Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 5, 1995, 249–253

A MINIMAX THEOREM FOR MARGINALLY UPPER/LOWER SEMICONTINUOUS FUNCTIONS

Rodney C. Bassanezi — Gabriele H. Greco

Dedicated to Ky Fan

Let X, Y be nonempty convex subsets of real separated topological vector spaces. Sion [3] proved that every u.s.c./l.s.c. quasi-concave-convex function $f: X \times Y \to \overline{\mathbb{R}}$ has a saddle value, whenever either X or Y is compact.

Recall that f is said to be *u.s.c./l.s.c.* (resp. *quasi-concave-convex*) if for every $x_0 \in X$, $y_0 \in Y$ and $r \in \mathbb{R}$ the sets $\{x \in X : f(x, y_0) \ge r\}$ and $\{y \in Y : f(x_0, y) \le r\}$ are closed (resp. convex). Moreover, f is said to have a *saddle* value if $\inf_Y \sup_X f = \sup_X \inf_Y f$.

The purpose of this note is to show an improvement of the finite-dimensional version of the Sion Theorem, by replacing the upper/lower semicontinuity of f with the marginal upper/lower semicontinuity. A function f is said to be marginally u.s.c./l.s.c. if for every $r \in \mathbb{R}$, open subset U of X and open subset V of Y, the sets

 $\{x\in X: \inf_{y\in V}f(x,y)\geq r\} \quad \text{and} \quad \{y\in Y: \sup_{x\in U}f(x,y)\leq r\} \quad \text{are closed}.$

It is clear that every u.s.c./l.s.c. function is marginally u.s.c./l.s.c. The following example gives a function which is marginally u.s.c./l.s.c. but not u.s.c./l.s.c.

EXAMPLE 1. Let X = Y = [0,1]. Let $\Omega = \{(x,y) \in X \times Y : y \ge 2x \text{ and } 0 \le x < 1/2\} \cup \{(x,y) \in X \times Y : y < 2(x-1/2) \text{ and } 1/2 < x \le 1\}.$

C1995Juliusz Schauder Center for Nonlinear Studies

249

¹⁹⁹¹ Mathematics Subject Classification. 49J35, 54C60, 54H25, 90D05.

Its indicator function ψ_{Ω} on $X \times Y$ (equal to 0 on Ω , and to $+\infty$ otherwise) is quasi-concave-convex; it is marginally u.s.c./l.s.c., but not u.s.c./l.s.c.

EXAMPLE 2 [2]. Let $f: X \times Y \to \overline{\mathbb{R}}$ be a quasi-concave-convex function. Define the functions $f^{+-}, f^{-+}: X \times Y \to \overline{\mathbb{R}}$ by

$$f^{+-}(x,y) = \liminf_{y' \to y} \limsup_{x' \to x} f(x',y') \quad \text{and} \quad f^{-+}(x,y) = \limsup_{x' \to x} \liminf_{y' \to y} f(x',y').$$

Then f^{+-} and f^{-+} are quasi-concave-convex and marginally u.s.c./l.s.c.

MINIMAX THEOREM. Let X, Y be nonempty convex subsets of real separated locally convex topological vector spaces such that either X or Y is finitedimensional and compact. Then every quasi-concave-convex, marginally u.s.c./l.s.c. function on $X \times Y$ has a saddle value.

The proof of this Minimax Theorem requires additional terminology, some well known elementary properties of multifunctions and two preparatory lemmas. Let A, B be two sets and Γ be a multifunction from A to B, denoted by $A \twoheadrightarrow B$. If Γ' is another multifunction from A to B, the inclusion $\Gamma \subset \Gamma'$ means " $\Gamma x \subset \Gamma' x$, for every $x \in A$ ". If A and B are convex sets, then Γ is said to be *concave-convex* whenever the values of Γ are convex and, for every $y \in Y$, the set $\{x \in X : y \notin \Gamma x\}$ is convex (see [2]).

Moreover, if A and B are topological spaces, the multifunction $\operatorname{Li} \Gamma : A \twoheadrightarrow B$, called the *Kuratowski lower limit* of Γ , is defined for every $x \in A$ by $\operatorname{Li} \Gamma x = \{y \in B : \text{for every neighbourhood } V \text{ of } y$, there is a neighbourhood U of xsuch that for every $x' \in U$ the sets $\Gamma x'$ and V intersect}. As usual, Γ is called a *lower semicontinuous multifunction* if $\Gamma \subset \operatorname{Li} \Gamma$; in other words, Γ is lower semicontinuous if and only if, for every open subset V of B, $\{x \in X : \Gamma x \cap V \neq \emptyset\}$ is an open subset of A.

Let $\overline{\Gamma} : A \twoheadrightarrow B$ denote the multifunction defined by $\overline{\Gamma}x = \overline{\Gamma}x$, where $\overline{\Gamma}x$ is the closure of Γx in B. Then $\mathbf{Li} \Gamma = \mathbf{Li} \overline{\Gamma} \subset \overline{\Gamma}$; hence, Γ is lower semicontinuous if and only if $\overline{\Gamma} = \mathbf{Li} \overline{\Gamma}$. Observe that if a topological subspace B' of B contains all the values of Γ , then the multifunction $\Gamma' : A \twoheadrightarrow B'$ defined by $\Gamma'x = \Gamma x$ is lower semicontinuous if and only if Γ is lower semicontinuous.

Let Γ be lower semicontinuous. Recall that, for any open subset V of B, the multifunction $\Gamma' : A \twoheadrightarrow B$ defined by $\Gamma' x = \Gamma x \cap V$ is lower semicontinuous; but, generally, Γ' is not lower semicontinuous when V is closed.

LEMMA 1. Let A be a topological space and let $\Gamma : A \twoheadrightarrow L$ be a lower semicontinuous multifunction with convex values in a real separated locally convex topological vector space L. Let H be a closed affine hyperplane in L and $A_H := \{x \in A : H \text{ strictly separates two distinct points of } \Gamma x\}$. Then A_H is an open subset of A and the multifunction $\Gamma' : A_H \to L$ defined by $\Gamma' x := \Gamma x \cap H$ is lower semicontinuous and has nonempty values.

PROOF. Denote by H_+ and H_- the open half-spaces corresponding to H. By the definition of A_H , a point x belongs to A_H if and only if

(i)
$$\Gamma x \cap H_+ \neq \emptyset$$
 and $\Gamma x \cap H_- \neq \emptyset$.

By the lower semicontinuity of Γ , the sets $\Gamma^- H_+ := \{x \in A : \Gamma x \cap H_+ \neq \emptyset\}$ and $\Gamma^- H_- := \{x \in A : \Gamma x \cap H_- \neq \emptyset\}$ are open subsets of A; hence $A_H = \Gamma^- H_+ \cap \Gamma^- H_-$ is open. Moreover, by the lower semicontinuity of Γ , the multifunctions $\Gamma_-, \Gamma_+ : A_H \twoheadrightarrow L$ defined by $\Gamma_- x = \Gamma x \cap H_-$ and $\Gamma_+ x = \Gamma x \cap H_+$ are lower semicontinuous, because H_- and H_+ are open; in other words,

(ii)
$$\overline{\Gamma_{-}x} = \operatorname{Li}\overline{\Gamma_{-}}x \text{ and } \overline{\Gamma_{+}x} = \operatorname{Li}\overline{\Gamma_{+}}x.$$

For every pair of convex subsets C, D of a separated topological vector space for which $C \cap \operatorname{int} D \neq \emptyset$, one has the known equality $\overline{C} \cap \operatorname{int} \overline{D} = \overline{C} \cap \overline{D}$ (see, for example, [1]). Hence, for every $x \in A_H$, from (i) it follows that

(iii)
$$\overline{\Gamma_{-}x} = \overline{\Gamma x \cap \overline{H_{-}}}$$
 and $\overline{\Gamma_{+}x} = \overline{\Gamma x \cap \overline{H_{+}}}$.

Therefore, by combining (ii) and (iii), the multifunctions $\Gamma_1, \Gamma_2 : A_H \twoheadrightarrow L$ defined by

(iv)
$$\Gamma_1 x = \Gamma x \cap \overline{H_-}$$
 and $\Gamma_2 x = \Gamma x \cap \overline{H_+}$

are lower semicontinuous. Now, to show that Γ' is lower semicontinuous, pick an $x_0 \in A_H$, a $y_0 \in \Gamma' x_0$ and an open convex neighbourhood V of y_0 . We must find a neighborhood U of x_0 such that, for every $x \in U$, $\Gamma' x \cap V \neq \emptyset$. Since

(v)
$$\Gamma' x = \Gamma_1 x \cap \Gamma_2 x,$$

by the lower semicontinuity of the multifunctions Γ_1 and Γ_2 , there is a neighborhood $U \subset A_H$ of x_0 such that, for every $x \in U$,

(vi)
$$V \cap \Gamma x \cap \overline{H_{-}} \neq \emptyset$$
 and $V \cap \Gamma x \cap \overline{H_{+}} \neq \emptyset$.

Now, using the fact that $V \cap \Gamma x$ is convex and that $H = \overline{H_-} \cap \overline{H_+}$, from (vi) it follows that, for every $x \in U, V \cap \Gamma x \cap H \neq \emptyset$. This shows the lower semicontinuity of Γ' . Obviously, the values of Γ' are nonempty.

The following lemma is an immediate consequence of [2, Theorem 2.5].

LEMMA 2. Let X be a convex subset of a real topological vector space and let Y be a compact convex subset of a real locally convex topological vector space. If $\Omega : X \to Y$ is a lower semicontinuous concave-convex multifunction with nonempty values then $\bigcap_{x \in X} \overline{\Omega x} \neq \emptyset$.

PROOF. By virtue of [2, Theorem 2.5] we need only verify that, for every $x \in X$, $\operatorname{Li} \overline{\Omega} x \neq \emptyset$. This is a consequence of the nonemptiness of the values of Ω and of the lower semicontinuity of Ω which amounts to " $\overline{\Omega x} = \operatorname{Li} \overline{\Omega} x$, for every $x \in X$ ".

INTERSECTION THEOREM. Let X be a convex subset of a real locally convex topological vector space and let Y be a compact convex subset of \mathbb{R}^n . Let $\Delta: X \twoheadrightarrow Y$ be a multifunction such that, for every open subset U of $X, \bigcap_{x \in U} \Delta x$ is a closed subset of Y. If there is a lower semicontinuous concave-convex multifunction $\Omega: X \twoheadrightarrow Y$ with nonempty values such that $\Omega \subset \Delta$, then $\bigcap_{x \in X} \Delta x \neq \emptyset$.

PROOF. We will prove this theorem by induction on the dimension m of Y. For m = 0, the assertion of the theorem is trivial. So suppose that the Theorem holds true if dim $Y \leq m$, and assume that dim Y = m + 1. By Lemma 2, we have $\bigcap_{x \in X} \overline{\Omega x} \neq \emptyset$. Then choose $y_0 \in \bigcap_{x \in X} \overline{\Omega x}$ and $x_0 \in X$. In order to prove that the required set intersection is nonempty, we need only show that $y_0 \in \Delta x_0$.

If $y_0 \in \Omega x_0$, it is clear that $y_0 \in \Delta x_0$, because $\Omega \subset \Delta$. Hence suppose that $y_0 \notin \Omega x_0$. Then choose an open ball B_0 in \mathbb{R}^n with center at a point of the nonempty value Ωx_0 such that $y_0 \notin \overline{B_0}$. Since $\Omega x_0 \cap B_0 \neq \emptyset$ and B_0 is open, from the lower semicontinuity of Ω it follows that there is an open neighborhood U_0 of x_0 in X such that the multifunction $\Omega' : U_0 \twoheadrightarrow Y$ defined by $\Omega' x := \Omega x \cap B_0$ is lower semicontinuous and has nonempty values. Since X is a convex subset of a locally convex topological vector space, we can suppose that U_0 is convex. Then, since Ω' is concave-convex, by Lemma 2, one obtains $\bigcap_{x \in U_0} \overline{\Omega x \cap B_0} \neq \emptyset$. Now, pick $y_1 \in \bigcap_{x \in U_0} \overline{\Omega x \cap B_0}$. Since $y_0 \notin \overline{B_0}$ and $y_0 \in \bigcap_{x \in X} \overline{\Omega x}$, we have

(1)
$$y_0 \neq y_1 \text{ and } [y_0, y_1] \subset \bigcap_{x \in U_0} \overline{\Omega x},$$

where $[y_0, y_1]$ is the closed segment joining y_0 and y_1 . Let B be an open ball in \mathbb{R}^n centered at y_0 and let H_B be an affine hyperplane in \mathbb{R}^n such that $y_0 \notin H_B$ and $(y_0, y_1) \cap B \cap H_B \neq \emptyset$, where (y_0, y_1) denotes the open segment joining y_0 and y_1 . We derive from (1) that, for every $x \in U_0$, there exist two distinct points of $\Omega x \cap B$ strictly separated by the hyperplane H_B . Therefore, by Lemma 1, the concaveconvex multifunction $\Omega_B : U_0 \twoheadrightarrow Y \cap H_B$ defined by $\Omega_B x = \Omega x \cap B \cap H_B$ is lower semicontinuous and has nonempty values. On the other hand, the multifunction $\Delta_B : U_0 \twoheadrightarrow Y \cap H_B$ defined by $\Delta_B x = \Delta x \cap \overline{B} \cap H_B$ satisfies $\Omega_B \subset \Delta_B$ and, for every open subset U of U_0 , the set $\bigcap_{x \in U} \Delta_B x$ is closed. Therefore, since the dimension of $Y \cap H_B$ is $\leq m$, the inductive hypothesis entails $\bigcap_{x \in U_0} \Delta_B x \neq \emptyset$. Hence, by the definition of Δ_B , we have $\overline{B} \cap \bigcap_{x \in U_0} \Delta x \neq \emptyset$. Since $\bigcap_{x \in U_0} \Delta x$ is a closed set and B is an arbitrary open ball centered at y_0 , it follows that $y_0 \in \bigcap_{x \in U_0} \Delta x$. Finally, since $x_0 \in U_0$, we have $y_0 \in \Delta x_0$. This completes the proof of the theorem.

PROOF OF THE MINIMAX THEOREM. Without loss of generality, assume that Y is finite-dimensional and compact. Let $f: X \times Y \to \overline{\mathbb{R}}$ be a marginally u.s.c/l.s.c. quasi-concave-convex function. Since $\inf_Y \sup_X f \ge \sup_X \inf_Y f$, it is enough to prove that, for every real number $r > \sup_X \inf_Y f$, the inequality $r \ge \inf_Y \sup_X f$ holds. Therefore, let $r > \sup_X \inf_Y f$ and consider the multifunctions $\Omega, \Delta: X \to Y$ defined by

(2)
$$\Omega x = \{y \in Y : f(x, y) < r\}$$
 and $\Delta x = \{y \in Y : f(x, y) \le r\}$

Observe that, by (2), $\Omega \subset \Delta$. For every open subset U of X, $\bigcap_{x \in U} \Delta x = \{y \in Y : \sup_{x \in U} f(x, y) \leq r\}$ is closed, because f is marginally u.s.c./l.s.c. The multifunction Ω is lower semicontinuous, since, for every open set V in Y, the set $\{x \in X : \Omega x \cap V \neq \emptyset\} = \{x \in X : \inf_{y \in V} f(x, y) < r\}$ is open, because f is maginally u.s.c./l.s.c. Since $r > \sup_X \inf_Y f$, the values of Ω are nonempty. Moreover, f being quasi concave-convex, the multifunction Ω is concave-convex. Hence, from the Intersection Theorem it follows that $\bigcap_{x \in X} \Delta x \neq \emptyset$; that is, there is $y_0 \in Y$ such that, for every $x \in X$, $f(x, y_0) \leq r$; thus $r \geq \inf_Y \sup_X f$. This completes the proof.

References

- S. DOLECKI, Tangency and differentiation: some applications of convergence theory, Ann. Mat. Pura Appl. (4) 130 (1982), 223–255.
- [2] G. H. GRECO, Minimax theorems and saddling transformations, J. Math. Anal. Appl. 147 (1990), 180–197.
- [3] M. SION, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176.

Manuscript received January 20, 1995

RODNEY C. BASSANEZI Instituto de Matemática Universidade Estadual de Campinas 13081 Campinas-SP, BRASIL

GABRIELE H. GRECO Dipartimento di Matematica Università di Trento 38050 Povo, ITALY

TMNA : Volume 5 – 1995 – Nº 2