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EIGENVALUES OF THE LAPLACIAN FOR SPHERE BUNDLES
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Dedicated to Ky Fan on the occasion of his 80th birthday

Let π : Z → Y be a fiber bundle, where Z and Y are compact Riemannian
manifolds without boundary. Let N(λ, p, Z) and N(λ, p, Y ) be the eigenspaces
of the p-form valued Laplacians ∆Z

p and ∆Y
p on Z and Y. We say ψ is harmonic

if ψ ∈ N(0, p, ·). We wish to know circumstances when there exists a non-zero
harmonic p-form Φ on Y so that π∗Φ ∈ N(µ, p, Z) for µ > 0. In [1] we studied
Riemannian submersions and answered this question for p 6= 1 by showing

Theorem 1.

(a) Let π : Z → Y be a Riemannian submersion. If 0 6= Φ ∈ N(λ, 0, Y )
and if π∗Φ ∈ N(µ, 0, Z), then µ = λ.

(b) For any p ≥ 2, there exists a Riemannian submersion π : Z → Y and
0 6= Φ harmonic on Y so that π∗Φ belongs to N(µ, p, Z) for µ > 0.

Remark. We say π∗ preserves the eigenforms of the Laplacian if π∗N(λ, p, Y )
is contained in N(µ(λ), p, Z) for all λ. Let π be a Riemannian submersion. If
p = 0, then π∗ preserves the eigenforms of the Laplacian if and only if the fibers
of π are minimal; if p > 0, then π∗ preserves the eigenforms of the Laplacian if
and only if the fibers of π are minimal and the horizontal distribution of π is
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integrable. In this setting µ(λ) = λ for all λ so the eigenvalues do not change.
We refer to [1, 3, 5] for details.

We proved Theorem 1(b) by considering the Hopf fibration S1 → S3 → S2

and taking Φ to be the volume element on S2. Then

Φ ∈ N(0, 2, S2) and π∗Φ ∈ N(µ, 2, S3) for µ > 0;

we used Riemannian products to handle the case p > 2. There are other examples
where the fiber is a circle due to Muto [4], but Riemannian products and covering
projections involving these examples are essentially the only known examples
where this phenomenon occurs.

The situation is quite different for sphere bundles of higher rank. Let E
be a real vector bundle of fiber dimension ν over M which is equipped with a
Riemannian fiber metric. Let S(E) be the unit sphere bundle of E. If ∇ is a Rie-
mannian connection on E, then S(E) is naturally equipped with a Riemannian
metric and the natural projection π from S(E) to Y is a Riemannian submersion.
In [2] we showed:

Theorem 2. Let E be a real vector bundle over Y of fiber dimension ν ≥
3. Give the unit sphere bundle S(E) of E a Riemannian metric induced by a
Riemannian connection ∇ on E and let π : S(E) → Y be the natural projection.
Let 0 6= Φ be a harmonic p-form on Y. If π∗Φ ∈ N(µ, p, S(E)), then µ = 0.

In this brief note, we will use topological methods to prove a variant of
Theorem 2. We shall impose the restriction that ν is odd but drop the restriction
that π : S(E) → Y is a Riemannian submersion.

Theorem 3. Let E be a real vector bundle over Y of odd fiber dimension
ν ≥ 3. Give the unit sphere bundle S(E) of E an arbitrary Riemannian metric.
Let 0 6= Φ be a harmonic p-form on Y. If π∗Φ ∈ N(µ, p, S), then µ = 0.

Remark. This shows once again how special the case of circle bundles is
in this theory. In contrast to the proof of Theorem 2 which was entirely local
and differential geometric in nature, our proof here is global and rests on the
machinery of algebraic topology. It is also extremely short and conceptual as
contrasted to the proof given for Theorem 2 which was very computational in
nature.

Proof of Theorem 3. Let 0 6= Φ be a smooth p-form on Y with ∆Y
p Φ = 0.

Let φ = π∗Φ be the pull back of Φ to S(E) and suppose ∆S(E)
p φ = µφ for µ 6= 0.

We will prove the theorem by arguing for a contradiction.
Since Φ is harmonic, dΦ = 0. Since π∗d = dπ∗, dφ = 0. We compute:

φ = λ−1∆S(E)
p φ = λ−1(dδ + δd)φ = λ−1dδφ.
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Thus in particular, φ ∈ image(d). This means the associated cohomology class
[φ] in Hp(S(E); C) vanishes; we have used the de Rham theorem to identify
simplicial and de Rham cohomology. We may use the Hodge decomposition
theorem to see [Φ] is a non-zero cohomology class in Hp(Y ; C). This shows that

(1) 0 6= [Φ] ∈ ker{π∗ : Hp(Y ; C) → Hp(S(E); C)}.

Suppose that E is orientable. The Gysin sequence is a long exact sequence

. . .→ Hp−ν(Y ; C) ∪e→ Hp(Y ; C) π∗→ Hp(S(E); C) ε→ Hp−ν+1(Y ; C) → . . .

where ∪e denotes cup product with the Euler form, π∗ is the pull back, and
ε is the connecting homomorphism. The crucial point here is that the Euler
form e can be computed in terms of the curvature of the bundle E using Chern–
Weil theory and vanishes since the fiber dimension of E is odd. Thus the Gysin
sequence yields

0 → Hp(Y ; C) π∗→ Hp(S(E); C)

so ker(π∗) = {0}. This contradicts (1) above and completes the proof if E is
orientable.

If E is not orientable, let σ : Y1 → Y be the double cover defined by the
orientation class of E and let E1 = σ∗(E) be the induced bundle over Y1. Let
π1 : S(E1) → Y1 be the natural projection and let S(σ) : S(E1) → S(E) be the
double cover. We have a commutative diagram

S(E1)
π1−−−−→ Y1

S(σ)

y xσ

S(E) π−−−−→ Y

We note that σ∗ intertwines ∆Y
p and ∆Y1

p , that S(σ)∗ intertwines ∆S(E)
p and

∆S(E1)
p , that Φ1 = σ∗Φ is a harmonic p-form on Y1, and that φ1 = π∗1Φ is an

eigenform of the Laplacian with eigenvalue µ 6= 0 on S(E1). Since E1 is orientable
over Y1, we apply the argument given above to complete the proof. �
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