=sup |D, A(u)|.

Let p, €9 and & be such that

(1) 0<eg<ey, p>Ny, 6§>0, Clep + 8%) < (u/2K)8,

(2) 0 < (2K/(pu — eop)) max { M6, C(go + 6%), Cleo + 6} <1
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Then for every € with 0 < € < gg and every £ € R™ there exists a unique pair
(u,v) = (ug,v§) of functions u € C'(R,R™), v € C(R,R") with |[u/|p < N and
[ulo € 6 which satisfy the following system of equations for allt € R

3) u(t) =€+ /0 F(u(s), v(s), €) ds,

(a) o(t) = (1/€) /_ Z U (2. 5 8)G(u(s), v(s), €) ds.

The assignment § — (ug, vg) defines a Lipschitzian map ¢ =¢° : R™ — BCP(R™)x
BC?(R™).

REMARK. For every € with 0 < & < ¢g and every §{ € R™ set

h(§,€) = h(€) + mu°(£)(0)

where 7, : R™ x R* — R" is the projection operator. Then Lemmas 3, 4 and 6
easily imply all statements of Theorem 1 except for smoothness.

ProOF OF LEMMA 6. Let A be the set of all pairs (u,v) of functions u €
CY(R,R™), v € C(R,R") with [u'|p < N and |v|o < §. Since p > 0 it follows that
A C BCP(R™) x BC?(R™).

Fix £ with 0 < € < g¢ and define for (u,v) € A, { € X:=R™andt € R

(5) Fa(u,0)(t) == £ + /0 Fu(s),vo(s),€) ds,
(6) Falw0)(®) = (/) [ " U (2, 51u)G(u(s), u(s), €) ds,
(7) f(u,'v,E) = (fl(U,v,f),fg(U, 'U))

From formula (1) and from Lemma 2 we conclude that F is well-defined map from
A x X to A. By Lemma 2(a)

) |F1(u,v,€) — Fi(uo, v0,€)lp < (N1/p)(|u — volp + |v — vol,).

By Lemma 5

(9) (F2(u,v) — Fo(uo, v0))(t) = (1/€) /_00 U%(t, s;u)y1(s) ds, teR
where

(10)  r(s) = (A(u(s))—A(uo(s)))F2(u, v)(8)+G(u(s), v(s), €) —G(uo(s), vo(5), €)-

The function 9, : R — R" is continuous and satisfies, by our assumptions, the
estimate

[1(8)] < e?l*l max {M26,C(e0 + 6%),C(go0 + 8) }{|u — uol, — v — vol,)-
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Fix £ € R™. Choose any (ug,v) € A (# 0!) and define the sequence (ux,wvx)
reqursively by
(uk_l,'uk+1) = .F(uk,vk,g), k>0

It follows from Lemma 2 and formulas (1), (2), (8), (9) and (10) that F(-,-,£) is
a contraction relative to the norm |u|,+|v|,. Thus (ux,vx) is a Cauchy sequence in
BCP(R™) x BCP(R™) and so it has a limit (u,v) = (ug, v§) in BC’(R™) x BC*(R™).

In particular (ux(s),vx(8)) — (u(s),v(s)) uniformly for s in compact subsets of
R. Hence, by (5),

u=F1(u,v,&)
and so, in particular, v € C'(R,R™) and [u/|p < N. By the same token |v]p < 8.
It follows that (u,v) € A. (The point here is that A is not closed in BC/{R™) x
BCP(R"™), so the contraction principle cannot be used directly).

Thus (u,v) satisfies (3) and (4) for all £ € R. The contractivity property of F
implies the uniqueness statement of the lemma. Finally, as the map F(ug, v, ) :
R™ — BC?(R™) x BC*(R™) is Lipschitzian, the assignment { — (u, v§) defines a
Lipschitzian map ¢° : R™ — BCP(R™) x BC?(R"). The lemma is proved. O

3. Smoothness

To facilitate a direct comparison with the arguments in [14] we shall show in
this section that the map £ +— h(£,€) is C"~1-smooth for fixed ¢ sufficiently small.
Once the details are understood for this case, the proof of joint smoothness in (£, €)
can safely be left to the reader (similarly as it is done in [14]).

The main ingredient in the proof is the following

LEMMA 7. Let N, N1, M5 be as in Lemma 6 and let b, p, g and § be such that
(1) b>1,0<e <ey, p> Ny, 6>0, Cleo + 6%) < (u/2K)é

(2)  0< k= (2K/(p — eop(r — 1)b)) max{M38,C(eg + 62), C(eo + 6)} < 1

Then for every € with 0 < £ < &g the map ¢ = ¢° defined in Lemma 6 is of class
C™! from R™ to BC*(R™) x BCS(R™) for every ¢ > (r — 1)pb.

We shall prove Lemma 7 below. In the following we fix € with 0 < € < g9 and
write @, ug, ve, F, F(u,v), G(u,v) instead of ¢°, ug, vg, 7=, F(u,v,¢), G(u,v,e).
Note that ¢ satisfies the fixed-point equation

(&) = F(&, ¢(£)).
Write 9(£) := (€, #(£)).
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Let us first proceed heuristically. If the higher-order chain rule were applicable
to the composite map F o 1) then we could express the Fréchet derivatives D¥4)(¢)
of $ = F o as finite sums involving derivatives DY F(£, #(¢)). Let us see what
these latter derivatives should look like. Let us abbreviate the notation writing
Y,Y1,... for (u,v), (u1,v1),... etc. Abusing slightly the notation we also write, e.g.
y(t) instead of (u(t), v(t)) so that y becomes a function from R to R™ x R”. Now
formula (5) in the proof of Lemma 6 suggests the following definitions:

®) Dt 1(6,0)(E1,0)(0) = 61+ [ DF()u(s) ds
and
(@) DhmaFi(6 91 - (5, 3))
= V) [ Dl D) 5(6) s,

for2<j<r—1. Heret€R,¢&,...,§ € R™ and y,y1,... ,y; are appropriate
functions from R to R™ x R".

To “calculate” DY JF> note that F» satisfies the equation
formal

e(F2(y) () = Au(®) F2(v) () + Gy()-

Differentiating the last equation formally, assuming that the Fréchet derivatives
and the time derivative commute and using the Leibniz rule we obtain

(5)  e(DhmaP @1 .%5) ()

= Y DFNA))w()lieNDE i Fo () lwilien (2)
(N,M)eS

+D/G(y())wi(t) - - y5(t).-

Here S is defined as the set of all pairs (N, M) with N, M C {1,...,5}, NUM =
{1,...,j} and NN M = @. Note that N or M may be empty so we set

D?ormal]:2(y) [yi]ieﬂ = ]:(y)

and similarly for DA. We also use the following self-explanatory notation: if
(z1,...,%,) is an n-tuple and S C {1,... ,n} then [z:]ics = (2, .. , T3, ) Where
i1 < iy < ... < in, are all the elements of S put in ascending order. We can write
(5) in the form

(DL FoW)y1 - - 35) (E) = Au(t) D marFe @)yt - . y;(t) + Y1 (2).
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Here, &’ is the set of all (N, M) € § with N nonepmty and

(6) vit) = Y, DENA(uE))ui(t)ienDEma Fo () [uilicn (t)
(N,M)es

+ DGy () - - - u; (2)-
Thus Lemma 2(b) with
Y= D'gc-rmal]:2 (y)yl Y
suggests that
) o
(M DipemaP2()w1 ... y;(t) := (1/e) / Us(t,s;u)pa(s)ds, teR
—0o

Write

(8) Jo,e(§) = Fr(&, ¢(£)), k=1,2,

and

©)  F51©Enw) - & ys) = D16 S (1, 31) - (&5, Y5)s
j=1,...,r-1,

(10) fj,2(£)(£15 yl) v (é.j’ yj) = formal}-2(¢(§))yl .7 =1,... ,r—1,

the right-hand sides of (9) and (10) being defined by (3), (4), (6) and (7) whenever
these right-hand sides make sense.
The relevant properties of the maps f; x are started in the following

LEMMA 8. Set
k= max{x1, N1 /p} < 1
where k1 is defined in the statement of Lemma 7.

Let a be a number with 0 < a < pfe. Then the following statements hold:

(1) There is a constant C' = C’(a) such that for every j € {1,...,r — 1},
every tuple (m,...,n;) of positive real numbers with n :== n + --- + n; < a, all
£,€1,-..,§ € X =R™ and all, ... ,y; withy; € BCH(R") fori=1,...,j, the
Junction f; x(€)(€1,11) ... (&, y5), k = 1,2, is well-defined, it lies in BC"(R™) for
k =1, it lies in BC"(R") for k =2 and

J
|fj,k(£)(£1’y1) v (£jayj)ln < o H(l&' + 'yilm)‘

i=1
(2) Let j € {0,...,r —1}, (m,...,n;) be a tuple of positive real numbers and
letn:=m+--+n; ifj#0,n:=p, if j =0. Suppose that n < a. Then for every
(<nandk=1,2

|(fik(€+R) = fir@EN(Er,91) .- (&5,9)lc =0 as h—0
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uniformly for & € X, yi € BCH(R™ x R™) with |§| < 1 and |yil,, < 1 for
i=1,...,7j.

(3) Let 5 € {0,...,7 — 2}, (m,-.. ,m;) be a tuple of positive real numbers and
letn:=p+m+---+mn; ifj #0, n:=p, if j =0. Suppose that n < a. Then for
every ( >nand k=1,2

|(F5,6(€ + 1) = £5,6(6)) 1, 91) - - - (&5, 93)
— fi1,e(©) (R, d(€ + h) — () (€1, 91) - - - (&5 ¥s)|c = o(|h]) as h—0
uniformly for & € X, yi € BCH(R™ x R™) with |§| < 1 and |yilp, < 1 for
i=1,...,]- .

(@) 11,190, y1)l¢ + 1F1,2(6) 0, y1)l¢ < &lyale for all ¢ with p < { < (7 = 1)pb,
£ € X andy; € BCC(R™ x R™).

In the proof of Lemma 8 we shall use the following simple Lemma 9, whose
proof is left to the reader.

LEMMA 9. Let X, Y and Z be normed spaces, ACY, 1 : A — Z be continuous
and bounded and ¢ : X — C(R, A) be a map satisfying the following assumption:

For every compact interval I C R the map
(%) X o€ ¢(E)(t) € ACY is continuous
uniformly for t € 1.
Then for dll £ € X and everya >0
(a) Jimsup e (6¢ + A)(H) ~ (O] =0 and
(b) if A is convez, then

lim supe~ ! sup |p(ré (€ + h)(E) + (1 — 7)d(€ + h)(t)) — ¥(d(€) ()| = 0.

h—0:ch 7€[0,1]

Assumption (x) is satisfied if ¢ is continuous from X to BCP(Y') for some p > 0.0

PROOF OF LEMMA 8. (1) For k = 1 part (1) of lemma is an obvious consequence
of Lemma 2(a) and the definition of f;;. For k = 2 part (1) of the lemma is easily
proved by induction on i = 1,... ,7 —1 using the fact that |F2(#(£))]o < 6 together
with Lemma 2(b) and the definition of f; 2.

(2) Case k = 1: By Lemma 2(a) and the definition of f;:

I(fii(€+h) = fi1(€)(€nm) -+ (&5, 95)l¢
< (1/¢) gglge-“t' |DI F($(€ + h)(2)) — DI F((€)(2)] _H ™y |,

i=1

< (1/¢)sup e~*|DI F(¢(€ + h)(t)) — DIF($(£)(t)| = 0 as h— 0.
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Here we used Lemma 9(a) with % = D'F and a := ¢ — 7.

Case k = 2: induction on i = 0,...,r — 1. For ¢ = 0 part (2) of the lemma
follows since ¢ is Lipschitzian into BC?(R™) x BC*(R™) 2 BC’(R™ x R"). Now
let 1 < j <r—1 and suppose that part (2) of the lemma has been proved for all
j' < j. By Lemmas 3, 5, 6 and the definition of f; 2

Fi2(€+h) (€, 1) -+ - (&5, 5)(F)
=(1/e) /_oo Us(t, 55 ug)[(Alug+n(s)) — Alue(s)) (€1, 91) - - - (€5, 95)(2)
(11)
+ Y DEN Augiin(s)[[wi(s)lien Fan2(€ + B)[(&i, va)lica(s)

(N,M)es’

+DIG(P(€ + h)(8))a(s) - - y;(s)] ds.

Thus adding and subtracting terms we obtain
(fi2(€+h) = fi2() (&, 01) --- (&5, 95)(t) = (1/e) /_°° U=(t, s;ue)y(s) ds
where
¥(s) =(A(ug+n(s)) — Alug(s))) f3,2(€ + R) (€L 1) - - (&, 45)(s)
+ Y { DY Awern () () en Fenra(€ + B y)lien (5)

(n,M)es’
— (DFN A(ug (8))[ui(3)lien fpaa,2(€ + B)[(&, yi)liens (5)
+ (DFN Aug(s)) fus(9)ien fra2 (€ + B)(&: vi)lieas (5)
~ (DEN Aue() s () hen Fpana 6 v)lien(s))
+ (DIG(H(€ + h)(3))91(5) - -y (8) — DIG(S(E)(3))wa(5) - . . 5 (s))

Estimating the summands in (12) using Lemma 2(b), the induction hypothesis,
the first part of this lemma and Lemma 9(a) (similarly as we did in the case k = 1)

(12)

we complete the proof of part 2.
(3) Case k = 1: By Lemma 2(a), the definition of f;; and the mean value
theorem

|(f5,1(6 + h) — Fi,1(E)) (&, 91) - - - (&5, 95)
— Fi1,1(E) (R, $(€ + h) — $(€)) (€1, 91) - - (€, 9))c
<(1/¢) ggge—“t' IDYF((& + h)(t)) — DI F(8(€)(t))

~ DILF($(8) () (€ + B) () — SO @I TT [yl

i=1
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<(1/¢)sup e SHDIHLF(1¢(€ + h)(1)) + (1 — T)(£)(2))

— DIHRGEE) L]kl -0 + 1) — H(E)],

<(L/Q)|hIB(R)
with
B(h) :== fgge_“'t' Zlﬁ)p11 IDIHLR(rg(€ + h)(t) + (1 —7)B(€) () — DTHF(S(€)(1))]-

Here L is a Lipschitz constant of ¢ and a := ¢ — 7. Lemma 9(b) implies that
B(h) — 0 as h — 0. This proves part (3) of the lemma for k = 1.

Case k = 2: induction on j € {0,...,7 — 2}. Suppose that j € {0,...,r —2}
and that the statement has been proved for all 7 < j. Then by the definition
of f;2, fi+1,2 and by formula (11), which is also valid for j = 0 (with the usual
convention that the sum over the empty set of indices is zero), we obtain after a

simple combinatorial argument

((fi2(€+ h) — fF5,2(E)) (€ y1) - - (€55 95)
— fir2(E) (R, (€ + h) — S(E)) (&1, 1) - - - (&5, 93)) (B)

—/e) [ Ut siuen(e) ds
where
1(8) = (A(ue+n(8)) — A(ug(8))) fi2(€ + ) (1) - - - (&5, 95)(s)
- DA(ug(s))(u,g+h(8) - ug(S))fj,z(f + h’)(fla yl) ces (Ej’ yj)(s)

+ D {DEY Alugrn(s))ui()ien Fn2(€ + M)(&, vi)lien (5)
(n,M)eS8’

(13)  — DEVA(ue(s)lus(s)lien Fpar2(O)[(E vi)lien (s)
— D#NHL A(ug(5)) (uern(8) — ue(s)) [wi(s)ien Fanr2(6)[(&i, 9i)lier ()
— DEN Aug(9) [ui(s)lien fenr+1,2(€) (R, 9§ + ) — S(E)) (& vi)liem (5)}
+ (DIG(B(€ +B)(8)wa(5) - - 45(5) = DIG(BE) ()wals) ...y (5)
~ DITIG($(6))(5)) (B(E + h)(s) — H(E)())9a(s) - - s(s))-

Adding and subtracting terms in (13), using the induction hypothesis and Lem-
ma 9(b) as in the preceding part of the proof we obtain the assertion of part (3),
case k = 2.

(4) This part is obvious from the definition of f; and &.

The lemma is proved. 0
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PROOF OF LEMMA 7. We apply Theorem 2.1 in [11]. To this end we just
have to verify hypotheses (H1) and (H2) of that theorem. But a look at those
hypotheses shows that this is obvious in view of Lemma 8. We just have to set
U =X :=R"™ m:=r—1, E, := BC?*(R™) x BC*#*(R") = BC*(R™ x R"™) (with
the corresponding norm), s € S :={1,2,... ,r — 1} U {b,2b,..., (r — 1)b},

&) (Enm) - (&hys) = (F1(O)ELy) - & ys)s Fi2(O)(ELv) - - (&G, 95))

j=1,...,7r—1and M :=C'(a) with a := (r — 1)pb.

Now Theorem 2.1 in [11] together with definition of h(¢, €), given in the remark
following the statement of Lemma 6, implies, that, for fixed € with 0 < € < g, the
map & — h(¢,¢) is of class C"~! with all derivatives of order p with 1 <p <r —1
globally bounded. =]

To commplete the proof of Theorem 1 we only have to prove joint smoothness of
h(€,€) in (€,€). We proceed as it is explained in [14, p. 51], namely we pass to the
fast variable 7 = £/e and the fast system:

(Fe v = ef(u,v,€), v = 9(u,v,¢€).

This is a regular perturbation problem, equivalent, for € # 0 to the slow system (S)..
Proceeding as in the smoothness proof above but calculating the formal derivatives
with respect to (£,y,¢€) (which only slightly complicates the resulting formulas) and
establishing an analogue of Lemma 8 we obtain the joint smoothness of h(¢,¢) in
(&)

This completes the proof of Theorem 1. O

REMARK. If the system (S). depends C"-smoothly on some additional param-
eters then the above proof also shows C"~!-smoothness of h in those parameters.
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