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ON THE FIXED-POINT THEORY
FOR NON-COMPACT MAPS AND SPACES. I

Vladimir P. Okhezin

Dedicated to Ky Fan

1. Introduction

One of the most famous results of topological fixed-point theory is the Lef-
schetz–Hopf fixed-point theorem. Many generalizations of this theorem to vari-
ous classes of maps and spaces were obtained in the last decades. Compactness
plays an essential rôle in these generalizations. We show here how the classical
compactness conditions may be weakened to conditions which are necessary or
almost necessary. Recall that a topological space has the fixed-point property if
and only if any continuous map of the space into itself has a fixed point. Fre-
quently the Lefschetz–Hopf theorem is used to prove the fixed-point property for
compact spaces with an additional structure, e.g. polyhedra, quasi-complexes,
ANR’s, semicomplexes and so on. The well-known Brouwer fixed-point theorem
may be obtained in the same way.

Brouwer Fixed-Point Theorem ([27], [6]). A contractible compact poly-
hedron has the fixed-point property.

One can consider the simplest contractible non-compact polyhedra like a
metric hedgehog (fan) J(τ) of spinness τ ≥ ℵ0 to observe that compactness is
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not a necessary condition in the Brouwer theorem for a space to have the fixed-
point property. The author has recently proved that there exist some other non-
trivial Lefschetz non-compact spaces and non-compact spaces with the fixed-
point property ([19]–[22]). These results give rise to the following interesting
problems (we assume all polyhedra to have the metric or Whitehead topology):

(P1) Characterize the contractible polyhedra having the fixed-point property.
(P2) Characterize the polyhedra which are Lefschetz spaces.
(P3) Characterize the metric AR’s having the fixed-point property.
(P4) Characterize the metric ANR’s which are Lefschetz spaces.

In this paper we completely solve problem (P1) and give a partial solution
to problems (P2)–(P4).

A topological ray means a space homeomorphic to the half-open interval
[0, 1). It may be noted that a normal space having the fixed-point property does
not contain a topological ray as a closed subset. We call a closed subset which
is a topological ray a closed ray. A topological space that does not contain a
closed ray is called a rayless space. Hence the property of being a rayless space
is necessary for the fixed-point property in the class of normal spaces.

Several classical situations in which the property of being rayless is sufficient
for a space to have the fixed-point property are known. The first one concerning
the Brouwer–Schauder fixed-point theorem was described by V. Klee in 1955
([11]). He proved that a rayless convex subset of a metric locally convex vector
space has the fixed-point property. Moreover, K. Kuratowski ([14], [15]), V. Klee
[11] and E. Connell [5] showed that a rayless contractible locally compact metric
AR has the fixed-point property. In addition to the above results V. Klee [12],
W. Holsztyński [10] and V. Okhezin [23] describe the phenomenon of closed rays
in products.

Let us note that in all papers except Okhezin’s papers [19]–[23] the property
of being a rayless space implies compactness of the space and then the classical
results on fixed points are used. On the other hand, several examples such as
the product of the hedgehog with a compact contractible polyhedron or the
Tikhonov cube show that absence of a closed ray in a space with an additional
structure implies the fixed-point property or the property of being a Lefschetz
space. Using this clear topological property we completely solve problem (P1).

Theorem. A contractible polyhedron has the fixed-point property if and only
if it is a rayless space.

By now this theorem is the most complete generalization of the Brouwer
fixed-point theorem to polyhedra. Similarly we describe some special cases of
non-compact Lefschetz polyhedra. Trying to extend these results to several
classes of ANR’s one meets some difficulties which are partially overcome by
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using methods of U-domination, introducing an analogue of a rayless space and
covering properties like paracompactness. Even now the technique developed in
this paper permits us to extend most of the classical results to the non-compact
case. Therefore a new direction in topological fixed-point theory appears which
may essentially influence the development of modern topology and nonlinear
analysis.

A short abstract of this paper was presented at the Seventh Prague Topo-
logical Symposium in August 1991.

2. Preliminaries

All spaces are assumed to be Hausdorff. All polyhedra are simplicial com-
plexes with either the metric (|K|m) or Whitehead (|K|CW ) topology. We write
|K| if our considerations are valid for both topologies. We do not assume the
simplicial complexes to be finite or locally finite. If K is a simplicial complex
then the corresponding polyhedron is denoted by |K|, with either the metric
or Whitehead topology. The cone over a simplicial complex is defined in the
standard way. We need the following fact: A contractible compact polyhedron is
an absolute extensor in the class of normal spaces ([16]). Any polyhedron with
the Whitehead topology is a paracompact (and hence normal) locally connected
space ([16]).

For any x ∈ |K|, the carrier si(x) of x is the simplex σ ∈ K of lowest
dimension that contains x. K(m) is the m-skeleton of K. If V and U are open
covers of a space X then U ≺ V means that U is a refinement of V and U ≺∗ V
means that U is a star-refinement of U . The polyhedron |N(U)| is the nerve of
U . Two continuous maps f, g : X → Y are called U-close if for every x ∈ X

there exists U ∈ U such that {f(x), g(x)} ⊆ U (we write (f, g) ≺ U).
Let Y be a space and let W be an open cover of Y . The notion of W-

homotopy may be found in [17]. If M is a finite simplicial subcomplex of K
then, generally speaking, |M | is not a retract of |K|. On the other hand, since
a cone |CM | is an absolute extensor there is a retraction ρ : |CK| → |CM |. For
any space Y , the map R = ρ × IY , where IY means the identity map on Y , is
called a canonical retraction and is denoted by

R = R(M) : |CK| × Y → |CM | × Y.

Let M be a simplicial subcomplex of K. Then a subcomplex M̃ ⊆ K having
the same vertices as M and such that whenever all vertices of a simplex σ ∈ K
are in M then σ ∈ M̃ , is called a shell of M in K. Note that a shell of a finite
simplicial complex is a finite simplicial complex. In any polyhedron the union
of any family of closed subpolyhedra is a closed set (see [16]). A space X is
countably compact iff any infinite subset of X has a cluster point. The product
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of a countably compact space and a compact space is countably compact ([7]). A
map homotopic to a constant map is called nullhomotopic (denoted by f ∼ 0).
Indexing sets we will often use sequences of indices; α0 = α(0) is an empty
sequence, which will be omitted, α0α1 . . . αi = α1 . . . αi = α(i).

Let X,Y be topological spaces, CX be the cone over X, and CX×Y be the
topological product. Then π : CX ×Y → CX and p : CX ×Y → Y are obvious
projections. The space X×Y may obviously be considered to be a closed subset
of CX × Y . Let X,Y be spaces and let U be an open cover of Y . We say that
X U-dominates Y if there are two maps g : Y → X and f : X → Y such that
the composition f ◦ g : Y → Y is U-homotopic to IY ([17]).

We consider the (co)homology functor H with rational coefficients satisfying
all the axioms of Eilenberg–Steenrod. A space X having finite type homology
is called a Lefschetz space ([3]) if for any continuous map f : X → X, Λ(f) 6= 0
implies that f has a fixed point. The Lefschetz number is defined as follows:

Λ(f) =
∞∑

k=0

(−1)ktr (f∗k),

where tr denotes trace, and f∗k : Hk(X) → Hk(X) is the linear endomor-
phism induced by f in k-(co)homology. A more general construction using Leray
endomorphisms may be used to define the Lefschetz number.

The classical König’s lemma says that a tree of height ω0 with finite levels has
a path through it ([1]). X ⊂ Y denotesX ⊆ Y andX 6= Y . By

⋃
{M(α) |α ∈ A}

we denote the set-theoretic union of the family. If A ⊆ X is a subset, i : A→ X

is the inclusion. The composition of i : A → X with f : X → Y is denoted by
f |A : A→ Y and is called the restriction of f to A; we then say that f extends
f |A over X. N is the set of natural numbers.

3. Fixed-point theorems for products with non-compact polyhedra

Let K be a simplicial complex and Y be a space. Consider the following
properties which will play an important rôle in this section.

(C1) Any map f : |K| × Y → |K| × Y has a continuous extension

F : |CK| × Y → |K| × Y.

(C2) (C1) holds and there is a countably compact space S such that

F (|CK| × Y ) ⊆ |K| × S ⊆ |K| × Y.

(C3) (C1) holds and for any finite subcomplex M ⊆ K and any canonical
retraction R = R(M) the map R ◦ F : |CK| × Y → |CM | × Y has a
fixed point.
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Let M ⊆ K be a subcomplex. The space |K| \ |M | is the union of its
components Vα: |K| \ |M | =

⋃
Vα. If q, ϕ are vertices such that ϕ ∈ ∂Vα ⊆ |M |

and q ∈ Vα for some α, then it is easily seen that there exists a simple path
∆ connecting q and ϕ lying in the one-dimensional skeleton K(1), such that
|∆| \ {ϕ} ⊆ Vα (|∆| ∩ |M | = {ϕ}). The following proposition is the main
technical tool of our theory:

Theorem 3.1. Let |K| be a polyhedron, Y be a space and let f : |K| × Y →
|K| × Y satisfy (C2) and (C3). Then one of the following holds:

(i) f has a fixed point (Fix f 6= ∅),
(ii) the one-dimensional skeleton of |K| contains a closed ray l ⊆ |K(1)|

⊆ |K|.

Proof. Suppose f has no fixed point. Condition (C1) implies that F has
no fixed point either. Let us show that this implies the existence of a strongly
increasing sequence of simple paths l(α(n)) in the one-dimensional skeleton of
|K|, i.e.

l(α0) ⊂ l(α(1)) ⊂ . . . ⊂ l(α(n)) ⊂ l(α(n+ 1)) ⊂ . . .

The union

l =
∞⋃

n=1

l(α(n)) ⊆ |K(1)| ⊆ |K|

is a closed ray in |K| since the union of any family of closed subpolyhedra is
a closed set. We construct the sequence of simple paths inductively. Let e =
l(α0) ∈ |K(0)|, where e is any vertex of the polyhedron, be the starting point of
the ray. Suppose the following holds:

(1) There is a tree Tn such that for any i = 0, . . . , n the i-level of the tree
contains sequences α(i) = α1 . . . αi and for any i = 0, . . . , n−1 the branch order
of α(i) is equal to the cardinality of the non-empty finite set A(α(i)). We also
suppose that non-empty index sets A(α(i)) ⊆ B(α(i)) ⊆ C(α(i)) are defined
such that B(α(i)) are finite sets where i = 0, . . . , n−1, and for any i = 1, . . . , n,
α(i) ∈ Tn if and only if

α1 ∈ A(α0), α2 ∈ A(α1), . . . , αi ∈ A(α(i− 1)).

(2) There is a connected finite simplicial complex Mn such that e ∈Mn ⊆ K.
The space |K| \ |M̃n| is the union of its components. Moreover, we have

|K| \ |M̃n| =
n⋃

j=1

⋃
{V (α(j)) |α(j) ∈ Tn, αj ∈ C(α(j − 1)) \B(α(j − 1))}

∪
⋃
{V (α(n+ 1)) |α(n) ∈ Tn, αn+1 ∈ C(α(n))},

where C(α(n)) is a non-empty set of indices. There is a similar representation
for |CK|\|CM̃n| in which we use W instead of V for components. The boundary
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of each component V is contained in the polyhedron |M̃n| and

∅ 6= V (α(n+ 1)) ⊂ V (α(n)).

(3) To any αn+1 ∈ C(α(n)) we assign a vertex

ϕn(α(n+ 1)) ∈ ∂V (α(n+ 1)) ⊆ |M̃n|.

(4) There is a canonical retraction

Rn : |CK| × Y → |CM̃n| × Y, Rn = ρn × IY , ρn : |CK| → |CM̃n|,

such that for any z ∈ FixRn ◦ F ,

π ◦ F (z) ∈
⋃
{W (α(n+ 1)) |α(n) ∈ Tn, αn+1 ∈ C(α(n))}.

(5) For any i = 0, . . . , n there are simple paths l(α(i)), α(i) ∈ Tn, such that

l(α0) ⊂ l(α(1)) ⊂ . . . ⊂ l(α(n− 1)) ⊂ l(α(n)).

We define B(α(n)) ⊆ C(α(n)) as follows:

B(α(n)) = {αn+1 ∈ C(α(n)) | there exists zn ∈ FixRn ◦ F
such that F (zn) ∈W (α(n+ 1))× S}.

Condition (4) implies that B(α(n)) is a non-empty set. Suppose B(α(n)) is
infinite. Then there is a countable set Ĉ ⊆ B(α(n)) of pairwise distinct indices
such that for any αk

n+1 ∈ Ĉ there is zk
n ∈ FixRn ◦ F ⊆ |CM̃n| × S and F (zk

n) ∈
W (α(n)αk

n+1) × S. Since |CM̃n| × S is a countably compact space, the infinite
set {zk

n |αk
n+1 ∈ Ĉ} has a cluster point zn ∈ |CK| × Y . The set FixRn ◦ F is

closed, hence zn ∈ FixRn ◦F . Now {W (α(n)αk
n+1)×Y |αk

n+1 ∈ Ĉ} is a disjoint
family of open sets, so F (zn) ∈ |CM̃n| × S and thus zn = Rn ◦ F (zn) = F (zn).
But we have supposed that F has no fixed point. This contradiction shows that
B(α(n)) is a non-empty finite set.

For any αn+1 ∈ B(α(n)) we let

P (α(n+ 1)) = V (α(n+ 1)) ∪ |M̃n|.

Define

A(α(n)) = {αn+1 ∈ B(α(n)) |P (α(n+ 1)) is a non-compact space}.

We shall show that A(α(n)) is non-empty. Suppose not. Then P (α(n + 1)) is
compact for any αn+1 ∈ B(α(n)). We construct an auxiliary canonical retraction
corresponding to a compact polyhedron Q, where

Q =
⋃
{P (α(n+ 1)) |α(n) ∈ Tn, αn+1 ∈ B(α(n))}.

Consider a closed set Ψ ⊆ |CK|, where

Ψ = |M̃n | ∪
⋃
{W (α(n+ 1)) | α(n) ∈ Tn, αn+1 ∈ C(α(n)) \B(α(n))}
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and a continuous mapping ′ρn : Ψ ∪ |CQ| → |CQ| defined as follows:

′ρn =

{
z if z ∈ |CQ|,
ρn(z) if z ∈ Ψ.

Since |CQ| is an absolute extensor, there is a continuous extension of ′ρn

over the cone |CK|. This extension ρ̃n : |CK| → |CQ| will be an auxiliary
retraction and we let R̃n = R̃n(Q) = ρ̃n × IY . This R̃n will be the desired
auxiliary canonical retraction. Condition (C3) implies the existence of a fixed
point zn = R̃n ◦ F (zn) and zn ∈ |CQ| × S. Since R̃n ◦ F (zn) 6= F (zn) there
exists an index αn+1 ∈ C(α(n))\B(α(n)) such that F (zn) ∈W (α(n+1))×S.
Therefore R̃n ◦ F (zn) = Rn ◦ F (zn) = zn, i.e. zn ∈ |CM̃n| × S. This contradicts
the definition of B(α(n)), so that finally A(α(n)) is a non-empty finite set.

For any αn+1 ∈ A(α(n)) choose an arbitrary point zn ∈ FixRn ◦F such that
F (zn) ∈W (α(n+ 1))× S (see (4)). Since π ◦ F (zn) 6∈ |M̃n| there are vertices of
the simplex |si(π◦F (zn))| which are not in |M̃n|. This follows from the definition
of the shell M̃n.

For any αn+1 ∈ A(α(n)) we choose a vertex qn(α(n+ 1)) such that

qn(α(n+ 1)) 6∈ |M̃n|, qn(α(n+ 1)) ∈ |(si(π ◦ F (zn)))(0)|.

Using the remark before the theorem we find that there is a simple path

|∆n+1(α(n+ 1))| ⊆ |K(1)|

connecting the points ϕn(α(n+ 1)) and qn(α(n+ 1)) such that

|∆n+1(α(n+ 1))| \ {ϕn(α(n+ 1))} ⊆ V (α(n+ 1)).

Let us construct auxiliary connected finite simplicial complexes:

Mn+1(α(n+ 1)) = M̃n ∪∆n+1(α(n+ 1)) ∪ si(π ◦ F (zn(α(n+ 1)))),

Mn+1 =
⋃
{M̃n+1(α(n+ 1)) |α1 ∈ A(α0), . . . , αn+1 ∈ A(α(n))}

∪
⋃
{P (α(n+ 1)) |α(n) ∈ Tn, αn+1 ∈ B(α(n)) \A(α(n))}.

The space |K| \ |M̃n+1| is the union of its components and we have the following
representation:

|K| \ |M̃n+1| =
n+1⋃
j=1

⋃
{V (α(j)) |α(j) ∈ Tn, αj ∈ C(α(j − 1)) \B(α(j − 1))}

∪
⋃
{V (α(n+ 2)) |α(n) ∈ Tn, αn+1 ∈ A(α(n)), αn+2 ∈ C(α(n+ 1))},

where C(α(n + 1)) is a non-empty index set. Replacing V by W we obtain a
similar representation for |CK| \ |CM̃n+1|. Each component has its boundary in
|M̃n+1| and

∅ 6= V (α(n+ 2)) ⊂ V (α(n+ 1)).
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Choose any vertex x ∈ V (α(n+ 2)) and consider a simple path in

V (α(n+ 1)) ∩ |K(1)|

which connects the points x and qn(α(n+ 1)) 6∈ V (α(n+ 2)). This simple path
contains a boundary point of the component V (α(n+ 2)). Therefore

∂V (α(n+ 2)) ∩ V (α(n+ 1)) 6= ∅.

Choose arbitrary vertices

ϕn+1(α(n+ 2)) ∈ ∂V (α(n+ 2)) ∩ V (α(n+ 1)), ϕn+1(α(n+ 2)) 6∈ |M̃n|

and consider the following simple path in |K(1)|:

[ϕn(α(n+ 1)), ϕn+1(α(n+ 2))] ⊆ |∆n+1(α(n+ 1))| ⊆ |M̃n+1|.

Since |∆n+1(α(n + 1))| ∩ |M̃n| = {ϕn(α(n + 1))} and l(α(n + 1)) ⊆ |M̃n|, it
follows that

l(α(n+ 2)) = l(α(n+ 1)) ∪ [ϕn(α(n+ 1)), ϕn+1(α(n+ 2))]

is a simple path connecting the points e and ϕn+1 such that

l(α(n+ 1)) ⊂ l(α(n+ 2)) (since ϕn+1(α(n+ 2)) 6∈ |M̃n|).

We now construct a tree Tn+1 ⊃ Tn. The i-level of Tn+1 (i ≤ n) is the i-
level of Tn, and the (n + 1)-level consists of the sequences α(n + 1), where
αn+1 ∈ A(α(n)), . . . , α1 ∈ A(α0). The branch order of α(n) is finite and equal
to the cardinality of A(α(n)).

Now we shall define a canonical retraction Rn+1 : |CK|×Y → |CM̃n+1|×Y ,
Rn+1 = ρn+1 × IY , ρn+1 : |CK| → |CM̃n+1|. Consider the closed set

Φ = |CM̃n| ∪
n+1⋃
j=1

⋃
{W (α(j)) |α1 ∈ A(α0), . . . , αj−1 ∈ A(α(j − 2)),

αj ∈ C(α(j − 1)) \B(α(j − 1))}

and the continuous mapping ρ′n+1 : Φ∪ |CM̃n+1| → |CM̃n+1| defined as follows:

ρ′n+1(z) =

{
z if z ∈ |CM̃n+1|,
ρn(z) if z ∈ Φ.

Since |CM̃n+1| is an absolute extensor, there is a continuous extension of
ρ′n+1 to the cone |CK|. This extension ρn+1 : |CK| → |CM̃n+1| is the desired
retraction, Rn+1 = ρn+1×IY is the canonical retraction. If z ∈ FixRn+1 ◦F 6= ∅
and

π ◦ F (z) 6∈
⋃
{W (α(n+ 2)) |α(n+ 1) ∈ Tn+1, αn+2 ∈ C(α(n+ 1))},
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then π ◦ F (z) ∈ Φ \ |CM̃n+1|; but then Rn+1 ◦ F (z) = Rn ◦ F (z) = z, i.e.
z ∈ FixRn ◦ F and

π ◦ F (z) 6∈
⋃
{W (α(n+ 1)) |α(n) ∈ Tn, αn+1 ∈ C(α(n))},

contradicting condition (4).
Consider the tree T =

⋃∞
n=0 Tn. The height of T is equal to ω0 and every

level of T is finite by the way the Tn’s were constructed. Using König’s lemma
we see that there exists an infinite simple path α0α1 . . . αnαn+1 . . . This path
immediately gives an increasing sequence of simple paths

l(α0) ⊂ l(α1) ⊂ . . . ⊂ l(α(n)) ⊂ l(α(n+ 1)) ⊂ . . .

The union of these paths,

l =
∞⋃

n=1

l(α(n)) ⊆ |K(1)| ⊆ |K|,

is a closed ray in the one-dimensional skeleton. Roughly speaking, the map
f : |K|×Y → |K|×Y is a “nonlinear translation along the product l×S ”. This
concludes the proof. �

We now consider some important situations in which (C1), (C2), (C3) hold
automatically. When Y = {∗} is a singleton we may identify |CK| × Y and
|K| × Y with the cone |CK| and polyhedron |K| respectively. In this case (C1)
holds for any nullhomotopic map f : |K| → |K|. (C2) obviously holds. The
Brouwer fixed-point theorem implies (C3). So we have the following theorem:

Theorem 3.2. Let f : |K| → |K| be a continuous map. Then one of the
following holds:

(i) f has a fixed point (Fix f 6= ∅),
(ii) f is not nullhomotopic (f 6∼ 0),
(iii) the polyhedron |K| contains a closed ray. �

Using Theorem 3.2 we can obtain several interesting propositions the first of
which may be considered to be a weakened Lefschetz–Hopf fixed-point theorem
for non-compact polyhedra.

Definition 3.3. A space is called a rayless space if it does not contain a
closed ray.

Theorem 3.4. Let f : |K| → |K| be a nullhomotopic map of a rayless
polyhedron. Then f has a fixed point. �

The following theorem completely solves problem (P1) mentioned above.
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Theorem 3.5. A contractible polyhedron has the fixed-point property if and
only if it is a rayless space. �

This theorem is the most complete version of the Brouwer fixed-point theorem
for polyhedra; we hope it will be useful in topology and nonlinear analysis.

The next situation concerns contractible polyhedra. If |K| is a contractible
polyhedron then there is a retraction ρ : |CK| → |K|. Consider the retraction
R = ρ× IY : |CK| × Y → |K| × Y . Such a retraction exists in view of condition
(C1). Suppose that Y is a countably compact space and whenever |M | ⊆ |K| is a
compact polyhedron then |CM |×Y is a Lefschetz space. Consider the following
retractions:

ρ′ : |CK| → |K| ⊆ |CK|, ρ′′ : |CK| → |CM | ⊆ |CK|,
R′ = ρ′ × IY : |CK| × Y → |K| × Y ⊆ |CK| × Y,

R′′ = ρ′′ × IY : |CK| × Y → |CM | × Y.

One can easily see that the maps f ◦ R, f ◦ R′, and R′′ ◦ f ◦ R′ are homotopic.
Then we can obviously define the Lefschetz number by the formula

Λ(f) = Λ(R′′ ◦ f ◦R′||CM | × Y ).

Note that a normal Lefschetz space is rayless. Otherwise there exists a null-
homotopic map having no fixed point and the Lefschetz number of the map is
equal to 1. So we have the following analogue of the Lefschetz–Hopf fixed-point
theorem.

Theorem 3.6. Let |K| be a contractible polyhedron, and Y be a countably
compact space such that for any compact polyhedron |M | ⊆ |K| the product
|CM | × Y is a Lefschetz space. Then for any continuous map f : |K| × Y →
|K| × Y such that Λ(f) 6= 0 one of the following holds:

(i) f has a fixed point (Fix f 6= ∅),
(ii) |K| contains a closed ray.

Proof. Indeed, if Λ(f) 6= 0 then for any two retractions

ρ′ : |CK| → |K| ⊆ |CK|, ρ′′ : |CK| → |CM | ⊆ |CK|

we have

Λ(f) = Λ(R′′ ◦ f ◦R′||CM | × Y ) = Λ(R′′ ◦ F ||CM | × Y ) 6= 0.

Since |CM | × Y is a Lefschetz space the map R ◦ F has a fixed point, i.e. (C3)
holds. Then Theorem 3.1 implies (i) or (ii). �

The following theorem describes a special class of Lefschetz spaces.



Fixed-point Theory for Non-compact Spaces 93

Theorem 3.7. Let |K| be a contractible polyhedron, and Y be a countably
compact space such that for any compact polyhedron |M | ⊆ |K| the product
|CM | × Y is a Lefschetz space. Then |K| × Y is a Lefschetz space if and only if
|K| × Y is rayless. �

Corollary 3.8. Let |K| be a contractible rayless polyhedron and Y belong
to one of the following classes:

(i) weak semicomplexes of Browder,
(ii) compact Q-simplicial spaces of finite type ([13]),
(iii) finite unions of convex compact subsets of locally convex topological vec-

tor spaces,
(iv) compact metric ANR’s,
(v) compact metric approximate ANR’s ([9]),
(vi) compact ANR spaces.

Then |K| × Y is a Lefschetz space. �

The proof of Corollary 3.8 may be obtained by observing that for the classes
(i)–(vi) the product of a space from one of these classes and the cone over a
compact polyhedron also belongs to the class and is a compact Lefschetz space.

Theorem 3.7, Corollary 3.8 and Theorem 3.4 give a partial solution to prob-
lems (P2)–(P4). We now formulate several results on fixed points for non-
compact spaces.

Theorem 3.9. Let |K| be a contractible polyhedron and Y belong to one of
the following classes:

(i) compact metric AR’s,
(ii) compact convex subsets of locally convex topological vector spaces,
(iii) Iτ , the Tikhonov cube of weight τ ,
(iv) compact polyhedra Y such that Y × I has the fixed-point property,
(v) compact nested spaces ([18]–[20]).

Proof. For (i)–(iii) the proof follows immediately from Corollary 3.8. For
case (iv) the author [24] showed that any polyhedron homotopically equivalent
to Y has the fixed-point property, i.e. for any compact polyhedron |M | ⊆ |K|
the space |CM | × Y has the fixed-point property. We complete the proof using
Theorem 3.6. For the proof of (v) see [19], [20]. �

Let us conclude this section by showing the naturality of conditions (C1),
(C2), (C3).

(C1) may be considered to be an analogue of nullhomotopy.
Condition (C2) is essential for the above theorems since for a non-countably

compact arcwise connected space Y and a connected non-compact polyhedron



94 V. P. Okhezin

|K| (even rayless) such that |K| × Y is a normal space there is a nullhomotopic
map f : |K| × Y → |K| × Y without a fixed point. W. Holsztyński [10] and
V. Okhezin [23] showed that such products contain closed rays. Other theorems
on the necessity of countable compactness of factors were proved by the author
in [23]. Taking into account the results of this section we have the following
statement:

Theorem 3.10. Let |K|m and |L|m be contractible polyhedra. Then the
product |K|m × |L|m has the fixed-point property if and only if one factor is
compact and the other is a rayless polyhedron. �

Condition (C3) may be effectively verified using the classical methods of
fixed-point theory.

4. Fixed-point theorems for non-compact metric ANR’s

It is well known that the classical Lefschetz–Hopf fixed-point theorem may be
extended to several classes of compact maps and spaces. It is of great interest to
extend the above results to classes of non-compact ANR’s, i.e. to solve problems
(P2), (P3), (P4). In this section we make such an extension using methods of U-
dominating ANR’s by polyhedra and introducing some approximative analogues
of a rayless space.

First consider the following definitions which will play a central rôle in our
discourse.

Definition 4.1. An open cover U of a topological space is called rayless if
and only if the nerve of U is a rayless polyhedron.

Definition 4.2. A topological space is called approximatively rayless if any
open cover of it has a rayless refinement.

I do not know if the property of X being approximatively rayless is necessary
for X to have the fixed-point property. On the other hand, in the following
typical situation any rayless space is approximatively rayless. In [8] V. Filippov
constructed an example of a complete metric locally arcwise connected space
with an open cover having no locally finite open refinement consisting of arcwise
connected sets. The following definition is natural here.

Definition 4.3. A topological space is called finely paracompact if any open
cover has a locally finite open refinement consisting of arcwise connected sets.

It may be worth observing that a finely paracompact space is a paracompact
locally arcwise connected space. Any locally compact or σ-compact or totally
paracompact locally arcwise connected space is finely paracompact. Below we
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describe some more classes of finely paracompact spaces. The following proposi-
tion shows the importance of the notion of fine paracompactness in fixed-point
theory.

Proposition 4.4. A finely paracompact rayless space is approximatively
rayless.

Proof. Assume the contrary, i.e. there is an open cover U of a finely para-
compact rayless space such that the nerve of any open refinement of U contains
a closed ray. Consider a locally finite open refinement V of U consisting of
arcwise connected sets. Then the polyhedron |N(V)(1)| contains a closed ray.
There is a sequence {Vn |n ∈ N} of pairwise distinct elements of V such that
Vn ∩ Vn+1 6= ∅, n ∈ N. Choose an arbitrary point xn ∈ Vn ∩ Vn+1 and consider
the family F = {[xn, xn+1] ⊆ Vn+1 |n ∈ N} of arcs. Since V is locally finite, F
is a locally finite family of compact arcs. Hence L =

⋃
{[xn, xn+1] |n ∈ N} is a

connected, locally compact, locally arcwise connected metric non-compact space
and L is a closed subset of the space. It follows ([5]) that there is a topological
ray l ⊆ L such that l is closed in L, thus l is a closed ray in the space. This
contradiction concludes the proof. �

The following theorem is well known and is one of the most important in the
theory of ANR’s.

Theorem 4.5 ([17]). Let X be a metric ANR. Then for every open cover
U of X there exists a polyhedron P (with the Whitehead topology) such that P
U-dominates X. �

Arguing similarly to the proof of this theorem we prove the following theorem.

Theorem 4.6. Let X be an approximatively rayless metric ANR. Then for
every open cover U of X there exists a rayless polyhedron P (with the Whitehead
topology) such that P U-dominates X.

Proof. Let U be an arbitrary open cover of X. It is well known (see [17])
that there is an open refinement V of U such that for every space Y , any two
V-close maps f, g : Y → X are U-homotopic. As in the classical theory ([17]),
V has an open refinement W such that for every simplicial complex T and
any subcomplex S ⊆ T containing all the vertices of T , and for every partial
realization f : |S| → X of T in X relative to (S,W) there exists a full realization
g : |T | → X of T in X relative to V having the following properties:

(i) g extends f and
(ii) for every σ ∈ S and for every W ∈ W with f(|σ|∩ |S|) ⊆W there exists

V ∈ V such that g(|σ|) ∪W ⊆ V .
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Note that we do not assume the local finiteness of |T |. Since X is a metric
and hence paracompact space there is a star-refinement B of W. Since X is an
approximatively rayless space there exists a rayless refinementA of B. Finally, we
have a rayless star-refinement A of W. Using paracompactness again, consider
a locally finite refinement F of A and a continuous k-mapping k : X → |N(F)|
(the canonical projection). Let p : |N(F)| → |N(A)| be the natural simplicial
continuous mapping (such a map exists since F ≺ A). Then π = p ◦ k : X →
|N(A)| is a continuous mapping. Consider the rayless polyhedron P = |N(A)|.
For every vertex x(A) ∈ N(A)(0) choose an arbitrary point f(x(A)) ∈ A. This
defines a continuous function f : |N(A)(0)| → X. A being a star-refinement of
W (A ≺∗ W) implies that f is a partial realization of N(A) in X relative to
(N(A)(0),W) (see [17]) (i.e. for any simplex σ ∈ N(A) there exists W ∈ W such
that f(|σ| ∩ |N(A)(0)|) ⊆W ).

Let g : |N(A)| → X satisfy conditions (i) and (ii). We shall show that
IX and g ◦ π are V-close mappings. Take an arbitrary x ∈ X. Since F is a
locally finite open cover, there exist finitely many elements of F that contain
x, say F0, F1, . . . , Fn. Then |σ′| = |{x(F0), . . . , x(Fn)}| is a simplex in |N(F)|
and k(x) ∈ |σ′|. For every i = 0, . . . , n there is an element Ai of A such that
Fi ⊆ Ai. Let p(x(Fi)) = x(Ai). Then the image of |σ′| under p is a simplex |σ| =
|{x(A0), . . . , x(An)}| in |N(A)|. Indeed,

⋂n
i=0 Fi 6= ∅ implies that

⋂n
i=0Ai 6= ∅,

i.e. |σ| is a simplex in |N(A)|, |σ| = p(|σ′|). Therefore p◦k(x) ∈ |σ|, x ∈
⋃n

i=0Ai.
There exists W ∈ W such that x ∈

⋃n
i=0Ai ⊆ W . Since f(x(Ai)) ∈ Ai for any

i = 0, . . . , n, we have

f(|σ| ∩ |N(A)(0)|) ⊆W.

Condition (ii) implies that there is V ∈ V such that g(|σ|) ∪ W ⊆ V . Since
p ◦ k(x) ∈ |σ| we have g ◦ p ◦ k(x) ∈ g(|σ|) ⊆ V , i.e. g ◦ p ◦ k(x) ∈ V . Since
W ⊆ V it follows that x ∈ V . We conclude that {x, g ◦ p ◦ k(x)} ⊆ V . By the
special choice of V, we now conclude that the V-close maps IX and g ◦ π are
U-homotopic. Hence P U-dominates X. �

The following is the main theorem in this section.

Theorem 4.7. Let X be a metric ANR. If f : X → X is a continuous map
then one of the following holds:

(i) f has a fixed point (Fix f 6= ∅),
(ii) f is not nullhomotopic (f 6∼ 0),
(iii) X is not an approximatively rayless space.

In the proof of this theorem one observation from approximative fixed-point
theory is used (see [4]).
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Proof. It is sufficient to prove that X being approximatively rayless and
f : X → X being nullhomotopic imply that f has a fixed point. Take any open
cover U , and let V be a star-refinement of U . By Theorem 4.6 there are a rayless
polyhedron P and maps g : P → X and π : X → P such that (g ◦ π, IX) ≺ V,
and g◦π and IX are U-homotopic. Then ψ = π◦f ◦g : P → P is a nullhomotopic
map of the rayless polyhedron P into itself. By Theorem 3.4 there exists a fixed
point y ∈ P , y = ψ(y) = π ◦ f ◦ g(y). Consider the point x = g(y), y = π ◦ f(x).
We have x = g(y) = g ◦π ◦f(x). Now (g ◦π, IX) ≺ V implies that there is V ∈ V
such that {x, f(x)} ⊆ V . We conclude that

(∗) for any open cover U of X there is x ∈ X such that there exists U ∈ U
such that {x, f(x)} ⊆ U .

Assume that for every x ∈ X, x 6= f(x). Since X is a Hausdorff space, for every
x ∈ X there are open neighborhoods Ux and Vf(x) of x and f(x) respectively
such that Ux ∩ Vf(x) = ∅. Since f is continuous, for any x ∈ X there is a
neighborhood Wx of x, Wx ⊆ Ux, such that f(Wx) ⊆ Vf(x). For any U ∈ {Wx}
and any x ∈ X, x ∈ U implies that f(x) 6∈ U . This contradicts (∗). Therefore f
has a fixed point. �

Now we formulate a theorem giving a partial answer to problem (P3).

Theorem 4.8. An approximatively rayless metric AR has the fixed-point
property. �

This easily follows from Theorem 4.7 and the fact that any AR is a con-
tractible space.

The property of being an approximatively rayless space is extremely close to
being a necessary condition for the fixed-point property. Using Proposition 4.4
we obtain the following characterization of the fixed-point property in several
classes of non-compact AR’s.

Theorem 4.9. A finely paracompact metric AR has the fixed-point property
if and only if it is a rayless space. �

Theorem 4.10. A σ-compact metric AR has the fixed-point property if and
only if it is a rayless space. �

Theorem 4.11. A totally paracompact metric AR has the fixed-point prop-
erty if and only if it is a rayless space. �

In conclusion we note that a complete solution of problem (P3) is not known.
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5. Fixed-point theorem in locally convex spaces

In this section we use the notion of a topologically convex set to obtain a
theorem on fixed points for contractible spaces which are not necessarily AR.
Let us recall the definition of a convex set.

Definition 5.1 ([16]). A space X is called equi-locally convex (ELCX) if
there exists an open neighborhood U of the diagonal ∆ in X ×X, a continuous
mapping ϕ : U × I → X and an open cover V = {Vα} of X such that:

(i) for any t ∈ I and x ∈ X, ϕ(x, x, t) = x,
(ii) for any x, y ∈ X, ϕ(x, y, 0) = x, ϕ(x, y, 1) = y,
(iii) for any Vα ∈ V, Vα × Vα ⊆ U ,
(iv) for any Vα ∈ V, ϕ(Vα × Vα × I) ⊆ Vα.

A subset W ⊆ X is called convex if W ×W ⊆ U and ϕ(W ×W × I) ⊆ W ,
and the cover V is called a convex open cover of X.

Definition 5.2. An ELCX space is called coparacompact if any open cover
has a locally finite convex refinement.

Note that any convex set is arcwise connected so we have the following propo-
sition.

Proposition 5.3. Any coparacompact space is finely paracompact. �

Using Proposition 4.4 we obtain the following proposition.

Proposition 5.4. A coparacompact rayless space is approximatively ray-
less. �

The main result of this section is the following theorem.

Theorem 5.5. A contractible coparacompact space has the fixed-point prop-
erty if and only if it is a rayless space.

Proof. Let X be a contractible coparacompact rayless space. Then X is
approximatively rayless. Let U be an arbitrary open cover of X. Then there
exists an open locally finite convex refinement V of U . Observe that |N(V)| = P

is a rayless polyhedron. In ([16], p. 134) it is proved that the canonical projection
k : X → |N(V)| is a homotopy equivalence. ThereforeX is approximatively dom-
inated by a family of contractible rayless polyhedra which have the fixed-point
property. On the other hand, the fixed-point property is an approximatively
dominated invariant (see [4]) in the class of paracompact spaces. So X has the
fixed-point property. �

Remark. Since a cone is a particular case of the cylinder of a continuous
mapping into a compact polyhedron, we may consider polyhedra homotopically
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equivalent to compact ones. Using the results from [2] we can construct an
analogue of our canonical retraction. Then arguing similarly to the proof of
Theorem 3.1 we obtain the following theorem:

Theorem. Let |K| be a polyhedron homotopically equivalent to a compact
one. Then |K| is a Lefschetz space if and only if it is a rayless space.

The proof will be published in the second part of the paper.

The author wishes to thank Prof. E. G. Pytkeev, Prof. A. A. Melentsov and
A. Y. Shibakov for useful comments and discussions.

References
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