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Introduction

The problem of estimating the genus of G-spaces (G-category) attracts con-
siderable attention (see, for instance, [Bar1, Bar2, Fa, FaHu, Kr, LS, Šv] and
others). At least two approaches to this problem exist: geometric, based on
Borsuk–Ulam type theorems, and homological, based on (co)homological argu-
ments in the study of orbit spaces.

Historically, the first result concerning this problem is the famous Lusternik–
Schnirelman Theorem stating that the category of the n-dimensional real projec-
tive space equals n + 1 (see [LS]). In terms of genus the Lusternik–Schnirelman
Theorem can be formulated as follows: the genus of the n-dimensional sphere
with respect to the antipodal action is equal to n + 1. This result was gener-
alized by A. Fet [Fe] to the case of an arbitrary free involution on the sphere.
The case of a free action of an arbitrary finite cyclic group was considered by
M. Krasnosel’skĭı [Kr] in the framework of the geometric approach. A. Švartz
[Šv] was the first to consider the case of a non-free action of a cyclic group on
the sphere and obtained the following result: let the finite cyclic group Zp act on
the n-dimensional unit sphere Sn, let A = {x ∈ Sn | ∃g ∈ Zp : g 6= 1 & gx = x},
and suppose dim A = k. Then gen(Sn \A) ≥ n− k, where gen(·) denotes genus.
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It is worth emphasizing that specific properties of the cohomology of the cyclic
group with coefficients in a field were essentially used in [Šv].

The goal of this paper is to generalize Švartz’s result to an arbitrary compact
Lie group action in the framework of the geometric approach, and to apply the
obtained result to estimating the genus of a free part of the unit sphere in
the space of spherical harmonics under the natural representation of the group
SO(n).

Our study becomes natural in view of investigations of bifurcation phenom-
ena for semilinear elliptic equations on a ball (see, for instance, [Bar1]).

We would like to thank T. Bartsch, A. Dold, A. Kushkuley and D. Puppe
for useful discussions.

1. Estimate of the genus

Let G be a compact Lie group which acts freely on a metric space M . The
orbit map p : M → M/G is the projection of a locally trivial fiber bundle with
fiber G (see, for instance, [Bre], p. 88).

Definition (see [Šv], p. 250). The minimal cardinality of an open covering
of M/G consisting of sets over which the fiber bundle is trivial, is said to be the
genus of M (denoted by gen(M)).

Theorem 1. Let G be a compact Lie group of dimension m acting smoothly
on the sphere Sn. Let A be a closed G-invariant subset of Sn such that the G-
space Sn \ A is free. Suppose, further, that A is the image of a k-dimensional
smooth compact manifold under a smooth map with k < n (if A is empty then it
is viewed as the image of the (−1)-dimensional manifold under the empty map).
Then

gen(Sn \A) ≥ n− k

1 + m
.

By the well known properties of the Lusternik–Schnirelman category one has

Corollary. Under the conditions of Theorem 1,

cat((Sn \A)/G) ≥ n− k

1 + m
.

Remark 1. The smoothness condition on A in Theorem 1 does not seem
to be very restrictive. Indeed, the union of all non-principal orbits satisfies this
condition.

Remark 2. Our proof of Theorem 1 follows a geometric scheme due to
M. Krasnosel’skĭı ([Kr]). The main ingredients of Krasnosel’skĭı’s investigation of
the free case are: (a) the usage of the fact that any equivariant mapping of Sn into
itself is essential and (b) the observation that some simple operations increase
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the dimension of subsets of a sphere by at most one; this in turn allows him to
use induction on dimension. We also use induction on dimension (Lemma 2),
but the non-free situation we are dealing with forces us to supply the considered
action and subsets with some additional structure. Instead of (a) we use a
corresponding assertion for non-free actions (Lemma 1).

Remark 3. After Theorem 1 was obtained, T. Bartsch informed us that
he has a homological proof of this result (using a reduction to Švartz’s result
mentioned above).

For the proof of the lemma presented below, see [BB, KB, BKZ] (and also
[Ko]).

Lemma 1. Let Φ : Sn → Sn be an equivariant map such that Φ|A is the
identity map. Then the degree of Φ is not zero.

For any B ⊂ Sn, B 6= ∅, and any x0 ∈ Sn with −x0 6∈ B define the (spherical)
cone over B with vertex x0 by the formula

Con(x0, B) = ϕ−1({(1− t)ϕ(x) + tϕ(x0) | x ∈ B & t ∈ [0, 1]}),

where ϕ is the stereographic projection of Sn \{−x0} on Rn. Set also Con(x0, ∅)
= x0.

In the proof of Lemma 2 we use the following obvious

Proposition. Let B be a compact subset of Sn and x0 6∈ B. Then for any
neighborhood U ⊃ Con(x0, B) there exists a compact, contractible and locally
contractible set K such that K ⊂ U,B ⊂ IntK and Con(x0, B) ⊂ K.

Lemma 2. Under the conditions of Theorem 1 there exists a chain of compact
sets

(1) A ⊂ A0 ⊂ B0 ⊂ A1 ⊂ B1 ⊂ . . . ⊂ Bp−1 ⊂ Ap  Sn

with the following properties (for i = 0, 1, . . . , p− 1):

(a) p = d(n− k)/(1 + m)e, where dxe = min{a ∈ Z | a ≥ x};
(b) Bi is contractible and locally contractible;
(c) Ai+1 is the union of all G-orbits passing through the points of Bi;
(d) A0 is an invariant neighborhood of A.

Proof. We construct a chain of compact subsets

(2) A = Ã0 ⊂ B̃0 ⊂ Ã1 ⊂ B̃1 ⊂ . . . ⊂ B̃p−1 ⊂ Ãp  Sn

with the following properties:

(α) B̃i is the cone over Ãi with a vertex xi 6∈ Ãi;
(β) Ãi+1 is the union of all G-orbits passing through the points of B̃i;
(γ) µ(Ãi+1) = µ(B̃i) = 0,
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where i = 0, 1, . . . , p − 1 and µ(·) is the Lebesgue measure. To do this we
construct simultaneously by induction two chains of sets

A = A′
0 ⊂ B′

0 ⊂ A′
1 ⊂ B′

1 ⊂ . . . ⊂ B′
p−1 ⊂ A′

p  Sn,(2′)

Â0 ⊂ B̂0 ⊂ Â1 ⊂ B̂1 ⊂ . . . ⊂ B̂p−1 ⊂ Âp,

and a chain of smooth maps

f0 ⊂ g0 ⊂ f1 ⊂ g1 ⊂ . . . ⊂ gp−1 ⊂ fp

such that the chain (2′) has properties (α)–(γ) above (with A′
i, B′

i instead of
Ãi, B̃i respectively) and

• f0 : Â0 → A′
0 = Ã0 = A is defined by the assumptions in the lemma;

• fi+1(Âi+1) = A′
i+1;

• gi(B̂i) = B′
i;

• dim Â0 = k, dim Âi = k + (m + 1)i, dim B̂i = k + (m + 1)i + 1

(i = 0, 1, . . . , p− 1).
By the assumptions a smooth surjective map f0 : Â0 → A = A′

0 = Ã0

is given. Suppose that a smooth map fi : Âi → A′
i has been constructed.

Set B̂i = Âi × R for i = 1, . . . , p − 1. By the inductive hypothesis A′
i is of

zero Lebesgue measure in Sn. Hence, there exists a point xi ∈ Sn such that
xi,−xi 6∈ A′

i. Consider the stereographic projection ϕ : Sn \ {−x0} → Rn and
set

gi(x, t) = ϕ−1((1− t)ϕ(fi(x)) + tϕ(xi)), B′
i = gi(B̂i)

for all x ∈ Âi and t ∈ R. If A = ∅ we let B̂0 be a point and g0 : B̂0 → Sn be
the constant map to the vertex of the cone over the empty set. Since dim A′

i =
k+(m+1)i, dim B′

i = k+(m+1)i+1 < n and (by the Sard Theorem) µ(B′
i) = 0.

The smoothness of gi is obvious.
Set Âi+1 = G× B̂i and for every g ∈ G and every x ∈ B̂i define fi+1(g, x) =

gx. Clearly, fi+1 is a smooth map. Since dim Âi+1 = k + (m + 1)(i + 1) < n, we
have (by the Sard Theorem) µ(Âi+1) = 0. Thus the chain (2′) is constructed.

This chain has all the required properties of (2) except compactness. Set (for
all i = 0, . . . , p− 1)

Ã0 = A;

B̃i = gi(f−1
i (A′

i)× [0, 1]) ⊂ B′
i;

Ãi+1 = fi+1(G× g−1
i (B̃i)) ⊂ A′

i+1.

By construction, B̃i = Con(xi, Ãi) and Ãi+1 = G(B̃i). Compactness of Ãi and
B̃i can be established by induction. Notice that Ãp 6= Sn because µ(Ãp) = 0.

We now construct (1) from (2). Since Ãp is a proper invariant compact subset
of Sn there exists a closed invariant neighborhood Āp of Ãp such that Āp 6= Sn.
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Since Āp is a neighborhood of B̃p−1 there exists a compact, contractible and lo-
cally contractible set Bp−1 such that B̃p−1 ⊂ Bp−1 ⊂ Āp (see Proposition). By
the invariance of Āp, G(Bp−1) ⊂ Āp; set Ap = G(Bp−1). According to Propo-
sition, Ãp−1 ⊂ IntBp−1, hence by invariance of Ãp−1 there exists an invariant
closed neighborhood Āp−1 of Ãp−1 such that Āp−1 ⊂ Bp−1.

Now applying the described procedure “downward” one can construct the
sets Ap−1, . . . , B0, A0.

Lemma 2 is proved.

Proof of Theorem 1. To prove the theorem it suffices to show the exis-
tence of an invariant compact set K ⊂ Sn \ A with gen(K) ≥ p. Suppose this
is false, i.e. for any invariant compact set K ⊂ Sn \ A, gen(K) < p. Consider
the chain (1) from Lemma 2 and let K ⊂ Sn \ A be an invariant compactum
such that A0 ∪K = Sn. By the assumption gen(K) = ` < p. Hence there exist
invariant open (in the induced topology) subsets M1, . . . , M` of K such that⋃`

i=1 Mi = K and gen(Mi) = 1.
Consider a chain of closed invariant sets

A0 = K0 ⊂ K1 ⊂ . . . ⊂ K` = Sn,

where Ki = (Sn \ (Mi+1 ∪ . . . ∪ M`)) ∪ A0 for 0 ≤ i ≤ `. Note that for i ≥ 1
one has Pi = Ki+1 \Ki ⊂ Mi, from which it follows that the projection of Pi on
K/G defines a trivial fiber bundle. Hence for any i ≥ 1 there exists a compact
set Li ⊂ K such that Pi = G(Li) and g(Li) ∩ h(Li) = ∅ if g 6= h (g, h ∈ G).

Now we construct an equivariant map Φ : Sn → Sn such that Φ|A is the
identity map and Φ(Sn)  Sn; this contradicts Lemma 1.

Set Φ to be the identity map on A0. The construction of Φ is by induction.
If Φ is constructed on Ki and its image is contained in Ai then we may extend
Φ to a continuous (non-equivariant) map Li+1 → Bi (this is possible since Ki

is closed and Ai is an AR-space; see [Bo], p. 112). Next we extend Φ over all
Mi by Φgx = gΦx (x ∈ Li, g ∈ G). The image of the final map is contained in
A` ⊂ Ap  Sn.

Theorem 1 is proved.

2. Case of spherical harmonics

In this section we apply Theorem 1 to an action of the group SO(n) (n
odd) on the unit sphere in a space of spherical harmonics. Denote by P (n, `)
the space of all homogeneous polynomials of degree ` in n variables and by
H(n, `) the corresponding space of spherical harmonics (H(n, `) ⊂ P (n, `)). Let
x, y1, z1, . . . , ym, zm be an orthogonal basis in Rn, n = 2m + 1. It is well known
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(see, for instance, [BtD]) that a polynomial f ∈ P (n, `) of the form

(3) f =
∑̀
k=0

xk

k!
fk(y1, z1, . . . , ym, zm)

belongs to H(n, `) iff

(4) ∀0 ≤ k ≤ `− 2 : fk+2 = −∆fk.

Moreover, H(n, `) = H0 ⊕H1, where H0 consists of harmonics containing even
powers of x and H1 consists of harmonics containing odd powers of x. In addition,
a polynomial f from H0 or H1 is uniquely determined by its leading term f0 or
f1 respectively. It is well known that H0

∼= P (n− 1, `), H1
∼= P (n− 1, `− 1) and

dim P (n, `) =
(

n + `− 1
`

)
,

dim H(n, `) = dim P (n− 1, `) + dim P (n− 1, `− 1).

The formula (gf)(u) = f(g−1(u)) defines the standard (irreducible) representa-
tion of SO(n) on H(n, `).

In order to apply Theorem 1 one has to calculate

d(n, `) = max{dim H(n, `)g | g ∈ SO(n), g 6= 1},

where H(n, `)g = {f ∈ H(n, `) | gf = f}.
Let g be a non-trivial element of SO(n) and let x, y1, z1, . . . , ym, zm be an

orthonormal basis in Rn for which g has the following form:
1 0

A(ϕ1)
. . .

0 A(ϕm)

 ,

where A(ϕk) is the matrix of rotation by the angle ϕk (1 ≤ k ≤ m). Set x = x,
yk = yk + izk, zk = yk − izk. In the new basis g is represented by the diagonal
matrix

(5) diag(1, exp(iϕ1), exp(−iϕ1), . . . , exp(iϕm), exp(−iϕm)).

It is easy to see that

∆f(y1, z1, . . . , ym, zm) = 4
m∑

k=1

∂2f

∂yk∂zk
,

and consequently (by (4)),

(6) fk+2 = −4
m∑

k=1

∂2fk

∂yk∂zk
.
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Set B(m, `) = B(0)(m, `) ∪ B(1)(m, `), where B(r)(m, `) is the set of all non-
negative integer-valued 2m-vectors with sum of coordinates equal to `− r (r =
0, 1). Given a vector b from B(r)(m, `) one can consider a polynomial (uniquely
determined by b) f (b) ∈ H(n, `) with leading term

xry
b(1)
1 z

b(2)
1 . . . yb(2m−1)

m zb(2m)
m .

The family of all these polynomials forms a basis of H(n, `), and (4)–(6) show
the diagonality of the action of g in this basis:

gf (b) = exp
(

i
m∑

k=1

ϕk(b(2k − 1)− b(2k))
)

f (b).

Hence dim H(n, `)g is equal to the number of g-fixed polynomials from our basis,
i.e. it is equal to the number of vectors b ∈ B(m, `) such that

(7)
m∑

k=1

tks
(b)
k ∈ Z,

where tk = ϕk/(2π) and s
(b)
k = b(2k − 1)− b(2k). In what follows, we vary g in

order to maximize dimH(n, `)g so that the matrix of g preserves the form (5) in
the basis described above. Denote by D the group of all these matrices. Without
loss of generality, suppose the numbers tk from (7) to be rational: tk = uk/vk

(uk, vk ∈ Z), tk 6= 0 if 1 ≤ k ≤ α and tk = 0 if k > α for some integer α

(1 ≤ α ≤ m). Thus, dim H(n, `)g is equal to the number of vectors from B(m, `)
satisfying the congruence

(8)
α∑

k=1

ukv′ks
(b)
k ≡ 0 mod v,

where v = lcm(v1, . . . , vα) and v′k is the corresponding complementary factor.
Obviously, every vector b satisfying (8) also satisfies

(9)
α∑

k=1

aks
(b)
k ≡ 0 mod p,

where p is a prime divisor of v, all ak 6= 0 and a1 = 1 (maybe for a smaller
value of α). Fixing all the components of the vector b but the first one, it is easy
to verify that the number of solutions of (9) is maximal for p = 2; denote this
number by c(m, `, α). Simple combinatorial arguments show that

(10) c(m, `, α) =

{ ∑[(`−1)/2]
k=0 dim H(2m− 2α, `− 2k) if α < m,

dim P (2α, 2[(`− 1)/2]) if α = m,

where [·] stands for the integer part.
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Let us introduce the following notations: for α ∈ [1,m] ∩ Z,

Bα
r = Bα

r (m, `) =
{

b ∈ B(m, `)
∣∣∣∣ α∑

k=1

s
(b)
k ≡ r mod 2

}
,

and, for any a ∈ B(m, `),

Ba = Ba(m, `) = {b ∈ B(m, `) | ∀3 ≤ k ≤ 2m− 2 : b(k) = a(k)}.

Let ` be an even number. Let us show that c(m, `, α) ≤ c(m, `,m) for any
α = 1, . . . ,m − 1. Consider Bα

0 as the union of two disjoint sets Bα
0 ∩ Bm

0 and
Bα

0 ∩ Bm
1 and define a mapping ϕ : Bα

0 → Bm
0 by setting ϕ(b) = b ∈ Bα

0 ∩ Bm
0

for b ∈ Bα
0 ∩Bm

0 and ϕ(b) = b + (1, 0, . . . , 0) ∈ Bα
1 ∩Bm

0 for b ∈ Bα
0 ∩Bm

1 . Now
the required inequality follows from the injectivity of ϕ.

Similarly, one can prove that c(m, `, α) ≥ c(m, `,m) for any α = 1, . . . , m−1
if ` is odd.

Now, we show that c(m, `, α) ≤ c(m, `, 1) for any ` and for all α = 2, . . . ,

m−1. Represent Bα
0 as the union of two disjoint sets Bα

0 ∩B1
0 and Bα

0 ∩B1
1 . The

second of these can be represented as the disjoint union of the family B(m, `) =
{Bb(m, `) | b ∈ B(m, `)}. For fixed b every vector from Bb(m, `) is uniquely
determined by its four coordinates with indices 1, 2, 2m− 1 and 2m. The direct
calculation using (10) shows that |B1

0(2, k)| > |B1
1(2, k)|. Hence there exists

an injective mapping ϕb : Bb ∩ B1
1 → Bb ∩ B1

0 such that ϕb(Bα
0 ∩ B1

1 ∩ Bb) ⊂
Bα

1 ∩B1
0 ∩Bb. Taking the union of the family {ϕb | b ∈ B} and the identity map

on Bα
0 ∩B1

0 one obtains the required injection ϕ : Bα
0 → B1

0 .
The arguments above show that the number c(m, `, α) is maximal for α = 1

if ` is odd, and for α = m if ` is even. Hence (see (10)) we obtain the following
formulas:

(11) d(n, `) =

{ ∑(`−1)/2
k=0 dim H(2m− 2, `− 2k) if ` is odd,

dim P (2m, `) if ` is even.

Using the natural multi-dimensional generalization of the Euler angles one
can construct a smooth mapping ϕ from the torus T2m2

to SO(n) such that
any matrix P ∈ SO(n) can be represented in the form P = TDT−1, where
T ∈ Im ϕ and D ∈ D, thus SO(n)(H(n, `)g) = (Im ϕ)(H(n, `)g). Now, if S is
the unit sphere in H(n, `), and A is the union of all non-principal orbits, then A

coincides with the union of the family A(D) = {(Im ϕ)(H(n, `)g) | g ∈ D} and
(by the finiteness of the number of orbit types of the SO(n)-action on S, see
[Bre]) is the union of some finite family A(F), where F is a finite subset of D.
Now, using the manifold

M =
⊔

g∈F
(T2m2

× (H(n, `)g ∩ S)× Td(g)),
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where d(g) = d(n, `) − dim H(n, `)g and
⊔

stands for disjoint union, define a
surjection f : M→ A as follows:

f(x, y, z) = ϕ(x)(y) ((x, y, z) ∈M).

Applying Theorem 1 we get

Theorem 2. Let n = 2m + 1 and let H(n, `) be the space of spherical har-
monics with the natural representation of the group SO(n). Let, further, S be
the unit sphere in H(n, `), and A ⊂ S be the union of all non-principal orbits.
Then

gen(S \A) ≥ γ(n, `),

where

γ(n, `) =

⌈
dim H(n, `)− d(n, `)− 2m2

m(2m + 1) + 1

⌉
,

and d(n, `) is defined by (11).

Finally, let us discuss some properties of the function γ(n, `).

1) γ(3, `) = [(` + 1)/4].
2) Let n ≥ 3. For ` = 1, 2, the set A coincides with the entire sphere

S; γ(n, 1) = γ(n, 2) = 0. One can show that γ(n, 3) = 1 and γ(n, 4) =
m− [m/3].

3) Using simple arguments one can show that for fixed n, γ(n, `) does not
decrease in `. Although calculations confirm the conjecture that the
function γ(n, `) never decreases, we have no proof of this statement.
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maps: geometric approach, Univ. Heidelberg, Math. Inst., 1992 (preprint).

[Bar1] T. Bartsch, Critical orbits of invariant functionals and symmetry breaking, Manu-
scripta Math. 66 (1989), 129–152.

[Bar2] , On the genus of representation spheres, Comment. Math. Helv. 65 (1990),

85–95.

[Bo] K. Borsuk, Theory of Retracts, PWN, Warszawa, 1967.

[Bre] G. Bredon, Introduction to Compact Transformation Groups, Academic Press,

1972.
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[Kr] M. Krasnosel’skĭı, On special coverings of a finite-dimensional sphere, Dokl. Akad.

Nauk SSSR 103 (1955), 966–969. (Russian)

[KB] A. Kushkuley and Z. Balanov, A comparison principle and extension of equi-

variant maps, Manuscripta Math. (to appear).

[LS] L. Lusternik et L. Schnirelman, Métodes topologiques dans les problèmes va-
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