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1. Introduction

In a series of recent articles (cf. [1]–[4]) we considered an approach based on
the Leray–Schauder degree for the solvability of some boundary value problems
where there are no a priori bounds for the solutions. In particular, in [1] we
studied a Sturm–Liouville problem for the second order nonlinear scalar equation

u′′ + f(u) = p(t, u, u′), a ≤ t ≤ b,

where the function f has superlinear growth at infinity and p grows at most
linearly in u and u′. Our method is based on a continuation theorem for a
coincidence equation of the form Lu = N(u, λ), with the parameter λ varying in
the unit interval I. In [1] and the preceding papers [4], [9, §5.5] we introduced
a continuous functional ϕ(u, λ) which takes integer values on large solutions
and, under certain conditions, we were able to show that there are solutions of
Lu = N(u, 1) with ϕ(u, 1) equal to some positive integer. In the applications
to scalar ordinary differential equations ϕ was related to the number of zeros
of the solutions and thus we could prove that the boundary value problems we
considered have at least one solution with k zeros in [a, b] for each sufficiently
large k.
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The aim of this note is to show that it is possible to refine further the abstract
continuation theorem in [1], [4], [9, §5.2] as well as its applications in order to
prove that for each k large there are at least two solutions with prescribed nodal
properties. In this manner, we obtain a result which is sharp with respect to the
number of zeros of the solutions, as shown for instance by the analysis of some
elementary examples (see Example 1 in Section 3), and get more precise informa-
tion also with respect to analogous theorems which are obtained using different
approaches [12]. For the reader’s convenience, we have tried to make this article
as much selfcontained as possible. For this reason, there is some overlapping
between the introductory part of Section 2 below and the corresponding Section
2 in [1], where all the notations needed for the abstract setting of the problem
are introduced. We also point out that, in order to make more transparent the
discussion for the part which is “new” (with respect to [1]), where we show how
to obtain two solutions instead of one, we have confined ourselves to an applica-
tion concerning the two-point boundary condition u(a) = A, u(b) = B. We stress
that similar work could be done with respect to other boundary conditions.

2. A continuation theorem

Let X, Z be real Banach spaces, L : X ⊃ D(L) → Z a linear Fredholm
mapping of index zero, I = [0, 1] and N : X×I → Z an L-completely continuous
operator (see [8] for the corresponding definitions). We consider the equation

(1) Lu = N(u, λ), u ∈ D(L), λ ∈ I.

Let

Σ∗ = {(u, λ) ∈ D(L)× I : Lu = N(u, λ)}.

For any set B ⊂ X × I and any λ ∈ I we denote by Bλ the section {u ∈ X :
(u, λ) ∈ B}. Subsequently, we use the following conventions. For O ⊂ X × I,
we denote by O and ∂O its closure and boundary in X × I respectively. Similar
notation is used for closure and boundary in X. If ω is an open subset of X

(possibly not bounded) such that S = Σ∗λ ∩ ω is compact and S ⊂ ω (i.e. there
is no solution on ∂ω), there exists U open bounded such that S ⊂ U ⊂ U ⊂ ω.
For all such U , the coincidence degree DL(L − N( · , λ),U) is the same, by the
excision property. We will denote it as

DL(L−N( · , λ), ω).

Let O ⊂ X × I be open in X × I. Let us denote by Σ the set of solutions
(u, λ) of (1) which belong to O, i.e.

Σ = {(u, λ) ∈ O ∩ (D(L)× I) : Lu = N(u, λ)},
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and suppose that

(i1) Σ0 is bounded in X and Σ0 ⊂ O0

and

(i2) DL(L−N( · , 0),O0) 6= 0,

so that Σ0 6= ∅. Further, we introduce a functional ϕ : X × I → R and suppose
that

(i3) ϕ is continuous on X × I and proper on Σ.

Consequently, the constants

ϕ− = min{ϕ(u, 0) : u ∈ Σ0}, ϕ+ = max{ϕ(u, 0) : u ∈ Σ0}

exist. The following result is proved in [1] (see also [4], [9]) using a theorem on
the existence of connected branches of solutions of (1) emanating from Σ0 (cf.
[5]). In the sequel, we denote by N the set of natural numbers (0 included) and
by Z+ = N \ {0} the set of positive integers.

Lemma 1. Assume that conditions (i1), (i2) and (i3) hold and that there
exist constants c−, c+ with

c− < ϕ− ≤ ϕ+ < c+,

such that

ϕ(u, λ) 6∈ {c−, c+} whenever (u, λ) ∈ (D(L)× ]0, 1[ ) ∩ O ∩ Σ,

and

ϕ(u, λ) 6∈ [c−, c+] whenever (u, λ) ∈ (D(L)× ]0, 1[ ) ∩ ∂O ∩ Σ.

Then the equation

(2) Lu = N(u, 1)

has at least one solution in D(L) ∩ (O)1.

Let us now consider a consequence of Lemma 1. Assume that ϕ : X× I → R
is continuous and (ck)k∈Z is an increasing doubly infinite sequence with ck < 0
for k < 0, ck > 0 for k > 0 and limk→±∞ ck = ±∞, that satisfies the following
conditions:

(i4) There exists R > 0 such that ϕ(u, λ) 6= ck for all k ∈ Z and (u, λ) ∈ Σ∗

with ‖u‖ ≥ R.
(i5) ϕ−1( ]c−n, cn[ ) ∩ Σ∗ is bounded for each n ∈ Z+.
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Let k0 be a positive integer such that

(3) min{−c−k0 , ck0} > sup{|ϕ(u, λ)| : (u, λ) ∈ Σ∗, ‖u‖ ≤ R}.

For k ∈ Z with |k| > k0, let

(4) Ok =

{
ϕ−1( ]ck, ck+1[ ) if k > 0,

ϕ−1( ]ck−1, ck[ ) if k < 0,

and Σk = Ok ∩Σ∗. By (i5), (Σk)0 is bounded and hence compact. But, by (i4),
ϕ(x, λ) 6= ck and ϕ(x, λ) 6= ck+1 (if k > 0) or ϕ(x, λ) 6= ck−1 (if k < 0), for all
(x, λ) ∈ Σk, so that Σk ⊂ Ok and also (Σk)0 ⊂ (Ok)0. Thus we have proved the
condition (i1).

We now prove that ϕ is proper on Σk. Let K be a compact subset of R.
Then ϕ−1(K) ∩ Σk is closed and included in Σk which is compact, so it is also
compact.

Let us assume that

(i6) DL(L−N( · , 0), (Ok)0) 6= 0.

Thus, all conditions of Lemma 1 with Σ = Σk, O = Ok and (c−, c+) = (ck, ck+1)
for k > 0 or (c−, c+) = (ck−1, ck) for k < 0 are satisfied and equation (2) will
have at least one solution u ∈ D(L) ∩ (Ok)1. We therefore have the following
result.

Lemma 2. Assume that conditions (i4) and (i5) hold and that there is k0 ∈
Z+ satisfying (3) such that (i6) holds for some integer k with |k| > k0. Then
there is at least one solution ũ for (2) with ϕ(ũ, 1) ∈ ]ck, ck+1[ if k > 0 and
ϕ(ũ, 1) ∈ ]ck−1, ck[ if k < 0. In particular, if (i6) holds for every k ∈ Z with
|k| > k0, then, for each n ∈ N with n > k0, equation (2) has at least two
solutions un and wn such that ϕ(un, 1) ∈ ]cn, cn+1[ and ϕ(wn, 1) ∈ ]c−(n+1), c−n[.
Moreover, limn→∞ ‖un‖ = limn→∞ ‖wn‖ = ∞.

Proof. Only the last assertion is still to be proved. If it is not true, we can
find a bounded subsequence (ukj )j of solutions of (2) with ϕ(ukj ) ∈ ]ckj , ckj+1[.
So ϕ(ukj

) →∞ as j →∞. Thus we get a contradiction, as the sequence (ukj
)j

is precompact. Similarly, one proves the claim for (wn)n. �

3. Superlinear second order equations
with nonhomogeneous Dirichlet conditions

We now want to apply the abstract theory to the problem

(5) u′′(t) + f(u(t)) = p(t, u(t), u′(t)), u(a) = A, u(b) = B,

where A,B ∈ R, f has superlinear growth at infinity, i.e.,

(6) lim
|x|→∞

f(x)/x = ∞,



Existence of Two Solutions 179

and p : [a, b]×R2 → R is continuous and has at most a linear growth with respect
to the last two variables, that is,

(7) ∃K > 0 : |p(t, x, y)| ≤ K(1 + |x|+ |y|), ∀t ∈ [a, b], (x, y) ∈ R2.

Without loss of generality we can assume that f(u)u > 0 for u 6= 0, moving if
necessary a bounded term from f to p.

Problem (5) will be solved via the continuation principle described in Lemma 2.
To this end, we consider the homotopy

(8)

{
u′′(t) + h(u(t), λ) = λp(t, u(t), u′(t)),

u(a) = λA, u(b) = λB, λ ∈ I,

where

(9) h(x, λ) = λf(x) + (1− λ)g(x), λ ∈ I,

and g : R → R is a smooth function which is also odd and satisfies the following
conditions:

g(x) > 0 for x > 0, lim
x→∞

g(x)
x

= ∞,

d

dx

(
g(x)
x

)
> 0 for x > 0.

An adequate choice for this auxiliary function is g(x) = x3.

Clearly, the parametrized problem (8) joins (5) to the autonomous ordinary
differential equation with the homogeneous Dirichlet boundary conditions

(10) u′′ + g(u) = 0, u(a) = 0 = u(b).

In what follows, we have to consider the time-map τ(s), which is the time needed
for a solution (u, v) of the planar system u′ = v, v′ = −g(u) to move from the
point (0, s) to the point (0,−s) crossing once the half-plane u > 0. The maximum
value m(s) > 0 reached by such a solution u is such that 2G(m(s)) = s2 and, by
the oddness of g, the time τ(s) is the same as that taken by a solution to move
from (0,−s) to (0, s) across the half-plane u < 0, with u reaching its minimum
value −m(s). From the energy integral associated with (10), we get

τ(s) = 2
∫ m(s)

0

dx√
s2 − 2G(x)

for s > 0,

where G(x) =
∫ x

0
g(ξ) dξ. In [10, Th. 8] (see also [11, Th. 1.3.2]) it is proved

that the assumption g(x)/x increasing implies that s 7→ τ(s) is decreasing, and
using also the superlinear growth condition for g, we find that the continuous
map s 7→ τ(s) satisfies lims→∞ τ(s) = 0. Hence, an elementary analysis shows
that there exists n0 ∈ Z+ such that problem (10) has two sequences of solutions
(ũn)n and (−ũn)n with n ≥ n0 with ũn and −ũn each having n−1 zeros in ]a, b[
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and such that ũ′n(a) = s̃n > 0, with s̃n → ∞ as n → ∞. Actually, to find ũn,

we only have to find s̃n such that τ(s̃n) = (b − a)/n and then define ũn as the
solution of u′′ + g(u) = 0 with u(a) = 0 and u′(a) = s̃n.

Our goal now is to prove that a similar result can be derived for problem
(5) using Lemma 2. To this end, let us consider the space C1([a, b]) with the
usual C1 norm | · |1,∞, and its subspace C1

0 ([a, b]) = {u ∈ C1([a, b]) : u(a) = 0 =
u(b)}. In the sequel we identify C1([a, b]) with C1

0 ([a, b])×R2 and C1
0 ([a, b]) with

C1
0 ([a, b])× {(0, 0)}.

Problem (8) can easily be written as an abstract equation of type (1) for
X = C1([a, b]) and Z = C([a, b])× R2, by defining

Lu = (−u′′, u(a), u(b)), N(u, λ) = (`( · , u, u′, λ), λA, λB)

where we have set
`(t, x, y, λ) = h(x, λ)− λp(t, x, y).

Note that when the coincidence degree is defined with respect to some open set
Ω ⊂ X, we have

DL(L−N( · , λ),Ω) = degLS(IX − L−1N( · , λ),Ω, 0),

where degLS is the Leray–Schauder degree [7], [8] and IX is the identity operator
in X. In this setting, for λ = 0, we have L−1N( · , 0) : X → Y = C1

0 ([a, b]) and
therefore the “reduction property” of the Leray–Schauder degree implies

degLS(IX − L−1N( · , 0),Ω, 0) = degLS(IY − L−1N( · , 0)|Y ,Ω ∩ Y, 0).

From this, we can easily conclude that, provided that the degree is defined,

(11) DL(L−N( · , 0),Ω) = DL(L0 −N0,Ω ∩ Y ),

where we have set L0u = −u′′ and N0(u) = g(u( · )) for u ∈ C1
0 ([a, b]) (cf. [8]).

Consistently with the notations of Section 2, we denote here by Σ∗ ⊂ C1([a, b])
×I the set of the solutions (u, λ) of the boundary value problem (8), which, from
now on, will be regarded as a translation of the operator equation (1) into the
space X = C1([a, b]). With a view to using Lemma 2, we introduce the following
functional ϕ which is a slight modification of that considered in [4].

Let

δ : R2 → R, (x, y) 7→ min
{

1,
1

x2 + y2

}
,

η : R → R, x 7→ min{1,max{−1, x}}.

Then we define the continuous functional ϕ on C1([0, 1])× I by

(12) ϕ(u, λ) = η(u′(a))
∣∣∣∣ 1
π

∫ 1

0

[u′(t)2 + u(t)`(t, u(t), u′(t), λ)]δ(u(t), u′(t)) dt

∣∣∣∣.
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To describe the meaning of ϕ(u, λ), suppose that (u, λ) is a solution of (8)
such that

(13) u(t)2 + u′(t)2 ≥ R2 ≥ 1 + A2 for all t ∈ [a, b].

In this case, we get, letting v(t) = u′(t),

ϕ(u, λ) = sgn(u′(a))
∣∣∣∣ 1
π

∫ b

a

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt

∣∣∣∣
= sgn(u′(a))

∣∣∣∣ 1
π

∫ b

a

(
− d

dt
arctan

v(t)
u(t)

)
dt

∣∣∣∣
= sgn(u′(a))

∣∣∣∣ 1
π

∫ b

a

(
d

dt
arctan

u(t)
v(t)

)
dt

∣∣∣∣
By the assumptions on f , g and p, it follows that y2 + `(t, x, y, λ)x → ∞ as
x2 + y2 →∞, uniformly with respect to t ∈ [a, b] and λ ∈ [0, 1]. Therefore, there
is

d > max{|A|, |B|}
such that y2 + `(t, x, y, λ)x > 0 for all (x, y) such that x2 + y2 ≥ d2 and each t ∈
[a, b], λ ∈ [0, 1]. Thus, if R ≥ (1+d2)1/2 in (13), we obtain v(t)u′(t)−u(t)v′(t) > 0
for all t ∈ [a, b]. Hence assuming (13) satisfied for such an R, we see that the above
integrands are positive. We now evaluate |ϕ(u, λ)| for (u, λ) ∈ Σ∗ and (u, u′)
satisfying (13) with R sufficiently large. To this end, it is useful to distinguish
some cases as follows.

Let t1 and t2 in [a, b] be two consecutive zeros of the solution u. Since v(t) =
u′(t) 6= 0 for any t such that u(t) = 0, we deduce that u(t) > 0 in ]t1, t2[ implies
u′(t1) > 0 > u′(t2) and, respectively, u(t) < 0 in ]t1, t2[ implies u′(t1) < 0 <

u′(t2). Thus we obtain

(14)
1
π

∫ t2

t1

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt = 1.

On the other hand, if s1 and s2 in [a, b], with s1 < s2, are such that |u(t)| ≤ d

for all t ∈ [s1, s2], then it follows from (13) that |u′(t)| ≥ (R2 − d2)1/2 for all
t ∈ [s1, s2], and hence, with easy computations, we obtain∣∣∣∣ 1

π

∫ s2

s1

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt

∣∣∣∣ ≤ 2
π

arctan(d/(R2 − d2)1/2).

Finally, if σ1 and σ2 in [a, b], with σ1 < σ2, are such that either u(σ1) = d,

u′(σ1) > 0, u(σ2) = d, u′(σ2) < 0 and u(t) > d for all t ∈ ]σ1, σ2[, or, respectively,
u(σ1) = −d, u′(σ1) < 0, u(σ2) = −d, u′(σ2) > 0 and u(t) < −d for all t ∈ ]σ1, σ2[,
then

1
π

∫ σ2

σ1

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt = 1− 2
π

arctan(d/(R2 − d2)1/2).
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Now, set

(15) R0 = (1 + d2(1 + (tan(π/16))−2))1/2

and suppose that (13) holds with R ≥ R0. We distinguish the following three
possibilities:

Case 1. |u(t)| ≤ d for all t ∈ [a, b]. In this case, we have

|ϕ(u, λ)| ≤ 1
8

<
1
4
.

Case 2. |u|∞ > d and the set {t ∈ [a, b] : |u(t)| = d} has exactly two
points. In this case, if we call these points σ1 and σ2, with a < σ1 < σ2 < b,

then it follows that sgn(u′(a)) = sgn(u′(σ1)) = − sgn(u′(σ2)) = − sgn(u′(b)) and
|u(t)| ≤ d for all t ∈ [a, σ1]∪ [σ2, b]. We also point out that there are at most two
points, one between a and σ1 and the other between σ2 and b, where u( · ) may
vanish. Hence we have

| |ϕ(u, λ)| − 1| ≤ 1
4
.

Case 3. |u|∞ > d and the set {t ∈ [a, b] : |u(t)| = d} has more than two
points. In this case, by taking into account that u′(t) 6= 0 when |u(t)| ≤ d, as
well as |u(t)| > d when u′(t) = 0, it follows that there is a first zero of u in ]a, b[
where u′ has a sign opposite to that of u′(a) and a last zero of u in ]a, b[ where u′

has a sign opposite to that of u′(b). Call these two zeros a1 and b1, respectively,
observe that a1 ≤ b1 and consider the set of zeros of u which are between a1

and b1. Since the number of zeros of u is finite (as they are all simple), we can
enumerate them as a1 = t1 < . . . < tm = b1 with the convention that we assume
m = 1 when a1 = b1. Note that u′(a)u′(a1) < 0, u′(b1)u′(b) < 0 and, if m ≥ 2,

u′(ti−1)u′(ti) < 0 for i = 2, . . . ,m.

Now we have

1
π

∫ tm

t1

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt = m− 1,

1− 1
8
≤ 1

π

∫ a1

a

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt ≤ 1 +
1
8

and

1− 1
8
≤ 1

π

∫ b

b1

v(t)u′(t)− u(t)v′(t)
u(t)2 + v(t)2

dt ≤ 1 +
1
8
.

Thus we conclude that

| |ϕ(u, λ)| − (m + 1)| ≤ 1
4
.

At this point, we just recall some properties already proved in [1], [2], [4]
and [9] for homogeneous boundary conditions. The change to be done in order
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to adapt these results for the nonhomogeneous two-point boundary condition
considered here is an easy exercise.

Lemma 3 (The “Elastic Property”, see [1, Lemma 3]). For each R1 > 0
there is R2 ≥ R1 such that for each (u, λ) ∈ Σ∗,

|u|1,∞ ≥ R2 ⇒ |u(t)|2 + |u′(t)|2 ≥ R2
1, ∀t ∈ [a, b].

Lemma 4 (Fast oscillations of large solutions, see [1, Lemma 6]). For each
N > 0 there is R1(N) > 0 such that for all (u, λ) ∈ Σ∗,

min
t∈[a,b]

(|u(t)|2 + |u′(t)|2) ≥ R1(N)2 ⇒ |ϕ(u, λ)| ≥ N.

From Lemmas 3 and 4, using the above properties of the function ϕ we obtain
the following.

Proposition 1. The functional ϕ defined in (12) satisfies (i4) and (i5) of
Lemma 2 with respect to the doubly infinite sequence (ck)k∈Z with c0 = 3/8 and
ck = (|k| − (1/2)) sgn(k) for all k 6= 0.

Proof. Use the elastic property in order to find r0 ≥ R0 with R0 defined in
(15) such that if (u, λ) ∈ Σ∗ with |u|1,∞ ≥ r0, then |u(t)|2 + |u′(t)|2 ≥ R2

0 for all
t ∈ [a, b]. Hence we are in one of the three cases considered above and therefore
| |ϕ(u, λ)|−n| ≤ 1/4 for some n ∈ N (respectively n = 0 in Case 1, n = 1 in Case
2 and n > 1 in Case 3). Then |ϕ(u, λ)| 6= |k| − 1/2 for all k ∈ Z \ {0} and also
ϕ(u, λ) 6= 3/8. Thus we have (i4) for R = r0.

Now, take any n ∈ Z+ and consider the number N = n. By Lemmas 3 and 4,
there is R2(N) = R2(R1(N)) such that if (u, λ) ∈ Σ∗ and |u|1,∞ ≥ R2(N), then
|ϕ(u, λ)| ≥ N = n > n − 1/2. Hence, ϕ−1( ]c−n, cn[ ) ∩ Σ∗ = ϕ−1( ]−n + 1/2,
n− 1/2[ )∩Σ∗ is contained in the ball of center 0 and radius R2(N) of the space
C1([a, b]) and thus (i5) is proved. �

For r0 given in the proof of Proposition 1, we define

%0 = sup{|ϕ(u, λ)| : (u, λ) ∈ Σ∗, |u|1,∞ ≤ r0}

and denote by [%0] its integer part. Note that even if the definition of %0 appears
fairly “abstract”, it is not difficult to provide concrete upper estimates for this
constant, if necessary, in terms of the function ` and the constant d.

Consider now the autonomous equation (10) and let ũ be a solution of it with
|ũ|1,∞ > r0. Let k̃ ∈ N be the number of zeros of ũ in ]a, b[ (possibly k̃ = 0). At
this point, we are in a position to define a positive integer k0 for which (i6) will
be satisfied. Namely, we set

(16) k0 = 1 + k̃ + [%0]

and so we have:
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Proposition 2. For any k ∈ Z with |k| > k0,

|DL(L−N( · , 0), (Ok)0)| = 1.

Proof. First of all, we observe that the constant k0 defined in (16) satisfies
condition (3) of Section 2.

Let |k| > k0 and consider the open set Ok defined in (4). Let also Σk =
Ok ∩ Σ∗ = Ok ∩ Σ∗ (by (i4)). By definition, (Σk)0 is the set of solutions u

of (10) such that k − 1/2 < ϕ(u, 0) < k + 1/2. Hence from |η(u′(a))| = 1
and (14) it follows that ϕ(u, 0) = k and this means that u is a solution of
(10) with sgn(u′(a)) = sgn(k) and u having exactly |k| − 1 zeros in ]a, b[. By the
previous discussion about the strict monotonicity of the time-map, we know that
there is only one solution with this property, and this solution, in the notations
introduced above, is sgn(k)ũ|k|. Thus we see that

(Σk)0 = {ũk} for each k ∈ Z with |k| > k0,

where we have set

ũk = sgn(k)ũ|k| = −ũ|k| for k < 0.

Furthermore, we observe that from (11) we have

DL(L−N( · , 0), (Ok)0) = DL(L0 −N0, (Ok)0 ∩ Y )

with Y = C1
0 ([a, b]). Hence, in order to prove our result, it is sufficient that we

find an open bounded set Ω in C1
0 ([a, b]) with ũk ∈ Ω ⊂ (Ok)0 ∩Y where we can

show that DL(L0 −N0,Ω) 6= 0. To this end, we proceed as follows.
For α, β ∈ R with 0 < α < β, set

Ωβ
α(+) = {u ∈ C1

0 ([a, b]) : α2 < u′(t)2 + 2G(u(t)) < β2, u′(a) > 0}

and

Ωβ
α(−) = {u ∈ C1

0 ([a, b]) : α2 < u′(t)2 + 2G(u(t)) < β2, u′(a) < 0}.

Note that Ωβ
α(+) and Ωβ

α(−) are open bounded subsets of C1
0 ([a, b]) with

Ωβ
α(+) ∪ Ωβ

α(−) = {u ∈ C1
0 ([a, b]) : α2 < u′(t)2 + 2G(u(t)) < β2}.

Now, for each k ∈ Z with |k| > k0, consider s̃k = ũ′k(a) and observe that
|s̃k| > |ũ′(a)|, as a consequence of (16) and the strict monotonicity of τ( · ). From
the above, we know that s̃−k = −s̃k,

ϕ(ũk, 0) = k and τ(|sk|) =
b− a

|k|
.
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Then there is ε|k| > 0 sufficiently small such that, if we set α|k| = s̃|k| − ε|k| > 0
and β|k| = s̃|k| + ε|k|, then the open bounded set

Vk =

{
Ωβ|k|

α|k|(+) if k > 0,

Ωβ|k|
α|k|(−) if k < 0,

satisfies ũk ∈ Vk ⊂ Vk ⊂ (Ok)0 ∩ C1
0 ([a, b]).

Now, for s ∈ R, let u( · , s) be the solution of u′′+g(u) = 0 with u(a) = 0 and
u′(a) = s and denote by U : s 7→ u(b, s) the shooting map. By a result proved
in [4], [9] (see also [1]) and based on a duality theorem from [6, Th. 29.4]), we
know that Vk ⊂ C1

0 ([a, b]) and ]s̃k − ε|k|, s̃k + ε|k|[ ⊂ R have a common core (cf.
[6]) with respect to problem (10) and therefore,

DL(L0 −N0,Vk) = degB(U, ]s̃k − ε|k|, s̃k + ε|k|[, 0),

where degB denotes the Brouwer degree.
On the other hand, since we know that τ(α|k|) > τ(|s̃k|) = τ(s̃|k|) > τ(β|k|)

and | |ϕ(u( · ,±α|k|), 0)| − |k| | < 1/2, as well as | |ϕ(u( · ,±β|k|), 0)| − |k| | < 1/2,

for Vk ⊂ (Ok)0∩C1
0 ([a, b]), we arrive at the following description of the behaviour

of the shooting map:

• For k < 0: The function q(t) := u(t, s̃k − ε|k|) = u(t,−β|k|) is such that
q(a) = 0 and q′(a) = s̃k − ε|k| < s̃k. Also, q(t) has exactly |k| zeros in ]a, b]
and q(b) 6= 0. Moreover, q(b) > 0 or q(b) < 0 according as k is odd or even.
The function r(t) := u(t, s̃k + ε|k|) = u(t,−α|k|) is such that r(a) = 0 and
r′(a) = s̃k + ε|k| > s̃k. Also, r(t) has exactly |k| − 1 zeros in ]a, b] and r(b) 6= 0.

Moreover, r(b) < 0 or r(b) > 0 according as k is odd or even.
Thus we conclude that

degB(U, ]s̃k − ε|k|, s̃k + ε|k|[, 0) = (−1)k.

• For k > 0: The function z(t) := u(t, s̃k − εk) = u(t, αk) is such that
z(a) = 0, z′(a) = s̃k − εk < s̃k. Also, z(t) has exactly k − 1 zeros in ]a, b] and
z(b) 6= 0. Moreover, z(b) > 0 or z(b) < 0 according as k is odd or even. The
function y(t) := u(t, s̃k+εk) = u(t, βk) is such that y(a) = 0, y′(a) = s̃k+εk > s̃k.

Also, y(t) has exactly k zeros in ]a, b] and y(b) 6= 0. Moreover, y(b) < 0 or y(b) > 0
according as k is odd or even.

Thus we conclude that

degB(U, ]s̃k − ε|k|, s̃k + ε|k|[, 0) = (−1)k.

Finally, we put together all the previous relations about the coincidence
degree, the Leray–Schauder degree and the Brouwer degree to obtain

(17) DL(L−N( · , 0), (Ok)0) = (−1)k, ∀k ∈ Z with |k| > k0.

In this manner Proposition 2 is proved. �
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Remark 1. In previous articles (see [4] and [9]) the functional considered
was of the form |ϕ(u, 0)| on large solutions of equation (10). Thus, in those
papers it was possible to consider Ok only for k > k0. Correspondingly, the
sets Ok (which were “larger” than the sets considered in the present article)
contained both ũk and −ũk. Hence, if we apply formula (17) to the situation
considered in [4] and [9], using the additivity property of the coincidence degree
(cf. [8]), we obtain DL = 2(−1)k. This is precisely the result found in [4] and [9].

At this point we have checked that all the conditions of Lemma 2 are satisfied
and we can apply it to equation (5) in order to obtain the following result.

Theorem 1. Let f and p satisfy (6) and (7), respectively. Then there is
k0 ∈ Z+ such that for each n > k0, the boundary value problem (5) has at least
two solutions un and wn with u′n(a) > 0 and w′n(a) < 0, such that

(18) lim
n→∞

min
t∈[a,b]

(|un(t)|+ |u′n(t)|) = lim
n→∞

min
t∈[a,b]

(|wn(t)|+ |w′n(t)|) = ∞.

These solutions have the following nodal properties:

• For n odd: u′n(b) < 0 and, moreover, un has exactly n + 1 zeros in [a, b]
if A ≤ 0 and B ≤ 0; un has exactly n zeros in [a, b] if A ≤ 0 and B > 0 or if
A > 0 and B ≤ 0; un has exactly n− 1 zeros in [a, b] if A > 0 and B > 0.

• For n even: u′n(b) > 0 and, moreover, un has exactly n + 1 zeros in [a, b]
if A ≤ 0 and B ≥ 0; un has exactly n zeros in [a, b] if A ≤ 0 and B < 0 or if
A > 0 and B ≥ 0; un has exactly n− 1 zeros in [a, b] if A > 0 and B < 0.

• For n odd: w′n(b) > 0 and, moreover, wn has exactly n + 1 zeros in [a, b]
if A ≥ 0 and B ≥ 0; wn has exactly n zeros in [a, b] if A ≥ 0 and B < 0 or if
A < 0 and B ≥ 0; un has exactly n− 1 zeros in [a, b] if A < 0 and B < 0.

• For n even: w′n(b) < 0 and, moreover, wn has exactly n + 1 zeros in [a, b]
if A ≥ 0 and B ≤ 0; wn has exactly n zeros in [a, b] if A ≥ 0 and B > 0 or if
A < 0 and B ≤ 0; un has exactly n− 1 zeros in [a, b] if A < 0 and B > 0.

All the zeros of un and wn are simple and all the local maxima or minima of
un and wn are strict. Between any two consecutive zeros of a solution, as well
as between a and the first zero or between the last zero and b, there is only one
critical point of the solution.

Proof. The existence of sequences (un)n and (wn)n of solutions of (5) with

(19) lim
n→∞

|un|1,∞ = lim
n→∞

|wn|1,∞ = ∞

and with n−1/2 < ϕ(un, 1) < n+1/2 and−n−1/2 < ϕ(wn, 1) < −n+1/2 follows
from Lemma 2. Then the elastic property yields (18) from (19). Concerning the
nodal properties of the solutions, we only discuss the case of the un’s, that of
the wn’s being completely symmetric.
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Let n > k0 with k0 given in (16). Since n ≥ 2, we must necessarily be in
Case 3 analysed before. This means that n = m+1, where m ≥ 1 is the number
of the zeros of un between a1 and b1 (counting a1 and b1 as well), recalling that
a1 is the first zero of un in ]a, b[ where u′ has sign opposite to sgn(u′(a)) and b1

is the last zero of un in ]a, b[ where u′ has sign opposite to sgn(u′(b)). By the
definition of ϕ we know that u′n(a) > 0. Hence if un(a) ≤ 0, there is another
zero of un before a1, while if un(a) > 0, there are no other zeros of un before a1.

Thus, in the former case, un has n zeros in [a, b1], and in the latter, un has n−1
zeros in [a, b1]. On the other hand, if u′n(b) > 0 and u(b) ≥ 0 or if u′n(b) < 0
and u(b) ≤ 0, there must be just another zero of un after b1, while in all the
other cases (i.e. for u′n(b) > 0 and u(b) < 0 or u′n(b) < 0 and u(b) > 0) no
other zeros appear. Finally, we have to decide whether u′n(b) > 0 or u′n(b) < 0
knowing that u′n(a) > 0. By the above discussion, it is clear that u′n(a)u′n(b) < 0
or u′n(a)u′n(b) > 0 according as n is odd or even. Putting together all these
remarks, we are able to describe precisely the nodal properties of the solutions
(the reader can help him/her-self drawing here a picture corresponding to the
possible cases).

The last assertions about the local maxima and minima follow from the fact
that if |u(t)| ≥ d is large and u′(t) = 0, with u( · ) any solution of (5), then
u(t)u′′(t) < 0 (see the above discussion after the definition of ϕ for the meaning
of the functional we have introduced). �

Example 1. An elementary analysis of the boundary value problem

(20) u′′ + u max{K2, u2} = 0, u(0) = A, u(π) = B,

shows that Theorem 1 is sharp with respect to all its conclusions. Namely, we
cannot hope to have nontrivial solutions for all n ≥ 1, but only for n sufficiently
large, say n > k0. To see this, just take A = B = 0 and choose K ∈ Z+ large
enough; it is then straightforward to check that there are no solutions of (20)
with n < K zeros in [0, π[. Moreover, we cannot hope to have more than two
solutions with n zeros in [0, π[ when A = B = 0 and, finally, varying suitably A

and B, we easily find all the possible nodal properties described above.
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[6] M. A. Krasnosel’skĭı and P. P. Zabrĕıko, Geometric Methods of Nonlinear Analysis,

Springer-Verlag, Berlin, 1984.
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Università di Udine

I-33100 Udine, ITALY

TMNA : Volume 6 – 1995 – No 1


